Tagged: Space based X-ray Astronomy Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:11 pm on October 4, 2022 Permalink | Reply
    Tags: "Chandra Adds X-ray Vision to Webb Images", , , Space based X-ray Astronomy,   

    From The National Aeronautics and Space Administration Chandra X-ray telescope: “Chandra Adds X-ray Vision to Webb Images” 

    NASA Chandra Banner

    From The National Aeronautics and Space Administration Chandra X-ray telescope

    1
    Credit: X-ray: NASA/CXC/SAO; IR (Spitzer): NASA/JPL-Caltech; IR (Webb): NASA/ESA/CSA/STScI

    In the summer of 2022, NASA’s James Webb Space Telescope released images from some of its earliest observations with the newly commissioned telescope. Almost instantaneously, these stunning images landed everywhere from the front pages of news outlets to larger-than-life displays in Times Square.

    Webb, however, will not pursue its exploration of the universe on its own. It is designed to work in concert with NASA’s many other telescopes as well as facilities both in space and on the ground. These new versions of Webb’s first images combine its infrared data with X-rays collected by NASA’s Chandra X-ray Observatory, underscoring how the power of any of these telescopes is only enhanced when joined with others.

    2
    Stephan’s Quintet:
    The four galaxies within Stephan’s Quintet are undergoing an intricate dance choreographed by gravity. (The fifth galaxy, on the left, is an interloping galaxy at a different distance.) The Webb image (red, orange, yellow, green, blue) of this object features never-seen-before details of the results of these interactions, including sweeping tails of gas and bursts of star formation. The Chandra data (light blue) of this system has uncovered a shock wave that heats gas to tens of millions of degrees, as one of the galaxies passes through the others at speeds of around 2 million miles per hour. This new composite also includes infrared data from NASA’s now-retired Spitzer Space Telescope (red, green, blue).

    3
    Cartwheel Galaxy:
    The Cartwheel galaxy gets its shape from a collision with another smaller galaxy — located outside the field of this image — about 100 million years ago. When this smaller galaxy punched through the Cartwheel, it triggered star formation that appears around an outer ring and elsewhere throughout the galaxy. X-rays seen by Chandra (blue and purple) come from superheated gas, individual exploded stars, and neutron stars and black holes pulling material from companion stars. Webb’s infrared view (red, orange, yellow, green, blue) shows the Cartwheel galaxy plus two smaller companion galaxies — not part of the collision — against a backdrop of many more distant galactic cousins.

    4
    SMACS 0723.3–7327
    Webb data shows how the galaxy cluster SMACS J0723, located about 4.2 billion light-years away, contains hundreds of individual galaxies. Galaxy clusters, however, contain far more than their galaxies alone. As some of the largest structures in the universe, they are filled with vast reservoirs of superheated gas that is seen only in X-ray light. In this image, the Chandra data (blue) reveals gas with temperatures of tens of millions of degrees, possessing a total mass of about 100 trillion times that of the Sun, several times higher than the mass of all the galaxies in the cluster. Invisible dark matter makes up an even larger fraction of the total mass in the cluster.

    5
    NGC 3324, The Cosmic Cliffs of the Carina Nebula
    Chandra’s data of the “Cosmic Cliffs” (pink) reveals over a dozen individual X-ray sources. These are mostly stars located in the outer region of a star cluster in the Carina Nebula with ages between 1 and 2 million years old, which is very young in stellar terms. Young stars are much brighter in X-rays than old stars, making X-ray studies an ideal way to distinguish stars in the Carina Nebula from the many stars of different ages from our Milky Way galaxy along our line of sight to the nebula. The diffuse X-ray emission in the top half of the image likely comes from hot gas from the three hottest, most massive stars in the star cluster. They are all outside the field of view of the Webb image. The Webb image uses the following colors: red, orange, yellow, green, cyan, and blue.

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) James Webb Infrared Space Telescope annotated, finally launched December 25, 2021, ten years late.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.
    In 1976 the Chandra X-ray Observatory (called AXAF at the time) was proposed to National Aeronautics and Space Administration by Riccardo Giacconi and Harvey Tananbaum. Preliminary work began the following year at NASA’s Marshall Space Flight Center and the Harvard Smithsonian Center for Astrophysics. In the meantime, in 1978, NASA launched the first imaging X-ray telescope, Einstein (HEAO-2), into orbit. Work continued on the AXAF project throughout the 1980s and 1990s. In 1992, to reduce costs, the spacecraft was redesigned. Four of the twelve planned mirrors were eliminated, as were two of the six scientific instruments. AXAF’s planned orbit was changed to an elliptical one, reaching one third of the way to the Moon’s at its farthest point. This eliminated the possibility of improvement or repair by the space shuttle but put the observatory above the Earth’s radiation belts for most of its orbit. AXAF was assembled and tested by TRW (now Northrop Grumman Aerospace Systems) in Redondo Beach, California.

    AXAF was renamed Chandra as part of a contest held by NASA in 1998, which drew more than 6,000 submissions worldwide. The contest winners, Jatila van der Veen and Tyrel Johnson (then a high school teacher and high school student, respectively), suggested the name in honor of Nobel Prize–winning Indian-American astrophysicist Subrahmanyan Chandrasekhar. He is known for his work in determining the maximum mass of white dwarf stars, leading to greater understanding of high energy astronomical phenomena such as neutron stars and black holes. Fittingly, the name Chandra means “moon” in Sanskrit.

    Originally scheduled to be launched in December 1998, the spacecraft was delayed several months, eventually being launched on July 23, 1999, at 04:31 UTC by Space Shuttle Columbia during STS-93. Chandra was deployed from Columbia at 11:47 UTC. The Inertial Upper Stage’s first stage motor ignited at 12:48 UTC, and after burning for 125 seconds and separating, the second stage ignited at 12:51 UTC and burned for 117 seconds. At 22,753 kilograms (50,162 lb), it was the heaviest payload ever launched by the shuttle, a consequence of the two-stage Inertial Upper Stage booster rocket system needed to transport the spacecraft to its high orbit.

    Chandra has been returning data since the month after it launched. It is operated by the SAO at the Chandra X-ray Center in Cambridge, Massachusetts, with assistance from Massachusetts Institute of Technology and Northrop Grumman Space Technology. The ACIS CCDs suffered particle damage during early radiation belt passages. To prevent further damage, the instrument is now removed from the telescope’s focal plane during passages.

    Although Chandra was initially given an expected lifetime of 5 years, on September 4, 2001, NASA extended its lifetime to 10 years “based on the observatory’s outstanding results.” Physically Chandra could last much longer. A 2004 study performed at the Chandra X-ray Center indicated that the observatory could last at least 15 years.

    In July 2008, the International X-ray Observatory, a joint project between European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU), NASA and Japan Aerospace Exploration Agency (JAXA) (国立研究開発法人宇宙航空研究開発機構], was proposed as the next major X-ray observatory but was later cancelled. ESA later resurrected a downsized version of the project as the Advanced Telescope for High Energy Astrophysics (ATHENA), with a proposed launch in 2028.

    European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Athena spacecraft depiction

    On October 10, 2018, Chandra entered safe mode operations, due to a gyroscope glitch. NASA reported that all science instruments were safe. Within days, the 3-second error in data from one gyro was understood, and plans were made to return Chandra to full service. The gyroscope that experienced the glitch was placed in reserve and is otherwise healthy.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [NASA/ESA Hubble, NASA Chandra, NASA Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 10:32 am on September 13, 2022 Permalink | Reply
    Tags: "SNR 0519-69.0:: Setting the Clock on a Stellar Explosion", , , , Space based X-ray Astronomy, , The supernova remnant called SNR 0519-69.0,   

    From The National Aeronautics and Space Administration Chandra X-ray telescope: “SNR 0519-69.0:: Setting the Clock on a Stellar Explosion” 

    NASA Chandra Banner

    From The National Aeronautics and Space Administration Chandra X-ray telescope

    9.12.22

    1
    Composite

    2
    X-ray (low)

    3
    X-ray (medium)

    4
    X-ray (high)

    5
    Optical

    _____________________________________________________________

    A new image of SNR 0519-69.0 shows the debris of a star that exploded several hundred years ago in Earth’s timeframe.

    The explosion of a white dwarf star, after reaching a critical mass, created SNR 0519-69.0.

    This is a special kind of supernova known as a “Type Ia” that astronomers use to measure distances across the Universe.

    This new image contains X-ray data (green, blue, and purple) from Chandra and optical data from Hubble (red and white).
    _____________________________________________________________

    While astronomers have seen the debris from scores of exploded stars in the Milky Way and nearby galaxies, it is often difficult to determine the timeline of the star’s demise. By studying the spectacular remains of a supernova in a neighboring galaxy using NASA telescopes, a team of astronomers has found enough clues to help wind back the clock.

    The supernova remnant called SNR 0519-69.0 (SNR 0519 for short) is the debris from an explosion of a white dwarf star. After reaching a critical mass, either by pulling matter from a companion star or merging with another white dwarf, the star underwent a thermonuclear explosion and was destroyed. Scientists use this type of supernova, called a Type Ia, for a wide range of scientific studies ranging from studies of thermonuclear explosions to measuring distances to galaxies across billions of light-years.

    SNR 0519 is located in the Large Magellanic Cloud, a small galaxy 160,000 light-years from Earth.

    lmc ESO’s VISTA telescope reveals a remarkable image of the Large Magellanic Cloud.

    This composite image shows X-ray data from NASA’s Chandra X-ray Observatory and optical data from NASA’s Hubble Space Telescope.

    X-rays from SNR 0519 with low, medium and high energies are shown in green, blue, and purple respectively, with some of these colors overlapping to appear white. Optical data shows the perimeter of the remnant in red and stars around the remnant in white.

    Astronomers combined the data from Chandra and Hubble with data from NASA’s retired Spitzer Space telescope to determine how long ago the star in SNR 0519 exploded and learn about the environment the supernova occurred in.

    This data provides scientists a chance to “rewind” the movie of the stellar evolution that has played out since and figure out when it got started.

    The researchers compared Hubble images from 2010, 2011, and 2020 to measure the speeds of material in the blast wave from the explosion, which range from about 3.8 million to 5.5 million miles (9 million kilometers) per hour. If the speed was toward the upper end of those estimated speeds, the astronomers determined that light from the explosion would have reached Earth about 670 years ago, or during the Hundred Years’ War between England and France and the height of the Ming dynasty in China.

    However, it’s likely that the material has slowed down since the initial explosion and that the explosion happened more recently than 670 years ago. The Chandra and Spitzer data provide clues that this is the case. Astronomers found the brightest regions in X-rays of the remnant are where the slowest-moving material is located, and no X-ray emission is associated with the fastest-moving material.

    These results imply that some of the blast wave has crashed into dense gas around the remnant, causing it to slow down as it traveled. Astronomers may use additional observations with Hubble to determine more precisely when the time of the star’s demise should truly be set.

    A paper describing these results was published in the August issue of The Astrophysical Journal [below]. The authors of the paper are Brian Williams (NASA’s Goddard Space Flight Center (GSFC) in Greenbelt, Maryland); Parviz Ghavamian (Towson University, Towson, Maryland); Ivo Seitenzahl (University of New South Wales, Australian Defence Force Academy, Canberra, Australia); Stephen Reynolds (North Carolina State University (NCSU), Raleigh, NC); Kazimierz Borkowski (North Carolina State University, Raleigh, NC) and Robert Petre (GSFC).


    Quick Look: Setting the Clock on a Stellar Explosion

    Science paper:
    The Astrophysical Journal

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.
    In 1976 the Chandra X-ray Observatory (called AXAF at the time) was proposed to National Aeronautics and Space Administration by Riccardo Giacconi and Harvey Tananbaum. Preliminary work began the following year at NASA’s Marshall Space Flight Center and the Harvard Smithsonian Center for Astrophysics. In the meantime, in 1978, NASA launched the first imaging X-ray telescope, Einstein (HEAO-2), into orbit. Work continued on the AXAF project throughout the 1980s and 1990s. In 1992, to reduce costs, the spacecraft was redesigned. Four of the twelve planned mirrors were eliminated, as were two of the six scientific instruments. AXAF’s planned orbit was changed to an elliptical one, reaching one third of the way to the Moon’s at its farthest point. This eliminated the possibility of improvement or repair by the space shuttle but put the observatory above the Earth’s radiation belts for most of its orbit. AXAF was assembled and tested by TRW (now Northrop Grumman Aerospace Systems) in Redondo Beach, California.

    AXAF was renamed Chandra as part of a contest held by NASA in 1998, which drew more than 6,000 submissions worldwide. The contest winners, Jatila van der Veen and Tyrel Johnson (then a high school teacher and high school student, respectively), suggested the name in honor of Nobel Prize–winning Indian-American astrophysicist Subrahmanyan Chandrasekhar. He is known for his work in determining the maximum mass of white dwarf stars, leading to greater understanding of high energy astronomical phenomena such as neutron stars and black holes. Fittingly, the name Chandra means “moon” in Sanskrit.

