Tagged: Space Weather Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:54 am on September 27, 2021 Permalink | Reply
    Tags: "Official Sources Warn a Geomagnetic Storm Is Imminent So Get Ready For Auroras", Satellite orientation may be affected., , Space Weather   

    From Science Alert (US) : “Official Sources Warn a Geomagnetic Storm Is Imminent So Get Ready For Auroras” 

    ScienceAlert

    From Science Alert (US)

    27 SEPTEMBER 2021
    MICHELLE STARR

    1
    The Sun on 21 September 2021. (NASA/SDO)

    If you live at a high latitude, it’s time to break out the camera. Space weather agencies are predicting a solar storm for Monday 27 September: moderate, with a chance of aurora.

    The National Oceanic and Atmospheric Administration (NOAA)(US) and the Met Office-Weather and climate change (UK) have both issued predictions for the storm, which is predicted to be the result of several solar coronal mass ejections (CMEs), and solar winds unleashed from a “hole” that has opened up in the Sun’s corona.

    Although there could be as many as four CMEs that could affect Earth, you don’t have to fret. The storm will only get as high as a level G2 – relatively mild on the five-level solar storm scale, on which G5 is the strongest.

    At high latitudes, the predicted G2 storm may cause power grid fluctuations; satellite orientation may be affected, with increased drag at low-Earth orbit; and high-frequency radio propagation may fade.

    But we may be in for a treat, too: “Aurora may be seen as low as New York to Wisconsin to Washington state,” the NOAA wrote in its alert.

    Solar storms are a part of pretty normal space weather, and in the coming few years, we can probably expect to see more of them. They occur when the Sun gets a little rowdy, in the form of CMEs and solar winds, causing disruptions to Earth’s magnetic field and upper atmosphere.

    CMEs are pretty much exactly what they sound like. The Sun’s corona – the outermost region of its atmosphere – erupts, ejecting plasma and magnetic fields into space. If the CME is oriented at Earth, the collision of the solar ejecta with Earth’s magnetic field can cause a geomagnetic storm – also known as a solar storm.

    Solar winds emerge from ‘holes’ in the Sun’s corona. These are cooler, less dense regions of plasma in the Sun’s atmosphere, with more open magnetic fields. These open regions allow the solar winds to escape more easily, blowing electromagnetic radiation into space at high speeds. If the hole is facing Earth, those winds can blow right at us, once again getting all up in our magnetosphere.

    The Sun currently has both going on.

    “There are four CME which may affect the Earth,” the British Met Office explained on its website.

    “Three of these could arrive separately or as a single combined feature during 27 September, with a further CME perhaps glancing the earth later on 27 or during 28 September. A coronal hole fast wind may also affect the Earth on 27 and 28 September, although any effects from this wind are considered uncertain.

    “There is also a low risk that the CMEs and fast wind may affect the earth at similar times, providing a greater effect. Any enhancements would then ease during 28 and 29 September.”

    Any charged particles that collide with Earth’s magnetic field are sent whizzing along the magnetic field lines towards the poles, where they rain down on Earth’s upper atmosphere and collide with atmospheric molecules. The resulting ionization of these molecules generates the stunning dancing lights we call the aurora.

    According to Space Weather’s aurora forecast, we’ve got a level of Kp 6 on the ten-point Kp index of geomagnetic activity. This means a strong possibility of bright, dynamic aurora with the likelihood of auroral coronae.

    We can also expect more solar storms in the months and years ahead. The Sun is currently heading towards the most active period of its 11-year cycle, called solar maximum. During solar maximum, the solar magnetic field – which controls sunspots (temporary regions of strong magnetic fields), solar flares, and coronal mass ejections – is at its strongest, and so too is solar activity.

    Earlier this year, the Sun spat out its most powerful flare since 2017, so our star definitely seems to be waking up. Its sunspot activity is expected to peak in July 2025, after which it will subside back into solar minimum.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

     
  • richardmitnick 1:00 pm on January 4, 2021 Permalink | Reply
    Tags: "New findings could improve understanding of potentially damaging solar storms", , , , Exactly how reconnection begins and releases energy is still an open question., , , , , Space Weather, When fast-moving particles from the sun strike the Earth’s magnetic field they set off reactions that could disrupt communications satellites and power grids.   

    From DOE’s Princeton Plasma Physics Laboratory: “New findings could improve understanding of potentially damaging solar storms” 


    From DOE’s Princeton Plasma Physics Laboratory

    December 14, 2020 [Only just now in social media.]
    Raphael Rosen

    1
    Physicist Kendra Bergstedt in front of an artist’s conception of the Magnetiospheric Multiscale Mission and the Earth’s magnetosphere. Credits: Elle Starkman and NASA.

    When fast-moving particles from the sun strike the Earth’s magnetic field, they set off reactions that could disrupt communications satellites and power grids. Now, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have learned new details of this process that could lead to better forecasting of this so-called space weather.

    The findings indicate how these regular blasts of fast-moving particles from the sun interact with the magnetic fields surrounding Earth in a region known as the magnetosphere.

    Magnetosphere of Earth, original bitmap from NASA. SVG rendering by Aaron Kaase.

    During these solar outpourings, the sun’s and Earth’s magnetic field lines collide. The field lines break and then reattach, releasing huge amounts of energy in a process known as magnetic reconnection. That energy disperses through the magnetosphere and into Earth’s upper atmosphere.

    Spacecraft and computing provide insights

    The scientists developed a computer program, or algorithm, to automatically detect bubble-like structures called “plasmoids” in data gathered from the magnetosphere. The program analyzed information gathered by NASA’s Magnetospheric Multiscale (MMS) mission, a group of four spacecraft launched in 2015 to study reconnection in the magnetosphere.

    “Exactly how reconnection begins and releases energy is still an open question,” said Kendra Bergstedt, a graduate student in the Princeton Program in Plasma Physics at PPPL and lead author of the paper reporting the results in Geophysical Research Letters. “Getting a better understanding of this process could help us forecast how solar storms affect us here on Earth. We could also get better insight into how reconnection impacts fusion reactions.” In addition, magnetic reconnection is relevant to fusion energy, the power that drives the sun and stars, which PPPL is studying in an effort to duplicate.

    The computer program looks for patterns in the data and avoids inconsistencies that might occur if the pattern-hunting had been conducted by individuals. “One person might look at data and think it’s a particular plasmoid structure while someone else could look at it and disagree,” Bergstedt said.

    “By using an algorithm with strict criteria, we’re able to say precisely how we categorized each structure and why. There is still some bias — since the algorithm was written by a human with a subjective idea of what constituted a structure — but by using an algorithm that bias could more easily be pointed out and critiqued.”

    The findings shed new light on the emergence of particle energy. “There is ongoing debate about what parts of the reconnecting region contribute the most to particle energization and how,” Bergstedt said. “We found that the smaller-scale plasmoids that we studied in the reconnection region didn’t make a large contribution to the total energy imparted from the magnetic fields to the particles.”

    This finding was a surprise. “We all expected that most of the energization would happen in these plasmoids, which are the focus of both the MMS mission and PPPL’s Magnetic Reconnection Experiment (MRX),” said Hantao Ji, physicist at PPPL and advisor for Bergstedt’s first-year research project, which generated this paper. “These results strongly motivated the Facility for Laboratory Reconnection Experiment (FLARE), our next-step experiment that is intended to generate magnetic reconnection in these new regimes with many more structures and all turbulence in between.”

    The findings were notable because the physics is so complex. While scientists have made significant progress in understanding reconnection, there is still a lot to learn. “And understanding the connection between turbulence and reconnection is even harder,” said Jongsoo Yoo, a PPPL physicist and co-author of the paper. “Kendra did a good job getting some new insights into the process.”

    Since her analysis was applied only to a limited region of the magnetosphere, Bergstedt hopes that the algorithm will be used to study other regions. “It was both a blessing and a curse that I looked at such a small region,” she said. “It’s a blessing because I get to look at this one system as a whole and not compare the phenomena in this region to the phenomena in another region.”

    Collaborators included researchers from PPPL, the University of Colorado-Boulder, and NASA’s Goddard Space Flight Center. This research was funded by the DOE Office of Science and the National Science Foundation.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition


    PPPL campus

    Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University. PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit https://energy.gov/science.

    About Princeton: Overview
    Princeton University is a vibrant community of scholarship and learning that stands in the nation’s service and in the service of all nations. Chartered in 1746, Princeton is the fourth-oldest college in the United States. Princeton is an independent, coeducational, nondenominational institution that provides undergraduate and graduate instruction in the humanities, social sciences, natural sciences and engineering.

    As a world-renowned research university, Princeton seeks to achieve the highest levels of distinction in the discovery and transmission of knowledge and understanding. At the same time, Princeton is distinctive among research universities in its commitment to undergraduate teaching.

    Today, more than 1,100 faculty members instruct approximately 5,200 undergraduate students and 2,600 graduate students. The University’s generous financial aid program ensures that talented students from all economic backgrounds can afford a Princeton education.

    Princeton Shield

     
  • richardmitnick 10:16 am on December 1, 2020 Permalink | Reply
    Tags: "Solar Superstorms of the Past Help NASA Scientists Understand Risks for Satellites", , Space Weather   

    From NASA Goddard Space Flight Center: “Solar Superstorms of the Past Help NASA Scientists Understand Risks for Satellites” 

    NASA Goddard Banner
    From NASA Goddard Space Flight Center

    Nov. 30, 2020

    Mara Johnson-Groh
    mjohnson-groh@sesda3.com
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    1

    At the edge of space, the ever-growing fleet of satellites in low-Earth orbit are locked in a constant, precarious battle with friction.

    These satellites orbit in a normally quiet region hundreds of miles above the surface, at the edge of Earth’s atmosphere. Usually, the satellites only feel a gentle push due to the headwinds of the rarified air there, but extreme storms from the Sun can change Earth’s atmosphere enough to pull a satellite farther off orbit in one day than they’d normally experience in a year.

    These orbital deviations don’t cause satellites to fall out of the sky, but they can disrupt their communication with Earth, shorten their lifespans, and can even increase the chances of a terminal collision in space.

    While researchers and engineers have long been aware of this effect, known as orbital drag, a new collection of research led by NASA scientists is finding that less intense, but longer-lasting storms surprisingly have bigger effects on satellites’ orbits than the shorter, more severe events.

    NASA scientists have carefully monitored space weather and tracked orbital drag for years, since low-Earth orbit satellites provide the backbone to Earth and weather observations and telecommunications systems. The new research, which looked at rare extreme historic storms, will help satellite operators better understand satellite lifetimes and dynamics, making the near-Earth space environment safer when the next big superstorm hits.

    “Orbital drag is very important,” said scientist Jim Spann, a space weather lead at NASA Headquarters in Washington, DC. “This new result highlights the fact that even during less extreme space weather events, orbital drag of satellites is of greater impact than we anticipated. And it is becoming more and more of an issue, simply because we’ve got more and more and more spacecraft up there.”


    NASA’s Solar Dynamics Observatory caught a glimpse of a huge coronal mass ejection, or CME, leaving the Sun on July 23, 2012. If such a CME had hit Earth, it could have caused trillions of dollars in damage to telecommunications and infrastructure.
    Credits: NASA’s Scientific Visualization Studio, the SDO Science Team, and the Virtual Solar Observatory.

    NASA/SDO.

    What Causes Orbital Drag

    3
    The swelling of Earth’s upper atmosphere during geomagnetic storms can alter the orbits of satellites, bringing them lower and lower. Orbits are not shown scale. Credit: NASA

    A graphic shows several satellite orbits progressively lowering toward Earth.
    The swelling of Earth’s upper atmosphere during geomagnetic storms can alter the orbits of satellites, bringing them lower and lower. Orbits are not shown scale. Credit: NASA.

    Our closest star, the Sun, provides the light to nurture life on Earth. But it also spews dangerous particles and radiation that can affect astronauts and technology in space. Scientists study the many affects from these outpourings, including what happens when such eruptions are extreme. When it comes to the thousands of active satellites in space, however, one of the key concerns is indirect effects from particles and radiation, even from lesser storms.

    High-energy particles and radiation from the Sun can heat Earth’s atmosphere as they collide with common molecules, like nitrogen and oxygen. The heated air rises and causes the atmosphere to expand like a balloon. If a storm is strong enough, it will cause the atmosphere to expand so much that it engulfs the orbits of low-Earth orbit satellites that would otherwise fly through areas with little to no atmosphere.

    Increased atmosphere is like running in a headwind – it slows you down. For a satellite, this resistance causes it to slow and drop down in altitude. During an extreme magnetic storm event, a satellite could drop nearly a third of a mile in elevation in one day, according to a new paper, recently published in the November issue of Space Weather.

    “That’s a lot. In fact, it’s as much as a satellite would typically lose in a year,” said paper author Denny Oliveira. Oliveira is a scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who has been studying how the Sun’s activity causes satellite orbital drag for the past few years.

    Previously [Geophysical Research Letters], Oliveira helped improve models [Space Weather], finding that the effects of orbital drag extend twice as high into space as previously expected. This work also found more extreme storms heat and cool the upper atmosphere faster than smaller storms.

    But in their latest research, the scientists are finding that the effects of weaker, but longer-lasting storms might be just as impactful – if not more – than extreme storm events.

    Oliveira and his colleagues studied extreme storms in the last century in order to understand how similar events would affect our modern-day satellites. Such superstorms from the Sun are rare – only one has occurred since the dawn of the space age, and it was only half as powerful as the 1921 event. However, in the same period there have been dozens of lesser magnetic storms from the Sun, not all of which have reached Earth.

    The researchers used data on how satellites have responded to relatively small storms with records of magnetic activity on Earth during past superstorms. This helped them quantify, for the first time, how a satellite would weather a superstorm.

    They found that the strongest storms don’t necessarily produce the most drag. The effects of a longer, less intense storm can build up over time, ultimately causing more orbital drag than a short, powerful storm. This finding surprised the scientists, who didn’t expect the duration of the storm to be such an important factor.

    Collision Control

    Solar storms disproportionately affect low-Earth orbit satellites, which live within the first 375 miles of space above Earth’s surface, which can be enveloped by a swelling atmosphere. The vast majority of new satellites call this region home, including the quickly growing constellations of communications satellites launched by private industries.

    4
    As solar activity heats the thermosphere, this atmospheric layer balloons and can engulf satellites that normally orbit in the nearly particle-free atmospheric region above it. Credit: NASA.

    Once a satellite is knocked out of orbit, the effects only worsen, since at lower altitudes there is more atmosphere and thus more drag, even in calm conditions. The lower a satellite is dragged, the amount of drag it experiences only increases.

    Orbital drag is bad for a satellite that wants to stay at a working altitude, but it’s also bad for nearby satellites that might collide with a satellite that’s been dragged off-course. Furthermore, even tiny pieces of space debris pose a huge risk for satellites, so minimizing collisions is key to keeping the near-Earth environment a functional space for satellites.

    “The idea is, if we know how intense the storm is, and how long this storm will last, we can more precisely track the satellite position,” Oliveira said. “This will help reduce the chances of collision.”

    Space Weather Forecasters

    The new results are just one aspect of space weather and the field of heliophysics, in which scientists try to understand how activity on the Sun ripples across the solar system and affects Earth.

    “Space weather is all about prediction – we need to predict it, we need to be safe,” Oliveira said. “It’s the same idea if you want to go to the beach – you want to know if it’s going to be rainy or sunny or if the waves will be too dangerous to swim. That’s more or less what we want to do with space weather.”

    Scientists at NASA have been monitoring the space weather and effects of drag on satellites for decades, particularly since the 1970s when solar activity led to increased drag on NASA’s Skylab mission, causing it to deorbit earlier than expected. Improved models over the years have helped scientists better understand the effects of normal solar activity on orbital drag. However, the rarity of extreme events has made it difficult to know exactly how they might affect current satellites – something that is ever more important as more and more satellites fill the skies.

    In order to provide advance warning of coming storms, many of NASA’s heliophysics missions help monitor the Sun’s activity. Missions like the Solar Dynamics Observatory [above]and the Solar and Heliophysics Observatory keep a constant eye on the Sun, while other missions like the Ionospheric Connection Explorer, Space Environment Testbeds, and the upcoming Atmospheric Waves Experiment study how space weather and solar variability affect Earth’s upper atmosphere and satellites and other technology. This information helps keeps NASA astronauts and assets in space safe during space weather events.

    ESA/NASA SOHO.

    NASA ICON-Ionospheric Connection Explorer spacecraft.

    While no one can predict exactly when the next big solar superstorm or long-lasting storm will hit, Oliveira hopes that the new work will help scientists and engineers be more prepared for its coming. The Sun might be 93 million miles away, but that doesn’t mean it doesn’t have a huge impact on Earth.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.


    NASA/Goddard Campus

     
  • richardmitnick 12:50 pm on September 29, 2020 Permalink | Reply
    Tags: "Solar storms could be more extreme if they ‘slipstream’ behind each other", , , Space Weather   

    From Imperial College London: “Solar storms could be more extreme if they ‘slipstream’ behind each other” 


    From Imperial College London

    29 September 2020
    Hayley Dunning

    1
    A previous CME observed by Nasa’s Solar Dynamics Observatory (SDO). Modelling of an extreme space weather event that narrowly missed Earth in 2012 shows it could have been even worse if paired with another event.

    NASA/SDO.

    The findings suggest space weather predictions should be updated to include how close events enhance one another.

    Coronal mass ejections (CMEs) are eruptions of vast amounts of magnetised material from the Sun that travel at high speeds, releasing a huge amount of energy in a short time. When they reach Earth, these solar storms trigger amazing auroral displays, but can disrupt power grids, satellites and communications.

    These most extreme of ‘space weather’ events have the potential to be catastrophic, causing power blackouts that would disable anything plugged into a socket and damage to transformers that could take years to repair. Accurate monitoring and predictions are therefore important to minimising damage.

    Now, a research team led by Imperial College London have shown how CMEs could be more extreme than previously thought when two events follow each other. Their results are published today in a special issue of Solar Physics focusing on space weather.

    Technological blackouts

    The team investigated a large CME that occurred on 23 July 2012 and narrowly missed Earth by a couple of days. The CME was estimated to travel at around 2250 kilometres per second, making it comparable to one of the largest events ever recorded, the so-called Carrington event in 1859. Damage estimates for such an event striking Earth today have run into the trillions of dollars.

    Lead author Dr Ravindra Desai, from the Department of Physics at Imperial, said: “The 23 July 2012 event is the most extreme space weather event of the space age, and if this event struck Earth the consequences could cause technological blackouts and severely disrupt society, as we are ever more reliant on modern technologies for our day-to-day lives. We find however that this event could actually have been even more extreme – faster and more intense – if it had been launched several days earlier directly behind another event.”

    2
    The 23 July 2012 event recorded by STEREO.

    NASA/STEREO spacecraft.

    To determine what made the CME so extreme, the team investigated one of the possible causes: the release of another CME on the 19 July 2012, just a few days before. It has been suggested that one CME can ‘clear the way’ for another.

    CMEs travel faster than the ambient solar wind, the stream of charged particles constantly flowing from the Sun. This means the solar wind exerts drag on the travelling CME, slowing it down.

    However, if a previous CME has recently passed through, the solar wind will be affected in such a way that it will not slow down the subsequent CME as much. This is similar to how race car drivers ‘slipstream’ behind one another to gain a speed advantage.

    Magnifying extreme space weather events

    The team created a model that accurately represented the characteristics of the 23 July event and then simulated what would happen if it had occurred earlier or later – i.e. closer to or further from the 19 July event.

    They found that by the time of the 23 July event the solar wind had largely recovered from the 19 July event, so the previous event had little impact. However, their model showed that if the latter CME had occurred earlier, closer to the 19 July event, then it would have been even more extreme – perhaps reaching speeds of up to 2750 kilometres per second or more.

    Han Zhang, co-author and student who worked on the development of this modelling capability, said: “We show that the phenomenon of ‘solar wind preconditioning’, where an initial CME causes a subsequent CME to travel faster, is important for magnifying extreme space weather events. Our model results, showing the magnitude of the effect and how long the effect lasts, can contribute to current space weather forecasting efforts.”

    The Sun is now entering its next 11-year cycle of increasing activity, which brings increased chances of Earth-bound solar storms. Emma Davies, co-author and PhD student, said: “There have been previous instances of successive solar storms bombarding the Earth, such as the Halloween Storms of 2003. During this period, the Sun produced many solar flares, with accompanying CMEs of speeds around 2000 km/s.

    “These events damaged satellites and communication systems, caused aircraft to be re-routed, and a power outage in Sweden. There is always the possibility of similar or worse scenarios occurring this next solar cycle, therefore accurate models for prediction are vital to help mitigate their effects.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Imperial College London is a science-based university with an international reputation for excellence in teaching and research. Consistently rated amongst the world’s best universities, Imperial is committed to developing the next generation of researchers, scientists and academics through collaboration across disciplines. Located in the heart of London, Imperial is a multidisciplinary space for education, research, translation and commercialisation, harnessing science and innovation to tackle global challenges.

     
  • richardmitnick 10:12 am on November 5, 2019 Permalink | Reply
    Tags: , , , , , Proba2, Proba2 has two main solar instruments SWAP and LYRA designed for studying events at the Sun that could impact Earth., , Space Weather   

    From European Space Agency: “A decade probing the Sun” 

    ESA Space For Europe Banner

    From European Space Agency

    1
    Proba2 view of the solar north pole pillars.

    04/11/2019

    ESA/Proba2

    Ten years ago, a small satellite carrying 17 new devices, science instruments and technology experiments was launched into orbit, on a mission to investigate our star and the environment that it rules in space.

    On 2 November, 2009, Proba2 began its journey on board a Rockot launcher from the Russian launch base, Plesetsk, and was inserted into a Sun-synchronous orbit around Earth.

    Tracing this ‘dusk-dawn’ line – where night meets day – Proba2 maintains a constant view of the Sun, keeping its batteries charged and its target in sight.

    The second in ESA’s ‘Project for Onboard Autonomy’ series, Proba2 is so advanced it is able to look after itself on a day-to-day basis, needing just a small team at the Agency’s control station at ESEC in Redu, Belgium, to run the mission.

    Instrumental solar observations

    Proba2 has two main solar instruments, SWAP and LYRA, designed for studying events at the Sun that could impact Earth.

    SWAP takes images of the Sun’s corona, the roughly 1 million degree plasma-filled atmosphere that surrounds the star.

    3
    Sun’s shape-shifting atmosphere viewed by Proba2’s SWAP camera

    With an extremely wide field-of-view, SWAP is able to see structures around the edge of the Sun, such as huge outbursts of hot matter known as coronal mass ejections, sudden flares releasing enormous amounts of light as well as eerie ‘coronal holes’, dark shadowy regions spewing out fast-moving solar wind.

    The LYRA instrument monitors the Sun’s ultraviolet output, and is able to make up to 100 measurements per second. This high rate means the instrument can make detailed studies of fast-moving ‘transient’ events such as solar flares.

    A stellar record

    During its decade in space, the small satellite – less than a cubic metre in size – has:

    Orbited the Earth ~53,000 times
    Produced ~30,000 LYRA data files on solar ultraviolet emission
    Produced ~2,090,000 SWAP images of the solar disk
    Passed our ground stations in Redu, Belgium and Svalbard, Norway (Arctic) 32,453 times
    Helped produce more than 100 peer-reviewed papers

    More information about Proba2 satellite and its measurements can be found at the Proba2 Science Center 10 year anniversary page.

    What next for Proba2?

    5
    The Sun in 2018

    One of the many mysteries of our star is the way its activity rises and falls in 11 year cycles. From one cycle to the next, the Sun’s north and south poles trade places and the number of flares, coronal mass ejections, sunspots and coronal loops fluctuate from many per day in active periods to weeks without any when it is quiet.

    In 2020, the 11th year of the Proba2 mission, it will have been monitoring the Sun for a full solar cycle.

    This landmark period will allow the satellite to probe the Sun’s evolution over the long term, comparing the current quiet period with the last solar minimum, and ready for when the Sun again ‘wakes up’ in 2024/2025.

    Space weather

    6
    Space weather effects

    Unpredictable and temperamental, the Sun makes life on the innermost planets of the Solar System impossible due to intense radiation and colossal amounts of energetic material that it blasts in every direction, creating the ever-changing conditions in space known as ‘space weather’.

    At Earth, extreme solar events have the potential to disrupt and damage infrastructure in space and on the ground, and intense bursts of radiation threaten future explorers to the Moon and Mars.

    ESA’s Space Weather Office, part of the agency’s Space Safety activities, is working to help European operators of sensitive infrastructure including satellites, power lines, aviation and transport to avoid adverse impacts of space weather. The mission of the Space Weather Office is to develop a system that provides timely and accurate space weather information and forecasts to operational users and public in Europe.

    Find out about ESA’s planned Lagrange mission to provide solar warning, here, and the Space Weather Service Network, getting the word out to those who need to know.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 8:01 am on September 6, 2019 Permalink | Reply
    Tags: "Forecasting Solar Storms in Real Time", , CME Scoreboard, , , , Space Weather   

    From Eos: “Forecasting Solar Storms in Real Time” 

    From AGU
    Eos news bloc

    From Eos

    30 August 2019
    Jenessa Duncombe

    Predicting when solar storms will hit Earth remains a tricky business. To help, scientists can now submit their forecasts of coronal mass ejections online as they unfold in real time.

    1
    A coronal mass ejection (CME) blasts off from the Sun in these coronagraphs captured on 27 February 2000 by the Solar and Heliospheric Observatory spacecraft. Credit: SOHO ESA & NASA


    ESA/NASA SOHO

    The Sun routinely ejects clouds of gas and sends them hurtling through space at several thousand kilometers per hour. At least a few dozen times a year, those clouds head straight for Earth.

    These natural events, called coronal mass ejections (CMEs), crop up when the Sun’s magnetic field becomes tangled and, in righting itself, releases a swarm of charged particles called superheated plasma. Sent at just the right angle toward Earth, these plasma clouds can wreak havoc on our electrical grids, satellites, and oil and gas pipelines.

    Quebec, Canada, for instance, experienced a blackout related to a solar storm on a winter night in 1989. The province went black after a solar storm sent an electric charge into the ground that shorted the electrical power grid. The outage lasted 12 hours, stranding people in elevators and pedestrian tunnels and closing down airports, schools, and businesses.

    Solar storms can threaten our communication and navigation infrastructure. In the past, solar storms interrupted telegraph messages, and future storms could threaten our cellphones, GPS capabilities, and spacecraft.

    With the right kind of warning, utility operators, space crews, and communications personnel can prepare and steer clear of certain activities during solar storms. But once a CME event is spotted leaving the Sun, our best models struggle to forecast when exactly it will arrive.

    To improve forecasts, a group of scientists is taking a community approach: What if researchers working on CME models around the world could post their forecasts publicly, in real time, before the CME reaches Earth?

    The CME Scoreboard, run by the Community Coordinated Modeling Center at NASA Goddard Space Flight Center, does just that. The online portal with 159 registered users acts as a live feed of CME predictions heading for Earth. The portal gives scientists a simple way to compare forecasts, and the log of past predictions presents a valuable data set to assess forecasters’ accuracy and precision.

    Keeping Score

    The AGU Grand Challenges Centennial Collection features the major questions faced by science today. Editors of Space Weather identified CME predictions as one of them, calling the ability to provide them “essential for our society [Space Weather].”

    CME forecasting still lags behind our capabilities to forecast weather systems here on Earth, and the paper highlights several reasons why. Leila Mays, coauthor on the paper and science lead for the CME Scoreboard at NASA Goddard Space Flight Center, said that CME forecasts are lacking in two key areas: Measurements of solar activity are sparse, and the exact physical details driving the Sun are still unclear.

    Despite the need for improvement, people on Earth still rely on CME forecasts, and scientists have myriad ways to supply them. The National Oceanic and Atmospheric Administration and the United Kingdom’s Met Office both release publicly available CME predictions, and individual research groups build their models from scratch. Forecasting models range from data-driven empirical models to physics-based, equation-driven models.

    The models operate independently, perhaps using unique parameters or data inputs, but they all strive for a shared goal: to determine when a CME, or CME’s shock wave, will impact Earth.

    The CME Scoreboard serves as a repository for a wide range of these models. Mays said that scientists tracking solar activity will notice when a CME event explodes from the surface of the Sun, setting down a ticking clock for when the plasma will hit Earth (or miss it altogether). This sets off a flurry of activity, with scientists running their models with parameters from the most recent eruption, including the plasma’s speed, direction, and size. With the numbers crunched, they post their best guess and wait to see what unfolds.

    Ground Truth

    Since the CME Scoreboard’s inception in 2013, scientists have posted 814 arrival time predictions. Some predictions narrowly miss the mark, skirting the real arrival time of the CME by a mere hour or two. But others are days away, trailing the arrival by 30 or more hours.

    Mays said that the forecasts come from over a hundred users and represent 26 unique prediction methods. She said that the interest in the portal has been strong, which she’s not surprised about. The scoreboard merely gives a platform for ad hoc discussions that researchers were already having, spread across listservs and email chains whenever a new CME would appear.

    Pete Riley, a senior research scientist at Predictive Science Inc., knew of the scoreboard but had never contributed. Looking at years of forecasts on the website, he decided to analyze the accuracy and precision of past predictions.

    “I felt like having knowledge in the field but not having a horse in the race, so to speak, I’d be able to do a fairly independent evaluation,” Riley told Eos.

    His study, published in Space Weather in 2018, is the first analysis of the scoreboard data. Riley and his collaborators compared the difference between the projected arrival times and the actual reported times for 32 models. The analysis showed that the forecasts, on average, predicted the CME arrival with a 10-hour error, and they had a standard deviation of 20 hours. Several models performed the best, he said, but only moderately so, and the few that submitted regularly over the 6 years of data analyzed didn’t seem to be improving their forecasts.

    The paper “serves as kind of a ground truth for where we are at currently,” Riley said, as well as laying the foundation for future analysis. Riley made the code accessible so that future forecasts can be tested against the group. Mays said that in the future, the scoreboard may use the information to create a list of automatically updating metrics.

    Although more work lies ahead, Riley said that the future looks bright for more accurate predictions. He points to new space missions that will help fill in blind spots, including NASA’s Parker Solar Probe and nanosatellites called CubeSats that individual research groups deploy.

    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker

    “Space weather is becoming ever more important because as a society, we are so reliant on technology now,” Riley said. With the additional data, he said, “I think it’s promising that in the future we will be able to make predictions more accurate.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

     
  • richardmitnick 9:09 am on June 22, 2019 Permalink | Reply
    Tags: , PUNCH mission, , Space Weather, TRACERS mission   

    From NASA: “NASA Selects Missions to Study Our Sun, Its Effects on Space Weather” 

    NASA image
    From NASA

    June 20, 2019

    Grey Hautaluoma
    Headquarters, Washington
    202-358-0668
    grey.hautaluoma-1@nasa.gov

    Karen Fox
    Headquarters, Washington
    301-286-6284
    karen.c.fox@nasa.gov

    1
    A constant outflow of solar material streams out from the Sun, depicted here in an artist’s rendering. On June 20, 2019, NASA selected two new missions – the Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission and Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS) – to study the origins of this solar wind and how it affects Earth. Together, the missions support NASA’s mandate to protect astronauts and technology in space from such radiation. Credits: NASA

    NASA has selected two new missions to advance our understanding of the Sun and its dynamic effects on space. One of the selected missions will study how the Sun drives particles and energy into the solar system and a second will study Earth’s response.

    The Sun generates a vast outpouring of solar particles known as the solar wind, which can create a dynamic system of radiation in space called space weather. Near Earth, where such particles interact with our planet’s magnetic field, the space weather system can lead to profound impacts on human interests, such as astronauts’ safety, radio communications, GPS signals, and utility grids on the ground. The more we understand what drives space weather and its interaction with the Earth and lunar systems, the more we can mitigate its effects – including safeguarding astronauts and technology crucial to NASA’s Artemis program to the Moon.

    2
    NASA’s Artemis spacecraft. The Planetary Society

    “We carefully selected these two missions not only because of the high-class science they can do in their own right, but because they will work well together with the other heliophysics spacecraft advancing NASA’s mission to protect astronauts, space technology and life down here on Earth,” said Thomas Zurbuchen, associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. “These missions will do big science, but they’re also special because they come in small packages, which means that we can launch them together and get more research for the price of a single launch.”

    PUNCH

    The Polarimeter to Unify the Corona and Heliosphere, or PUNCH, mission will focus directly on the Sun’s outer atmosphere, the corona, and how it generates the solar wind.

    3
    PUNCH four satellites

    Composed of four suitcase-sized satellites, PUNCH will image and track the solar wind as it leaves the Sun. The spacecraft also will track coronal mass ejections – large eruptions of solar material that can drive large space weather events near Earth – to better understand their evolution and develop new techniques for predicting such eruptions.

    These observations will enhance national and international research by other NASA missions such as Parker Solar Probe, and the upcoming ESA (European Space Agency)/NASA Solar Orbiter, due to launch in 2020. PUNCH will be able to image, in real time, the structures in the solar atmosphere that these missions encounter by blocking out the bright light of the Sun and examining the much fainter atmosphere.

    Together, these missions will investigate how the star we live with drives radiation in space. PUNCH is led by Craig DeForest at the Southwest Research institute in Boulder, Colorado. Including launch costs, PUNCH is being funded for no more than $165 million.

    TRACERS

    The second mission is Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites, or TRACERS.

    NASA TRACER mission


    NASA TRACER MIssion

    The TRACERS investigation was partially selected as a NASA-launched rideshare mission, meaning it will be launched as a secondary payload with PUNCH. NASA’s Science Mission Directorate is emphasizing secondary payload missions as a way to obtain greater science return. TRACERS will observe particles and fields at the Earth’s northern magnetic cusp region – the region encircling Earth’s pole, where our planet’s magnetic field lines curve down toward Earth. Here, the field lines guide particles from the boundary between Earth’s magnetic field and interplanetary space down into the atmosphere.

    In the cusp area, with its easy access to our boundary with interplanetary space, TRACERS will study how magnetic fields around Earth interact with those from the Sun. In a process known as magnetic reconnection, the field lines explosively reconfigure, sending particles out at speeds that can approach the speed of light. Some of these particles will be guided by the Earth’s field into the region where TRACERS can observe them.

    Magnetic reconnection drives energetic events all over the universe, including coronal mass ejections and solar flares on the Sun. It also allows particles from the solar wind to push into near-Earth space, driving space weather there. TRACERS will be the first space mission to explore this process in the cusp with two spacecraft, providing observations of how processes change over both space and time. The cusp vantage point also permits simultaneous observations of reconnection throughout near-Earth space. Thus, it can provide important context for NASA’s Magnetospheric Multiscale mission, which gathers detailed, high-speed observations as it flies through single reconnection events at a time.

    TRACERS’ unique measurements will help with NASA’s mission to safeguard our technology and astronauts in space. The mission is led by Craig Kletzing at the University of Iowa in Iowa City. Not including rideshare costs, TRACERS is funded for no more than $115 million.

    Launch date for the two missions is no later than August 2022. Both programs will be managed by the Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. The Explorers Program, the oldest continuous NASA program, is designed to provide frequent, low-cost access to space using principal investigator-led space science investigations relevant to the work of NASA’s Science Mission Directorate in astrophysics and heliophysics. The program is managed by Goddard for the Science Mission Directorate, which conducts a wide variety of research and scientific exploration programs for Earth studies, space weather, the solar system and universe.

    For additional information, and the chance to ask more about the missions, please join us for a Reddit Ask Me Anything at 12:30 – 1:30 p.m. EDT June 21.

    For more information about the Explorers Program, visit:

    https://explorers.gsfc.nasa.gov

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 6:34 am on November 9, 2018 Permalink | Reply
    Tags: , , , , , Space Weather   

    From European Space Agency: “Windy with a chance of magnetic storms – space weather science with Cluster” 

    ESA Space For Europe Banner

    From European Space Agency

    Philippe Escoubet
    Cluster Project Scientist
    European Space Agency
    Email: Philippe.Escoubet@esa.int

    Markus Bauer








    ESA Science Communication Officer









    Tel: +31 71 565 6799









    Mob: +31 61 594 3 954









    Email: markus.bauer@esa.int

    8 November 2018

    ESA/Cluster quartet

    Space weather is no abstract concept – it may happen in space, but its effects on Earth can be significant. To help better forecast these effects, ESA’s Cluster mission, a quartet of spacecraft that was launched in 2000, is currently working to understand how our planet is connected to its magnetic environment, and unravelling the complex relationship between the Earth and its parent star.

    Despite appearances, the space surrounding our planet is far from empty. The Earth is surrounded by various layers of atmosphere, is constantly bathed in a flow of charged particles streaming out from the Sun, known as the solar wind, and sends its own magnetic field lines out into the cosmos.

    This field floods our immediate patch of space, acting as a kind of shield against any extreme and potentially damaging radiation that might come our way. It also defines our planet’s magnetosphere, a region of space dominated by Earth’s magnetic field and filled with energy that is topped up by the solar wind and sporadically released into the near-Earth environment.

    With this comes ‘weather’. We occasionally experience magnetic storms and events that disturb and interact with Earth’s radiation belts, atmosphere, and planetary surface. One of the most famous examples of this is the auroras that Earth experiences at its poles. These shimmering sheets of colour form as the solar wind disrupts and breaches the upper layers of our atmosphere.

    1
    Aurora over Norway
    ESA–S. Mazrouei

    Space weather has a real impact on our activities on Earth, and poses a significant risk to space-farers – robotic and human alike.

    Sudden flurries of high-energy particles emanating from the Sun can contain up to 100 million tons of material; this can penetrate spacecraft walls or affect their electronics, disable satellites, and take down terrestrial electrical transformers and power grids. There are currently about 1800 active satellites circling our planet, and our dependence on space technology is only growing stronger.

    “This highlights a pressing need for more accurate space weather forecasts,” says Philippe Escoubet, Project Scientist for ESA’s Cluster mission.

    “To understand and predict this weather, we need to know more about how the Earth and the Sun are connected, and what the magnetic environment around the Earth looks and acts like. This is what Cluster is helping us to do.”

    Various spacecraft are investigating the magnetic environment around the Earth and how it interacts with the solar wind. Efforts have been internationally collaborative, from observatories including ESA’s Cluster and Swarm missions, NASA’s Magnetospheric MultiScale mission (MMS), the Van Allen Probes, and THEMIS (Time History of Events and Macroscale Interactions during Substorms), and the Japanese (JAXA/ISAS) Arase and Geotail missions.

    ESA/Swarm

    NASA Magnetospheric Multiscale Mission

    NASA Van Allen Probes

    NASA THEMIS satellite

    JAXA ISAS Arase (ERG) Geospace Probe

    JAXA/Geotail satellite

    2
    The science of space weather.

    Cluster comprises four identical spacecraft that fly in a pyramid-like formation, and is able to gather incredibly detailed data on the complex structure and fluctuations of our magnetic environment.

    For nearly two decades, this quartet has mapped our magnetosphere and pinpointed flows of cold plasma and interactions with the solar wind, probed our magnetotail – an extension of the magnetosphere that stretches beyond the Earth in the direction opposite to the Sun. The mission also modelled the small-scale turbulence and intricate dynamics of the solar wind itself, and helped to explain the mysteries of Earth’s auroras.

    While this back catalogue of discoveries is impressive enough, Cluster is still producing new insights, especially in the realm of space weather. Recently, the mission has been instrumental in building more accurate models of our planet’s magnetic field both close to Earth (at so-called geosynchronous altitudes) and at large distances from Earth’s surface – no mean feat.

    These recent models were based on data from Cluster and other missions mentioned above, and put together by scientists including Nikolai Tsyganenko and Varvara Andreeva of Saint-Petersburg State University, Russia. They provide a way to trace magnetic field lines and determine how they evolve and change during storms, and can thus create a magnetic map of all the satellites currently in orbit around the Earth down to low altitudes.

    In addition, ESA’s Swarm mission is also providing insight into our planet’s magnetic field. Launched in 2013 and comprising three identical satellites, Swarm has been measuring preciselythe magnetic signals that stem from Earth’s core, mantle, crust and oceans, as well as from the ionosphere and magnetosphere.

    “This kind of research is invaluable,” adds Escoubet. “Unexpected or extreme outbursts of space weather can badly damage any satellites we have in orbit around the Earth, so being able to keep better track of them – while simultaneously gaining a better understanding of our planet’s dynamic magnetic field structure – is key to their safety.”

    Cluster also recently tracked the impact of huge outbursts of highly energetic particles and photons from the outer layers of the Sun known as coronal mass ejections (CMEs). The data showed that CMEs are able to trigger both strong and weak geomagnetic storms as they meet and are deformed at Earth’s bow shock – the boundary where the solar wind meets the outer limits of our magnetosphere.

    Such storms are extreme events. Cluster explored a specific storm that occurred in September 2017, triggered by two consecutive CMEs separated by 24 hours. It studied how the storm affected the flow of charged particles leaving the polar regions of the ionosphere, a layer of Earth’s upper atmosphere, above around 100 km, and found this flow to have increased around the polar cap by more than 30 times. This enhanced flow has consequences for space weather, such as increased drag for satellites, and is thought to be a result of the ionosphere being heated by multiple intense solar flares.

    The mission has observed how various other phenomena affect our magnetosphere, too. It spotted tiny, hot, local anomalies in the flow of solar wind that caused the entire magnetosphere to vibrate, and watched the magnetosphere growing and shrinking significantly in size back in 2013, interacting with the radiation beltsthat encircle our planet as it did so.

    Importantly, it also measured the speed of the solar wind at the ‘nose’ of the bow shock. These observations connect data gathered near Earth to those obtained by Sun-watching satellites some 1.5 million km away at a location known as Lagrangian Point 1 – such as the ESA/NASA Solar and Heliospheric Observatory (SOHO) and NASA’s Advanced Composition Explorer (ACE). These data offer all-important evidence for solar wind dynamics in this complex and unclear region of space.

    LaGrange Points map. NASA

    ESA/NASA SOHO

    NASA Ace Solar Observatory

    “All of this, and more, has really made it possible to better understand the dynamics of Earth’s magnetic field, and how it relates to the space weather we see,” says Escoubet.

    “Cluster has produced such wonderful science in the past 18 years – but there’s still so much more to come.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 12:07 pm on June 29, 2018 Permalink | Reply
    Tags: , , , , , Magnetometers, Space Weather   

    From European Space Agency: ESA’s unexpected fleet of space weather monitors 

    ESA Space For Europe Banner

    From European Space Agency

    28 June 2018

    1
    Future lagrange mission
    Released 10/11/2017
    Copyright ESA/A. Baker, CC BY-SA 3.0 IGO

    A team of researchers, supported under ESA’s Basic Activities, has recently investigated a resourceful new method of monitoring space weather. They analysed data from spacecraft magnetometers typically used for attitude control — so-called “platform magnetometers”— to see if these devices could also be used to investigate the impact of solar storms on the magnetic field around Earth.

    From a distance, the Sun appears to be a serenely glowing ball of light and warmth. But this seemingly gentle star has a violent temper. It goes through periods of intense activity, during which it can send powerful blasts of charged particles through space, which can be hazardous if they head in our direction.

    This variation in the space environment between Earth and the Sun, and in particular its impact on Earth, is known as space weather. Luckily, Earth is protected from most space weather events by its magnetic field, but some solar activity can still affect vital infrastructure, including telecommunication and navigation satellites in space, and power grids on the ground.

    Space weather events can be monitored using devices that measure magnetic fields, called magnetometers. Some spacecraft carry extremely sensitive magnetometers for scientific studies — these instruments are placed on booms, away from stray magnetic field sources inside the spacecraft. But many more spacecraft host less-sensitive magnetometers on board, called platform magnetometers, to keep the spacecraft pointed in the right direction. Could these platform magnetometers also be used to monitor space weather? In late 2016, ESA’s General Studies Programme invited research groups to find out.

    The investigation was taken on by a team consisting of scientists from TU Delft and the GFZ German Research Centre for Geosciences, who recently presented their findings at ESTEC. The group looked at data from Swarm, GOCE and LISA Pathfinder to investigate whether platform magnetometer data could also be used for space weather diagnostics.

    2
    Swarm constellation over Earth
    Released 21/10/2013
    Copyright ESA/AOES Medialab

    Swarm is ESA’s first Earth observation constellation of satellites. The three identical satellites are launched together on one rocket. Two satellites orbit almost side-by-side at the same altitude – initially at about 460 km, descending to around 300 km over the lifetime of the mission. The third satellite is in a higher orbit of 530 km and at a slightly different inclination. The satellites’ orbits drift, resulting in the upper satellite crossing the path of the lower two at an angle of 90° in the third year of operations.
    The different orbits along with satellites’ various instruments optimise the sampling in space and time, distinguishing between the effects of different sources and strengths of magnetism.

    ESA/GOCE Spacecraft

    ESA LISA Pathfinder

    2
    Comparing magnetometer data
    Released 27/06/2018
    Copyright ESA
    A comparison of the data collected from SWARM and GOCE platform magnetometers versus the SWARM science magnetometer in terms of detecting space weather.

    Fabrice Cipriani, responsible for the project from ESA’s side, explains: “This was a bit of an exploratory study for us. Quantifying the effects that solar storms have on Earth is extremely important to monitor and assess the impacts on sensitive infrastructure and so we want to exploit as many source of data as possible that can provide meaningful information, especially when there are no major development costs involved.”

    The team compared the data from Swarm’s scientific magnetometer with its platform magnetometer to determine the accuracy of the latter, before applying this knowledge to an analysis of GOCE magnetometer data. As Swarm and GOCE are both in low-Earth orbit, they can tell us a lot about how Earth responds to space weather. A magnetometer was also hosted on board LISA Pathfinder to keep an eye on the satellite’s precise measurement system.

    Eelco Doornbos, from Delft University of Technology, elaborates: “LISA Pathfinder is positioned between Earth and the Sun, outside Earth’s magnetosphere. This gives it a great view of the solar wind.”

    LISA Pathfinder’s platform magnetometer data was compared with that from American space weather observatories WIND, ACE and DSCOVR.

    NASA Wind Spacecraft

    NASA Ace Solar Observatory

    NASA DSCOVR spacecraft

    “We investigated data from LISA Pathfinder, which can observe the solar wind, and from Swarm and GOCE, which can observe magnetic field currents closer to Earth. In both cases the platform magnetometer data was good enough to recover a good signal, even when the magnetometer is not very precise and is close to other instruments,” adds Eelco.

    The team concluded that platform magnetometers can provide excellent insight into space weather. Their contribution to monitoring this phenomenon can be significantly increased by initiating coordination between different groups and developing new data processing techniques, both of which are relatively low cost compared to developing dedicated instruments and missions.

    Traditionally platform magnetometer data is only sent to Earth so that engineers can check that a spacecraft is working properly. The next step is to make this data accessible to more people.

    Fabrice explains, “We want to encourage data users to be involved at an early design phase when developing new spacecraft, to help figure out how to enable easier access to this data.”

    “Space weather is such a complicated system that changes so rapidly that the more observations you have, the better. This is why it’s great to get as many satellites as possible looking into it,” Eelco concludes.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 11:41 am on April 25, 2018 Permalink | Reply
    Tags: , , , , , , , Space Weather   

    From Eos: “Capturing Structural Changes of Solar Blasts en Route to Earth” 

    AGU
    Eos news bloc

    Eos

    4.25.18
    Sarah Stanley

    Comparison of magnetic field structures for 20 coronal mass ejections at eruption versus Earth arrival highlights the importance of tracking structural evolution to refine space weather predictions.

    1
    Coronal mass ejections erupt when flux ropes—the blue loops seen here—lose stability, resulting in a blast of plasma away from the Sun. New research [AGU Space Weather] emphasizes the importance of changes in the magnetic field structure of flux ropes between eruption of plasma blasts and their arrival at Earth. Credit: NASA/Goddard Space Flight Center/SDO, CC BY 2.0

    NASA/SDO

    Huge clouds of plasma periodically erupt from the Sun in coronal mass ejections. The magnetic field structure of each blast can help determine whether it might endanger spacecraft, power grids, and other human infrastructure. New research by Palmerio et al. highlights the importance of detecting any changes in the magnetic field structure of a coronal mass ejection as it races toward Earth.

    Coronal mass ejections often erupt in the form of a flux rope—a twisted, helical magnetic field structure that extends outward from the Sun. A flux rope can come in a variety of types that depend on the direction of the magnetic field axis and whether its helical component curves to the left or right. While the direction of the helical curve remains unchanged, the axis can alter direction after eruption from the Sun.

    In the new study, the researchers analyzed observations of 20 different coronal mass ejections, comparing their flux rope structure at eruption to their structure once they reached satellites near Earth. They used a variety of satellite and ground-based observations to reconstruct the eruption structures, and they directly observed structures close to Earth as the plasma blasts washed over NASA’s Wind spacecraft.

    NASA Wind Spacecraft

    The analysis showed that between Sun eruption and Earth arrival, flux rope structure changed axis direction by more than 90° for 7 of the 20 coronal mass ejections. The rest of the blasts had an axis rotation of less than 90°, with five changing by less than 30° after eruption.

    These results highlight the importance of capturing posteruption changes in flux rope magnetic field structures of coronal mass ejections to refine space weather predictions. Such rotations can result from a variety of causes, including deformations in the Sun’s corona and interaction with other coronal mass ejections.

    However, capturing these changes remains a challenge. Reconstructions of flux rope structure from direct spacecraft observations may vary depending on which reconstruction technique is used. In addition, such observations depend on the spacecraft’s particular path through a coronal mass ejection, which might not give an accurate picture of the overall structure.

    And although posteruption structural changes are important, the researchers emphasize that the flux rope structure of a coronal mass ejection at eruption is still a good approximation for its structure upon Earth arrival and serves as a key input for space weather forecasting models.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: