Tagged: Space Weather Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:07 pm on June 29, 2018 Permalink | Reply
    Tags: , , , , , Magnetometers, Space Weather   

    From European Space Agency: ESA’s unexpected fleet of space weather monitors 

    ESA Space For Europe Banner

    From European Space Agency

    28 June 2018

    1
    Future lagrange mission
    Released 10/11/2017
    Copyright ESA/A. Baker, CC BY-SA 3.0 IGO

    A team of researchers, supported under ESA’s Basic Activities, has recently investigated a resourceful new method of monitoring space weather. They analysed data from spacecraft magnetometers typically used for attitude control — so-called “platform magnetometers”— to see if these devices could also be used to investigate the impact of solar storms on the magnetic field around Earth.

    From a distance, the Sun appears to be a serenely glowing ball of light and warmth. But this seemingly gentle star has a violent temper. It goes through periods of intense activity, during which it can send powerful blasts of charged particles through space, which can be hazardous if they head in our direction.

    This variation in the space environment between Earth and the Sun, and in particular its impact on Earth, is known as space weather. Luckily, Earth is protected from most space weather events by its magnetic field, but some solar activity can still affect vital infrastructure, including telecommunication and navigation satellites in space, and power grids on the ground.

    Space weather events can be monitored using devices that measure magnetic fields, called magnetometers. Some spacecraft carry extremely sensitive magnetometers for scientific studies — these instruments are placed on booms, away from stray magnetic field sources inside the spacecraft. But many more spacecraft host less-sensitive magnetometers on board, called platform magnetometers, to keep the spacecraft pointed in the right direction. Could these platform magnetometers also be used to monitor space weather? In late 2016, ESA’s General Studies Programme invited research groups to find out.

    The investigation was taken on by a team consisting of scientists from TU Delft and the GFZ German Research Centre for Geosciences, who recently presented their findings at ESTEC. The group looked at data from Swarm, GOCE and LISA Pathfinder to investigate whether platform magnetometer data could also be used for space weather diagnostics.

    2
    Swarm constellation over Earth
    Released 21/10/2013
    Copyright ESA/AOES Medialab

    Swarm is ESA’s first Earth observation constellation of satellites. The three identical satellites are launched together on one rocket. Two satellites orbit almost side-by-side at the same altitude – initially at about 460 km, descending to around 300 km over the lifetime of the mission. The third satellite is in a higher orbit of 530 km and at a slightly different inclination. The satellites’ orbits drift, resulting in the upper satellite crossing the path of the lower two at an angle of 90° in the third year of operations.
    The different orbits along with satellites’ various instruments optimise the sampling in space and time, distinguishing between the effects of different sources and strengths of magnetism.

    ESA/GOCE Spacecraft

    ESA LISA Pathfinder

    2
    Comparing magnetometer data
    Released 27/06/2018
    Copyright ESA
    A comparison of the data collected from SWARM and GOCE platform magnetometers versus the SWARM science magnetometer in terms of detecting space weather.

    Fabrice Cipriani, responsible for the project from ESA’s side, explains: “This was a bit of an exploratory study for us. Quantifying the effects that solar storms have on Earth is extremely important to monitor and assess the impacts on sensitive infrastructure and so we want to exploit as many source of data as possible that can provide meaningful information, especially when there are no major development costs involved.”

    The team compared the data from Swarm’s scientific magnetometer with its platform magnetometer to determine the accuracy of the latter, before applying this knowledge to an analysis of GOCE magnetometer data. As Swarm and GOCE are both in low-Earth orbit, they can tell us a lot about how Earth responds to space weather. A magnetometer was also hosted on board LISA Pathfinder to keep an eye on the satellite’s precise measurement system.

    Eelco Doornbos, from Delft University of Technology, elaborates: “LISA Pathfinder is positioned between Earth and the Sun, outside Earth’s magnetosphere. This gives it a great view of the solar wind.”

    LISA Pathfinder’s platform magnetometer data was compared with that from American space weather observatories WIND, ACE and DSCOVR.

    NASA Wind Spacecraft

    NASA Ace Solar Observatory

    NASA DSCOVR spacecraft

    “We investigated data from LISA Pathfinder, which can observe the solar wind, and from Swarm and GOCE, which can observe magnetic field currents closer to Earth. In both cases the platform magnetometer data was good enough to recover a good signal, even when the magnetometer is not very precise and is close to other instruments,” adds Eelco.

    The team concluded that platform magnetometers can provide excellent insight into space weather. Their contribution to monitoring this phenomenon can be significantly increased by initiating coordination between different groups and developing new data processing techniques, both of which are relatively low cost compared to developing dedicated instruments and missions.

    Traditionally platform magnetometer data is only sent to Earth so that engineers can check that a spacecraft is working properly. The next step is to make this data accessible to more people.

    Fabrice explains, “We want to encourage data users to be involved at an early design phase when developing new spacecraft, to help figure out how to enable easier access to this data.”

    “Space weather is such a complicated system that changes so rapidly that the more observations you have, the better. This is why it’s great to get as many satellites as possible looking into it,” Eelco concludes.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

    Advertisements
     
  • richardmitnick 11:41 am on April 25, 2018 Permalink | Reply
    Tags: , , , , CME's - Coronal Mass Ejections, , , Space Weather   

    From Eos: “Capturing Structural Changes of Solar Blasts en Route to Earth” 

    AGU
    Eos news bloc

    Eos

    4.25.18
    Sarah Stanley

    Comparison of magnetic field structures for 20 coronal mass ejections at eruption versus Earth arrival highlights the importance of tracking structural evolution to refine space weather predictions.

    1
    Coronal mass ejections erupt when flux ropes—the blue loops seen here—lose stability, resulting in a blast of plasma away from the Sun. New research [AGU Space Weather] emphasizes the importance of changes in the magnetic field structure of flux ropes between eruption of plasma blasts and their arrival at Earth. Credit: NASA/Goddard Space Flight Center/SDO, CC BY 2.0

    NASA/SDO

    Huge clouds of plasma periodically erupt from the Sun in coronal mass ejections. The magnetic field structure of each blast can help determine whether it might endanger spacecraft, power grids, and other human infrastructure. New research by Palmerio et al. highlights the importance of detecting any changes in the magnetic field structure of a coronal mass ejection as it races toward Earth.

    Coronal mass ejections often erupt in the form of a flux rope—a twisted, helical magnetic field structure that extends outward from the Sun. A flux rope can come in a variety of types that depend on the direction of the magnetic field axis and whether its helical component curves to the left or right. While the direction of the helical curve remains unchanged, the axis can alter direction after eruption from the Sun.

    In the new study, the researchers analyzed observations of 20 different coronal mass ejections, comparing their flux rope structure at eruption to their structure once they reached satellites near Earth. They used a variety of satellite and ground-based observations to reconstruct the eruption structures, and they directly observed structures close to Earth as the plasma blasts washed over NASA’s Wind spacecraft.

    NASA Wind Spacecraft

    The analysis showed that between Sun eruption and Earth arrival, flux rope structure changed axis direction by more than 90° for 7 of the 20 coronal mass ejections. The rest of the blasts had an axis rotation of less than 90°, with five changing by less than 30° after eruption.

    These results highlight the importance of capturing posteruption changes in flux rope magnetic field structures of coronal mass ejections to refine space weather predictions. Such rotations can result from a variety of causes, including deformations in the Sun’s corona and interaction with other coronal mass ejections.

    However, capturing these changes remains a challenge. Reconstructions of flux rope structure from direct spacecraft observations may vary depending on which reconstruction technique is used. In addition, such observations depend on the spacecraft’s particular path through a coronal mass ejection, which might not give an accurate picture of the overall structure.

    And although posteruption structural changes are important, the researchers emphasize that the flux rope structure of a coronal mass ejection at eruption is still a good approximation for its structure upon Earth arrival and serves as a key input for space weather forecasting models.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

     
  • richardmitnick 8:10 am on February 23, 2018 Permalink | Reply
    Tags: , , , Canada’s Cassiope satellite a.k.a. Echo, , , Space Weather   

    From ESA: “Swarm trio becomes a quartet” 

    ESA Space For Europe Banner

    European Space Agency

    22 February 2018

    With the aim of making the best possible use of existing satellites, ESA and Canada have made a deal that turns Swarm into a four-satellite mission to shed even more light on space weather and features such as the aurora borealis.

    ESA/Swarm

    In orbit since 2013, ESA’s three identical Swarm satellites have been returning a wealth of information about how our magnetic field is generated and how it protects us from dangerous electrically charged atomic particles in the solar wind.

    Magnetosphere of Earth, original bitmap from NASA. SVG rendering by Aaron Kaase

    Canada’s Cassiope satellite carries three instrument packages, one of which is e-POP.

    1
    Canada’s Cassiope satellite carries three instrument packages, one of which is e-POP
    Cassiope carries e-POP
    Released 22/02/2018
    Copyright © Canadian Space Agency, 2018
    Canada’s Cassiope satellite carries e-POP, which consists of eight instruments to provide information on Earth’s ionosphere, thermosphere and magnetosphere for a better understanding of space weather. Under a new agreement signed in February 2018, e-POP joins ESA’s magnetic field Swarm mission as a fourth element.

    It delivers information on space weather which complements that provided by Swarm. Therefore, the mission teams began looking into how they could work together to make the most of the two missions.

    To make life easier, it also just so happens that Cassiope’s orbit is ideal to improve Swarm’s readings.

    And now, thanks to this international cooperation and formalised through ESA’s Third Party Mission programme, e-POP has effectively become a fourth element of the Swarm mission. It joins Swarm’s Alpha, Bravo and Charlie satellites as Echo.

    Josef Aschbacher, ESA’s Director of Earth Observation Programmes, noted, “This is a textbook example of how virtual constellations and collaborative initiatives can be realised, even deep into the missions’ exploitation phases.

    “We embrace the opportunity to include e-POP in the Swarm mission, especially because it is clear that the more data we get, the better the picture we have of complex space weather dynamics.

    “ESA is looking forward to seeing the fruits of this collaboration and the improved return on investment for both Europe and Canada.”

    Andrew Yau from the University of Calgary added, “Swarm and e-POP have several unique measurement capabilities that are highly complementary.

    “By integrating e-POP into the Swarm constellation, the international scientific community will be able to pursue a host of new scientific investigations into magnetosphere–ionosphere coupling, including Earth’s magnetic field and related current systems, upper-atmospheric dynamics and aurora dynamics.”

    John Manuel from the Canadian Space Agency noted, “We are pleased to see e-POP join ESA’s three Swarm satellites in their quest to unravel the mysteries of Earth’s magnetic field.

    “Together, they will further improve our understanding of Earth’s magnetic field and role it plays in shielding Canada and the world from the effects of space weather.”

    Giuseppe Ottavianelli, Third-Party Mission Manager at ESA concluded, “I am pleased that the e-POP ensemble is now formally integrated into our Swarm constellation.

    “This milestone achievement confirms the essential role of ESA’s Earthnet programme, enabling synergies across missions, fostering international cooperation, and supporting data access.”

    While e-POP changes its name to Echo as part of the Swarm mission, it will also continue to provide information for its original science investigations.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 8:04 am on January 27, 2018 Permalink | Reply
    Tags: , , , , , Space Weather   

    From ESA: “Space weather effects” 

    ESA Space For Europe Banner

    European Space Agency

    1
    Credits: ESA/Science Office, CC BY-SA 3.0 IGO

    2
    ESA

    Space weather refers to the environmental conditions in space as influenced by solar activity.

    In Europe’s economy today, numerous sectors can be affected by space weather. These range from space-based telecommunications, broadcasting, weather services and navigation, through to power distribution and terrestrial communications, especially at northern latitudes.

    One significant influence of solar activity is seen in disturbances in satellite navigation services, like Galileo, due to space weather effects on the upper atmosphere. This in turn can affect aviation, road transport, shipping and any other activities that depend on precise positioning.

    For satellites in orbit, the effects of space weather can be seen in the degradation of communications, performance, reliability and overall lifetime. For example, the solar panels that convert sunlight to electrical power on most spacecraft will steadily generate less power over the course of a mission, and this degradation must be taken into account in designing the satellite.

    In addition, increased radiation due to space weather may lead to increased health risks for astronauts, both today on board the International Space Station in low orbit and in future on voyages to the Moon or Mars.

    On Earth, commercial airlines may also experience damage to aircraft electronics and increased radiation doses to crews (at long-haul aircraft altitudes) during large space weather events. Space weather effects on ground can include damage and disruption to power distribution networks, increased pipeline corrosion and degradation of radio communications.

    More information

    ESA SSA – Space Weather Segment

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 11:42 am on December 27, 2017 Permalink | Reply
    Tags: , , , , Comparing the Accuracy of Geomagnetic Field Models, , , Space Weather   

    From Eos: “Comparing the Accuracy of Geomagnetic Field Models” 

    AGU bloc

    AGU
    Eos news bloc

    Eos

    12.27.17
    Delores J. Knipp

    Improved accuracy and optimization of models could benefit many applications.

    1
    The figure shows bias of the magnitude error distributions for the Tsyganenko- 2004 (TS04) model by comparing the residual error for TS04 against a validation set. The color scale denotes the number of observation points at that location in comparison space. The X-axis shows the logarithm of the observed magnetic field magnitude. Positive values on the Y-axis imply model over-prediction of the magnetic field magnitude, while negative values imply model under-prediction of the magnetic field magnitude. Here, most of the comparisons (bright colors) show small model-observations differences at locations where the observed field values is ~100 nT, which is typical of geosynchronous orbit magnetic field values. Credit: Brito and Morley, 2017, Figure 5d.

    Improving models of the geomagnetic field is important to radiation belt studies, determining when satellites are on the same magnetic field line, and mapping from the ionosphere to the magnetotail or vice versa, to name just a few applications. Brito and Morley [2017] [Space Weather] present a method for comparing the accuracy of several versions of the Tsyganenko empirical magnetic field models and for optimizing the empirical magnetic field model using in situ magnetic field measurements. The study was carried out for intervals of varied geomagnetic activity selected by the Geospace Environment Modeling Challenge for the Quantitative Assessment of Radiation Belt Modeling Focus Group. The authors describe a method for improving the results of various Tsyganenko magnetic field models, especially with respect to outliers, using a new cost function, various metrics and Nelder-Mead optimization.