    Originally scheduled to be launched in December 1998, the spacecraft was delayed several months, eventually being launched on July 23, 1999, at 04:31 UTC by Space Shuttle Columbia during STS-93. Chandra was deployed from Columbia at 11:47 UTC. The Inertial Upper Stage’s first stage motor ignited at 12:48 UTC, and after burning for 125 seconds and separating, the second stage ignited at 12:51 UTC and burned for 117 seconds. At 22,753 kilograms (50,162 lb), it was the heaviest payload ever launched by the shuttle, a consequence of the two-stage Inertial Upper Stage booster rocket system needed to transport the spacecraft to its high orbit.

    Chandra has been returning data since the month after it launched. It is operated by the SAO at the Chandra X-ray Center in Cambridge, Massachusetts, with assistance from Massachusetts Institute of Technology and Northrop Grumman Space Technology. The ACIS CCDs suffered particle damage during early radiation belt passages. To prevent further damage, the instrument is now removed from the telescope’s focal plane during passages.

    Although Chandra was initially given an expected lifetime of 5 years, on September 4, 2001, NASA extended its lifetime to 10 years “based on the observatory’s outstanding results.” Physically Chandra could last much longer. A 2004 study performed at the Chandra X-ray Center indicated that the observatory could last at least 15 years.

    In July 2008, the International X-ray Observatory, a joint project between European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU), NASA and Japan Aerospace Exploration Agency (JAXA) (国立研究開発法人宇宙航空研究開発機構], was proposed as the next major X-ray observatory but was later cancelled. ESA later resurrected a downsized version of the project as the Advanced Telescope for High Energy Astrophysics (ATHENA), with a proposed launch in 2028.

    European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Athena spacecraft depiction

    On October 10, 2018, Chandra entered safe mode operations, due to a gyroscope glitch. NASA reported that all science instruments were safe. Within days, the 3-second error in data from one gyro was understood, and plans were made to return Chandra to full service. The gyroscope that experienced the glitch was placed in reserve and is otherwise healthy.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [NASA/ESA Hubble, NASA Chandra, NASA Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 9:40 pm on September 8, 2022 Permalink | Reply
    Tags: "A study shows that 'water worlds' could be as common as Earths", , , , , , , Space based X-ray Astronomy,   

    From IAC-The Institute of Astrophysics of the Canary Islands [Instituto de Astrofísica de Canarias] (ES) And The University of Chicago: “A study shows that ‘water worlds’ could be as common as Earths” 

    Instituto de Astrofísica de Andalucía

    From IAC-The Institute of Astrophysics of the Canary Islands [Instituto de Astrofísica de Canarias] (ES)

    And

    U Chicago bloc

    The University of Chicago

    9.8.22
    Rafael Luque
    rluque@uchicago.edu

    Enric Pallé
    epalle@iac.es

    1
    Artist’s impression of the strange landscape of a water world. Credit: Pilar Montañés.

    Research led by the University of Chicago and the Instituto de Astrofísica de Canarias (IAC) has shown the existence of exoplanets with water and rock around type M dwarf stars, which are the most common in the Galaxy. The results are published in the prestigious journal Science [below].

    A detailed analysis of the masses and the radii of all 43 known exoplanets around M stars, which make up 80% of the stars in the Milky Way, has led to a surprising discovery, entirely led by the researchers Rafael Luque, of the University of Chicago and the Instituto de Astrofísica de Andalucía (IAA-CSIC) and Enric Pallé, of the IAC and the University of La Laguna (ULL)

    “We have discovered the first experimental proof that there is a population of water worlds, and that they are in fact almost as abundant as Earth-like planets”, explains Luque. The study has shown that far more planets than previously thought could have large quantities of water, which can reach up to 50% of the total mass of the planet.

    When the researchers analyzed the sample they found something unexpected: the densities of a high percentage of the planets suggested that they are too light in relation to their size to be formed entirely of rock. For this reason, they believe that they must be formed half of rock and half of water, or other lighter molecules. “We found that it is the density of a planet and not its radius, as was previously thought, which separates dry planets from wet ones”, explains Luque.

    However, these planets are so close to their stars that any water on their surface should exist in a supercritical gas phase, which would increase their sizes. So, the scientists think that, in this population, the water is probably bound to the rock, or in closed volumes below the surface, rather than flowing as in oceans or rivers. These conditions would be similar to those on Jupiter’s satellite Europa, but very different to what occurs on our own planet. “The Earth is a dry planet, even though its surface is mostly covered in water, which gives it a very wet appearance. The water on Earth is only 0.02% of its total mass, while in these water worlds it is 50% of the mass of the planet”, notes Pallé.

    With this finding, it is confirmed, for the first time, the existence of a new type of exoplanet. “We have discovered that small planets orbiting this type of star can be classified into three distinct families: rocky planets very similar to Earth, planets with half their mass consisting of water that we call water worlds, and mini-Neptunes with extended atmospheres of hydrogen and/or helium”, describes Pallé.

    This finding contradicts the widely held idea that these worlds are either very dry and rocky, or they have a very extensive and tenuous atmosphere of hydrogen and/or helium. On the contrary, this study suggests that, as opposed to rocky planets, these worlds rich in water formed outside the so-called “snow line”, that is to say sufficiently far away from the star that the temperature was low enough that all the light compounds such as water solidified and formed grains of solid ice, and then migrated closer to the star. “The distribution of sizes and densities of exoplanets is a consequence of the formation of planets at different distances from the star, and not of the presence or absence of an atmosphere”, comments Pallé.

    A novel analysis, and a promising future.

    Just as observation of the population of an entire city can reveal tendencies which are difficult to see at an individual level, the study of a population of planets has helped the scientists to identify hitherto unknown patterns. “Because of the uncertainties in the masses and radii of our measurements, an individual planet could sometimes fit into more than one category (terrestrial, water world, etc.). It is when we observe a population of planets as we have done here that we can bring out the patterns of distinct, different compositions”, explains Luque.

    3
    Small planet demographics around M dwarf stars. Credit: Rafael Luque (University of Chicago), Pilar Montañés (@pilar.monro), Gabriel Pérez (Instituto de Astrofísica de Canarias), and Chris Smith (NASA Goddard Space Flight Center)

    According to the researchers, the next steps to be taken are to understand the internal structure of the water worlds, which means finding out where the water is stored, and if these planets could have a small atmosphere of detectable supercritical water vapour. “Only those planets in the habitable zones around M stars can be explored atmospherically by the James Webb Space Telescope (JWST) and future extremely large ground-based telescopes”, explains Pallé.

    “It is also fundamental to understand if our discovery also applies to the populations of small planets around other types of stars”, stresses Luque. “It is more difficult to measure the exact masses of small planets around larger stars, but the data should soon become available using the newest generation of ultra-stable spectrographs”, he points out.

    The realm of new discoveries of planets around M stars by NASA’s Transiting Exoplanet Survey Satellite (TESS), complemented by measurements of their masses by the CARMENES spectrograph on the 3.5 m telescope at Calar Alto, Almería, (Spain) were crucial for this work to become possible.

    Science paper:
    Science

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with University of Chicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    University of Chicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: DOE’s Argonne National Laboratory, DOE’s Fermi National Accelerator Laboratory , and the Marine Biological Laboratory in Woods Hole, Massachusetts.
    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts. The University of Chicago is a private research university in Chicago, Illinois. Founded in 1890, its main campus is located in Chicago’s Hyde Park neighborhood. It enrolled 16,445 students in Fall 2019, including 6,286 undergraduates and 10,159 graduate students. The University of Chicago is ranked among the top universities in the world by major education publications, and it is among the most selective in the United States.

    The university is composed of one undergraduate college and five graduate research divisions, which contain all of the university’s graduate programs and interdisciplinary committees. Chicago has eight professional schools: the Law School, the Booth School of Business, the Pritzker School of Medicine, the School of Social Service Administration, the Harris School of Public Policy, the Divinity School, the Graham School of Continuing Liberal and Professional Studies, and the Pritzker School of Molecular Engineering. The university has additional campuses and centers in London, Paris, Beijing, Delhi, and Hong Kong, as well as in downtown Chicago.

    University of Chicago scholars have played a major role in the development of many academic disciplines, including economics, law, literary criticism, mathematics, religion, sociology, and the behavioralism school of political science, establishing the Chicago schools in various fields. Chicago’s Metallurgical Laboratory produced the world’s first man-made, self-sustaining nuclear reaction in Chicago Pile-1 beneath the viewing stands of the university’s Stagg Field. Advances in chemistry led to the “radiocarbon revolution” in the carbon-14 dating of ancient life and objects. The university research efforts include administration of DOE’s Fermi National Accelerator Laboratory and DOE’s Argonne National Laboratory, as well as the U Chicago Marine Biological Laboratory in Woods Hole, Massachusetts (MBL). The university is also home to the University of Chicago Press, the largest university press in the United States. The Barack Obama Presidential Center is expected to be housed at the university and will include both the Obama presidential library and offices of the Obama Foundation.

    The University of Chicago’s students, faculty, and staff have included 100 Nobel laureates as of 2020, giving it the fourth-most affiliated Nobel laureates of any university in the world. The university’s faculty members and alumni also include 10 Fields Medalists, 4 Turing Award winners, 52 MacArthur Fellows, 26 Marshall Scholars, 27 Pulitzer Prize winners, 20 National Humanities Medalists, 29 living billionaire graduates, and have won eight Olympic medals.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    Research

    According to the National Science Foundation, University of Chicago spent $423.9 million on research and development in 2018, ranking it 60th in the nation. It is classified among “R1: Doctoral Universities – Very high research activity” and is a founding member of the Association of American Universities and was a member of the Committee on Institutional Cooperation from 1946 through June 29, 2016, when the group’s name was changed to the Big Ten Academic Alliance. The University of Chicago is not a member of the rebranded consortium, but will continue to be a collaborator.

    The university operates more than 140 research centers and institutes on campus. Among these are the Oriental Institute—a museum and research center for Near Eastern studies owned and operated by the university—and a number of National Resource Centers, including the Center for Middle Eastern Studies. Chicago also operates or is affiliated with several research institutions apart from the university proper. The university manages DOE’s Argonne National Laboratory, part of the United States Department of Energy’s national laboratory system, and co-manages DOE’s Fermi National Accelerator Laboratory, a nearby particle physics laboratory, as well as a stake in the Apache Point Observatory in Sunspot, New Mexico.
    _____________________________________________________________________________________

    SDSS Telescope at Apache Point Observatory, near Sunspot NM, USA, Altitude 2,788 meters (9,147 ft).

    Apache Point Observatory, near Sunspot, New Mexico Altitude 2,788 meters (9,147 ft).
    _____________________________________________________________________________________

    Faculty and students at the adjacent Toyota Technological Institute at Chicago collaborate with the university. In 2013, the university formed an affiliation with the formerly independent Marine Biological Laboratory in Woods Hole, Mass. Although formally unrelated, the National Opinion Research Center is located on Chicago’s campus.

    IAC-The Institute of Astrophysics of the Canary Islands [Instituto de Astrofísica de Canarias] (ES) operates two astronomical observatories in the Canary Islands:

    Roque de los Muchachos Observatory on La Palma
    Teide Observatory on Tenerife.

    The Instituto de Astrofísica the headquarters, which is in La Laguna (Tenerife).

    Observatorio del Roque de los Muchachos at La Palma (ES) at an altitude of 2400m.

    The seeing statistics at ORM make it the second-best location for optical and infrared astronomy in the Northern Hemisphere, after Mauna Kea Observatory Hawai’i.

    Mauna Kea Observatories Hawai’i altitude 4,213 m (13,822 ft).

    The site also has some of the most extensive astronomical facilities in the Northern Hemisphere; its fleet of telescopes includes the 10.4 m Gran Telescopio Canarias [below], the world’s largest single-aperture optical telescope as of July 2009; the Telescopio Nazionale Galileo (IT) (ES) [below] a 3.58-meter Italian telescope; the William Herschel Telescope (second largest in Europe) [below], and the adaptive optics corrected Swedish 1-m Solar Telescope [below].

    Gran Telescopio Canarias [Instituto de Astrofísica de Canarias ](ES) sited on a volcanic peak 2,267 metres (7,438 ft) above sea level.


    Isaac Newton Group 4.2 meter William Herschel Telescope at Roque de los Muchachos Observatory on La Palma in the Canary Islands(ES), 2,396 m (7,861 ft).

    The Swedish 1m Solar Telescope SST at the Roque de los Muchachos observatory on La Palma Spain, Altitude 2,360 m (7,740 ft).

    The observatory was established in 1985, after 15 years of international work and cooperation of several countries with the Spanish island hosting many telescopes from Britain, The Netherlands, Spain, and other countries. The island provided better seeing conditions for the telescopes that had been moved to Herstmonceux by the Royal Greenwich Observatory, including the 98 inch aperture Isaac Newton Telescope (the largest reflector in Europe at that time). When it was moved to the island it was upgraded to a 100-inch (2.54 meter), and many even larger telescopes from various nations would be hosted there.

    Tiede Observatory, Tenerife, Canary Islands (ES)

    Teide Observatory [Observatorio del Teide], IAU code 954, is an astronomical observatory on Mount Teide at 2,390 metres (7,840 ft), located on Tenerife, Spain. It has been operated by the Instituto de Astrofísica de Canarias since its inauguration in 1964. It became one of the first major international observatories, attracting telescopes from different countries around the world because of the good astronomical seeing conditions. Later the emphasis for optical telescopes shifted more towards Roque de los Muchachos Observatory on La Palma.

     
  • richardmitnick 12:35 pm on September 5, 2022 Permalink | Reply
    Tags: "EP-WXT Pathfinder Catches First Wide-field Snapshots of X-ray Universe", , , , , Space based X-ray Astronomy,   

    From The Chinese Academy of Sciences [中国科学院](CN): “EP-WXT Pathfinder Catches First Wide-field Snapshots of X-ray Universe” 

    From The Chinese Academy of Sciences [中国科学院](CN)

    9.2.22
    XU Ang
    National Astronomical Observatories
    annxu@nao.cas.cn

    EP-WXT Pathfinder, the experimental version of a module that will eventually be part of the wide-field X-ray telescope (WXT) aboard the astronomical satellite Einstein Probe (EP), released its first results Aug. 27 from an earlier test flight.

    These include an 800-second X-ray time-lapse photograph of a region of the Galactic center, a dense area at the core of our home galaxy, the Milky Way.

    These mark the first wide-field X-ray snapshots of our universe available to the public so far, captured by the first truly wide-field X-ray focusing imaging telescope ever flown in space.

    The results were reported by scientists from the Chinese Academy of Sciences (CAS) at the Second China Space Science Assembly held in Taiyuan, China.

    Since the first detection of X-ray signals from the depths of the universe 60 years ago, no wide-field X-ray focusing telescope has been available for X-ray surveys and monitoring until Pathfinder.

    1
    Fig. 1 EP-WXT Pathfinder targets a region of the Galactic center at the core of the Milky Way. Inset shows the 800-second time-lapse photograph from the observation. (Image by CAS/ESA/Gaia/DPAC)

    The Pathfinder was sent into orbit to verify the module’s in-orbit performance. The experimental journey is meant to pave the way for the future in-orbit science operation of EP as it makes observations in the soft X-ray waveband.

    EP will explore open questions in time-domain astrophysics through observation of transients. The mission is sponsored by CAS in cooperation with the European Space Agency (ESA) and the Max Planck Institute for Extraterrestrial Physics and is expected to fly by the end of 2023.

    The WXT test module covers a field of view up to 340 square degrees (18.6°x18.6°) wide, which makes it the first truly wide-field X-ray focusing imaging telescope. X-ray imaging by bending light rays (focusing) is notoriously difficult due to the high energy of X-ray photons; and it is even more difficult to obtain clear images from a wide field of view. Thanks to a state-of-the-art technology called lobster-eye micropore optics, the test module boasts a field of view at least 100 times those of other focusing X-ray imagers. The complete WXT to fly aboard EP will be composed of 12 such identical modules, covering a field of view up to 3,600 square degrees wide.

    During the test flight, Pathfinder conducted a total of four days of in-orbit experimental observations and obtained authentic X-ray spectra and images based on real measurements.

    The key components of Pathfinder include the X-ray imaging mirror assembly, which features an array of 36 micropore lobster-eye plates and a focal-plane detector composed of four sets of large-format imaging sensors.

    Even though these results are still preliminary and extensive data processing must be done, the test flight demonstrates that even a one-shot observation can cover X-ray sources from all directions within the observed patch of sky, including stellar-mass black holes and neutron stars. The observation also captured the brightening of X-rays from a binary system containing a neutron star. The data from these observations provide information about how X-ray radiation from such celestial bodies changes over time, as well as the X-ray spectra of these celestial bodies. The images and spectra resulting from the test observations are highly consistent with simulations.

    The instrument also targeted a number of other X-ray sources, including the Large Magellanic Cloud (LMC), one of our neighboring galaxies. The results demonstrate that even a one-shot observation can cover the whole of this galaxy, detecting multiple X-ray sources, including black holes, neutron stars and supernova remnants. The instrument’s clear imaging of a distant quasar, 3C 382, at a distance of 810 million light-years, reveals its capacity to detect relatively faint X-ray sources. In its future observations, the imager is expected to effectively monitor the X-ray variability of celestial bodies and discover new transient sources.

    2
    Fig. 2 The preliminary X-ray “time-lapse photograph” (right) in 0.5–4 keV band as the result from a 700-second one-shot observation on the Large Magellanic Cloud (LMC), our neighbor galaxy, in comparison with the DSS optical image of LMC. (Image by CAS/DSS)

    According to Dr. YUAN Weimin, principal investigator (PI) of the EP mission and researcher at the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), initial results show that “the instrument operates smoothly” and meets EP WXT module requirements. “It’s exciting to see the decade-long effort bearing its first fruit,” he smiled.

    Other researchers involved with the EP mission were also satisfied.

    Dr. ZHANG Chen, PI of the WXT mirror assembly, said the results promise “abundant, high-quality data” after the probe is launched.

    Prof. Paul O’Brien, ESA-appointed scientist for the EP mission and researcher at the University of Leicester, said the results are “really impressive.”

    “We have been waiting for a true wide-field, soft X-ray imager for many decades, so it is wonderful to see the WXT test module in flight on EP-WXT Pathfinder,” said Prof. Richard Willingale, Prof. O’Brien’s colleague at the University of Leicester.

    3
    Fig. 3 X-ray image of the Cygnus Loop nebula (2.5-degree diameter) obtained with several observations totaling 2,400 seconds. (Image by CAS)

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Chinese Academy of Sciences[中国科学院](CN) is the national academy for the natural sciences of the People’s Republic of China. It has historical origins in the Academia Sinica during the Republican era and was formerly also known by that name. Collectively known as the “Two Academies (两院)” along with the Chinese Academy of Engineering, it functions as the national scientific think tank and academic governing body, providing advisory and appraisal services on issues stemming from the national economy, social development, and science and technology progress. It is headquartered in Xicheng District, Beijing, with branch institutes all over mainland China. It has also created hundreds of commercial enterprises, Lenovo being one of the most famous.

    It is the world’s largest research organization, comprising around 60,000 researchers working in 114 institutes, and has been consistently ranked among the top research organizations around the world. It also holds the University of Science and Technology of China and the University of Chinese Academy of Sciences.

    The Chinese Academy of Sciences has been ranked the No. 1 research institute in the world by Nature Index since the list’s inception in 2016 by Nature Portfolio. It is the most productive institution publishing articles of sustainable development indexed in Web of Science from 1981 to 2018 among all universities and research institutions in the world.

    The Chinese Academy originated in the Academia Sinica founded, in 1928, by the Republic of China. After the Communist Party took control of mainland China in 1949, the residual of Academia Sinica was renamed Chinese Academy of Sciences (CAS), while others relocated to Taiwan.

    The Chinese Academy of Sciences has six academic divisions:

    Chemistry (化学部)
    Information Technological Sciences (信息技术科学部)
    Earth Sciences (地学部)
    Life Sciences and Medical Sciences (生命科学和医学学部)
    Mathematics and Physics (数学物理学部)
    Technological Sciences (技术科学部)

    The CAS has thirteen regional branches, in Beijing, Shenyang, Changchun, Shanghai, Nanjing, Wuhan, Guangzhou, Chengdu, Kunming, Xi’an, Lanzhou, Hefei and Xinjiang. It has over one hundred institutes and four universities (the University of Science and Technology of China at Hefei, Anhui, the University of the Chinese Academy of Sciences in Beijing, ShanghaiTech University, and Shenzhen Institute of Adavanced Technology). Backed by the institutes of CAS, UCAS is headquartered in Beijing, with graduate education bases in Shanghai, Chengdu, Wuhan, Guangzhou and Lanzhou, four Science Libraries of Chinese Academy of Sciences, three technology support centers and two news and publishing units. These CAS branches and offices are located in 20 provinces and municipalities throughout China. CAS has invested in or created over 430 science- and technology-based enterprises in eleven industries, including eight companies listed on stock exchanges.

    Being granted a Fellowship of the Academy represents the highest level of national honor for Chinese scientists. The CAS membership system includes Academicians (院士), Emeritus Academicians (荣誉院士) and Foreign Academicians (外籍院士).

    The Chinese Academy of Sciences was ranked #1 in the 2016, 2017, 2018, 2019, and 2020 Nature Index Annual Tables, which measure the largest contributors to papers published in 82 leading journals.

    Research institutes

    Beijing Branch
    University of the Chinese Academy of Sciences (UCAS)
    Academy of Mathematics and Systems Science
    Institute of Acoustics (IOA)
    Institute of Atmospheric Physics
    Institute of Botany, Chinese Academy of Sciences
    Institute of Physics (IOPCAS)
    Institute of Semiconductors
    Institute of Electrical Engineering (IEE)
    Institute of Information Engineering (IIE)
    Institute of Theoretical Physics
    Institute of High Energy Physics
    Institute of Biophysics
    Institute of Genetics and Developmental Biology
    Institute of Electronics
    National Astronomical Observatories
    Institute of Computing Technology
    Institute of Software
    Institute of Automation
    Beijing Institute of Genomics
    Institute of Geographic Sciences and Natural Resources
    Institute of Geology and Geophysics (IGG)
    Institute of Remote Sensing and Digital Earth
    Institute of Tibetan Plateau Research
    Institute of Vertebrate Paleontology and Paleoanthropology
    National Center for Nanoscience and Technology
    Institute of Policy and Management
    Institute of Psychology
    Institute of Zoology
    Changchun Branch
    Changchun Institute of Optics, Fine Mechanics and Physics
    Changchun Institute of Applied Chemistry
    Northeast Institute of Geography and Agroecology
    Changchun Observatory
    Chengdu Branch
    Institute of Mountain Hazards and Environment
    Chengdu Institute of Biology
    Institute of Optics and Electronics
    Chengdu Institute of Organic Chemistry
    Institute of Computer Application
    Chongqing Institute of Green and Intelligent Technology
    Guangzhou Branch
    South China Botanical Garden
    Shenzhen Institutes of Advanced Technology
    South China Sea Institute of Oceanology
    Guangzhou Institute of Energy Conversion
    Guangzhou Institute of Geochemistry
    Guangzhou Institute of Biomedicine and Health
    Guiyang Branch
    Institute of Geochemistry
    Hefei Branch
    Hefei Institutes of Physical Science
    University of Science and Technology of China
    Kunming Branch
    Kunming Institute of Botany
    Kunming Institute of Zoology
    Xishuangbanna Tropical Botanical Garden
    Institute of Geochemistry
    Yunnan Astronomical Observatory
    Lanzhou Branch
    Institute of Modern Physics
    Lanzhou Institute of Chemical Physics
    Lanzhou Institute of Geology
    Northwest Institute of Plateau Biology
    Northwest Institute of Eco-Environment and Resources
    Qinghai Institute of Salt Lakes Research
    Nanjing Branch
    Purple Mountain Observatory (Zijinshan Astronomical Observatory)
    Institute of Soil Science
    Nanjing Institute of Geology and Palaeontology
    Nanjing Institute of Geography and Limnology
    Nanjing Institute of Astronomical Optics and Technology
    Suzhou Institute of Nano-tech and Nano-bionics (SINANO)
    Suzhou Institute of Biomedical Engineering and Technology (SIBET)
    Nanjing Botanical Garden, Memorial Sun Yat-Sen (Institute of Botany, Jiangsu Province and Chinese Academy of Science)
    University of Chinese Academy of Sciences, Nanjing College
    Shanghai Branch
    Shanghai Astronomical Observatory
    Shanghai Institute of Microsystem and Information Technology
    Shanghai Institute of Technical Physics
    Shanghai Institute of Optics and Fine Mechanics
    Shanghai Institute of Ceramics
    Shanghai Institute of Organic Chemistry
    Shanghai Institute of Applied Physics
    Shanghai Institutes for Biological Sciences
    Shanghai Institute of Materia Medica
    Institut Pasteur of Shanghai
    Shanghai Advanced Research Institute, CAS
    Institute of Neuroscience (ION)
    ShanghaiTech University
    Shenyang Branch
    Institute of Metal Research
    Shenyang Institute of Automation
    Shenyang Institute of Applied Ecology, formerly the Institute of Forestry and Pedology
    Shenyang Institute of Computing Technology
    Dalian Institute of Chemical Physics
    Qingdao Institute of Oceanology
    Qingdao Institute of Bioenergy and Bioprocess Technology
    Yantai Institute of Coastal Zone Research
    Taiyuan Branch
    Shanxi Institute of Coal Chemistry (ICCCAS)
    Wuhan Branch
    Wuhan Institute of Rock and Soil Mechanics
    Wuhan Institute of Physics and Mathematics
    Wuhan Institute of Virology
    Institute of Geodesy and Geophysics
    Institute of Hydrobiology
    Wuhan Botanical Garden
    Xinjiang Branch
    Xinjiang Technical Institute of Physics and Chemistry
    Xinjiang Institute of Ecology and Geography
    Xi’an Branch
    Xi’an Institute of Optics and Precision Mechanics
    National Time Service Center
    Institute of Earth Environment

     
  • richardmitnick 6:32 am on August 29, 2022 Permalink | Reply
    Tags: "Zeta Ophiuchi:: Embracing a Rejected Star", , , , Space based X-ray Astronomy,   

    From The National Aeronautics and Space Administration Chandra X-ray telescope: “Zeta Ophiuchi:: Embracing a Rejected Star” 

    NASA Chandra Banner

    7.25.22 [Brought forward by Manu Garcia – a friend from IAC-Institute of Astrophysics of the Canaries [Instituto de Astrofísica de Canarias](ES).

    1
    Composite

    2
    X-ray

    3
    Infrared
    ______________________________________________________

    Zeta Ophiuchi is a single star that likely once had a companion that exploded as a supernova.

    The explosion sent Zeta Ophiuchi, seen in Spitzer (green and red) and Chandra data (blue), hurtling through space.

    X-rays detected by Chandra come from gas that has been heated to millions of degrees by the effects of a shock wave.

    Researchers are working to match computational models of this object to explain data obtained at different wavelengths.
    ______________________________________________________
    Zeta Ophiuchi is a star with a complicated past, having likely been ejected from its birthplace by a powerful stellar explosion. A new look by NASA’s Chandra X-ray Observatory helps tell more of the story of this runaway star.

    Located about 440 light-years from Earth, Zeta Ophiuchi is a hot star that is 20 times more massive than the Sun. Previous observations have provided evidence that Zeta Ophiuchi was once in close orbit with another star, before being ejected at about 100,000 miles per hour when this companion was destroyed in a supernova explosion over a million years ago. Previously released infrared data from NASA’s now-retired Spitzer Space Telescope, seen in this new composite image, reveals a spectacular shock wave (red and green) that was formed by matter blowing away from the star’s surface and slamming into gas in its path.

    Data from Chandra shows a bubble of X-ray emission (blue) located around the star, produced by gas that has been heated by the effects of the shock wave to tens of millions of degrees.

    A team of astronomers led by Samuel Green from the Dublin Institute for Advanced Studies in Ireland has constructed the first detailed computer models of the shock wave. They have begun testing whether the models can explain the data obtained at different wavelengths, including X-ray, optical, infrared and radio observations. All three of the different computer models predict fainter X-ray emission than observed. The bubble of X-ray emission is brightest near the star, whereas two of the three computer models predict the X-ray emission should be brighter near the shock wave.

    In the future these researchers plan to test more complicated models with additional physics — including the effects of turbulence, and particle acceleration — to see whether the agreement with X-ray data will improve.

    A paper describing these results has been accepted in the journal Astronomy and Astrophysics [below]. The Chandra data used here was originally analyzed by Jesús Toala from the Institute of Astrophysics of Andalucia in Spain, who also wrote the proposal that led to the observations.


    Quick Look: Embracing a Rejected Star. Credit: Chandra X-ray Observatory

    Science paper:
    Astronomy and Astrophysics

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.
    In 1976 the Chandra X-ray Observatory (called AXAF at the time) was proposed to National Aeronautics and Space Administration by Riccardo Giacconi and Harvey Tananbaum. Preliminary work began the following year at NASA’s Marshall Space Flight Center and the Harvard Smithsonian Center for Astrophysics. In the meantime, in 1978, NASA launched the first imaging X-ray telescope, Einstein (HEAO-2), into orbit. Work continued on the AXAF project throughout the 1980s and 1990s. In 1992, to reduce costs, the spacecraft was redesigned. Four of the twelve planned mirrors were eliminated, as were two of the six scientific instruments. AXAF’s planned orbit was changed to an elliptical one, reaching one third of the way to the Moon’s at its farthest point. This eliminated the possibility of improvement or repair by the space shuttle but put the observatory above the Earth’s radiation belts for most of its orbit. AXAF was assembled and tested by TRW (now Northrop Grumman Aerospace Systems) in Redondo Beach, California.

    AXAF was renamed Chandra as part of a contest held by NASA in 1998, which drew more than 6,000 submissions worldwide. The contest winners, Jatila van der Veen and Tyrel Johnson (then a high school teacher and high school student, respectively), suggested the name in honor of Nobel Prize–winning Indian-American astrophysicist Subrahmanyan Chandrasekhar. He is known for his work in determining the maximum mass of white dwarf stars, leading to greater understanding of high energy astronomical phenomena such as neutron stars and black holes. Fittingly, the name Chandra means “moon” in Sanskrit.

    Originally scheduled to be launched in December 1998, the spacecraft was delayed several months, eventually being launched on July 23, 1999, at 04:31 UTC by Space Shuttle Columbia during STS-93. Chandra was deployed from Columbia at 11:47 UTC. The Inertial Upper Stage’s first stage motor ignited at 12:48 UTC, and after burning for 125 seconds and separating, the second stage ignited at 12:51 UTC and burned for 117 seconds. At 22,753 kilograms (50,162 lb), it was the heaviest payload ever launched by the shuttle, a consequence of the two-stage Inertial Upper Stage booster rocket system needed to transport the spacecraft to its high orbit.

    Chandra has been returning data since the month after it launched. It is operated by the SAO at the Chandra X-ray Center in Cambridge, Massachusetts, with assistance from Massachusetts Institute of Technology and Northrop Grumman Space Technology. The ACIS CCDs suffered particle damage during early radiation belt passages. To prevent further damage, the instrument is now removed from the telescope’s focal plane during passages.

    Although Chandra was initially given an expected lifetime of 5 years, on September 4, 2001, NASA extended its lifetime to 10 years “based on the observatory’s outstanding results.” Physically Chandra could last much longer. A 2004 study performed at the Chandra X-ray Center indicated that the observatory could last at least 15 years.

    In July 2008, the International X-ray Observatory, a joint project between European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU), NASA and Japan Aerospace Exploration Agency (JAXA) (国立研究開発法人宇宙航空研究開発機構], was proposed as the next major X-ray observatory but was later cancelled. ESA later resurrected a downsized version of the project as the Advanced Telescope for High Energy Astrophysics (ATHENA), with a proposed launch in 2028.

    European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Athena spacecraft depiction

    On October 10, 2018, Chandra entered safe mode operations, due to a gyroscope glitch. NASA reported that all science instruments were safe. Within days, the 3-second error in data from one gyro was understood, and plans were made to return Chandra to full service. The gyroscope that experienced the glitch was placed in reserve and is otherwise healthy.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [NASA/ESA Hubble, NASA Chandra, NASA Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 10:39 pm on August 26, 2022 Permalink | Reply
    Tags: "Probing a Bright Radio Galaxy with X-Rays", , , , , , , Space based X-ray Astronomy   

    From AAS NOVA: “Probing a Bright Radio Galaxy with X-Rays” 

    AASNOVA

    From AAS NOVA

    8.26.22
    Haley Wahl

    Deep inside the dust-shrouded core of radio galaxy Centaurus A, particles are being accelerated to relativistic speeds. What’s causing this acceleration, and what’s the nature of the matter around this energetic core? By using multiple telescopes to observe nearly the entire X-ray spectrum, astronomers may be getting closer to unlocking the answers.

    Getting to the Core of the Mystery

    Polarization, or the way the electromagnetic waves are oriented, is a powerful tool in astrophysics; the same concept that allows sunglasses to reduce glare can also be used to probe the emission mechanism of magnetized neutron stars and study the orientation of magnetic fields.

    2
    A diagram showing the concept of polarization; unpolarized light has electric fields going in all directions but polarized light has its electric field going in only one direction/vibrating in only one plane. Magnetic fields in space can change the orientation of the electric field, resulting in polarized light. [PhysicsOpenLab]

    Measurements of the polarization properties of jets around the high-energy cores of supermassive black holes can help illuminate what type of physics is taking place, in particular how the high-energy emission is produced and how it behaves. These polarization measurements provide a valuable counterpart to other ways we probe the physics around black hole jets — like by examining how X-ray intensity varies with frequency.

    Using simultaneous observations from multiple X-ray telescopes, a team led by Steven Ehlert at NASA’s Marshall Space Flight Center explores the polarization of the material and the X-ray spectrum around Centaurus A in order to better understand the material around the galaxy’s core. Centaurus A is of particular interest because it contains an active galactic nucleus — a black hole spewing radio jets into space — and it also emits X-rays. Though many studies have observed the X-ray emission from its core, we still haven’t pinpointed the source of this energetic light.

    A Slew of X-Ray Telescope Observations

    The team used the Imaging X-ray Polarimetry Explorer (IXPE) to observe polarized X-ray emission from Centaurus A.

    IXPE is a brand new mission dedicated to studying polarized X-ray emission from sources such as neutron stars and supermassive black holes. Launched in December 2021, the first science images from the mission were released this past February. The instrument measured low degrees of polarization in the core of Centaurus A, which suggests that the X-ray emission is coming from a scattering process rather than arising directly from the accelerated particles of the jet. The low degree of polarization, specifically near the core region, indicates that electrons are accelerated in an area around the core where the magnetic field lines are twisted and disordered.

    3
    An image of the core and surrounding regions of Centaurus A taken by IXPE. [Ehlert et al. 2022]

    4
    The spectrum of the source taken with the various telescopes, fit with a simple power law. [Ehlert et al. 2022]

    By combining the IXPE measurements with simultaneous X-ray observations using the NuSTAR, Swift, and INTEGRAL telescopes, the team was able to observe Centaurus A throughout the full X-ray spectrum and see how the X-ray emission behaves from 0.3 keV all the way up to 400 keV.

    _________________________________________
    National Aeronautics and Space Administration Neil Gehrels Swift spacecraft



    _________________________________________

    They modeled the spectrum of the source and were able to fit a simple power law to it. The lack of complex spectral features indicates that the X-rays around Centaurus A are passing through an optically thin medium (material in space that the X-rays can pass through, where no scattering or absorption of the light takes place) that’s distant from where the X-rays originate.

    A Unique Radio Galaxy?

    This work, which is consistent with previous studies at other wavelengths, shows that the X-rays coming from Centaurus A’s core are produced by particles that are accelerated within about a light-year of the central black hole. Studying other galaxies that host luminous, accreting supermassive black holes will allow scientists to understand if the low degree of X-ray polarization is common, or if Centaurus A is unique among the population.
    Citation

    Limits on X-Ray Polarization at the Core of Centaurus A as Observed with the Imaging X-Ray Polarimetry Explorer, Steven R. Ehlert et al 2022 ApJ 935 116.
    https://iopscience.iop.org/article/10.3847/1538-4357/ac8056/pdf

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    1

    AAS Mission and Vision Statement

    The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

    The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
    The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
    The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
    The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
    The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

    Adopted June 7, 2009

    The society was founded in 1899 through the efforts of George Ellery Hale. The constitution of the group was written by Hale, George Comstock, Edward Morley, Simon Newcomb and Edward Charles Pickering. These men, plus four others, were the first Executive Council of the society; Newcomb was the first president. The initial membership was 114. The AAS name of the society was not finally decided until 1915, previously it was the “Astronomical and Astrophysical Society of America”. One proposed name that preceded this interim name was “American Astrophysical Society”.

    The AAS today has over 7,000 members and six divisions – the Division for Planetary Sciences (1968); the Division on Dynamical Astronomy (1969); the High Energy Astrophysics Division (1969); the Solar Physics Division (1969); the Historical Astronomy Division (1980); and the Laboratory Astrophysics Division (2012). The membership includes physicists, mathematicians, geologists, engineers and others whose research interests lie within the broad spectrum of subjects now comprising contemporary astronomy.

    In 2019 three AAS members were selected into the tenth anniversary class of TED Fellows.

    The AAS established the AAS Fellows program in 2019 to “confer recognition upon AAS members for achievement and extraordinary service to the field of astronomy and the American Astronomical Society.” The inaugural class was designated by the AAS Board of Trustees and includes an initial group of 232 Legacy Fellows.

     
  • richardmitnick 10:40 am on August 18, 2022 Permalink | Reply
    Tags: "NGC 4424:: NASA Telescopes Capture Stellar Delivery Service for Black Hole", , , , , Space based X-ray Astronomy   

    From The National Aeronautics and Space Administration Chandra X-ray telescope: “NGC 4424:: NASA Telescopes Capture Stellar Delivery Service for Black Hole” 

    NASA Chandra Banner

    8.18.22

    1
    Credit: A. Graham et al./X-ray: NASA/CXC/Swinburne Univ. of Technology/; Optical: NASA/ESA/STScI.

    NGC 4424 is a spiral galaxy in the Virgo galaxy cluster that is absorbing the collision of a smaller one.

    Data from NASA’s Chandra X-ray Observatory provides evidence for a supermassive black hole in the smaller galaxy.

    The smaller galaxy has likely acted as a black hole “delivery service” for NGC 4424.

    A cluster of stars remaining after the smaller galaxy has had most of its stars stripped away has been nicknamed “Nikhuli,” a name relating to the Tulini festival for the harvest..

    ______________________________________________________________

    Astronomers may have witnessed a galaxy’s black hole delivery system in action. A new study using data from NASA’s Chandra X-ray Observatory and Hubble Space Telescope outlines how a large black hole may have been delivered to the spiral galaxy NGC 4424 by another, smaller galaxy.

    NGC 4424 is located about 54 million light-years from Earth in the Virgo galaxy cluster.

    The main panel of this image, which has been previously released, shows a wide-field view of this galaxy in optical light from Hubble. The image is about 45,000 light-years wide. The center of this galaxy is expected to host a large black hole estimated to contain a mass between about 60,000 and 100,000 Suns. There are also likely to be millions of stellar-mass black holes, which contain between about 5 and 30 solar masses, spread throughout the galaxy.

    The inset features a close-up view of NGC 4424 that shows Chandra X-ray data (blue), plus infrared data from Hubble (red) that has had infrared light from a model of NGC 4424 subtracted from the image to show other faint features. This inset image is about 1,160 light-years across. The elongated red object is a cluster of stars that the authors of the new study have nicknamed “Nikhuli,” a name relating to the Tulini festive period of celebrating and wishing for a rich harvest. This name is taken from the Sumi language from the Indian state of Nagaland. The Chandra data shows a point source of X-rays.

    2
    Close-up view of NGC 4424 (Credit: A. Graham et al./X-ray: NASA/CXC/Swinburne Univ. of Technology/; Optical: NASA/ESA/STScI).

    The researchers determined Nikhuli is likely the center of a small galaxy that has had most of its stars stripped away as it collides with the larger galaxy NGC 4424. Nikhuli has also been stretched out by gravitational forces as it falls towards the center of NGC 4424, giving it an elongated shape. Currently, Nikhuli is about 1,300 light-years from the center of NGC 4424, or about 20 times closer than the Earth is to the Milky Way’s giant black hole.

    One possible explanation for the Chandra X-ray source in the inset is that matter from Nikhuli is falling rapidly into a stellar-mass black hole. However, because these smaller black holes are expected to be rare in a cluster the size of Nikhuli, the authors argue it is more likely from material falling slowly onto a more massive black hole weighing between about 40,000 and 150,000 Suns. This is similar to the expected size of the black hole in the center of NGC 4424. These results imply that Nikhuli is likely acting as a delivery system for NGC 4424’s supply of black holes, in this case bringing along a massive one. If the center of NGC 4424 contains a massive black hole, Nikhuli’s massive black hole should end up orbiting it. The distance separating the pair should then shrink until gravitational waves are produced and the two massive black holes merge with each other.

    A paper describing these results appeared in the December 2021 issue of The Astrophysical Journal [below]. The authors of the study are Alister Graham (Swinburne Astronomy Online, Australia), Roberto Soria (University of the Chinese Academy of Sciences in Beijing, China), Bogdan Ciambur (The Paris Observatory, France), Benjamin Davis (New York University in Abu Dhabi, United Arab Emirates), and Douglas Swartz (NASA’s Marshall Space Flight Center in Huntsville, Alabama).


    Quick Look: NASA Telescopes Capture Stellar Delivery Service for Black Hole.

    Science paper:
    The Astrophysical Journal

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.
    In 1976 the Chandra X-ray Observatory (called AXAF at the time) was proposed to National Aeronautics and Space Administration by Riccardo Giacconi and Harvey Tananbaum. Preliminary work began the following year at NASA’s Marshall Space Flight Center and the Harvard Smithsonian Center for Astrophysics. In the meantime, in 1978, NASA launched the first imaging X-ray telescope, Einstein (HEAO-2), into orbit. Work continued on the AXAF project throughout the 1980s and 1990s. In 1992, to reduce costs, the spacecraft was redesigned. Four of the twelve planned mirrors were eliminated, as were two of the six scientific instruments. AXAF’s planned orbit was changed to an elliptical one, reaching one third of the way to the Moon’s at its farthest point. This eliminated the possibility of improvement or repair by the space shuttle but put the observatory above the Earth’s radiation belts for most of its orbit. AXAF was assembled and tested by TRW (now Northrop Grumman Aerospace Systems) in Redondo Beach, California.

    AXAF was renamed Chandra as part of a contest held by NASA in 1998, which drew more than 6,000 submissions worldwide. The contest winners, Jatila van der Veen and Tyrel Johnson (then a high school teacher and high school student, respectively), suggested the name in honor of Nobel Prize–winning Indian-American astrophysicist Subrahmanyan Chandrasekhar. He is known for his work in determining the maximum mass of white dwarf stars, leading to greater understanding of high energy astronomical phenomena such as neutron stars and black holes. Fittingly, the name Chandra means “moon” in Sanskrit.

    Originally scheduled to be launched in December 1998, the spacecraft was delayed several months, eventually being launched on July 23, 1999, at 04:31 UTC by Space Shuttle Columbia during STS-93. Chandra was deployed from Columbia at 11:47 UTC. The Inertial Upper Stage’s first stage motor ignited at 12:48 UTC, and after burning for 125 seconds and separating, the second stage ignited at 12:51 UTC and burned for 117 seconds. At 22,753 kilograms (50,162 lb), it was the heaviest payload ever launched by the shuttle, a consequence of the two-stage Inertial Upper Stage booster rocket system needed to transport the spacecraft to its high orbit.

    Chandra has been returning data since the month after it launched. It is operated by the SAO at the Chandra X-ray Center in Cambridge, Massachusetts, with assistance from Massachusetts Institute of Technology and Northrop Grumman Space Technology. The ACIS CCDs suffered particle damage during early radiation belt passages. To prevent further damage, the instrument is now removed from the telescope’s focal plane during passages.

    Although Chandra was initially given an expected lifetime of 5 years, on September 4, 2001, NASA extended its lifetime to 10 years “based on the observatory’s outstanding results.” Physically Chandra could last much longer. A 2004 study performed at the Chandra X-ray Center indicated that the observatory could last at least 15 years.

    In July 2008, the International X-ray Observatory, a joint project between European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU), NASA and Japan Aerospace Exploration Agency (JAXA) (国立研究開発法人宇宙航空研究開発機構], was proposed as the next major X-ray observatory but was later cancelled. ESA later resurrected a downsized version of the project as the Advanced Telescope for High Energy Astrophysics (ATHENA), with a proposed launch in 2028.

    European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Athena spacecraft depiction

    On October 10, 2018, Chandra entered safe mode operations, due to a gyroscope glitch. NASA reported that all science instruments were safe. Within days, the 3-second error in data from one gyro was understood, and plans were made to return Chandra to full service. The gyroscope that experienced the glitch was placed in reserve and is otherwise healthy.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [NASA/ESA Hubble, NASA Chandra, NASA Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 12:30 pm on August 2, 2022 Permalink | Reply
    Tags: "X-ray Signals from White Dwarf Planet Destruction", , , , , , Space based X-ray Astronomy   

    From astrobites : “X-ray Signals from White Dwarf Planet Destruction” 

    Astrobites bloc

    From astrobites

    Aug 2, 2022
    David Trevascus

    Title: A white dwarf accreting planetary material determined from X-ray observations

    Authors: Tim Cunningham, Peter J. Wheatley, Pier-Emmanuel Tremblay, Boris T. Gänsicke, George W. King, Odette Toloza, and Dimitri Veas

    First Author’s Institution: Department of Physics, The University of Warwick, Coventry, CV4 7AL, UK

    Status: Published in Nature (closed access); Available on Arxiv

    A white dwarf is the final stage of life for a low mass star like our Sun.

    After our Sun burns away all the hydrogen and helium in its core, it leaves behind an inert ball of carbon and oxygen. We have observed thousands of white dwarfs through surveys of the night sky, but we know much less about what happens to the planets around these dead stars. Is there a chance that we might one day be able to see the remnants of an Earth-like planet orbiting a white dwarf?

    A phenomenon known as “metal pollution” hints at the existence of planets around white dwarf stars. White dwarfs are covered in a thin outer layer of leftover hydrogen and helium known as the photosphere. Any heavier elements (metals) present in the photosphere will relatively quickly sink out of this layer due to the strong gravitational forces of the white dwarf. Therefore it is surprising that, when we observe the chemical spectra of white dwarfs, we find that 25-50% of them have metals polluting their outer layers. The generally accepted explanation for this pollution is the accretion of planets (and other, smaller bodies) onto the surfaces of these white dwarfs. Today’s paper describes the first known detection of X-ray emissions caused by this type of accretion from the white dwarf G29-38.

    Why X-rays?

    Why would accreting material emit x-rays? Well, it’s all about what happens when the orbiting material hits the white dwarf. In the process of accreting onto the white dwarf, the orbiting material loses a lot of kinetic energy very quickly. It does this by heating up to high temperatures and producing high energy radiation (i.e. x-rays) that carries away the energy.

    We’ve detected x-ray emissions from accreting white dwarfs before, but previous detections have all been from binary star systems, where the accreting material used to belong to the other star. The key differences for this detection were that the photons were concentrated at lower energies and that the overall x-ray luminosity of the event was lower. This stems from the lower mass, and therefore lower accretion rates, of planetary material as opposed to stellar material.

    Calculating the Accretion Rate

    In order to determine the accretion rate of material onto the white dwarf, we first need to know the x-ray luminosity of the accretion event. This requires us to take the total sum (i.e. the integral) of x-ray flux over different photon energies.

    The x-ray flux from this event was measured by the ACIS-S detector on the Chandra X-ray Observatory.

    This detector is most sensitive to photon energies in the 1.0 – 6.5 keV range. A significant portion of the electrons detected were at lower energies (less than 0.5 keV) where the detector is less sensitive.

    The authors of this paper tackled this problem by simulating the x-ray flux created by this accretion event. Their model takes into account the effective temperature of the white dwarf’s photosphere, as well as the composition and temperature distribution of the accreting material. By fitting these models to the observed photon energy distribution the authors were able to determine the total x-ray flux and therefore the luminosity of the emission event.

    From the x-ray luminosity, the authors of this paper were able to determine the accretion rate of planetary material onto the white dwarf (since the two are directly proportional). They measured an accretion rate of 1.63109 grams per second. This is the first direct measurement of the accretion rate of planetary material onto a white dwarf from x-ray observations.

    Accretion Rate Comparison

    Previous measurements of the accretion rates of planetary material onto a white dwarf have been dependent on what is known as a “steady-state” model. This model assumes the abundances of metals in the photosphere remain roughly constant overtime, as they accrete onto the white dwarf and then diffuse into its core.

    The authors of this paper have taken this opportunity to compare their new independent measurement of the accretion rate to steady-state measurements. They find that the measured steady-state accretion rates are approximately an order of magnitude lower than their observations. However, they note that the steady-state accretion rates don’t account for additional mixing of stellar material between layers of the white dwarf found in 3D convection models (as opposed to 1D models) – a phenomenon known as convective overshoot. Accounting for convective overshoot results in a rough match between the two accretion rate measurements.

    2
    Figure 1: Comparison between measured accretion rates (including uncertainties) in relation to the white dwarf photosphere temperature. The open diamond and circular data points indicate the accretion rates as measured from the x-ray emission, using different compositions (bulk Earth vs photospheric) and different temperature distributions (isothermal vs cooling flow) of the accreting material in the x-ray flux modeling. The blue band indicates the 68% confidence interval on the x-ray accretion rate. The solid lines indicate the steady-state accretion rates with convective overshoot (green) and without (red). The solid blue and orange circles indicate previously measured accretion rates for G29-38. Figure 3 from the paper.

    Answering Questions About Metal Pollution

    This method of measuring the instantaneous accretion rate of planetary material onto polluted white dwarfs should help us answer a number of open questions about how white dwarf metal pollution occurs. We know from infrared observations that many polluted white dwarfs also host a dusty debris disc of planetary material (similar to the asteroid or Kuiper belts in our own solar system). We do not yet fully understand the mechanism through which this material is deposited onto the white dwarf’s surface. Neither do we understand the variability that we see in the infrared radiation emitted from these discs over time.

    Due to the uncertainties in estimating x-ray flux at lower wavelengths, the authors of this paper do admit that their measurement of the accretion rate is a lower limit for the true accretion rate of planetary material. However, the authors note that future x-ray telescopes, such as the Advanced Telescope for High-ENergy Astrophysics (ATHENA) will be able to better study x-ray emissions from white dwarf planetary systems.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    What do we do?

    Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
    Why read Astrobites?

    Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.

    Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

     
  • richardmitnick 7:22 am on August 1, 2022 Permalink | Reply
    Tags: "We found some strange radio sources in a distant galaxy cluster. They’re making us rethink what we thought we knew.", , “Fossil” radio sources, “Radio haloes”, “Radio relics”, , , , , , , Space based X-ray Astronomy,   

    From “The Conversation (AU)” : “We found some strange radio sources in a distant galaxy cluster. They’re making us rethink what we thought we knew.” 

    From “The Conversation (AU)”

    July 31, 2022

    Christopher Riseley
    Research Fellow
    Università di Bologna (IT)

    Tessa Vernstrom
    Senior research fellow
    The University of Western Australia (AU)

    1
    The colliding cluster Abell 3266 as seen across the electromagnetic spectrum, using data from ASKAP and the ATCA (red/orange/yellow colours), XMM-Newton (blue) and the Dark Energy Survey (background map). Christopher Riseley (Università di Bologna), Author provided.

    The universe is littered with galaxy clusters – huge structures piled up at the intersections of the cosmic web.

    A single cluster can span millions of light-years across and be made up of hundreds, or even thousands, of galaxies.

    However, these galaxies represent only a few percent of a cluster’s total mass. About 80% of it is Dark Matter, and the rest is a hot plasma “soup”: gas heated to above 10,000,000℃ and interwoven with weak magnetic fields.

    We and our international team of colleagues have identified a series of rarely observed radio objects – a radio relic, a radio halo and fossil radio emission – within a particularly dynamic galaxy cluster called Abell 3266. They defy existing theories about both the origins of such objects and their characteristics.

    Relics, haloes and fossils

    Galaxy clusters allow us to study a broad range of rich processes – including magnetism and plasma physics – in environments we can’t recreate in our labs.

    When clusters collide with each other, huge amounts of energy are put into the particles of the hot plasma, generating radio emission. And this emission comes in a variety of shapes and sizes.

    “Radio relics” are one example. They are arc-shaped and sit towards a cluster’s outskirts, powered by shockwaves travelling through the plasma, which cause a jump in density or pressure, and energise the particles. An example of a shockwave on Earth is the sonic boom that happens when an aircraft breaks the sound barrier.

    “Radio haloes” are irregular sources that lie towards the cluster’s centre. They’re powered by turbulence in the hot plasma, which gives energy to the particles. We know both haloes and relics are generated by collisions between galaxy clusters – yet many of their gritty details remain elusive.

    Then there are “fossil” radio sources. These are the radio leftovers from the death of a supermassive black hole at the centre of a radio galaxy.

    When they’re in action, black holes shoot huge jets of plasma far out beyond the galaxy itself. As they run out of fuel and shut off, the jets begin to dissipate. The remnants are what we detect as radio fossils.

    Abell 3266

    Our new paper, published in the MNRAS [below], presents a highly detailed study of a galaxy cluster called Abell 3266.

    This is a particularly dynamic and messy colliding system around 800 million light-years away. It has all the hallmarks of a system that should be host to relics and haloes – yet none had been detected until recently.

    Following up on work conducted using the Murchison Widefield Array earlier this year, we used new data from the ASKAP radio telescope and the Australia Telescope Compact Array (ATCA) to see Abell 3266 in more detail.

    Our data paint a complex picture. You can see this in the lead image: yellow colours show features where energy input is active. The blue haze represents the hot plasma, captured at X-ray wavelengths.

    Redder colours show features that are only visible at lower frequencies. This means these objects are older and have less energy. Either they have lost a lot of energy over time, or they never had much to begin with.

    The radio relic is visible in red near the bottom of the image. And our data here reveal particular features that have never been seen before in a relic.

    2
    The ‘wrong-way’ relic in Abell 3266 is shown here with yellow/orange/red colours representing the radio brightness. Credit: Christopher Riseley, using data from ASKAP, ATCA, XMM-Newton and the Dark Energy Survey.

    Its concave shape is also unusual, earning it the catchy moniker of a “wrong-way” relic. Overall, our data break our understanding of how relics are generated, and we’re still working to decipher the complex physics behind these radio objects.

    Ancient remnants of a supermassive black hole

    The radio fossil, seen towards the upper right of the lead image (and also below), is very faint and red, indicating it is ancient. We believe this radio emission originally came from the galaxy at the lower left, with a central black hole that has long been switched off.

    3
    The radio fossil in Abell 3266 is shown here with red colours and contours depicting the radio brightness measured by ASKAP, and blue colours showing the hot plasma. The cyan arrow points to the galaxy we think once powered the fossil. Credit: Christopher Riseley, using data from ASKAP, XMM-Newton and the Dark Energy Survey.

    Our best physical models simply can’t fit the data. This reveals gaps in our understanding of how these sources evolve – gaps that we’re working to fill.

    Finally, using a clever algorithm, we de-focused the lead image to look for very faint emission that’s invisible at high resolution, unearthing the first detection of a radio halo in Abell 3266 (see below).

    4
    The radio halo in Abell 3266 is shown here with red colours and contours depicting the radio brightness measured by ASKAP, and blue colours showing the hot plasma. The dashed cyan curve marks the outer limits of the radio halo. Credit: Christopher Riseley, using data from ASKAP, XMM-Newton and the Dark Energy Survey.

    Towards the future

    This is the beginning of the road towards understanding Abell 3266. We have uncovered a wealth of new and detailed information, but our study has raised yet more questions.

    The telescopes we used are laying the foundations for revolutionary science from the Square Kilometre Array project.

    ______________________________________________
    The Square Kilometre Array (SKA)– a next-generation telescope due to be completed by the end of the decade – will likely be able to make images of the earliest light in the Universe, but for current telescopes the challenge is to detect the cosmological signal of the stars through the thick hydrogen clouds.


    ______________________________________________

    Studies like ours allow astronomers to figure out what we don’t know – but you can be sure we’re going to find out.

    ___________________________________________________________________
    The Dark Energy Survey

    Dark Energy Camera [DECam] built at The DOE’s Fermi National Accelerator Laboratory.

    NOIRLab National Optical Astronomy Observatory Cerro Tololo Inter-American Observatory(CL) Victor M Blanco 4m Telescope which houses the Dark-Energy-Camera – DECam at Cerro Tololo, Chile at an altitude of 7200 feet.

    NOIRLabNSF NOIRLab NOAO Cerro Tololo Inter-American Observatory(CL) approximately 80 km to the East of La Serena, Chile, at an altitude of 2200 meters.

    Timeline of the Inflationary Universe WMAP.

    The Dark Energy Survey is an international, collaborative effort to map hundreds of millions of galaxies, detect thousands of supernovae, and find patterns of cosmic structure that will reveal the nature of the mysterious dark energy that is accelerating the expansion of our Universe. The Dark Energy Survey began searching the Southern skies on August 31, 2013.

    According to Albert Einstein’s Theory of General Relativity, gravity should lead to a slowing of the cosmic expansion. Yet, in 1998, two teams of astronomers studying distant supernovae made the remarkable discovery that the expansion of the universe is speeding up.
    Saul Perlmutter (center) [The Supernova Cosmology Project] shared the 2006 Shaw Prize in Astronomy, the 2011 Nobel Prize in Physics, and the 2015 Breakthrough Prize in Fundamental Physics with Brian P. Schmidt (right) and Adam Riess (left) [The High-z Supernova Search Team] for providing evidence that the expansion of the universe is accelerating.

    To explain cosmic acceleration, cosmologists are faced with two possibilities: either 70% of the universe exists in an exotic form, now called Dark Energy, that exhibits a gravitational force opposite to the attractive gravity of ordinary matter, or General Relativity must be replaced by a new theory of gravity on cosmic scales.

    The Dark Energy Survey is designed to probe the origin of the accelerating universe and help uncover the nature of Dark Energy by measuring the 14-billion-year history of cosmic expansion with high precision. More than 400 scientists from over 25 institutions in the United States, Spain, the United Kingdom, Brazil, Germany, Switzerland, and Australia are working on the project. The collaboration built and is using an extremely sensitive 570-Megapixel digital camera, DECam, mounted on the Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory, high in the Chilean Andes, to carry out the project.

    Over six years (2013-2019), the Dark Energy Survey collaboration used 758 nights of observation to carry out a deep, wide-area survey to record information from 300 million galaxies that are billions of light-years from Earth. The survey imaged 5000 square degrees of the southern sky in five optical filters to obtain detailed information about each galaxy. A fraction of the survey time is used to observe smaller patches of sky roughly once a week to discover and study thousands of supernovae and other astrophysical transients.
    ___________________________________________________________________

    Dark Matter Background
    Fritz Zwicky discovered Dark Matter in the 1930s when observing the movement of the Coma Cluster., Vera Rubin a Woman in STEM, denied the Nobel, some 30 years later, did most of the work on Dark Matter.

    Fritz Zwicky.
    Coma cluster via NASA/ESA Hubble, the original example of Dark Matter discovered during observations by Fritz Zwicky and confirmed 30 years later by Vera Rubin.
    In modern times, it was astronomer Fritz Zwicky, in the 1930s, who made the first observations of what we now call dark matter. His 1933 observations of the Coma Cluster of galaxies seemed to indicated it has a mass 500 times more than that previously calculated by Edwin Hubble. Furthermore, this extra mass seemed to be completely invisible. Although Zwicky’s observations were initially met with much skepticism, they were later confirmed by other groups of astronomers.

    Thirty years later, astronomer Vera Rubin provided a huge piece of evidence for the existence of dark matter. She discovered that the centers of galaxies rotate at the same speed as their extremities, whereas, of course, they should rotate faster. Think of a vinyl LP on a record deck: its center rotates faster than its edge. That’s what logic dictates we should see in galaxies too. But we do not. The only way to explain this is if the whole galaxy is only the center of some much larger structure, as if it is only the label on the LP so to speak, causing the galaxy to have a consistent rotation speed from center to edge.

    Vera Rubin, following Zwicky, postulated that the missing structure in galaxies is dark matter. Her ideas were met with much resistance from the astronomical community, but her observations have been confirmed and are seen today as pivotal proof of the existence of dark matter.
    Astronomer Vera Rubin at the Lowell Observatory in 1965, worked on Dark Matter (The Carnegie Institution for Science).

    Vera Rubin, with Department of Terrestrial Magnetism (DTM) image tube spectrograph attached to the Kitt Peak 84-inch telescope, 1970.

    Vera Rubin measuring spectra, worked on Dark Matter(Emilio Segre Visual Archives AIP SPL).
    Dark Matter Research

    Super Cryogenic Dark Matter Search from DOE’s SLAC National Accelerator Laboratory at Stanford University at SNOLAB (Vale Inco Mine, Sudbury, Canada).

    LBNL LZ Dark Matter Experiment xenon detector at Sanford Underground Research Facility Credit: Matt Kapust.

    Lamda Cold Dark Matter Accerated Expansion of The universe http scinotions.com the-cosmic-inflation-suggests-the-existence-of-parallel-universes. Credit: Alex Mittelmann.

    DAMA at Gran Sasso uses sodium iodide housed in copper to hunt for dark matter LNGS-INFN.

    Yale HAYSTAC axion dark matter experiment at Yale’s Wright Lab.

    DEAP Dark Matter detector, The DEAP-3600, suspended in the SNOLAB (CA) deep in Sudbury’s Creighton Mine.

    The LBNL LZ Dark Matter Experiment Dark Matter project at SURF, Lead, SD.

    DAMA-LIBRA Dark Matter experiment at the Italian National Institute for Nuclear Physics’ (INFN’s) Gran Sasso National Laboratories (LNGS) located in the Abruzzo region of central Italy.

    DARWIN Dark Matter experiment. A design study for a next-generation, multi-ton dark matter detector in Europe at The University of Zurich [Universität Zürich](CH).

    PandaX II Dark Matter experiment at Jin-ping Underground Laboratory (CJPL) in Sichuan, China.

    Inside the Axion Dark Matter eXperiment U Washington (US) Credit : Mark Stone U. of Washington. Axion Dark Matter Experiment.

    3
    The University of Western Australia ORGAN Experiment’s main detector. A small copper cylinder called a “resonant cavity” traps photons generated during dark matter conversion. The cylinder is bolted to a “dilution refrigerator” which cools the experiment to very low temperatures.
    __________________________________

    Science paper:
    MNRAS

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Conversation (AU) launched as a pilot project in October 2014. It is an independent source of news and views from the academic and research community, delivered direct to the public.
    Our team of professional editors work with university and research institute experts to unlock their knowledge for use by the wider public.

    Access to independent, high quality, authenticated, explanatory journalism underpins a functioning democracy. Our aim is to promote better understanding of current affairs and complex issues. And hopefully allow for a better quality of public discourse and conversation.

     
  • richardmitnick 9:05 pm on July 25, 2022 Permalink | Reply
    Tags: "Astronomers examine the behavior of quasi-periodic eruptions in the galaxy GSN 069", , , Space based X-ray Astronomy, The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) XMM Newton   

    From The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) XMM-Newton And The National Aeronautics and Space Administration Chandra X-ray telescope Via “phys.org” : “Astronomers examine the behavior of quasi-periodic eruptions in the galaxy GSN 069” 

    ESA Space For Europe Banner

    European Space Agency – United Space in Europe (EU)

    From The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) XMM Newton

    and

    NASA Chandra Banner

    NASA Chandra

    Via

    “phys.org”

    1
    ESA XMM-Newton (EPIC-pn) and NASA Chandra (ACIS-S) background-subtracted light curves from all observations with QPEs of GSN 069 in a common 0.4-1 keV band. Credit: Miniutti et al., 2022.

    Using ESA’s XMM-Newton satellite [above] and NASA’s Chandra spacecraft [above], an international team of astronomers has investigated a peculiar behavior of quasi-periodic eruptions (QPEs) in an active galaxy known as GSN 069. Results of the study, published July 15 for Astronomy & Astrophysics [below] , shed more light on the nature of the QPE phenomenon.

    X-ray quasi-periodic eruptions are a recently discovered phenomenon associated with supermassive black holes at the centers of galaxies. They are extreme high-amplitude bursts of X-ray radiation recurring every few hours and originating near the central supermassive black holes (SMBHs) in galactic nuclei.

    Located some 250 million light years away in the constellation of Sculptor, GSN 069 is an active galaxy first detected in 2010 with XMM-Newton. The central black hole of this galaxy has a mass of about 400,000 solar masses.

    XMM-Newton observations of GSN 069, conducted in December 2018, revealed that -ts X-ray light curve showcases high-amplitude, short-lived X-ray flares recurring every nine hours. These QPEs were found to be producing an increase of the X-ray count rate by up to two orders of magnitude in the hardest energy bands.

    Now, in order to get more insights into the nature of the bursts of GSN 069, a group of astronomers led by Giovanni Miniutti of Spanish Astrobiology Center in Madrid, Spain, analyzed data from XMM-Newton and Chandra collected between 2010 and 2021.

    “In this work, we present results obtained from 12 pointed X-ray observations of GSN 069 (11 by XMM-Newton and 1 by Chandra) and we discuss the short- and long-timescale properties of both QPEs and continuum (quiescent) emission over the past 11 years,” the researchers wrote.

    The study confirmed that QPEs in GSN 069 are a transient phenomenon. First QPE in this galaxy was identified on December 24, 2018 and the last one in January 2020. These eruptions had an overall time between 1 and 5.5 years.

    It turned out that QPEs measured in high energy bands are stronger, peak earlier and have shorter duration than when measured at softer energies. It was found that the quiescent level variability in observations with QPEs exhibits a quasi-periodic oscillation (QPO) at the average observation-dependent recurrence time.

    The research also found that, starting from the last observation during which QPEs are detected, the X-ray emission of GSN 069 re-brightened significantly, reaching a second peak about 10−11 years after the first X-ray detection.

    The astronomers concluded that the QPE properties of GSN 069, together with the long-term X-ray evolution, may be explained by a scenario in which a binary consisting of two white dwarfs (WDs) is captured by the SMBH whose tidal forces eject one component, while the other forms a binary on a highly eccentric orbit with the SMBH.

    “The surviving WD is still on a highly eccentric orbit that is shrinking due to energy and angular momentum losses and, after a few years from the initial TDE-like [tidal disruption event-like] event, overfills its own Roche lobe at each pericenter passage. The consequent tidal stripping events produce the observed QPEs (one per each episode of mass transfer at pericenter),” the researchers explained.

    Science paper:
    Astronomy & Astrophysics

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings


    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.
    In 1976 the Chandra X-ray Observatory (called AXAF at the time) was proposed to National Aeronautics and Space Administration by Riccardo Giacconi and Harvey Tananbaum. Preliminary work began the following year at NASA’s Marshall Space Flight Center and the Harvard Smithsonian Center for Astrophysics. In the meantime, in 1978, NASA launched the first imaging X-ray telescope, Einstein (HEAO-2), into orbit. Work continued on the AXAF project throughout the 1980s and 1990s. In 1992, to reduce costs, the spacecraft was redesigned. Four of the twelve planned mirrors were eliminated, as were two of the six scientific instruments. AXAF’s planned orbit was changed to an elliptical one, reaching one third of the way to the Moon’s at its farthest point. This eliminated the possibility of improvement or repair by the space shuttle but put the observatory above the Earth’s radiation belts for most of its orbit. AXAF was assembled and tested by TRW (now Northrop Grumman Aerospace Systems) in Redondo Beach, California.

    AXAF was renamed Chandra as part of a contest held by NASA in 1998, which drew more than 6,000 submissions worldwide. The contest winners, Jatila van der Veen and Tyrel Johnson (then a high school teacher and high school student, respectively), suggested the name in honor of Nobel Prize–winning Indian-American astrophysicist Subrahmanyan Chandrasekhar. He is known for his work in determining the maximum mass of white dwarf stars, leading to greater understanding of high energy astronomical phenomena such as neutron stars and black holes. Fittingly, the name Chandra means “moon” in Sanskrit.

    Originally scheduled to be launched in December 1998, the spacecraft was delayed several months, eventually being launched on July 23, 1999, at 04:31 UTC by Space Shuttle Columbia during STS-93. Chandra was deployed from Columbia at 11:47 UTC. The Inertial Upper Stage’s first stage motor ignited at 12:48 UTC, and after burning for 125 seconds and separating, the second stage ignited at 12:51 UTC and burned for 117 seconds. At 22,753 kilograms (50,162 lb), it was the heaviest payload ever launched by the shuttle, a consequence of the two-stage Inertial Upper Stage booster rocket system needed to transport the spacecraft to its high orbit.

    Chandra has been returning data since the month after it launched. It is operated by the SAO at the Chandra X-ray Center in Cambridge, Massachusetts, with assistance from Massachusetts Institute of Technology and Northrop Grumman Space Technology. The ACIS CCDs suffered particle damage during early radiation belt passages. To prevent further damage, the instrument is now removed from the telescope’s focal plane during passages.

    Although Chandra was initially given an expected lifetime of 5 years, on September 4, 2001, NASA extended its lifetime to 10 years “based on the observatory’s outstanding results.” Physically Chandra could last much longer. A 2004 study performed at the Chandra X-ray Center indicated that the observatory could last at least 15 years.

    In July 2008, the International X-ray Observatory, a joint project between European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU), NASA and Japan Aerospace Exploration Agency (JAXA) (国立研究開発法人宇宙航空研究開発機構], was proposed as the next major X-ray observatory but was later cancelled. ESA later resurrected a downsized version of the project as the Advanced Telescope for High Energy Astrophysics (ATHENA), with a proposed launch in 2028.

    European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Athena spacecraft depiction

    On October 10, 2018, Chandra entered safe mode operations, due to a gyroscope glitch. NASA reported that all science instruments were safe. Within days, the 3-second error in data from one gyro was understood, and plans were made to return Chandra to full service. The gyroscope that experienced the glitch was placed in reserve and is otherwise healthy.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [NASA/ESA Hubble, NASA Chandra, NASA Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from [JAXA]Greenhouse Gases Observing Satellite.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC (NL) in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the
    European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Estec, situated in Noordwijk, South Holland, in the western Netherlands.

    ESA’s space flight programme includes human spaceflight (mainly through participation in the International Space Station program); the launch and operation of uncrewed exploration missions to other planets and the Moon; Earth observation, science and telecommunication; designing launch vehicles; and maintaining a major spaceport, the The Guiana Space Centre [Centre Spatial Guyanais; CSG also called Europe’s Spaceport) at Kourou, French Guiana. The main European launch vehicle Ariane 5 is operated through Arianespace with ESA sharing in the costs of launching and further developing this launch vehicle. The agency is also working with NASA to manufacture the Orion Spacecraft service module that will fly on the Space Launch System.

    The agency’s facilities are distributed among the following centres:

    ESA European Space Research and Technology Centre (ESTEC) (NL) in Noordwijk, Netherlands;
    ESA Centre for Earth Observation [ESRIN] (IT) in Frascati, Italy;
    ESA Mission Control ESA European Space Operations Center [ESOC](DE) is in Darmstadt, Germany;
    ESA -European Astronaut Centre [EAC] trains astronauts for future missions is situated in Cologne, Germany;
    European Centre for Space Applications and Telecommunications (ECSAT) (UK), a research institute created in 2009, is located in Harwell, England;
    ESA – European Space Astronomy Centre [ESAC] (ES) is located in Villanueva de la Cañada, Madrid, Spain.
    European Space Agency Science Programme is a long-term programme of space science and space exploration missions.

    Foundation

    After World War II, many European scientists left Western Europe in order to work with the United States. Although the 1950s boom made it possible for Western European countries to invest in research and specifically in space-related activities, Western European scientists realized solely national projects would not be able to compete with the two main superpowers. In 1958, only months after the Sputnik shock, Edoardo Amaldi (Italy) and Pierre Auger (France), two prominent members of the Western European scientific community, met to discuss the foundation of a common Western European space agency. The meeting was attended by scientific representatives from eight countries, including Harrie Massey (United Kingdom).

    The Western European nations decided to have two agencies: one concerned with developing a launch system, ELDO (European Launch Development Organization), and the other the precursor of the European Space Agency, ESRO (European Space Research Organisation). The latter was established on 20 March 1964 by an agreement signed on 14 June 1962. From 1968 to 1972, ESRO launched seven research satellites.

    ESA in its current form was founded with the ESA Convention in 1975, when ESRO was merged with ELDO. ESA had ten founding member states: Belgium, Denmark, France, West Germany, Italy, the Netherlands, Spain, Sweden, Switzerland, and the United Kingdom. These signed the ESA Convention in 1975 and deposited the instruments of ratification by 1980, when the convention came into force. During this interval the agency functioned in a de facto fashion. ESA launched its first major scientific mission in 1975, Cos-B, a space probe monitoring gamma-ray emissions in the universe, which was first worked on by ESRO.

    ESA50 Logo large

    Later activities

    ESA collaborated with National Aeronautics Space Agency on the International Ultraviolet Explorer (IUE), the world’s first high-orbit telescope, which was launched in 1978 and operated successfully for 18 years.

    ESA Infrared Space Observatory.

    European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/National Aeronautics and Space Administration Solar Orbiter annotated.

    A number of successful Earth-orbit projects followed, and in 1986 ESA began Giotto, its first deep-space mission, to study the comets Halley and Grigg–Skjellerup. Hipparcos, a star-mapping mission, was launched in 1989 and in the 1990s SOHO, Ulysses and the Hubble Space Telescope were all jointly carried out with NASA. Later scientific missions in cooperation with NASA include the Cassini–Huygens space probe, to which ESA contributed by building the Titan landing module Huygens.

    ESA/Huygens Probe from Cassini landed on Titan.

    As the successor of ELDO, ESA has also constructed rockets for scientific and commercial payloads. Ariane 1, launched in 1979, carried mostly commercial payloads into orbit from 1984 onward. The next two versions of the Ariane rocket were intermediate stages in the development of a more advanced launch system, the Ariane 4, which operated between 1988 and 2003 and established ESA as the world leader in commercial space launches in the 1990s. Although the succeeding Ariane 5 experienced a failure on its first flight, it has since firmly established itself within the heavily competitive commercial space launch market with 82 successful launches until 2018. The successor launch vehicle of Ariane 5, the Ariane 6, is under development and is envisioned to enter service in the 2020s.

    The beginning of the new millennium saw ESA become, along with agencies like National Aeronautics Space Agency, Japan Aerospace Exploration Agency, Indian Space Research Organisation, the Canadian Space Agency(CA) and Roscosmos(RU), one of the major participants in scientific space research. Although ESA had relied on co-operation with NASA in previous decades, especially the 1990s, changed circumstances (such as tough legal restrictions on information sharing by the United States military) led to decisions to rely more on itself and on co-operation with Russia. A 2011 press issue thus stated:

    “Russia is ESA’s first partner in its efforts to ensure long-term access to space. There is a framework agreement between ESA and the government of the Russian Federation on cooperation and partnership in the exploration and use of outer space for peaceful purposes, and cooperation is already underway in two different areas of launcher activity that will bring benefits to both partners.”

    Notable ESA programmes include SMART-1, a probe testing cutting-edge space propulsion technology, the Mars Express and Venus Express missions, as well as the development of the Ariane 5 rocket and its role in the ISS partnership. ESA maintains its scientific and research projects mainly for astronomy-space missions such as Corot, launched on 27 December 2006, a milestone in the search for exoplanets.

    On 21 January 2019, ArianeGroup and Arianespace announced a one-year contract with ESA to study and prepare for a mission to mine the Moon for lunar regolith.

    Mission

    The treaty establishing the European Space Agency reads:

    The purpose of the Agency shall be to provide for and to promote, for exclusively peaceful purposes, cooperation among European States in space research and technology and their space applications, with a view to their being used for scientific purposes and for operational space applications systems…

    ESA is responsible for setting a unified space and related industrial policy, recommending space objectives to the member states, and integrating national programs like satellite development, into the European program as much as possible.

    Jean-Jacques Dordain – ESA’s Director General (2003–2015) – outlined the European Space Agency’s mission in a 2003 interview:

    “Today space activities have pursued the benefit of citizens, and citizens are asking for a better quality of life on Earth. They want greater security and economic wealth, but they also want to pursue their dreams, to increase their knowledge, and they want younger people to be attracted to the pursuit of science and technology. I think that space can do all of this: it can produce a higher quality of life, better security, more economic wealth, and also fulfill our citizens’ dreams and thirst for knowledge, and attract the young generation. This is the reason space exploration is an integral part of overall space activities. It has always been so, and it will be even more important in the future.”

    Activities

    According to the ESA website, the activities are:

    Observing the Earth
    Human Spaceflight
    Launchers
    Navigation
    Space Science
    Space Engineering & Technology
    Operations
    Telecommunications & Integrated Applications
    Preparing for the Future
    Space for Climate

    Programmes

    Copernicus Programme
    Cosmic Vision
    ExoMars
    FAST20XX
    Galileo
    Horizon 2000
    Living Planet Programme
    Mandatory

    Every member country must contribute to these programmes:

    Technology Development Element Programme
    Science Core Technology Programme
    General Study Programme
    European Component Initiative

    Optional

    Depending on their individual choices the countries can contribute to the following programmes, listed according to:

    Launchers
    Earth Observation
    Human Spaceflight and Exploration
    Telecommunications
    Navigation
    Space Situational Awareness
    Technology

    ESA_LAB@

    ESA has formed partnerships with universities. ESA_LAB@ refers to research laboratories at universities. Currently there are ESA_LAB@

    Technische Universität Darmstadt (DE)
    École des hautes études commerciales de Paris (HEC Paris) (FR)
    Université de recherche Paris Sciences et Lettres (FR)
    The University of Central Lancashire (UK)

    Membership and contribution to ESA

    By 2015, ESA was an intergovernmental organization of 22 member states. Member states participate to varying degrees in the mandatory (25% of total expenditures in 2008) and optional space programmes (75% of total expenditures in 2008). The 2008 budget amounted to €3.0 billion whilst the 2009 budget amounted to €3.6 billion. The total budget amounted to about €3.7 billion in 2010, €3.99 billion in 2011, €4.02 billion in 2012, €4.28 billion in 2013, €4.10 billion in 2014 and €4.33 billion in 2015. English is the main language within ESA. Additionally, official documents are also provided in German and documents regarding the Spacelab are also provided in Italian. If found appropriate, the agency may conduct its correspondence in any language of a member state.

    Non-full member states
    Slovenia
    Since 2016, Slovenia has been an associated member of the ESA.

    Latvia
    Latvia became the second current associated member on 30 June 2020, when the Association Agreement was signed by ESA Director Jan Wörner and the Minister of Education and Science of Latvia, Ilga Šuplinska in Riga. The Saeima ratified it on July 27. Previously associated members were Austria, Norway and Finland, all of which later joined ESA as full members.

    Canada
    Since 1 January 1979, Canada has had the special status of a Cooperating State within ESA. By virtue of this accord, The Canadian Space Agency [Agence spatiale canadienne, ASC] (CA) takes part in ESA’s deliberative bodies and decision-making and also in ESA’s programmes and activities. Canadian firms can bid for and receive contracts to work on programmes. The accord has a provision ensuring a fair industrial return to Canada. The most recent Cooperation Agreement was signed on 15 December 2010 with a term extending to 2020. For 2014, Canada’s annual assessed contribution to the ESA general budget was €6,059,449 (CAD$8,559,050). For 2017, Canada has increased its annual contribution to €21,600,000 (CAD$30,000,000).

    Enlargement

    After the decision of the ESA Council of 21/22 March 2001, the procedure for accession of the European states was detailed as described the document titled The Plan for European Co-operating States (PECS). Nations that want to become a full member of ESA do so in 3 stages. First a Cooperation Agreement is signed between the country and ESA. In this stage, the country has very limited financial responsibilities. If a country wants to co-operate more fully with ESA, it signs a European Cooperating State (ECS) Agreement. The ECS Agreement makes companies based in the country eligible for participation in ESA procurements. The country can also participate in all ESA programmes, except for the Basic Technology Research Programme. While the financial contribution of the country concerned increases, it is still much lower than that of a full member state. The agreement is normally followed by a Plan For European Cooperating State (or PECS Charter). This is a 5-year programme of basic research and development activities aimed at improving the nation’s space industry capacity. At the end of the 5-year period, the country can either begin negotiations to become a full member state or an associated state or sign a new PECS Charter.

    During the Ministerial Meeting in December 2014, ESA ministers approved a resolution calling for discussions to begin with Israel, Australia and South Africa on future association agreements. The ministers noted that “concrete cooperation is at an advanced stage” with these nations and that “prospects for mutual benefits are existing”.

    A separate space exploration strategy resolution calls for further co-operation with the United States, Russia and China on “LEO” exploration, including a continuation of ISS cooperation and the development of a robust plan for the coordinated use of space transportation vehicles and systems for exploration purposes, participation in robotic missions for the exploration of the Moon, the robotic exploration of Mars, leading to a broad Mars Sample Return mission in which Europe should be involved as a full partner, and human missions beyond LEO in the longer term.”

    Relationship with the European Union

    The political perspective of the European Union (EU) was to make ESA an agency of the EU by 2014, although this date was not met. The EU member states provide most of ESA’s funding, and they are all either full ESA members or observers.

    History

    At the time ESA was formed, its main goals did not encompass human space flight; rather it considered itself to be primarily a scientific research organisation for uncrewed space exploration in contrast to its American and Soviet counterparts. It is therefore not surprising that the first non-Soviet European in space was not an ESA astronaut on a European space craft; it was Czechoslovak Vladimír Remek who in 1978 became the first non-Soviet or American in space (the first man in space being Yuri Gagarin of the Soviet Union) – on a Soviet Soyuz spacecraft, followed by the Pole Mirosław Hermaszewski and East German Sigmund Jähn in the same year. This Soviet co-operation programme, known as Intercosmos, primarily involved the participation of Eastern bloc countries. In 1982, however, Jean-Loup Chrétien became the first non-Communist Bloc astronaut on a flight to the Soviet Salyut 7 space station.

    Because Chrétien did not officially fly into space as an ESA astronaut, but rather as a member of the French CNES astronaut corps, the German Ulf Merbold is considered the first ESA astronaut to fly into space. He participated in the STS-9 Space Shuttle mission that included the first use of the European-built Spacelab in 1983. STS-9 marked the beginning of an extensive ESA/NASA joint partnership that included dozens of space flights of ESA astronauts in the following years. Some of these missions with Spacelab were fully funded and organizationally and scientifically controlled by ESA (such as two missions by Germany and one by Japan) with European astronauts as full crew members rather than guests on board. Beside paying for Spacelab flights and seats on the shuttles, ESA continued its human space flight co-operation with the Soviet Union and later Russia, including numerous visits to Mir.

    During the latter half of the 1980s, European human space flights changed from being the exception to routine and therefore, in 1990, the European Astronaut Centre in Cologne, Germany was established. It selects and trains prospective astronauts and is responsible for the co-ordination with international partners, especially with regard to the International Space Station. As of 2006, the ESA astronaut corps officially included twelve members, including nationals from most large European countries except the United Kingdom.

    In the summer of 2008, ESA started to recruit new astronauts so that final selection would be due in spring 2009. Almost 10,000 people registered as astronaut candidates before registration ended in June 2008. 8,413 fulfilled the initial application criteria. Of the applicants, 918 were chosen to take part in the first stage of psychological testing, which narrowed down the field to 192. After two-stage psychological tests and medical evaluation in early 2009, as well as formal interviews, six new members of the European Astronaut Corps were selected – five men and one woman.

    Cooperation with other countries and organizations

    ESA has signed co-operation agreements with the following states that currently neither plan to integrate as tightly with ESA institutions as Canada, nor envision future membership of ESA: Argentina, Brazil, China, India (for the Chandrayan mission), Russia and Turkey.

    Additionally, ESA has joint projects with the European Union, NASA of the United States and is participating in the International Space Station together with the United States (NASA), Russia and Japan (JAXA).

    European Union
    ESA and EU member states
    ESA-only members
    EU-only members

    ESA is not an agency or body of the European Union (EU), and has non-EU countries (Norway, Switzerland, and the United Kingdom) as members. There are however ties between the two, with various agreements in place and being worked on, to define the legal status of ESA with regard to the EU.

    There are common goals between ESA and the EU. ESA has an EU liaison office in Brussels. On certain projects, the EU and ESA co-operate, such as the upcoming Galileo satellite navigation system. Space policy has since December 2009 been an area for voting in the European Council. Under the European Space Policy of 2007, the EU, ESA and its Member States committed themselves to increasing co-ordination of their activities and programmes and to organising their respective roles relating to space.

    The Lisbon Treaty of 2009 reinforces the case for space in Europe and strengthens the role of ESA as an R&D space agency. Article 189 of the Treaty gives the EU a mandate to elaborate a European space policy and take related measures, and provides that the EU should establish appropriate relations with ESA.

    Former Italian astronaut Umberto Guidoni, during his tenure as a Member of the European Parliament from 2004 to 2009, stressed the importance of the European Union as a driving force for space exploration, “…since other players are coming up such as India and China it is becoming ever more important that Europeans can have an independent access to space. We have to invest more into space research and technology in order to have an industry capable of competing with other international players.”

    The first EU-ESA International Conference on Human Space Exploration took place in Prague on 22 and 23 October 2009. A road map which would lead to a common vision and strategic planning in the area of space exploration was discussed. Ministers from all 29 EU and ESA members as well as members of parliament were in attendance.

    National space organisations of member states:

    The Centre National d’Études Spatiales(FR) (CNES) (National Centre for Space Study) is the French government space agency (administratively, a “public establishment of industrial and commercial character”). Its headquarters are in central Paris. CNES is the main participant on the Ariane project. Indeed, CNES designed and tested all Ariane family rockets (mainly from its centre in Évry near Paris)
    The UK Space Agency is a partnership of the UK government departments which are active in space. Through the UK Space Agency, the partners provide delegates to represent the UK on the various ESA governing bodies. Each partner funds its own programme.
    The Italian Space Agency A.S.I. – Agenzia Spaziale Italiana was founded in 1988 to promote, co-ordinate and conduct space activities in Italy. Operating under the Ministry of the Universities and of Scientific and Technological Research, the agency cooperates with numerous entities active in space technology and with the president of the Council of Ministers. Internationally, the ASI provides Italy’s delegation to the Council of the European Space Agency and to its subordinate bodies.
    The German Aerospace Center (DLR)[Deutsches Zentrum für Luft- und Raumfahrt e. V.] is the national research centre for aviation and space flight of the Federal Republic of Germany and of other member states in the Helmholtz Association. Its extensive research and development projects are included in national and international cooperative programmes. In addition to its research projects, the centre is the assigned space agency of Germany bestowing headquarters of German space flight activities and its associates.
    The Instituto Nacional de Técnica Aeroespacial (INTA)(ES) (National Institute for Aerospace Technique) is a Public Research Organization specialised in aerospace research and technology development in Spain. Among other functions, it serves as a platform for space research and acts as a significant testing facility for the aeronautic and space sector in the country.

    National Aeronautics Space Agency

    ESA has a long history of collaboration with NASA. Since ESA’s astronaut corps was formed, the Space Shuttle has been the primary launch vehicle used by ESA’s astronauts to get into space through partnership programmes with NASA. In the 1980s and 1990s, the Spacelab programme was an ESA-NASA joint research programme that had ESA develop and manufacture orbital labs for the Space Shuttle for several flights on which ESA participate with astronauts in experiments.

    In robotic science mission and exploration missions, NASA has been ESA’s main partner. Cassini–Huygens was a joint NASA-ESA mission, along with the Infrared Space Observatory, INTEGRAL, SOHO, and others.

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.

    European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Integral spacecraft

    European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation] (EU)/National Aeronautics and Space AdministrationSOHO satellite. Launched in 1995.

    Also, the Hubble Space Telescope is a joint project of NASA and ESA.

    National Aeronautics and Space Administration/European Space Agency[La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) Hubble Space Telescope

    ESA-NASA joint projects include the James Webb Space Telescope and the proposed Laser Interferometer Space Antenna.

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation]Canadian Space Agency [Agence Spatiale Canadienne](CA) James Webb Space Telescope annotated. Scheduled for launch in December 2021.

    Gravity is talking. Lisa will listen. Dialogos of Eide.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/National Aeronautics and Space Administration eLISA space based, the future of gravitational wave research.

    NASA has committed to provide support to ESA’s proposed MarcoPolo-R mission to return an asteroid sample to Earth for further analysis. NASA and ESA will also likely join together for a Mars Sample Return Mission. In October 2020 the ESA entered into a memorandum of understanding (MOU) with NASA to work together on the Artemis program, which will provide an orbiting lunar gateway and also accomplish the first manned lunar landing in 50 years, whose team will include the first woman on the Moon.

    NASA ARTEMIS spacecraft depiction.

    Cooperation with other space agencies

    Since China has started to invest more money into space activities, the Chinese Space Agency[中国国家航天局] (CN) has sought international partnerships. ESA is, beside, The Russian Federal Space Agency Государственная корпорация по космической деятельности «Роскосмос»](RU) one of its most important partners. Two space agencies cooperated in the development of the Double Star Mission. In 2017, ESA sent two astronauts to China for two weeks sea survival training with Chinese astronauts in Yantai, Shandong.

    ESA entered into a major joint venture with Russia in the form of the CSTS, the preparation of French Guiana spaceport for launches of Soyuz-2 rockets and other projects. With India, ESA agreed to send instruments into space aboard the ISRO’s Chandrayaan-1 in 2008. ESA is also co-operating with Japan, the most notable current project in collaboration with JAXA is the BepiColombo mission to Mercury.

    European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/Japan Aerospace Exploration Agency [国立研究開発法人宇宙航空研究開発機構](JP) Bepicolumbo in flight illustration. Artist’s impression of BepiColombo – ESA’s first mission to Mercury. ESA’s Mercury Planetary Orbiter (MPO) will be operated from ESOC Germany.

    ESA’s Mercury Planetary Orbiter (MPO) will be operated from ESOC Germany.

    Speaking to reporters at an air show near Moscow in August 2011, ESA head Jean-Jacques Dordain said ESA and Russia’s Roskosmos space agency would “carry out the first flight to Mars together.”

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: