Tagged: SNOLAB Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:48 am on October 17, 2017 Permalink | Reply
    Tags: Carleton U, , DEAP-3600 experiment, Ottawa Citizen, SNOLAB   

    From Carleton U via Ottawa Citizen: “Dark matter: Carleton physicist gets $3.35M to help unravel mysteries of the universe” 

    Carleton University
    Carleton University experimental physicist Mark Boulay has been warded $3.35 million for a new lab. Tony Caldwell

    A Carleton University experimental physicist has been awarded $3.35 million to build a lab to help gain insight into the nature of neutrinos and dark matter. The elusive answers to those questions could lead to nothing less than a better understanding of how the universe was formed.

    Neutrinos are much smaller than other known particles, and are very difficult to detect. The actually mass of the neutrino is not known. A measurement that would shed light on its mass and the origin of that mass would offer some insight into the formation of the universe.

    Dark matter is even more mysterious.

    Dark Matter Research

    Universe map Sloan Digital Sky Survey (SDSS) 2dF Galaxy Redshift Survey

    Scientists studying the cosmic microwave background hope to learn about more than just how the universe grew—it could also offer insight into dark matter, dark energy and the mass of the neutrino.

    Dark matter cosmic web and the large-scale structure it forms The Millenium Simulation, V. Springel et al

    Dark Matter Particle Explorer China

    DEAP Dark Matter detector, The DEAP-3600, suspended in the SNOLAB deep in Sudbury’s Creighton Mine

    LUX Dark matter Experiment at SURF, Lead, SD, USA

    ADMX Axion Dark Matter Experiment, U Uashington

    It has never been observed, but scientists have known for a long time that it’s out there because its gravitational effects can be seen — galaxies move faster than expected, for example.

    Dark matter outweighs conventional matter by five-to-one, said Mark Boulay, who is the Canada Research Chair in Particle Astrophysics and Subatomic Physics. Essentially, most of the matter in the universe is invisible.

    “There’s a large amount of mass that goes unaccounted for. We know that there’s matter out there, but we haven’t directly seen it,” he said.

    The $3.35 million in funding from the Canada Foundation for Innovation will be used to develop and build detectors that use liquified noble gases to identify extremely rare subatomic processes.

    Boulay has been leading the DEAP-3600 experiment in SNOLAB, an underground laboratory in a mine two kilometres under the surface of the earth near Sudbury.

    SNOLAB, a Canadian underground physics laboratory at a depth of 2 km in Vale’s Creighton nickel mine in Sudbury, Ontario

    SNOLAB, a Canadian underground physics laboratory at a depth of 2 km in Vale’s Creighton nickel mine in Sudbury, Ontario

    One hypothesis suggests that dark matter consists of Weakly Interacting Massive Particles, known as WIMPs. The rock overburden at SNOLAB filters out cosmic rays that would interfere with WIMP detection. The DEAP-3600 experiments searches for dark matter particle interactions using a detector containing 3,600 kilograms of liquid argon.

    Dark matter research is one of the highest-profile areas of particle physics — and it’s highly competitive. The detectors being developed for the Carleton lab will support the study of neutrinos and dark matter at SNOLAB. The lab will be used by researchers at Carleton and others in its network, which includes TRIUMF, Canada’s national laboratory for particle and nuclear physics, as well as the University of British Columbia, McGill University and Université de Sherbrooke.

    “In my field we’ve been looking to demonstrate conclusively the existence of this particle. We’ve been looking for two or three decades. We haven’t found it yet. We don’t know what the mass of the particle is, or how likely it is to interact with other matter,” said Boulay. “We understand that we have a lot of work ahead of us.”

    He estimates it will take a year to construct the first set of prototype detectors for the lab at Carleton. The lab will occupy about 2,000 square feet of space in the Herzberg building.

    “We want to be able to define future programs — what detectors we will be able to build in the next 20 years,” said Boulay. “We’re at the leading edge of what’s possible, and we want to push that.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Situated on unceded Algonquin territory beside the historic Rideau Canal, an official UNESCO World Heritage Site, Carleton University was founded by the community in 1942 to meet the needs of veterans returning from the Second World War.

    What defines Carleton?

    We strive for innovation in research, teaching and learning.
    Our location in Ottawa, the nation’s capital, connects us to the world.
    We encourage hands-on experience in the classroom.
    We offer exceptional student support.

  • richardmitnick 4:11 pm on September 1, 2017 Permalink | Reply
    Tags: , , DEAP3600, , SNOLAB, ,   

    From TRIUMF: “New results surface from world’s most sensitive argon dark matter experiment” 


    31. August 2017


    Argon in its natural form is a colourless, odorless, and non-flammable gas. It is also utterly unreactive – chemists and physicists have long wielded argon to formulate nonreactive and inert conditions. These qualities earned this noble gas its name, derived from the Greek word for ‘inactive.’

    What use, then, is a 3600-kilogram sphere of liquid argon, buried under two kilometers of Ontario bedrock?

    If you ask Dr. Pietro Giampa, a newly-joined TRIUMF scientist and recipient of the Otto Hausser Postdoctoral Fellowship, the simple answer (accompanied by a knowing smile) is: “Possibly changing our entire understanding of physics beyond the Standard Model, but also potentially the entire universe.” He delivers this response with the ease of repetition, a common trait among dark matter physicists. And while it may seem like a lofty claim, for Giampa and a dedicated team of particle physicists, astrophysicists, and astronomers at SNOLAB in Sudbury, ON, the proof may very well be in the depths of liquid argon.

    SNOLAB, Sudbury, Ontario, Canada.

    Deeper understanding

    The sphere of argon is a dark matter detector, and the central component of a state-of-the-art system called DEAP-3600: ‘Dark Matter Experiment using Argon Pulse-shape’ (with the argon weighing in at just over 3600 kilograms). Giampa and the DEAP-3600 team are working to characterize the fundamental properties of dark matter, a nebulous substance that makes up 23% of the mass of our universe and which we know next to nothing about.

    DEAP-3600 is in search of a host of particles widely considered the most viable candidates for dark matter: weakly interacting massive particles, or WIMPs. WIMPs behave similarly to the building-block particles of our universe like protons and neutrons, except that they don’t interact via any forces other than the electroweak and gravitational. This means that most WIMPs pass through our world without any interaction with atoms, subatomic particles, or nearly anything else.

    DEAP-3600 works by listening for collisions between dark matter and the nuclei of argon atoms. The impacts will be faint, and the apparatus can only listen in on one bandwidth at a time. Theoretical models beyond the Standard Model point to a WIMP of mass 100 gigaelectronvolts (GeV) or greater, a range DEAP is uniquely capable of investigating.

    Essentially, the detector provides a small sphere of space where collision events between WIMPs and the nuclei of argon atoms can be quietly recorded. Inactive argon, which undergoes no radioactive decay unless perturbed, is the perfect target for incoming dark matter particles; situating the argon sphere 2070 meters below Earth’s surface only heightens DEAP’s senses, eliminating the white noise of WIMP-like cosmic rays and muons. With a sufficiently large detector space and a sufficiently sensitive detection apparatus, there’s a chance that we’ll bear witness to the first WIMP ever observed as it glances off an argon atom.

    DEAP-3600 takes a long, hard listen; silence.

    The DEAP team’s first results have surfaced: a new paper published by the group on August 1st, 2017 describes preliminary results from the experiment, and conclusions gleaned from just four and a half days of data-taking immediately following the completion of the detector system in August 2016. The paper details an extremely sensitive system, and a similarly sensitive, high-performance mathematical model for discriminating between the energy signals of WIMPs of different masses near the 100 GeV range.

    The experiment didn’t observe any dark matter-argon collisions during its initial monitoring period, but this absence of signal is itself a telling sign. While the number of potential WIMP-argon collisions is as large as the diversity of WIMP masses, it is finite – by ruling out different masses of WIMPs, Giampa and the DEAP team are honing in on the mass of the WIMP that may interact with an argon nucleus.

    Finding such a particle would be a boon for the field of particle physics. While WIMPS were chosen because they fit snugly into current theoretical models as potential dark matter particles, their discovery would have vast ramifications that extend beyond our current understanding of particle physics. Our entire concept of the universe would undergo a dramatic, tectonic shift.

    With this lofty goal as their north star, the DEAP team (including TRIUMF scientists Pierre-Andre Amadruz, Ben Smith, Thomas Lidner, and TRIUMF team leader Fabrice Retiere) will continue their search, re-calibrating and tuning into different bandwidths of potential collisions. Further data-taking has been ongoing since August 2016, and it’s possible that more results will surface soon.

    “We’re very excited to have proven the precision and sensitivity of the detector apparatus. While we’re but one of the many experiments around the world investigating the identity of dark matter, we can’t help but think that we are now one step closer to making this remarkable discovery.” – Dr. Pietro Giampa

    To keep tabs on the DEAP team or to learn more about the experiment, visit: http://deap3600.ca/

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    Triumf Campus
    Triumf Campus
    World Class Science at Triumf Lab, British Columbia, Canada
    Canada’s national laboratory for particle and nuclear physics
    Member Universities:
    University of Alberta, University of British Columbia, Carleton University, University of Guelph, University of Manitoba, Université de Montréal, Simon Fraser University,
    Queen’s University, University of Toronto, University of Victoria, York University. Not too shabby, eh?

    Associate Members:
    University of Calgary, McMaster University, University of Northern British Columbia, University of Regina, Saint Mary’s University, University of Winnipeg, How bad is that !!

  • richardmitnick 3:28 pm on February 28, 2017 Permalink | Reply
    Tags: , , PICO collaboration, SNOLAB   

    From FNAL: “New world-leading limit on dark matter search from PICO experiment” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    February 27, 2017
    Andre Salles
    Fermilab Office of Communication

    Editor’s note: The PICO-60 detector was originally called “COUPP-60,” with COUPP standing for “Chicagoland Observatory for Underground Particle Physics.” It was designed and built by Fermilab in collaboration with the University of Chicago and Indiana University, South Bend. Work began at Fermilab in 2005, and, after extensive testing, the detector was moved to SNOLAB in 2012.

    A team of Fermilab scientists installs the PICO-60 dark matter detector at SNOLAB. Photo: Fermilab

    “We’ve been working on this for a long time,” said Fermilab’s project manager Andrew Sonnenschein of the below result. “This is by far our most satisfying result yet, because the techniques we used to reject background events from sources other than dark matter worked flawlessly. Bubble chambers are finally living up to their full potential as dark matter detectors. Now the dark matter just needs to show up.”

    Read the original SNOLAB press release on the SNOLAB website.

    The PICO Collaboration is excited to announce that the PICO-60 dark matter bubble chamber experiment has produced a new dark matter limit after analysis of data from the most recent run. This new result is a factor of 17 improvement in the limit for spin-dependent WIMP-proton cross-section over the already world-leading limits from PICO-2L run-2 and PICO-60 CF3I run-1 in 2016.

    The PICO-60 experiment is currently the world’s largest bubble chamber in operation; it is filled with 45 Liters of C3F8 (octafluoropropane) and is taking data in the ladder lab area of SNOLAB. The detector uses the target fluid in a superheated state such that a dark matter particle interaction with a fluorine nucleus causes the fluid to boil and creates a tell tale bubble in the chamber.

    The PICO experiment uses digital cameras to see the bubbles and acoustic pickups to improve the ability to distinguish between dark matter particles and other sources when analysing the data.

    The superheated detector technology has been at the forefront of spin-dependent (SD) searches, using various refrigerant targets including CF3I, C4F10 and C2ClF5, and two primary types of detectors: bubble chambers and droplet detectors. PICO is the leading experiment in the direct detection of dark matter for spin-dependent couplings and is developing a much larger version of the experiment with up to 500 kg of active mass.

    Inside the PICO-60 detector, installed at SNOLAB in Sudbury, Ontario. Photo: SNOLAB

    About PICO

    17 participating institutions: University of Alberta; University of Chicago; Czech Technical University; Fermilab; Indiana University South Bend; Kavli Institute for Cosmological Physics; Laurentian University; Université de Montréal; Northeastern Illinois University (NEIU); Northwestern University; Universidad Nacional Autonoma de Mexico; Pacific Northwest National Laboratory; Queen’s University at Kingston; Saha Institute of Nuclear Physics, India; SNOLAB; Universitat Politecnica de Valencia; Virginia Tech.

    The PICO Collaboration (formed from the merger of two existing groups, PICASSO and COUPP) uses bubble chambers and superheated fluid to search for dark matter. The PICO-60 detector consists of a fused-silica jar sealed to flexible, stainless steel bellows, all immersed in a pressure vessel filled with hydraulic fluid. Eight lead zirconate (PZT) piezoelectric acoustic transducers mounted to the exterior of the bell jar record the acoustic emissions from bubble nucleation and four 2-megapixel resolution fast CMOS cameras are used to photograph the chamber. The PICO-60 detector was built at Fermilab in Batavia, IL and installed underground at SNOLAB in 2012.

    The PICO bubble chambers are made insensitive to electromagnetic interactions by tuning the operating temperatures of the experiment, while the alpha decays are discriminated from dark matter interactions by their sound signal, making these detectors very powerful tools in the search for dark matter.

    PICO is operating two detectors deep underground at SNOLAB: PICO-60, a bubble chamber with 52 kg of C3F8 and PICO-2L, another bubble chamber with 2.9 kg of C3F8.

    The paper is available on the arXiv.

    About SNOLAB

    SNOLAB is Canada’s leading edge astroparticle physics research facility located 2 km (6800 ft) underground in the Vale Creighton Mine. The SNOLAB facility was created by an expansion of the underground research areas next to the highly successful Sudbury Neutrino Observatory (SNO) experiment. The entire laboratory is operated as an ultra-clean space to limit local radioactivity. With greater depth and cleanliness than any other international laboratory, it has the lowest background from cosmic rays providing an ideal location for measurements of rare processes that would be otherwise unobservable.

    Learn more

    PICO website


    For more information, please contact:
    Samantha Kuula
    Communications officer, SNOLAB
    Phone: 705-692-7000 ext. 2222
    Email: Samantha.Kuula@snolab.ca
    Website: http://www.snolab.ca

    French language contact:
    Guillaume Giroux
    Postdoctoral fellow, Queen’s University
    Email: ggiroux@owl.phy.queensu.ca
    Phone: 613-533-6000 ext. 79203

    U.S. contact:
    Andrew Sonnenschein
    Project manager, PICO-60
    Fermi National Accelerator Laboratory
    Email: sonnensn@fnal.gov
    Phone: 630-840-2883

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

  • richardmitnick 4:55 pm on February 16, 2017 Permalink | Reply
    Tags: , Dark Matter Physics, SNOLAB   

    From CERN Courier: “Funding injection for SNOLAB” 

    CERN Courier

    DEAP-3600 detector at SNOLAB

    The SNOLAB laboratory in Ontario, Canada, has received a grant of $28.6m to help secure its next three years of operations. The facility is one of 17 research facilities to receive support through Canada’s Major Science Initiative (MSI) fund, which exists to secure state-of-the-art national research facilities.

    SNOLAB, which is located in a mine 2 km beneath the surface, specialises in neutrino and dark-matter physics and claims to be the deepest cleanroom facility in the world. Current experiments located there include: PICO and DEAP-3600, which search for dark matter using bubble-chamber and liquid-argon technology, respectively; EXO, which aims to measure the mass and nature of the neutrino; HALO, designed to detect supernovae; and a new neutrino experiment SNO+ based on the existing SNO detector.

    EXO. U. MD

    The new funds will be used to employ the 96-strong SNOLAB staff and support the operations and maintenance of the lab’s facilities.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition



    CERN CMS New

    CERN LHCb New II


    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

  • richardmitnick 1:48 pm on May 2, 2013 Permalink | Reply
    Tags: , , , SNOLAB   

    From Fermilab: “New dark matter detector begins search for invisible particles” 

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    May 2, 2013
    Science contacts:
    Hugh Lippincott, Fermilab, 609-558-6313, hugh@fnal.gov .
    Juan Collar, University of Chicago, 773-702-4253, collar@uchicago.edu

    “Scientists this week heard their first pops in an experiment that searches for signs of dark matter in the form of tiny bubbles.

    This is an image of the first particle interactions seen in the COUPP-60 detector, located half a mile underground at SNOLAB in Ontario, Canada. Photo: SNOLAB

    Scientists will need further analysis to discern whether dark matter caused any of the COUPP-60 experiment’s first bubbles.

    ‘Our goal is to make the most sensitive detector to see signals of particles that we don’t understand,’ said Hugh Lippincott, a postdoc with the Department of Energy’s Fermi National Accelerator Laboratory who has spent much of the past several months leading the installation of the one-of-a-kind detector in a laboratory a mile and a half underground.

    COUPP-60 is a dark-matter experiment funded by DOE’s Office of Science. Fermilab managed the assembly and installation of the experiment’s detector.

    The COUPP-60 detector is a jar filled with purified water and CF3I—an ingredient found in fire extinguishers. The liquid in the detector is kept at a temperature and pressure slightly above the boiling point, but it requires an extra bit of energy to actually form a bubble. When a passing particle enters the detector and disturbs an atom in the clear liquid, it provides that energy.

    Dark-matter particles, which scientists think rarely interact with other matter, should form individual bubbles in the COUPP-60 tank.

    ‘The events are so rare, we’re looking for a couple of events per year,’ Lippincott said.”

    See the full article here.

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.

    ScienceSprings is powered by MAINGEAR computers

  • richardmitnick 1:46 pm on December 12, 2012 Permalink | Reply
    Tags: , , , SNOLAB   

    From Fermilab: “Going deep for detector R&D” 

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Wednesday, Dec. 12, 2012

    Erik Ramberg, assistant head for detector research, wrote this column

    “Sometimes you have to go to the ends of the Earth to get what you need. Last week for one Fermilab project this saying was more literal than figurative. The DAMIC (Dark Matter In CCDs) experiment saw a very successful culmination of several years of detector research.

    The latest episode for the DAMIC experiment played out in one of the more exotic laboratories in the world: the Sudbury Neutrino Observatory Lab [SNOLAB], located 6,800 feet underground in an active nickel mine in Ontario, Canada. This laboratory provides the right conditions for DAMIC and other dark-matter experiments. The extreme depth filters out cosmic rays, which could mimic dark matter interactions, and the highly specialized SNOLAB crew keeps the laboratory in clean-room conditions…”


    “…DAMIC uses charged coupled devices—the CCDs that have been used for many years in digital cameras. But these are not your average CCDs. They are the high-tech ones also used in the Dark Energy Camera [DECam], which Fermilab installed on the Blanco telescope in Chile. The detectors were developed and fabricated at Berkeley Lab and were tested and installed in the camera here at Fermilab…”

    view of the DECam, also showing the arrangement of the CCD array (CTIO)

    See the full article here.

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.

    ScienceSprings is powered by MAINGEAR computers

  • richardmitnick 10:39 am on May 22, 2012 Permalink | Reply
    Tags: , , , SNOLAB   

    From Fermilab Today: “SNOLAB inauguration” 

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Director’s Corner

    Fermilab Director Pier Oddone

    Tuesday, May 22, 2012
    “Last week I attended the inauguration of SNOLAB. This underground facility in Ontario, Canada has been used now for more than two decades, starting with the enormously successful Sudbury Neutrino Observatory.

    We at Fermilab have several dark-matter experiments either running or planned to be located at SNOLAB. The COUPP 4-kilogram bubble chamber has been operating for more than a year. We will commission the next device, a 60-kilogram chamber, later this year. Assuming all goes well with the 60-kilogram chamber, we are planning for a 500-kilogram chamber. The Cryogenic Dark Matter Search (CDMS), currently running with 10 kilograms of germanium detectors in the Soudan mine in Minnesota, is seeking support from the DOE and NSF to install 100 kilograms of cryogenic germanium detectors at SNOLAB. CDMS will also compete with other dark-matter proposals in the Generation 2 (G2) funding competition next year. We will soon move the DAMIC prototype detector to SNOLAB. DAMIC uses very low-noise CCDs to detect dark-matter particles with a very low threshold, which makes it sensitive to much lighter dark-matter particles than other current experimental technologies.”

    See the Director’s full article here.

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: