From The California Institute of Technology (US): “Palomar Survey Instrument Analyzes Impact of Starlink Satellites” 

Caltech Logo

From The California Institute of Technology (US)

January 17, 2022
Whitney Clavin
(626) 395‑1944

A study of archival images from Zwicky Transient Facility shows an increase in satellite streaks.

The streak from a Starlink satellite appears in this image of the Andromeda galaxy, taken by The Zwicky Transient Facility, or ZTF, during twilight on May 19, 2021. The image shows only one-sixteenth of ZTF’s full field of view. Credit: Caltech Optical Observatories/The Caltech NASA Infrared Processing and Analysis Center(US).

Since 2019, SpaceX has been launching an increasing number of internet satellites into orbit around Earth. The satellite constellation, called Starlink, now includes nearly 1,800 members orbiting at altitudes of about 550 kilometers. Astronomers have expressed concerns that that these objects, which can appear as streaks in telescope images, could hamper their scientific observations.

To quantify these effects, a team of researchers studied archival images captured by the National Science Foundation (NSF)-funded Zwicky Transient Facility (ZTF), an instrument that operates from Caltech’s Palomar Observatory near San Diego.

Zwicky Transient Facility (ZTF) instrument installed on the 1.2m diameter Samuel Oschin Telescope at Palomar Observatory in California. Credit: Caltech Optical Observatories.

Caltech Palomar Samuel Oschin 48 inch Telescope, located in San Diego County, California, U.S.A., altitude 1,712 m (5,617 ft). Credit: Caltech.

ZTF scans the entire night sky every two days, cataloguing cosmic objects that explode, blink, or otherwise change over time. This includes everything from supernovae to near-Earth asteroids. The Zwicky team members say they decided to specifically study the effects of Starlink satellites because they currently represent the largest low-Earth orbit, or LEO, constellation, and they have well-characterized orbits.

The findings, reported in the January 17 issue of The Astrophysical Journal Letters, shows 5301 satellite streaks appear in archival images taken between November 2019 and September 2021. The streaks are most apparent in so-called twilight observations-those taken at dawn or dusk-which are important for finding near-Earth asteroids that appear close to the sun in the sky. ZTF has discovered several asteroids of this nature, including 2020 AV2, the first asteroid spotted with an orbit that fits entirely within the orbit of Venus.

“In 2019 0.5 percent of twilight images were affected, and now almost 20 percent are affected,” says Przemek Mróz, study lead author and a former Caltech postdoctoral scholar who is now at The University of Warsaw [Uniwersytet Warszawski](PL).

In the future, the scientists expect that nearly all of the ZTF images taken during twilight will contain at least one streak, especially after the Starlink constellation reaches 10,000 satellites, a goal SpaceX hopes to reach by 2027.

“We don’t expect Starlink satellites to affect non-twilight images, but if the satellite constellation of other companies goes into higher orbits, this could cause problems for non-twilight observations,” Mróz says.

Yet despite the increase in image streaks, the new report notes that ZTF science operations have not been strongly affected. Study co-author Tom Prince, the Ira S. Bowen Professor of Physics, Emeritus, at Caltech, says the paper shows a single streak affects less than one-tenth of a percent of the pixels in a ZTF image.

“There is a small chance that we would miss an asteroid or another event hidden behind a satellite streak, but compared to the impact of weather, such as a cloudy sky, these are rather small effects for ZTF.”

Prince says that software can be developed to help mitigate potential problems; for example, software could predict the locations of the Starlink satellites and thus help astronomers avoid scheduling an observation when one might be in the field of view. Software can also assess whether a passing satellite may have affected an astronomical observation, which would allow astronomers to mask or otherwise reduce the negative effects of the streaks.

The new study also looked at the effectiveness of visors on the Starlink satellites, which SpaceX added beginning in 2020 to block sunlight from reaching the spacecraft. According to the ZTF observations, the visors reduce the satellite brightness by a factor of about five. That dims the satellites down to an apparent brightness level of 6.8 magnitude (the brightest stars are first magnitude, and the faintest stars we can see with our eyes are about sixth magnitude).

This is still not dim enough to meet standards outlined by the Satellite Constellations 1 (SATCON1) workshop in 2020, a gathering sponsored by The NSF NOIRLab [National Optical-Infrared Astronomy Research Laboratory](US) and The American Astronomical Society (US) to bring together astronomers, policymakers, and other experts to discuss the impact of large satellite constellations on astronomy and society. The group called for all LEO satellites to be at seventh magnitude or fainter.

The study authors also note their study is specific to ZTF. Like ZTF, the upcoming Vera C. Rubin Observatory, under construction in Chile, will also survey the sky nightly, but due to its more sensitive imager, astronomers predict that it may be more negatively affected by satellite streaks than ZTF.

Other authors of the study include Richard Dekany (BS ’89), Matthew Graham, Steven Groom, and Frank Masci of Caltech; Dmitry Duev, a former Caltech postdoc now at Weights & Biases Inc.; Angel Otarola of The European Southern Observatory [Observatoire européen austral][Europaiche Sûdsternwarte] (EU)(CL); and Michael S. Medford of The University of California-Berkeley (US) and DOE’s Lawrence Berkeley National Laboratory (US).

ZTF is funded by The National Science Foundation(US) and an international collaboration of partners. Additional support comes from The Heising-Simons Foundation (US) and Caltech. ZTF data are processed and archived by Caltech NASA Infrared Science Archive IPAC. NASA supports ZTF’s search for near-Earth objects through the Near-Earth Object Observations program.

See the full article here .


Please help promote STEM in your local schools.

Stem Education Coalition

Caltech campus

The The California Institute of Technology (US) is a private research university in Pasadena, California. The university is known for its strength in science and engineering, and is one among a small group of institutes of technology in the United States which is primarily devoted to the instruction of pure and applied sciences.

The California Institute of Technology was founded as a preparatory and vocational school by Amos G. Throop in 1891 and began attracting influential scientists such as George Ellery Hale, Arthur Amos Noyes, and Robert Andrews Millikan in the early 20th century. The vocational and preparatory schools were disbanded and spun off in 1910 and the college assumed its present name in 1920. In 1934, The California Institute of Technology was elected to the Association of American Universities, and the antecedents of National Aeronautics and Space Administration (US)’s Jet Propulsion Laboratory, which The California Institute of Technology continues to manage and operate, were established between 1936 and 1943 under Theodore von Kármán.

The California Institute of Technology has six academic divisions with strong emphasis on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. First-year students are required to live on campus, and 95% of undergraduates remain in the on-campus House System at The California Institute of Technology. Although The California Institute of Technology has a strong tradition of practical jokes and pranks, student life is governed by an honor code which allows faculty to assign take-home examinations. The The California Institute of Technology Beavers compete in 13 intercollegiate sports in the NCAA Division III’s Southern California Intercollegiate Athletic Conference (SCIAC).

As of October 2020, there are 76 Nobel laureates who have been affiliated with The California Institute of Technology, including 40 alumni and faculty members (41 prizes, with chemist Linus Pauling being the only individual in history to win two unshared prizes). In addition, 4 Fields Medalists and 6 Turing Award winners have been affiliated with The California Institute of Technology. There are 8 Crafoord Laureates and 56 non-emeritus faculty members (as well as many emeritus faculty members) who have been elected to one of the United States National Academies. Four Chief Scientists of the U.S. Air Force and 71 have won the United States National Medal of Science or Technology. Numerous faculty members are associated with the Howard Hughes Medical Institute(US) as well as National Aeronautics and Space Administration(US). According to a 2015 Pomona College(US) study, The California Institute of Technology ranked number one in the U.S. for the percentage of its graduates who go on to earn a PhD.


The California Institute of Technology is classified among “R1: Doctoral Universities – Very High Research Activity”. Caltech was elected to The Association of American Universities in 1934 and remains a research university with “very high” research activity, primarily in STEM fields. The largest federal agencies contributing to research are National Aeronautics and Space Administration(US); National Science Foundation(US); Department of Health and Human Services(US); Department of Defense(US), and Department of Energy(US).

In 2005, The California Institute of Technology had 739,000 square feet (68,700 m^2) dedicated to research: 330,000 square feet (30,700 m^2) to physical sciences, 163,000 square feet (15,100 m^2) to engineering, and 160,000 square feet (14,900 m^2) to biological sciences.

In addition to managing NASA-JPL/Caltech (US), The California Institute of Technology also operates the Caltech Palomar Observatory(US); the Owens Valley Radio Observatory(US);the Caltech Submillimeter Observatory(US); the W. M. Keck Observatory at the Mauna Kea Observatory(US); the Laser Interferometer Gravitational-Wave Observatory at Livingston, Louisiana and Richland, Washington; and Kerckhoff Marine Laboratory(US) in Corona del Mar, California. The Institute launched the Kavli Nanoscience Institute at The California Institute of Technology in 2006; the Keck Institute for Space Studies in 2008; and is also the current home for the Einstein Papers Project. The Spitzer Science Center(US), part of the Infrared Processing and Analysis Center(US) located on The California Institute of Technology campus, is the data analysis and community support center for NASA’s Spitzer Infrared Space Telescope [no longer in service].

The California Institute of Technology partnered with University of California at Los Angeles(US) to establish a Joint Center for Translational Medicine (UCLA-Caltech JCTM), which conducts experimental research into clinical applications, including the diagnosis and treatment of diseases such as cancer.

The California Institute of Technology operates several Total Carbon Column Observing Network(US) stations as part of an international collaborative effort of measuring greenhouse gases globally. One station is on campus.