    Importantly, this model evaluation was based on points in the magnetosphere that were not used for fitting. Thus, the results provide an independent validation of the method. The model, known as TS04, produced the best results after optimization, generating a smaller error in 57.3% of the points in the tested data set when compared to the standard (unoptimized) inputs. The results of this study include a set of optimized parameters that can be used to evaluate the models studied in this paper. These optimized parameters are included as supplementary material so that the broader scientific community can use the optimized magnetic field models immediately, and without any additional code development, using any standard implementation of the magnetic field models tested in the study.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

     
  • richardmitnick 9:01 am on October 30, 2017 Permalink | Reply
    Tags: , , , , , , Space Weather,   

    From UK Space Agency: “Initial £3 million awarded for UK leadership of new space science mission SMILE” 

    UK Space Agency

    UK Space Agency

    30 October 2017
    UK Space Agency and Jo Johnson MP

    UK teams will lead an international solar-terrestrial and space weather mission, taking on the development of a major science instrument thanks to funding from the UK Space Agency.

    1
    Coronal mass ejections sometimes reach out in the direction of Earth. Credit: ESA

    The £3 million will support academics working on SMILE (the Solar wind Magnetosphere Ionosphere Link Explorer), a European Space Agency (ESA) science mission, being delivered jointly with the Chinese Academy of Sciences and due to launch in 2021. SMILE will address fundamental gaps in knowledge of the solar-terrestrial relationship by providing, for the first time ever, global imaging of the Earth’s magnetosphere and its dynamic response to solar wind – charged particles streaming from the Sun.

    1
    ESA SMILE satellite

    The magnetosphere is a vast region around our planet that protects us from solar wind and cosmic particle radiation.

    Magnetosphere of Earth, original bitmap from NASA. SVG rendering by Aaron Kaase

    The Earth’s magnetosphere is the strongest of all the rocky planets in our solar system and its protective role is thought to have played a key role in the Earth’s habitability. SMILE will provide a step change in understanding its behaviour, and will serve a broad range of research communities in which the UK is world leading, including solar, fundamental physics, heliophysics, and planetary sciences.

    SMILE will also provide crucial improvements to the modelling of space weather, which is recognised in the Government’s National Risk Register as a key disruptive threat to UK national technological infrastructure.

    Science Minister, Jo Johnson, said:

    “Satellites, power grids and communications networks are integral to our modern lives and through this funding, we are ensuring UK academics continue to lead international research in solar-terrestrial science and space weather. This will help us gain a greater understanding of its causes and behaviour – helping us to better prepare and protect our vital infrastructure from its effects.

    “SMILE is a prime example of scientific innovation underpinning the broader economy with real-world applications, a key foundation of our Industrial Strategy.”

    The UK Space Agency’s £3 million investment package supports three UK academic groups for the next two years, and is planned to be extended to support the mission throughout its development. It will deliver the overall scientific leadership role with Prof Graziella Branduardi-Raymont, from the UCL Mullard Space Science Laboratory, overseeing the European consortium, and the design and build of the mission’s most innovative science instrument, the SXI (Soft X-ray Imager), led by Dr Steven Sembay, from the University of Leicester.

    Prof Andrew Holland, of the Open University, will also manage the development of the SXI detectors from Teledyne e2v Ltd, a world renowned UK-based provider of cutting edge space technology, which has a separate ESA contract to provide the SXI detectors worth €1.5 million.

    Thales Alenia Space UK (TAS UK) is also bidding for a major role in the provision of the spacecraft’s Payload Module, and has been awarded one of three competitive studies funded by ESA to lead the design definition of this hardware.

    The UK Space Agency funded academic roles maximise UK science return by combining privileged access to SMILE science data with intimate instrument knowledge. SMILE builds on a very productive legacy of academic collaboration between the UK and China, and will act as a further high profile pillar of cooperation. The UK roles demonstrate our ongoing international leadership and engagement with world-class science and research.

    Prof Graziella Branduardi-Raymont, mission Co-Principal Investigator, said:

    “SMILE is a most innovative space mission dedicated to study the impact of the solar wind on the Earth’s magnetic environment. It will explore scientifically what drives space weather and return knowledge that will eventually lead to mitigating its effects.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 7:48 am on October 27, 2017 Permalink | Reply
    Tags: , , , Cloudy with a chance of protons, , , Space Weather   

    From ESA: “Cloudy with a chance of protons” 

    ESA Space For Europe Banner

    European Space Agency

    26/10/2017
    No writer credit

    1

    ESA’s Gaia mission, in orbit since December 2013, is surveying more than a thousand million stars in our Galaxy, monitoring each target star about 70 times over a five-year period and precisely charting their positions, distances, movements and brightness.

    ESA/GAIA satellite

    Although Gaia is not equipped with a dedicated radiation monitor, it can provide information about the space weather – and the solar particles and radiation – that it encounters at its unique orbital position, 1.5 million km from Earth towards the Sun.

    In September, Gaia unexpectedly detected a large quantity of protons – subatomic particles – emitted by a solar flare.

    In this image, captured by Gaia’s Wave Front Sensor – a sort of ‘camera within a camera’ in its main star-sensing instrument – the streaks of ‘snow’ are trails of individual protons. During normal space weather conditions, the image would only include one or two proton trails. The long trail running horizontally across the image indicates a particularly energetic proton.

    This proton storm was also reported by NASA’s GOES weather satellite, which is equipped with a particle-sensing instrument.

    2
    GOES-R | NASA

    The solar flare that gave rise to these protons took place on 10 September 2017, and the peak flow of protons streaming past Gaia occurred at about midnight on 11 September.

    “Gaia is designed to withstand these space weather storms and it was able to continue as normal throughout the period of increased radiation,” says spacecraft operations engineer Ed Serpell.

    “During the days of the increased radiation, the amount of ground contact with the ESA deep-space network was increased to provide more realtime information about the spacecraft performance. This additional visibility confirmed how well Gaia was performing and no intervention was necessary.”

    The storm had some minor, temporary effect on Gaia’s attitude and orbit control system. The excess protons also caused the main science instrument to generate much more data than usual, which had to be offloaded from the onboard memory.

    More information

    Gaia

    Space Situational Awareness

    Space Weather Service Network

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 11:55 am on August 23, 2017 Permalink | Reply
    Tags: , , , , , EISCAT [European Incoherent Scatter Scientific Association], Space Weather,   

    From STFC: “UK supporting Arctic project to build the most advanced space weather radar in the world” 


    STFC

    23 August 2017
    STFC Media Manager
    Jake Gilmore
    jake.gilmore@stfc.ac.uk
    +44 (0)7970 99 4586

    1
    An artist’s impression of what EISCAT_3D’s central radar site will look like. (Credit: NIPR)

    The most advanced space weather radar in the world is to be built in the Arctic by an international partnership including the UK, thanks to new investment from NERC [Science of the Environment], with scientific collaboration from STFC.

    The EISCAT [European Incoherent Scatter Scientific Association]_3D radar will provide UK scientists with a cutting-edge tool to probe the upper atmosphere and near-Earth space, helping them understand the effects of space weather storms on technology, society and the environment.

    The UK government has placed space weather on the National Risk Register, in recognition of the potential damage it can do to satellites, communications and power grids. Solar storms drive space weather, but one of the biggest challenges in space weather science is improving our understanding of how the Earth’s magnetic field and atmosphere responds to this. EISCAT_3D will give scientists the means to understand these connections.

    Dr. Ian McCrea, from STFC RAL Space and the NERC Centre for Atmospheric Science, said:

    “This announcement represents the culmination of 15 years effort to secure UK involvement in a facility which will be the most sophisticated of its kind in the world. With advanced capabilities based on state-of-the-art radar technology, this new radar will significantly expand the opportunities for our scientists to study the outermost regions of the Earth’s atmosphere and their interaction with the space environment.”

    EISCAT_3D will provide us with a new way of spatially imaging the structure and dynamics of this important region, enabling us to contribute more effectively to growing international efforts to observe and forecast the effects of space weather, monitor the risks posed by space debris and probe the complex structure of the aurora.”

    A key capability of the radar will be to measure an entire 3D volume of the upper atmosphere in unprecedented detail. This is necessary to understand how energetic particles and electrical currents from space affect both the upper and the lower atmosphere. Scientists will be able to take measurements across scales from hundreds of metres to hundreds of kilometres, providing exceptional detail and vast quantities of data, and opening the scope of research that can be carried out.

    STFC’s RAL Space Director, Dr Chris Mutlow said:

    “I’m delighted that we’re able to bring our heritage in studying space weather to this fantastic new radar with our international partners. The level of detail it will provide represents a significant leap in our ability to understand the effects of space weather on our atmosphere and monitor space debris. This is critical to our national infrastructure as well as scientific advancement.”

    The northern hemisphere already hosts several EISCAT radars, situated in the so-called auroral oval – where you can see the northern lights or aurora borealis.

    2
    EISCAT Svalbard, Norway Radar

    3
    EISCAT radar dish in Kiruna, Sweden

    4
    EISCAT Ramfjordmoen facility (near Tromsø, Norway) in winter

    5
    EISCAT Sodankylä radar in Finland

    They take measurements in a region of the Earth’s upper atmosphere called the ionosphere – from about 70 to 1000 km altitude. They sample the electron concentration and temperature, and the ion temperature and velocity at a range of altitudes along the radar beam direction. But the current EISCAT radars provide a single pencil beam, so researchers can only look at one small portion of the sky at a given time.

    Dr Andrew Kavanagh, UK EISCAT Science Support, based at the British Antarctic Survey, said:

    “The new EISCAT_3D radar will measure the ionosphere in lots of different directions simultaneously. It will be like having hundreds of radar dishes all operating together. This means we can easily see changes in the ionosphere and not miss important data: when our measurements change we will be able to say whether something had just appeared or faded or if something was moving through the beams. This is really important as it gives us information about how space weather effects evolve.”

    Costing a total of £63m, the facility will be distributed across three sites in northern Scandinavia – in Skibotn, Norway, near Kiruna in Sweden, and near Kaaresuvanto in Finland. The project will start in September 2017 with site preparations beginning in summer 2018. The radar is expected to be operational in 2021.

    The site in Skibotn, Norway will have a transmitter and receiver array, while the two other sites will have receiver arrays. These will generate beams that will ‘look into’ the transmitted beam and give researchers many intersection heights.

    EISCAT Director, Dr Craig Heinselman, said:

    “Building on over three and a half decades of scientific observations with the legacy EISCAT radars, this new multi-site phased-array radar will allow our international user community to investigate important questions about the physics of the near-Earth space environment. The radar will make measurements at least ten times faster and with ten times finer resolution than current systems.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    STFC Hartree Centre

    Helping build a globally competitive, knowledge-based UK economy

    We are a world-leading multi-disciplinary science organisation, and our goal is to deliver economic, societal, scientific and international benefits to the UK and its people – and more broadly to the world. Our strength comes from our distinct but interrelated functions:

    Universities: we support university-based research, innovation and skills development in astronomy, particle physics, nuclear physics, and space science
    Scientific Facilities: we provide access to world-leading, large-scale facilities across a range of physical and life sciences, enabling research, innovation and skills training in these areas
    National Campuses: we work with partners to build National Science and Innovation Campuses based around our National Laboratories to promote academic and industrial collaboration and translation of our research to market through direct interaction with industry
    Inspiring and Involving: we help ensure a future pipeline of skilled and enthusiastic young people by using the excitement of our sciences to encourage wider take-up of STEM subjects in school and future life (science, technology, engineering and mathematics)

    We support an academic community of around 1,700 in particle physics, nuclear physics, and astronomy including space science, who work at more than 50 universities and research institutes in the UK, Europe, Japan and the United States, including a rolling cohort of more than 900 PhD students.

    STFC-funded universities produce physics postgraduates with outstanding high-end scientific, analytic and technical skills who on graduation enjoy almost full employment. Roughly half of our PhD students continue in research, sustaining national capability and creating the bedrock of the UK’s scientific excellence. The remainder – much valued for their numerical, problem solving and project management skills – choose equally important industrial, commercial or government careers.

    Our large-scale scientific facilities in the UK and Europe are used by more than 3,500 users each year, carrying out more than 2,000 experiments and generating around 900 publications. The facilities provide a range of research techniques using neutrons, muons, lasers and x-rays, and high performance computing and complex analysis of large data sets.

    They are used by scientists across a huge variety of science disciplines ranging from the physical and heritage sciences to medicine, biosciences, the environment, energy, and more. These facilities provide a massive productivity boost for UK science, as well as unique capabilities for UK industry.

    Our two Campuses are based around our Rutherford Appleton Laboratory at Harwell in Oxfordshire, and our Daresbury Laboratory in Cheshire – each of which offers a different cluster of technological expertise that underpins and ties together diverse research fields.

    The combination of access to world-class research facilities and scientists, office and laboratory space, business support, and an environment which encourages innovation has proven a compelling combination, attracting start-ups, SMEs and large blue chips such as IBM and Unilever.

    We think our science is awesome – and we know students, teachers and parents think so too. That’s why we run an extensive Public Engagement and science communication programme, ranging from loans to schools of Moon Rocks, funding support for academics to inspire more young people, embedding public engagement in our funded grant programme, and running a series of lectures, travelling exhibitions and visits to our sites across the year.

    Ninety per cent of physics undergraduates say that they were attracted to the course by our sciences, and applications for physics courses are up – despite an overall decline in university enrolment.

     
  • richardmitnick 1:12 pm on May 27, 2017 Permalink | Reply
    Tags: 1 millionº and breezy: Your solar forecast, , , , , Space Weather,   

    From Science Node: “1 millionº and breezy: Your solar forecast” 

    Science Node bloc
    Science Node

    24 May, 2017
    Alisa Alering

    Space is a big place, so modeling activities out there calls for supercomputers that match. PRACE provided scientists the resources to run the Vlasiator code and simulate the solar wind around the earth.

    1
    Courtesy Minna Palmroth; Finnish Meteorological Institute.

    Outer space is a tough place to be a lonely blue planet.

    With only a thin atmosphere standing between a punishing solar wind and the 1.5 million species living on its surface, any indication of the solar mood is appreciated.

    The sun emits a continuous flow of plasma traveling at speeds up to 900 km/s and temperatures as high as 1 millionº Celsius. The earth’s magnetosphere blocks this wind and allows it to flow harmlessly around the planet like water around a stone in the middle of a stream.

    Magnetosphere of Earth, original bitmap from NASA. SVG rendering by Aaron Kaase

    But under the force of the solar bombardment, the earth’s magnetic field responds dramatically, changing size and shape. The highly dynamic conditions this creates in near-Earth space is known as space weather.

    Vlasiator, a new simulation developed by Minna Palmroth, professor in computational space physics at the University of Helsinki, models the entire magnetosphere. It helps scientists to better understand interesting and hard-to-predict phenomena that occur in near-Earth space weather.

    Unlike previous models that could only simulate a small segment of the magnetosphere, Vlasiator allows scientists to study causal relationships between plasma phenomena for the first time and to consider smaller scale phenomena in a larger context.

    “With Vlasiator, we are simulating near-Earth space with better accuracy than has even been possible before,” says Palmroth.

    Navigating near-Earth

    Over 1,000 satellites and other near-Earth spacecraft are currently in operation around the earth, including the International Space Station and the Hubble Telescope.

    Nearly all communications on Earth — including television and radio, telephone, internet, and military — rely on links to these spacecraft.

    Still other satellites support navigation and global positioning and meteorological observation.

    New spacecraft are launched every day, and the future promises even greater dependence on their signals. But we are launching these craft into a sea of plasma that we barely understand.

    “Consider a shipping company that would send its vessel into an ocean without knowing what the environment was,” says Palmroth. “That wouldn’t be very smart.”

    Space weather has an enormous impact on spacecraft, capable of deteriorating signals to the navigation map on your phone and disrupting aviation. Solar storms even have the potential to overwhelm transformers and black out the power grid.

    Through better comprehension and prediction of space weather, Vlasiator’s comprehensive model will help scientists protect vital communications and other satellite functions.

    Three-level parallelization

    The Vlasiator’s simulations are so detailed that it can model the most important physical phenomena in the near-Earth space at the ion-kinetic scale. This amounts to a volume of 1 million km3 — a massive computational challenge that has not previously been possible.

    After being awarded several highly competitive grants from the European Research Council, Palmroth secured computation time on HPC resources managed by the Partnership for Advanced Computing in Europe (PRACE).

    4
    Hazel Hen

    She began with the Hornet supercomputer and then its successor Hazel Hen, both at the High-Performance Computing Center Stuttgart. Most recently she has been using the Marconi supercomputer at CINECA in Italy.

    7
    Marconi supercomputer at CINECA in Italy

    Palmroth’s success is due to three-level parallelization of the simulation code. Her team uses domain decomposition to split the near-Earth space into grid cells within each area they wish to simulate.

    They use load-balancing to divide the simulations and then parallelize using OpenMP. Finally, they vectorize the code to parallelize through the supercomputer’s cores.

    Even so, simulation datasets range from 1 to 100 terabytes, depending on how often they save the simulations, and require anywhere between 500 – 100,000 cores, possibly beyond, on Hazel Hen.

    “We are continuously making algorithmic improvements in the code, making new optimizations, and utilizing the latest advances in HPC to improve the efficiency of the calculations all the time,” says Palmroth.

    Taking off into the future

    In addition to advancing our knowledge of space weather, Vlasiator also helps scientists to better understand plasma physics. Until now, most fundamental plasma physical phenomena have been discovered from space because it’s the best available laboratory.

    But the universe is comprised of 99.9 percent plasma, the fourth state of matter. In order to understand the universe, you need to understand plasma physics. For scientists undertaking any kind of matter research, Vlasiator’s capacity to simulate the near-Earth space is significant.

    “As a scientist, I’m curious about what happens in the world,” says Palmroth. “I can’t really draw a line beyond which I don’t want to know what happens.”

    Significantly, Vlasiator has recently helped to explain some features of ultra-low frequency waves in the earth’s foreshock that have perplexed scientists for decades.

    A collaboration with NASA in the US helped validate those results with the THEMIS spacecraft, a constellation of five identical probes designed to gather information about large-scale space physics.

    Exchanging information with her colleagues at NASA allows Palmroth to get input from THEMIS’s direct observation of space phenomena and to exchange modeling results with the observational community.

    “The work we are doing now is important for the next generation,” says Palmroth. “We’re learning all the time. If future generations build upon our advances, their understanding of the universe will be on much more certain ground.”

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Science Node is an international weekly online publication that covers distributed computing and the research it enables.

    “We report on all aspects of distributed computing technology, such as grids and clouds. We also regularly feature articles on distributed computing-enabled research in a large variety of disciplines, including physics, biology, sociology, earth sciences, archaeology, medicine, disaster management, crime, and art. (Note that we do not cover stories that are purely about commercial technology.)

    In its current incarnation, Science Node is also an online destination where you can host a profile and blog, and find and disseminate announcements and information about events, deadlines, and jobs. In the near future it will also be a place where you can network with colleagues.

    You can read Science Node via our homepage, RSS, or email. For the complete iSGTW experience, sign up for an account or log in with OpenID and manage your email subscription from your account preferences. If you do not wish to access the website’s features, you can just subscribe to the weekly email.”

     
  • richardmitnick 12:17 pm on March 24, 2017 Permalink | Reply
    Tags: , , Can our grid withstand a solar storm?, Geomagnetic storms, HuffPost, , Space Weather   

    From LANL via HuffPost: “Can our grid withstand a solar storm?” 

    LANL bloc

    Los Alamos National Laboratory

    HuffPost

    03/21/2017
    Jesse Woodroffe
    Michael Rivera

    1
    NASA Earth Observatory image by Robert Simmon, using Suomi NPP VIIRS data provided courtesy of Chris Elvidge (NOAA National Geophysical Data Center). Suomi NPP is the result of a partnership between NASA, NOAA, and the Department of Defense.
    A composite image of North and South America at night assembled from data acquired by the Suomi NPP satellite in April and October 2012.

    When the last really big solar storm hit Earth in 1921, the Sun ejected a burst of plasma and magnetic structures like Zeus hurling a thunderbolt from Mount Olympus. Earth’s magnetic field funneled a wave of electrically charged particles toward the ground, where they induced a current along telegraph lines and railroad tracks that set fire to telegraph offices and burned down train stations. As ghostly curtains of Northern Lights danced far south over the eastern United States, the fledgling electric grid flickered and went dark.

    Almost a century later, today’s grid is bigger, more interconnected, and even more susceptible to a solar storm disaster. No one knows exactly how susceptible, but one recent peer-reviewed study found that an epic solar, or geomagnetic, storm could cost the United States more than $40 billion in damages and lost productivity.

    Most geomagnetic storms are harmless. They regularly lash across Earth after a coronal mass ejection sprays electrons, protons, and other charged particles from the Sun. If they’re aimed just right, a few days later Earth’s magnetic field snares them. They accelerate and light up in another brilliant—and harmless—display of Northern Lights (or Southern Lights below the equator).

    But the less frequent, more severe kind of space weather—call it a 100-year storm—can fry technology and cripple the energy infrastructure. In 1921, it was lights-out across town. Today, heavy dependence on electric-powered technology makes society more vulnerable. In a scant few minutes, a major storm could blow out key components in the electric grid across wide swathes of the United States. Cascading failures could wreak havoc on the water supply, life-saving medical activities, communications, the internet, air travel, and any other grid-dependent sector.

    Mindful of the danger, the nation has developed a plan to support electric utilities in defending against these storms. As part of that plan, we’re researching the credible scenarios that could lead to large impacts. Los Alamos National Laboratory has been studying space weather for more than 50 years as part of our national security mission to monitor nuclear testing around the globe, and part of that work includes studying how the radiation-saturated environment of near space can affect technology and people.

    Now Los Alamos is mining decades’ worth of data from a global network of ground-based geomagnetic sensors, running statistical analyses, and generating computer simulations that model the magnitude, electrical and magnetic characteristics, and location of geomagnetic storms. Just like thunderstorms, solar storms vary, from the orientation of their traveling magnetic field to the kind of particles hurtling our way. The data shows that weaker storms tend to flare up closer to the planet’s poles. In the Northern Hemisphere, stronger storms dip farther south, so they’re more likely to threaten population centers, such as New York City or Chicago. But our models predict that the biggest solar storms don’t necessarily cause the greatest damage—location can trump storm intensity.

    Knowing what might happen, and where, is crucial for government and industry to assess the threats and weigh the risks. Then they can establish the procedures, practices, and regulations needed to withstand the worst solar storms. To support that work, Los Alamos will incorporate its space weather research into new software tools for suggesting industry investments in greater grid resilience and informing government requirements for utilities, such as where to site stations and what kind of transformers to install.

    Space weather scientists have a saying: When you’ve seen one solar storm, you’ve seen one solar storm. The key to grid resilience is knowing something about all possible storms. Armed with scientific analysis from Los Alamos about how frequently a major geomagnetic storm might strike, which regions of the country are most vulnerable, and how bad it might be, electric utility companies and government regulators can take the necessary steps to spare us all from the nightmare of days, weeks, or even months without power. That way, we can all keep the lights on the next time the Sun decides to toss an extra few billion trillion trillion charged particles our way.


    Access mp4 video here .

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Los Alamos National Laboratory’s mission is to solve national security challenges through scientific excellence.

    LANL campus
    Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.

    Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

    Operated by Los Alamos National Security, LLC for the U.S. Dept. of Energy’s NNSA

    DOE Main

    NNSA

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: