Tagged: Solar research Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:14 pm on March 21, 2020 Permalink | Reply
    Tags: (SORCE)-NASA’s Solar Radiation and Climate Experiment, , Solar research, TSIS-1 [2017] the present and TSIS-2 [2023] the future.   

    From NASA: “Solar Energy Tracker Powers Down After 17 Years” 


    From NASA

    March 20, 2020
    By Jessica Merzdorf
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    1
    The Sun is Earth’s primary power source. Energy from the Sun, called solar irradiance, drives Earth’s climate, temperature, weather, atmospheric chemistry, ocean cycles, energy balance and more. Credit: NASA / Scott Wiessinger

    After nearly two decades, the Sun has set for NASA’s SOlar Radiation and Climate Experiment (SORCE), a mission that continued and advanced the agency’s 40-year record of measuring solar irradiance and studying its influence on Earth’s climate.

    1
    SORCE. NASA

    The SORCE team turned off the spacecraft on February 25, 2020, concluding 17 years of measuring the amount, spectrum and fluctuations of solar energy entering Earth’s atmosphere — vital information for understanding climate and the planet’s energy balance. The mission’s legacy is continued by the Total and Spectral solar Irradiance Sensor (TSIS-1), launched to the International Space Station in December 2017, and TSIS-2, which will launch aboard its own spacecraft in 2023.

    3
    TSIS-1. NASA

    Monitoring Earth’s “Battery”

    The Sun is Earth’s primary power source. Energy from the Sun, called solar irradiance, drives Earth’s climate, temperature, weather, atmospheric chemistry, ocean cycles, energy balance and more. Scientists need accurate measurements of solar power to model these processes, and the technological advances in SORCE’s instruments allowed more accurate solar irradiance measurements than previous missions.

    “These measurements are important for two reasons,” said Dong Wu, project scientist for SORCE and TSIS-1 at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Climate scientists need to know how much the Sun varies, so they know how much change in the Earth’s climate is due to solar variation. Secondly, we’ve debated for years, is the Sun getting brighter or dimmer over hundreds of years? We live only a short period, but an accurate trend will become very important. If you know how the Sun is varying and can extend that knowledge into the future, you can then put the anticipated future solar input into climate models together with other information, like trace gas concentrations, to estimate what our future climate will be.”

    SORCE’s four instruments measured solar irradiance in two complementary ways: Total and spectral.

    3
    NASA’s Solar Radiation and Climate Experiment, or SORCE, collected this data on total solar irradiance, the total amount of the Sun’s radiant energy, throughout Sept. 2017. Sunspots (darkened areas on the Sun’s surface) and faculae (brightened areas) create tiny TSI variations that show up as measurable changes in Earth’s climate and systems.
    Credits: NASA / Walt Feimer

    Total solar irradiance, or TSI, is the total amount of solar energy that reaches the Earth’s outer atmosphere in a given time. Sunspots (darkened areas on the Sun’s surface) and faculae (brightened areas) create tiny TSI variations that show up as measurable changes in Earth’s climate and systems. From space, SORCE and other solar irradiance missions measure TSI without interference from Earth’s atmosphere.

    SORCE’s TSI values were slightly but significantly lower than those measured by previous missions. This was not an error — its Total Irradiance Monitor was ten times more accurate than previous instruments. This improved solar irradiance inputs into the Earth climate and weather models from what was previously available.

    “The big surprise with TSI was that the amount of irradiance it measured was 4.6 watts per square meter less than what was expected,” said Tom Woods, SORCE’s principal investigator and senior research associate at the University of Colorado’s Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado. “That started a whole scientific discussion and the development of a new calibration laboratory for TSI instruments. It turned out that the TIM was correct, and all the past irradiance measurements were erroneously high.”

    “It’s not often in climate studies that you make a quantum leap in measurement capability, but the tenfold improvement in accuracy by the SORCE / TIM was exactly that,” said Greg Kopp, TIM instrument scientist for SORCE and TSIS at LASP.

    SORCE’s other measurements focused on spectrally-resolved solar irradiance (SSI): The variation of solar irradiance with wavelength across the solar spectrum, covering the major wavelength regions important to Earth’s climate and atmospheric composition.

    Besides the familiar rainbow of colors in visible light, solar energy also contains shorter ultraviolet and longer infrared wavelengths, both of which play important roles in affecting Earth’s atmosphere. Earth’s atmospheric layers and surface absorb different wavelengths of energy — for example, atmospheric ozone absorbs harmful ultraviolet radiation, while atmospheric water vapor and carbon dioxide absorb longer-wavelength infrared radiation, which keeps the surface warm. SORCE was the first satellite mission to record a broad spectrum of SSI for a long period, tracking wavelengths from 1 to 2400 nanometers across its three SSI instruments.

    “For public health, ozone chemistry and ultraviolet radiation are very important, and visible light is important for climate modeling,” Wu said. “We need to know the solar variability at different wavelengths and compare these measurements with our models.”

    SORCE observed the Sun across two solar minima (periods of low sunspot activity), providing valuable information about variability over a relatively short 11-year period. But a longer record is needed to improve long-term predictions, Wu said.

    Buying Time for an Aging Mission

    SORCE was originally designed to collect data for just five years. Extending its lifespan to 17 required creative and resourceful engineering, said Eric Moyer, SORCE’s mission director at Goddard.

    “The operation and science teams at our partner organizations developed and implemented a completely new way to operate this mission when it appeared it was over because of battery capacity loss,” said Moyer. LASP and Northrup Grumman Space Systems led the development of new operational software in order to continue the SORCE mission. “The small, highly dedicated team persevered and excelled when encountering operational challenges. I am very proud of their excellent accomplishment and honored to have had the opportunity to participate in managing the SORCE mission.”

    Continuing a Bright Legacy

    As SORCE’s time in the Sun ends, NASA’s solar irradiance record continues with TSIS-1. The mission’s two instruments measure TSI and SSI with even more advanced instruments that build on SORCE’s legacy, said Wu. They have already enabled advances like establishing a new reference for the “quiet” Sun when there were no sunspots in 2019, and for comparing this to SORCE observations of the previous solar cycle minimum in 2008.

    TSIS-2 is scheduled to launch in 2023 with identical instruments to TSIS-1. Its vantage point aboard its own spacecraft will give it more flexibility than TSIS-1’s data collection aboard the ISS.

    “We are looking forward to continuing the groundbreaking science ushered in by SORCE, and to maintaining the solar irradiance data record through this decade and beyond with TSIS-1 and 2,” said LASP’s Peter Pilewskie, principal investigator for the TSIS missions. “SORCE set the standard for measurement accuracy and spectral coverage, two attributes of the mission that were key to gaining insight into the Sun’s role in the climate system. TSIS has made additional improvements that should further enhance Sun-climate studies.”

    “Solar irradiance measurements are very challenging, and the SORCE team proposed a different way, a new technology, to measure them,” said Wu. “Using advanced technology to advance our science capability, SORCE is a very good example of NASA’s spirit.”

    For more information on SORCE, visit: http://lasp.colorado.edu/home/sorce/.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 9:35 am on February 21, 2020 Permalink | Reply
    Tags: , , , , , , Giant flare from a tiny star, Solar research   

    From European Space Agency – United space in Europe: “XMM-Newton reveals giant flare from a tiny star” 

    ESA Space For Europe Banner

    From European Space Agency – United space in Europe

    United space in Europe

    20/02/2020

    For further information, please contact:

    Beate Stelzer
    Institut für Astronomie und Astrophysik Tübingen, Germany
    INAF – Osservatorio Astronomico di Palermo, Italy
    Email: stelzer@astro.uni-tuebingen.de

    Andrea De Luca
    INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica
    Milano, Italy
    Email: andrea.deluca@inaf.it

    Norbert Schartel
    XMM-Newton Project Scientist
    European Space Agency
    Email: norbert.schartel@esa.int

    1
    Artist’s impression of an L dwarf star, a star with so little mass that it is only just above the boundary of actually being a star, caught in the act of emitting an enormous ‘super flare’ of X-rays, as detected by ESA’s XMM-Newton X-ray space observatory.

    A star of about eight percent the Sun’s mass has been caught emitting an enormous ‘super flare’ of X-rays – a dramatic high-energy eruption that poses a fundamental problem for astronomers, who did not think it possible on stars that small.

    The culprit, known by its catalogue number J0331-27, is a kind of star called an L dwarf. This is a star with so little mass that it is only just above the boundary of actually being a star. If it had any less mass, it would not possess the internal conditions necessary to generate its own energy.

    Astronomers spotted the enormous X-ray flare in data recorded on 5 July 2008 by the European Photon Imaging Camera (EPIC) onboard ESA’s XMM-Newton X-ray observatory. In a matter of minutes, the tiny star released more than ten times more energy of even the most intense flares suffered by the Sun.

    2
    A giant flare suffered by our own Sun, captured on 27 July 1999 by the ESA/NASA Solar and Heliospheric Observatory (SOHO)

    ESA/NASA SOHO

    Flares are released when the magnetic field in a star’s atmosphere becomes unstable and collapses into a simpler configuration. In the process, it releases a large proportion of the energy that has been stored in it.

    This explosive release of energy creates a sudden brightening – the flare – and this is where the new observations present their biggest puzzle.

    “This is the most interesting scientific part of the discovery, because we did not expect L-dwarf stars to store enough energy in their magnetic fields to give rise to such outbursts,” says Beate Stelzer, Institut für Astronomie und Astrophysik Tübingen, Germany, and INAF – Osservatorio Astronomico di Palermo, Italy, who was part of the study team.

    Energy can only be placed in a star’s magnetic field by charged particles, which are also known as ionised material and created in high-temperature environments. As an L dwarf, however, J0331-27 has a low surface temperature for a star – just 2100K compared to the roughly 6000K on the Sun. Astronomers did not think such a low temperature would be capable of generating enough charged particles to feed so much energy into the magnetic field. So the conundrum is: how a super flare is even possible on such a star.

    “That’s a good question,” says Beate. “We just don’t know – nobody knows.”

    The super flare was discovered in the XMM-Newton data archive as part of a large research project led by Andrea De Luca of INAF – Istituto di Astrofisica Spaziale e Fisica Cosmica in Milan, Italy. The project studied the temporal variability of around 400 000 sources detected by XMM-Newton over 13 years

    Andrea and collaborators were particularly looking for peculiar phenomena and in J0331-27 they certainly got that. A number of similar stars had been seen to emit super flares in the optical part of the spectrum, but this is the first unambiguous detection of such an eruption at X-ray wavelengths.

    The wavelength is significant because it signals which part of the atmosphere the super flare is coming from: optical light comes from deeper in the star’s atmosphere, near its visible surface, whereas X-rays come from higher up in the atmosphere.

    Understanding the similarities and differences between this new – and so far unique – super flare on the L dwarf and previously observed flares, detected at all wavelengths on stars of higher mass is now a priority for the team. But to do that, they need to find more examples.

    “There is still much to be discovered in the XMM-Newton archive,” says Andrea. “In a sense, I think this is only the tip of the iceberg.”

    One clue they do have is that there is only one flare from J0331-27 in the data, despite XMM-Newton having observed the star for a total of 3.5 million seconds – about 40 days. This is peculiar because other flaring stars tend to suffer from numerous smaller flares too.

    “The data seem to imply that it takes an L dwarf longer to build up the energy, and then there is one sudden big release,” says Beate.

    Stars that flare more frequently release less energy each time, while this L dwarf seems to release energy very rarely but then in a really big event. Why this might be the case is still an open question that needs further investigation.

    “The discovery of this L dwarf super flare is a great example of research based on the XMM-Newton archive, demonstrating the mission’s enormous scientific potential,” says Norbert Schartel, XMM-Newton project scientist for ESA. “I look forward to the next surprise.”

    Science paper:
    “EXTraS discovery of an X-ray superflare from an L dwarf”
    Astronomy & Astrophysics.

    The discovery was made as a result of the Exploring the X-ray Transient and variable Sky (EXTraS) project, a EU/FP7 project devoted to a systematic variability study of the X-ray sources in the XMM-Newton public archive.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 3:50 pm on February 20, 2020 Permalink | Reply
    Tags: , Solar research, SunPy   

    From AAS NOVA: ” Exploring Our Star with SunPy” 

    AASNOVA

    From AAS NOVA

    19 February 2020
    Susanna Kohler

    1
    SunPy is a community-developed, Python-based software library that provides tools for analyzing observations of the Sun and the heliosphere. [SunPy logo: Steven Christe; background image: SDO/AIA]

    Python, one of the foremost high-level programming languages, has played a growing role in the analysis of astronomical data. With the recent release of a new software package, SunPy, it’s now easier than ever for solar physicists to use Python as well.

    1
    An example of a SunPy-generated Map visualization using data from the Solar Dynamics Observatory’s AIA instrument. The bottom panel shows a zoomed-in view from the top panel, focusing on an erupting flare. [Adapted from The SunPy Community et al. 2020]

    Juggling Ones and Zeros

    The modern era of astronomy relies heavily on computer software to advance our understanding of the universe. Long gone are the days of sketching what we see through telescope eyepieces; now astronomers receive their telescope observations in the form of files full of data that must be carefully analyzed using complex code bases.

    Preferences for one programming language over another evolve over time as our needs evolve — and Python is currently a rising star. Major companies like Google, Wikipedia, and Facebook all make use of Python, and astronomers are increasingly adopting Python for their data analysis in place of past staples like Fortran and IDL.

    A Shared Enterprise

    The field of solar physics is driven by publicly available observations of the Sun that stream in on a constant basis from a number of ground- and space-based observatories. As solar physics, like the rest of astronomy, is a largely collaborative field, it makes sense to share the software tools that are used to analyze this common data.

    To this end, a group of solar physicists has come together to produce SunPy, a community-developed free and open-source software package that consists of tools for analyzing solar and heliospheric data. In a recent article, the SunPy team has detailed this Python-based package and the overarching SunPy project, which develops and maintains the package and supports the ecosystem surrounding it.

    3
    Growth of the SunPy codebase over time — both the total lines of code (solid line) and comments (dashed line). The dip after version 0.9 is the result of a major code reorganization. [The SunPy Community et al. 2020]

    What Can SunPy Do For You?

    Looking to explore some solar data? The SunPy software package is freely accessible, and its first official stable release was issued last year. As of version 1.0, SunPy consisted of nearly 50,000 lines of code that support a large set of common tasks in the analysis of solar data.

    Here are just a few things you can do using the SunPy package:

    Query and download data from many different solar missions and instruments via a general, standard, and consistent interface.
    Load and visualize time series data — measurements of how, say, a particular type of flux from a region changes over time — and images.
    Perform transformations between the variety of coordinate systems commonly used to describe events and features both on the Sun and within the heliosphere.

    4
    SunPy comes with a detailed user’s guide and example gallery to assist users. [SunPy]

    Looking Ahead

    SunPy will be supported with two new releases planned per year. Future development already on the books includes support for generic spectra, multidimensional data sets, and a standardized approach to metadata.

    The SunPy team hopes to grow community involvement and establish financial support in the future, in order to further expand SunPy development. In the meantime, the SunPy project’s team of volunteer developers have done an admirable job of building a powerful set of shared tools for the solar physics community.

    Citation

    “The SunPy Project: Open Source Development and Status of the Version 1.0 Core Package,” The SunPy Community et al 2020 ApJ 890 68.

    https://iopscience.iop.org/article/10.3847/1538-4357/ab4f7a

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    1

    AAS Mission and Vision Statement

    The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

    The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
    The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
    The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
    The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
    The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

    Adopted June 7, 2009

     
  • richardmitnick 10:15 am on February 18, 2020 Permalink | Reply
    Tags: , , Solar research   

    From European Space Agency – United space in Europe: “First Solar Orbiter instrument sends measurements” 

    ESA Space For Europe Banner

    From European Space Agency – United space in Europe

    United space in Europe

    2.18.20

    Daniel Müller
    ESA Solar Orbiter Project Scientist
    Email: daniel.mueller@esa.int

    Yannis Zouganelis
    ESA Solar Orbiter Deputy Project Scientist
    Email: yannis.zouganelis@esa.int

    ESA Media Relations
    Email: media@esa.int

    1

    First measurements by a Solar Orbiter science instrument reached the ground on Thursday 13 February providing a confirmation to the international science teams that the magnetometer on board is in good health following a successful deployment of the spacecraft’s instrument boom.

    Solar Orbiter, ESA’s new Sun-exploring spacecraft, launched on Monday 10 February.

    ESA/NASA Solar Orbiter depiction

    It carries ten scientific instruments, four of which measure properties of the environment around the spacecraft, especially electromagnetic characteristics of the solar wind, the stream of charged particles flowing from the Sun. Three of these ‘in situ’ instruments have sensors located on the 4.4 m-long boom.

    “We measure magnetic fields thousands of times smaller than those we are familiar with on Earth,” says Tim Horbury of Imperial College London, Principal Investigator for the Magnetometer instrument (MAG). “Even currents in electrical wires make magnetic fields far larger than what we need to measure. That’s why our sensors are on a boom, to keep them away from all the electrical activity inside the spacecraft.”

    Observing magnetic field as boom deploys.

    2
    Solar Orbiter boom deployment and first magnetic field measurements.

    Ground controllers at the European Space Operations Centre in Darmstadt, Germany, switched on the magnetometer’s two sensors (one near the end of the boom and the other close to the spacecraft) about 21 hours after liftoff. The instrument recorded data before, during and after the boom’s deployment, allowing the scientists to understand the influence of the spacecraft on measurements in the space environment.

    “The data we received shows how the magnetic field decreases from the vicinity of the spacecraft to where the instruments are actually deployed,” adds Tim. “This is an independent confirmation that the boom actually deployed and that the instruments will, indeed, provide accurate scientific measurements in the future.”

    As the titanium/carbon-fibre boom stretched out over an overall 30-minute period on Wednesday, almost three days after liftoff, the scientists could observe the level of the magnetic field decrease by about one order of magnitude. While at the beginning they saw mostly the magnetic field of the spacecraft, at the end of the procedure, they got the first glimpse of the significantly weaker magnetic field in the surrounding environment.

    3
    Solar Orbiter carries ten instruments, some of which consist of multiple instrument packages. Three of the spacecraft’s four ‘in situ’ instruments, which measure the environment in the vicinity of the spacecraft, are located on Solar Orbiter’s 4.4 m boom.

    “Measuring before, during, and after the boom deployment helps us to identify and characterise signals that are not linked to the solar wind, such as perturbations coming from the spacecraft platform and other instruments,” says Matthieu Kretzschmar, of Laboratoire de Physique et Chimie de l’Environnement et de l’Espace in Orleans, France, Lead Co-investigator behind another sensor located on the boom, the high frequency magnetometer of the Radio and Plasma Waves instrument (RPW) instrument.

    “The spacecraft underwent extensive testing on ground to measure its magnetic properties in a special simulation facility, but we couldn’t fully test this aspect until now, in space, because the test equipment usually prevents us from reaching the needed very low level of magnetic field fluctuations,” he adds.

    Next, the instruments will have to be calibrated before true science can begin.

    Warming up for science


    Solar Orbiter launch to the Sun. Solar Orbiter’s journey to the Sun as it prepares to commence its ground-breaking mission.

    “Until the end of April, we will be gradually turning on the in-situ instruments and checking whether they are working correctly,” says Yannis Zouganelis, ESA’s deputy project scientist for the Solar Orbiter mission. “By the end of April, we will have a better idea of the performance of the instruments and hopefully start collecting first scientific data in mid-May.”

    In addition to the instrument boom, the deployments of three antennas of the RPW instrument, which will study characteristics of electromagnetic and electrostatic waves in the solar wind, were successfully completed in the early hours of Thursday 13 February. The data of these specific deployments still need to be analysed.

    In addition to the four in situ instruments, Solar Orbiter carries six remote-sensing instruments, essentially telescopes, that will be imaging the surface of the Sun at various wavelengths, obtaining the closest ever views of our parent star.

    “The remote-sensing instruments will be commissioned in the coming months, and we look forward to testing them further in June, when Solar Orbiter gets nearer to the Sun,” Yannis adds.

    Unravelling the Sun’s mysteries

    The combination of both sets of instruments will allow scientists to link what happens on the Sun to the phenomena measured in the solar wind, enabling them to tackle mysteries such as the 11-year cycle of solar activity, the generation of the Sun’s magnetic field and how solar wind particles are accelerated to high energies.

    “The ten instruments onboard our mission will be playing together like instruments in an orchestra,” says ESA Solar Orbiter project scientist Daniel Müller. “We have just started the rehearsal, and one by one, additional instruments will join. Once we are complete, in a few months’ time, we will be listening to the symphony of the Sun.”

    Notes for editors

    Solar Orbiter is an ESA-led mission with strong NASA participation. The prime contractor is Airbus Defence and Space in Stevenage, UK. Solar Orbiter is the first ‘medium’-class mission implemented in the Cosmic Vision 2015-25 programme, the current planning cycle for ESA’s space science missions.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 3:14 pm on February 16, 2020 Permalink | Reply
    Tags: "Solar wind samples suggest new physics of massive solar ejections", , , , , Solar research, U Hawaii at Manoa   

    From U Hawaii at Manoa: “Solar wind samples suggest new physics of massive solar ejections” 

    From U Hawaii at Manoa

    February 12, 2020
    Marcie Grabowski

    1
    An image of active regions on the Sun from NASA’s Solar Dynamics Observatory. The glowing hot gas traces out the twists and loops of the Sun’s magnetic field lines. Image credit: NASA/SDO/AIA

    NASA SDO

    A new study [Meteoritics and Planetary Science] led by the University of Hawai‘i (UH) at Mānoa has helped refine understanding of the amount of hydrogen, helium and other elements present in violent outbursts from the Sun, and other types of solar “wind,” a stream of ionized atoms ejected from the Sun.

    Coronal mass ejections (CME) are giant plasma bursts that erupt from the sun, heading out into the solar system at speeds as fast as 2 million miles per hour. Like the sun itself, the majority of a CME’s atoms are hydrogen. When these particles interact with Earth’s atmosphere, they lead to the brilliant multicolored lights of the Aurora Borealis. They also have the potential to knock out communications, bringing modern civilization to a standstill.

    And their cause is pretty much a mystery.

    UH Manoa School of Ocean and Earth Science and Technology (SOEST) researcher Gary Huss led a team of scientists in investigating a sample of solar wind collected by NASA’s Genesis mission.

    Most of our understanding of the composition of the sun, which makes up 99.8% of the mass of the Solar System, has come from astronomical observations and measurements of a rare type of meteorite. In 2001, the Genesis probe headed to space to gather samples of solar wind in pure materials, and bring the material back to Earth to be studied in a lab. Those samples represented particles gathered from different sources of solar wind, including those thrown off by CMEs.

    The Genesis samples allowed for a more accurate assessment of the hydrogen abundance in CMEs and other components of the solar wind. About 91% of the Sun’s atoms are hydrogen, so everything that happens in the solar wind plasma is influenced by hydrogen.

    However, measuring hydrogen in the Genesis samples proved to be a challenge. An important component of the recent work was to develop appropriate standards using terrestrial minerals with known amounts of hydrogen, implanted with hydrogen by a laboratory accelerator.

    A precise determination of the amount of hydrogen in the solar wind allowed researchers to discern small differences in the amount of neon and helium relative to hydrogen ejected by these massive solar ejections. Helium and neon, both noble gases, are difficult to ionize. The new measurements of hydrogen showed that helium and neon were both enriched in coronal mass ejections, providing clues to the underlying physics in the Sun that causes the coronal mass ejections.

    In the very energetic event, “the ejected material appears to be enriched almost systematically in atoms that require the most energy to ionize,” said Ryan Ogliore, co-author and assistant professor of physics at Washington University in St. Louis. “That tells us a lot about the physics involved in the first stages of the explosion on the Sun.”

    This finding brings researchers one step closer to understanding the origins of these particular solar events.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Hawaii 2.2 meter telescope, Mauna Kea, Hawaii, USA

    U Hawaii 2.2 meter telescope, Mauna Kea, Hawaii, USA,4,207 m (13,802 ft) above sea level

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth.

    Keck Observatory, operated by Caltech and the University of California, Maunakea Hawaii USA, 4,207 m (13,802 ft)

    The two, 10-meter optical/infrared telescopes near the summit of Maunakea on the island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrographs and world-leading laser guide star adaptive optics systems.

    Pann-STARS 1 Telescope, U Hawaii, situated at Haleakala Observatories near the summit of Haleakala , on the island of Maui in Hawaii, USA, Pann-STARS 1 Telescope, U Hawaii, situated at Haleakala Observatories near the summit of Haleakala in Hawaii, USA, altitude 3,052 m (10,013 ft)altitude 3,052 m (10,013 ft)


    System Overview

    The University of Hawai‘i includes 10 campuses and dozens of educational, training and research centers across the Hawaiian Islands. As the public system of higher education in Hawai‘i, UH offers opportunities as unique and diverse as our Island home.

    The 10 UH campuses and educational centers on six Hawaiian Islands provide unique opportunities for both learning and recreation.

    UH is the State’s leading engine for economic growth and diversification, stimulating the local economy with jobs, research and skilled workers.

     
  • richardmitnick 9:08 am on February 11, 2020 Permalink | Reply
    Tags: "ESA's next Sun mission will be shadow-casting pair", , , Proba-3- a double satellite system, Solar research   

    From European Space Agency – United space in Europe: “ESA’s next Sun mission will be shadow-casting pair” 

    ESA Space For Europe Banner

    From European Space Agency – United space in Europe

    United space in Europe

    10/02/2020

    After Solar Orbiter, ESA’s next mission observing the Sun will not be one spacecraft but two: the double satellites making up Proba-3 will fly in formation to cast an artificial solar eclipse, opening up the clearest view yet of the Sun’s faint atmosphere – probing the mysteries of its million degree heat and magnetic eruptions.

    Aiming for launch in mid-2022, Proba-3 comprises two small metre-scale satellites to be placed together in Earth orbit. They will line up to cast a precise shadow across space to block out the solar disc for six hours at a time during each 20 hour orbit, giving researchers a sustained view of the Sun’s immediate vicinity.

    1
    Proba-3’s pair of satellites

    Precision formation flying

    “To achieve this the satellite pair must achieve an unprecedented precision of flight control,” explains Proba-3 system manager Damien Galano. “They must align along an average distance of 144 m apart, maintained to an accuracy of a few millimetres. By achieving such precision formation flying techniques, in future multiple small satellites could perform equivalent tasks to individual giant spacecraft.”

    Proba-3’s focus will be the Sun’s faint atmosphere, or corona, which extends millions of kilometres from the solar surface and is the source of the solar wind and coronal mass ejections – huge magnetic eruptions that can affect space weather all the way to Earth itself.

    The corona is also the basis of a long-standing scientific mystery: while the Sun’s surface is a comparatively cool 6000 °C, the corona rises to a sizzling million degrees or more – in apparent defiance to the laws of thermodynamics.

    But the dazzling face of the Sun usually masks the faint, wispy corona, like a blazing bonfire next to a firefly.

    Revealing the solar corona

    “Up until now, the best way to see the corona is briefly during a solar eclipse on Earth, or else using a ‘coronagraph’ instrument incorporating one or more blocking – or ‘occulting’ – discs to blot out the Sun’s disc,” says solar scientist Andrei Zhukov of the Royal Observatory of Belgium (ROB).

    2
    Coronagraph across two satellites

    He is the principal investigator of Proba-3’s main ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun) telescope, while also serving as ROB’s project scientist of Solar Orbiter’s Extreme Ultraviolet Imager (EUI).

    “But sunlight still bends around such blocking discs– known as ‘diffraction’ – which can leads to a high level of straylight within an instrument, degrading the resulting image,” adds Andrei.

    “The idea behind Proba-3 is to cut that straylight fivefold and in the same time observe very close to the edge of the Sun, by flying the external blocking disc far away from the rest of the telescope, aboard a separate satellite.

    “I’m looking forward to the time when Proba-3 is operating along with other Sun-watching missions. While Solar Orbiter’s EUI observes changes on the solar surface in extreme ultraviolet, Proba-3 will clearly show associated features within the inner corona in visible light, revealing interactions between the Sun and its surroundings.”

    Mission taking shape

    The mission has passed its ‘critical design review’, leading to the manufacturing and testing of satellite hardware.

    “The prototype of the 1.4-m diameter external occulting disc has undergone testing,” explains Delphine Jollet, platform system engineer.

    “Its rim, made of temperature-resistant carbon fibre reinforced polymer (CFRP), has to meet very stringent requirements to precisely hold its torus shape, designed to minimise the straylight spilling over its edges into ASPIICS. Skilled workmanship is essential to prepare the CFRP layout for moulding.”

    3
    Proba-3 occulting disc prototype

    “A secondary internal occulting disc is mounted within the instrument, this one just 3.5 mm in diameter, but having similarly stringent dimensional standards,” notes Proba-3 payload engineer Jorg Versluys.

    “This internal occulter is part of the qualification model of the ASPIICS instrument that is being tested in simulated space conditions.”

    4
    Qualification model

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 1:03 am on February 8, 2020 Permalink | Reply
    Tags: , , , “Introduction” to the Special Issue by Marcia Neugebauer, , , Dust-free zone, Link to Special ApJS Issue on Parker Solar Probe, , , Plasma structures, Small energetic-particle events, Solar research,   

    From AAS NOVA: “Early Results from Parker Solar Probe” 

    AASNOVA

    From AAS NOVA

    7 February 2020
    Susanna Kohler

    1
    Artist’s illustration of the Parker Solar Probe. A special ApJS issue features around 50 articles detailing early results from this mission. [NASA/Johns Hopkins APL/Steve Gribben]

    What might we learn about the Sun if we could fly a spacecraft close enough to dip down and skim through its atmosphere? Thanks to the Parker Solar Probe, we don’t have to speculate!

    The Parker Solar Probe (PSP) is a telescope designed to orbit the Sun at least 24 times, dipping closer and closer to our star’s surface over its mission lifetime.

    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker

    Its first few orbits have already been completed at a distance of about 35.7 solar radii from the Sun’s center. Just this past month, PSP used the gravitational pull of Venus to drop its orbit to 27.8 solar radii — and by 2024, after several such maneuvers, PSP will be flying just 8.86 solar radii (that’s less than 4 million miles) from the Sun’s surface, soaring through the Sun’s tenuous outer atmosphere.

    This innovative spacecraft will bring us our closest look yet at the magnetic structure and heating of this outer atmosphere — the Sun’s corona — and give us the chance to better explore the solar wind, the stream of energetic particles that flows off of the Sun and pervades our solar system.

    Though PSP’s orbit still has a lot further to drop, it’s already flying closer to the Sun than any other spacecraft ever has! This means we’ve already been able to do some remarkable science in the year and a half since its mission began. A new special issue of the Astrophysical Journal Supplement Series now presents roughly 50 studies detailing the findings from PSP’s first two orbits around the Sun.

    A few broad categories of topics explored among these articles are:

    2
    Illustration of magnetic switchbacks in the solar wind, first discovered by Parker Solar Probe. Click to view an animation. [NASA’s Goddard Space Flight Center/Conceptual Image Lab/Adriana Manrique Gutierrez]

    Switchbacks

    On large scales, the solar wind looks like a smooth flow of particles streaming radially outward from the Sun. But on scales close to the Sun’s surface, this flow is much more complex. PSP has measured a phenomenon termed “switchbacks” — rapid reversals in the direction of the magnetic field that governs the solar wind flow. Several articles detail what PSP has revealed about this phenomenon.

    Plasma physics

    The high time and frequency resolutions of PSP’s instruments allow the probe to capture unprecedented observations of different plasma phenomena in the ionized gas close in around the Sun. PSP’s first two orbits have produced data on various wave modes, electron holes, magnetic reconnection, radio bursts, microinstabilities, plasma turbulence, and more. Several articles in this issue are devoted to analysis of these detections.

    Small energetic-particle events

    Some solar activity can rapidly accelerate particles to enormous speeds. Since such energetic-particle events can pose a serious hazard to spacecraft and astronauts, we want to better understand what triggers them and how the particles are accelerated. PSP detected a large number of small energetic-particle events associated with various phenomena — and several articles in this issue detail what we’ve learned from these observations.

    3
    A huge variety of plasma structures — like this erupting filament — can be witnessed on the Sun. [NASA’s Goddard SFC]

    Plasma structures

    A huge variety of plasma structures — like this erupting filament — can be witnessed on the Sun. [NASA’s Goddard SFC]
    When plasma is ejected from the Sun, it erupts into space in a variety of structures. PSP carries a camera system that has imaged the complex features of smaller plasma structures; in this special issue, these observations are analyzed and even combined with data from other Sun-watching spacecraft to build three-dimensional views of the structures. From this, we can better understand how magnetic fields govern the geometry and motions of the ionized gas emitted from the Sun.

    Dust-free zone

    Though dust pervades our solar system, theory predicts that close to the Sun, the high temperatures should prevent dust from existing. Several articles describe PSP’s observations that suggest thinning dust levels; data from PSP’s future travels even closer to the Sun will hopefully confirm the presence of a dust-free zone and determine where, exactly, it lies.

    4
    We’re likely at a solar minimum right now in between two activity cycles, as shown here in the predictions made from sunspot observations over the last several cycles. The Sun should become progressively more active over the course of PSP’s mission lifetime. [David Hathaway, NASA, Marshall Space Flight Center]

    These observations are just the start of what we can hope to learn from the Parker Solar Probe. We should expect to see many updates to our understanding of the corona and the solar wind as PSP explores regions closer to the Sun, as solar activity increases (we’re currently at a solar cycle minimum), and as in-flight calibrations of the PSP instruments continue. Stay tuned!

    Citation

    Special ApJS Issue on Parker Solar Probe

    “Introduction,” Marcia Neugebauer 2020 ApJS 246 19.
    https://iopscience.iop.org/article/10.3847/1538-4365/ab67cf

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    1

    AAS Mission and Vision Statement

    The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

    The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
    The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
    The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
    The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
    The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

    Adopted June 7, 2009

     
  • richardmitnick 2:45 pm on February 7, 2020 Permalink | Reply
    Tags: "Five things we’re going to learn from Europe’s Solar Orbiter mission", , , , , , NASA Parker Solar Probe Plus, Solar research,   

    From Horizon The EU Research and Innovation Magazine: “Five things we’re going to learn from Europe’s Solar Orbiter mission” 

    1

    From Horizon The EU Research and Innovation Magazine

    ESA/NASA Solar Orbiter depiction

    07 February 2020
    Jonathan O’Callaghan

    At 23.03 (local time) on Sunday 9 February, Europe’s newest mission to study the sun is set to lift off from Cape Canaveral in Florida, US. Called Solar Orbiter, this European Space Agency (ESA) mission will travel to within the orbit of planet Mercury to study the sun like never before, returning stunning new images of its surface.

    Equipped with instruments and cameras, the decade-long mission is set to provide scientists with key information in their ongoing solar research. We spoke to three solar physicists about what the mission might teach us and the five unanswered questions about the sun it might finally help us solve.

    1. When solar eruptions are heading our way

    Solar Orbiter will reach a minimum distance of 0.28% of the Earth-sun distance throughout the course of its mission, which could last the rest of the 2020s. No other mission will have come closer to the sun, save for NASA’s ongoing Parker Solar Probe mission, which will reach just 0.04 times the Earth-sun distance.

    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker

    Dr Emilia Kilpua from the University of Helsinki in Finland is the coordinator of a project called SolMAG, which is studying eruptions of plasma from the sun known as coronal mass ejections (CMEs).

    Coronal mass ejections – NASA-Goddard Space Flight Center-SDO

    NASA/SDO

    She says this proximity, and a suite of cameras that Parker Solar Probe lacks, will give Solar Orbiter the chance to gather data that is significantly better than any spacecraft before it, helping us monitor CMEs.

    ‘One of the great things about Solar Orbiter is that it will cover a lot of different distances, so we can really capture these coronal mass ejections when they are evolving from the sun to Earth,’ she said. CMEs can cause space weather events on Earth, interfering with our satellites, so this could give us a better early-warning system for when they are heading our way.

    2. Why the sun blows a supersonic wind

    One of the major unanswered questions about the sun concerns its outer atmosphere, known as its corona. ‘It’s heated to (more than) a million degrees, and we currently don’t know why it’s so hot,’ said Dr Alexis Rouillard from the Institute for Research in Astrophysics and Planetology in Toulouse, France, the coordinator of a project studying solar wind called SLOW_SOURCE. ‘It’s (more than) 200 times the temperature of the surface of the sun.’

    ESA China Double Star mission continuous interaction between particles in the solar wind and Earth’s magnetic shield 2003-2007

    ESA China Smile solar wind and Earth’s magnetic shield – the magnetosphere spacecraft depiction

    Magnetosphere of Earth, original bitmap from NASA. SVG rendering by Aaron Kaase

    A consequence of this hot corona is that the sun’s atmosphere cannot be contained by its gravity, so it has a constant wind of particles blowing out into space, known as solar wind.

    4
    This artist’s rendering shows a solar storm hitting Mars and stripping ions from the planet’s upper atmosphere. NASA/GSFC

    This wind blows at more than 250km per second, up to speeds of 800km per second, and we currently do not know how that wind is pushed outwards to supersonic speeds.

    Dr Rouillard is hoping to study the slower solar wind using Solar Orbiter, which may help us explain how stars like the sun create supersonic winds. “By getting closer to the sun we collect more (pristine) particles, he said. “Solar Orbiter will provide unprecedented measurements of the solar wind composition. (And) we will be able to develop models for how the wind (is pushed out) into space.”

    3. What its poles look like

    During the course of its mission, Solar Orbiter will make repeated encounters with the planet Venus. Each time it does, the angle of the spacecraft’s orbit will be slightly raised until it rises above the planets. If the mission is extended as hoped to 2030, it will reach an inclination of 33 degrees – giving us our first ever views of the sun’s poles.

    Aside from being fascinating, there will be some important science that can be done here. By measuring the sun’s magnetic fields at the poles, scientists hope to get a better understanding of how and why the sun goes through 11-year cycles of activity, culminating in a flip of its magnetic poles. They are set to flip again in the mid-2020s.

    ‘By understanding how the magnetic fields are distributed and evolve in these polar regions, we gain a new insight on the cycles that the sun is going through,’ said Dr Rouillard. ‘Every 11 years, the sun goes from a minimum activity state to a maximum activity state. By measuring from high latitudes, it will provide us with new insights on the cyclic evolution of (the sun’s) magnetic fields.’

    4. Why it has polar ‘crowns’

    Occasionally the sun erupts huge arm-like loops of material from its surface, which are known as prominences. They extend from its surface into the corona, but their formation is not quite understood. Solar Orbiter, however, will give us our most detailed look at them yet.

    ‘We’re going to have very intricate views of some of these active regions and their associated prominences,’ says Professor Rony Keppens from KU Leuven in Belgium, coordinator of a project called PROMINENT which is studying solar prominences. ‘It’s going to be possible to have more than several images per second. That means some of the dynamics that had not been seen before now are going to be visualised for the first time.’

    Some of the sun’s largest prominences come from near its poles, so by raising its inclination Solar Orbiter will give us a unique look at these phenomena. ‘They’re called polar crown prominences, because they are like crowns on the head of the sun,’ said Prof. Keppens. ‘They encircle the polar regions and they live for very long, weeks or months on end. The fact that Solar Orbiter is going to have first-hand views of the polar regions is going to be exciting, especially for studies of prominences.’

    5. How it controls the solar system

    By studying the sun with Solar Orbiter, scientists hope to better understand how its eruptions travel out into the solar system, creating a bubble of activity around the sun in our galaxy known as the heliosphere.

    NASA Heliosphere

    This can of course create space weather here on Earth, so studying it is important for our own planet.

    ‘One of the ideas we have is to take measurements of the solar magnetic field in active regions in the equatorial belt of the sun,’ said Professor Keppens. ‘We’re going to extrapolate that data into the corona, and then use simulations to try and mimic how some of these eruptions happen and progress out into the heliosphere.’

    Thus, Solar Orbiter will not just give us a better understanding of the sun itself, but also how it affects planets like Earth too. Alongside the first-ever images of the poles and the closest-ever images of its surface, Solar Orbiter will give us an unprecedented understanding of how the star we call home really works.

    The research in this article is funded by the European Research Council. Sharing encouraged.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

     
  • richardmitnick 8:17 pm on February 3, 2020 Permalink | Reply
    Tags: , Solar research,   

    From Southwest Research Institute: “SwRI-led team identifies low-energy solar particles from beyond Earth in the near-Sun environment” 

    SwRI bloc

    From Southwest Research Institute

    February 3, 2020

    Using data from NASA’s Parker Solar Probe (PSP), a team led by Southwest Research Institute identified low-energy particles lurking near the Sun that likely originated from solar wind interactions well beyond Earth orbit.

    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker

    PSP is venturing closer to the Sun than any previous probe, carrying hardware SwRI helped develop. Scientists are probing the enigmatic features of the Sun to answer many questions, including how to protect space travelers and technology from the radiation associated with solar events.

    “Our main goal is to determine the acceleration mechanisms that create and transport dangerous high-energy particles from the solar atmosphere into the solar system, including the near-Earth environment,” said Dr. Mihir Desai, a mission co-investigator on the Integrated Science Investigation of the Sun (IS☉IS) instrument suite, a multi-institutional project led by Principal Investigator Prof. Dave McComas of Princeton University. IS☉IS consists of two instruments, Energetic Particle Instrument-High (EPI-Hi) and Energetic Particle Instrument-Low (EPI-Lo). “With EPI-Lo, we were able to measure extremely low-energy particles unexpectedly close to the solar environment. We considered many explanations for their presence, but ultimately determined they are the smoking gun pointing to interactions between slow- and fast-moving regions of the solar wind that accelerate high-energy particles from beyond the orbit of Earth. Some of those travel back toward the Sun, slowing against the tide of the outpouring solar wind but still retaining surprisingly high energies.”

    PSP, which will travel within 4 million miles of the Sun’s surface, is collecting new solar data to help scientists understand how solar events, such as coronal mass ejections, impact life on Earth. During the rising portion of the Sun’s activity cycle, our star releases huge quantities of energized matter, magnetic fields and electromagnetic radiation in the form of coronal mass ejections (CMEs). This material is integrated into the solar wind, the steady stream of charged particles released from the Sun’s upper atmosphere. The high-energy solar energetic particles (SEPs) present a serious radiation threat to human explorers living and working outside low-Earth orbit and to technological assets such as communications and scientific satellites in space. The mission is making the first-ever direct measurements of both the low-energy source populations as well as the more hazardous, higher energy particles in the near-Sun environment, where the acceleration takes place.

    2
    SwRI-led team identified low-energy particles, the smoking gun pointing to interactions between slow- and fast-moving regions of the solar wind accelerating high-energy particles from beyond the orbit of Earth. Using Integrated Science Investigation of the Sun (IS☉IS) instrument data, they measured low-energy particles in the near-Sun environment that had likely traveled back toward the Sun, slowing against the tide of the solar wind while still retaining surprising energies.

    When the Sun’s activity reaches a lull, roughly about every 11 years, solar equatorial regions emit slower solar wind streams, traveling around 1 million miles per hour, while the poles spew faster streams, traveling twice as fast at 2 million miles per hour. Stream Interaction Regions (SIRs) are created by interactions at boundaries between the fast and slow solar wind. Fast-moving streams tend to overtake slower streams that originate westward of them on the Sun, forming turbulent corotating interaction regions (CIRs) that produce shock waves and accelerated particles, not unlike those produced by CMEs.

    “For the first time, we observed low-energy particles from these CIRs near the orbit of Mercury,” Desai said. “We also compared the PSP data with data from STEREO, another solar energy probe. By measuring the full range of energetic populations and correlating the data with other measurements, we hope to get a clear picture of the origin and the processes that accelerate these particles. Our next step is to integrate the data into models to better understand the origin of SEPs and other materials. Parker Solar Probe will solve many puzzling scientific questions — and is guaranteed to generate new ones as well.”

    This research is described in the paper “Properties of Suprathermal-through-Energetic He Ions Associated with Stream interaction regions Observed over Parker Solar Probe’s First Two Orb­­its,” published February 3 in a special issue of The Astrophysical Journal Supplement Series devoted exclusively to the first science results from the Parker Solar Probe mission.

    PSP is part of NASA’s “Living With a Star” program to explore aspects of the Sun-Earth system that directly affect life and society. The Living With a Star flight program is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington.

    The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, manages the mission for NASA.

    APL designed and built the spacecraft and is operating it. The IS☉IS instrument suite has two instruments mounted to the spacecraft on an SwRI-designed and fabricated bracket. The EPI-Lo instrument measures the lower-energy particles. SwRI collaborated with the California Institute of Technology (Caltech) in the mechanical fabrication and analyses for the EPI-Hi instrument, which measures the higher-energy materials.

    Data from the IS☉IS instrument suite are processed by the IS☉IS Science Operations Center led by Prof. Nathan Schwadron at the University of New Hampshire. In addition to Princeton, JHU/APL, Caltech, SwRI and UNH, the ISʘIS team also includes scientists and engineers from NASA Goddard Space Flight Center, NASA Jet Propulsion Laboratory, the University of Delaware and the University of Arizona.

    NASA JPL


    U Delaware

    For more information, go to Heliophysics or contact Deb Schmid, +1 210 522 2254, Communications Department, Southwest Research Institute, PO Drawer 28510, San Antonio, TX 78228-0510.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    SwRI Campus

    Southwest Research Institute (SwRI) is an independent, nonprofit applied research and development organization. The staff of nearly 2,800 specializes in the creation and transfer of technology in engineering and the physical sciences. SwRI’s technical divisions offer a wide range of technical expertise and services in such areas as engine design and development, emissions certification testing, fuels and lubricants evaluation, chemistry, space science, nondestructive evaluation, automation, mechanical engineering, electronics, and more.

     
  • richardmitnick 12:01 pm on February 1, 2020 Permalink | Reply
    Tags: , , Solar research   

    From European Space Agency – United space in Europe: “Solar Orbiter operations simulations” Video” 

    ESA Space For Europe Banner

    From European Space Agency – United space in Europe

    United space in Europe

    ESA/NASA Solar Orbiter depiction

    ESA’s Solar Orbiter is getting ready for its launch on an Atlas V rocket provided by NASA and operated by United Launch Alliance from Cape Canaveral, Florida.

    Once in space, and over the course of several years, the spacecraft will repeatedly use the gravity of Venus and Earth to raise its orbit above the poles of the Sun, providing new perspectives on our star, including the first images of the Sun’s polar regions.

    All these operations will be controlled from the European Space Operations Centre (ESOC), Germany, where a dedicated team is currently working on simulations of the first moments in orbit, after separation from the launcher, but also all the delicate manoeuvres of the journey that will make Solar Orbiter mission possible.

    The film contains soundbites by Sylvain Lodiot, Spacecraft Operations Manager, Solar Orbiter (English A-roll, French B-roll); and José Manuel Sánchez Pérez, Mission Analyst, Solar Orbiter (English A-roll, English and Spanish B-roll).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: