Tagged: SLAC LCLS Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:58 pm on July 19, 2017 Permalink | Reply
    Tags: , , New Droplet-on-Tape Method Assists Biochemical Research at X-Ray Lasers, , SLAC LCLS,   

    From SLAC: “New Droplet-on-Tape Method Assists Biochemical Research at X-Ray Lasers” 


    SLAC Lab

    February 27, 2017 [Never saw this one before]

    1
    Acoustic droplet ejection allows scientists to deposit nanoliters of sample directly into the X-ray beam, considerably increasing the efficiency of sample consumption. A femtosecond pulse from an X-ray free-electron laser then intersects with a droplet that contains protein crystals. (SLAC National Accelerator Laboratory)

    SLAC/LCLS

    2
    As the drops move forward, they are hit with pulses of visible light or treated with oxygen gas, which triggers different chemical reactions depending on the sample studied. (SLAC National Accelerator Laboratory)

    Biological samples studied with intense X-rays at free-electron lasers are destroyed within nanoseconds after they are exposed. Because of this, the samples need to be continually refreshed to allow the many images needed for an experiment to be obtained. Conventional methods use jets that supply a continuous stream of samples, but this can be very wasteful as the X-rays only interact with a tiny fraction of the injected material.

    To help address this issue, scientists at the Department of Energy’s Lawrence Berkeley National Laboratory, SLAC National Accelerator Laboratory, Brookhaven National Laboratory, and other institutes designed a new assembly-line system that rapidly replaces exposed samples by moving droplets along a miniature conveyor belt, timed to coincide with the arrival of the X-ray pulses.

    The droplet-on-tape system now allows the team to study the biochemical reactions in real-time from microseconds to seconds, revealing the stages of these complex reactions.

    In their approach, protein solution or crystals are precisely deposited in tiny liquid drops, made as ultrasound waves push the liquid onto a moving tape. As the drops move forward, they are hit with pulses of visible light or treated with oxygen gas, which triggers different chemical reactions depending on the sample studied. This allows the study of processes such as photosynthesis, which determines how plants absorb light from the sun and convert it into useable energy.

    Finally, powerful X-ray pulses from SLAC’s X-ray laser, the Linac Coherent Light Source (LCLS), probe the drops. In this study published in Nature Methods, the X-ray light scattered from the sample onto two different detectors simultaneously, one for X-ray crystallography and the other for X-ray emission spectroscopy. These are two complementary methods that provide information about the geometric and electronic structure of the catalytic sites of the proteins and allowed them to watch with atomic precision how the protein structures changed during the reaction.

    Below, see the conveyor belt in action at LCLS, a Department of Energy Office of Science User Facility.

    3
    Droplet-on-tape conveyor belt system delivers samples at the Linac Coherent Light Source (LCLS). (SLAC National Accelerator Laboratory)

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.
    i1

     
  • richardmitnick 9:24 am on July 13, 2017 Permalink | Reply
    Tags: , extraterrestrial ice can form in just billionths of a second, , , SLAC LCLS, Stanford scientists discover how dense, ,   

    From Stanford: “Stanford scientists discover how dense, extraterrestrial ice can form in just billionths of a second” 

    Stanford University Name
    Stanford University

    July 12, 2017
    Adam Hadhazy

    1
    At the Linac Coherent Light Source, Stanford scientists used the world’s most powerful X-ray laser to create an extraterrestrial form of ice. (Image credit: Brad Plummer).

    Stanford researchers have for the first time captured the freezing of water, molecule-by-molecule, into a strange, dense form called ice VII (“ice seven”), found naturally in otherworldly environments, such as when icy planetary bodies collide.

    In addition to helping scientists better understand those remote worlds, the findings – published online July 11 in Physical Review Letters – could reveal how water and other substances undergo transitions from liquids to solids. Learning to manipulate those transitions might open the way someday to engineering materials with exotic new properties.

    “These experiments with water are the first of their kind, allowing us to witness a fundamental disorder-to-order transition in one of the most abundant molecules in the universe,” said study lead author Arianna Gleason, a postdoctoral fellow at Los Alamos National Laboratory and a visiting scientist in the Extreme Environments Laboratory of Stanford’s School of Earth, Energy & Environmental Sciences.

    Scientists have long studied how materials undergo phase changes between gas, liquid and solid states. Phase changes can happen rapidly, however, and on the tiny scale of mere atoms. Previous research has struggled to capture the moment-to-moment action of phase transitions, and instead worked backward from stable solids in piecing together the molecular steps taken by predecessor liquids.

    “There have been a tremendous number of studies on ice because everyone wants to understand its behavior,” said study senior author Wendy Mao, an associate professor of geological sciences and a Stanford Institute for Materials and Energy Sciences (SIMES) principal investigator. “What our new study demonstrates, and which hasn’t been done before, is the ability to see the ice structure form in real time.”

    Catching ice in the act

    Those timescales became achievable thanks to the Linac Coherent Light Source, the world’s most powerful X-ray laser located at the nearby SLAC National Accelerator Laboratory. There, the science team beamed an intense, green-colored laser at a small target containing a sample of liquid water. The laser instantly vaporized layers of diamond on one side of the target, generating a rocket-like force that compressed the water to pressures exceeding 50,000 times that of Earth’s atmosphere at sea level.

    As the water compacted, a separate beam from an instrument called the X-ray Free Electron Laser arrived in a series of bright pulses only a femtosecond, or a quadrillionth of a second, long. Akin to camera flashes, this strobing X-ray laser snapped a set of images revealing the progression of molecular changes, flip book–style, while the pressurized water crystallized into ice VII. The phase change took just 6 billionths of a second, or nanoseconds. Surprisingly, during this process, the water molecules bonded into rod shapes, and not spheres as theory predicted.

    The platform developed for this study – combining high pressure with snapshot images – could help researchers probe the myriad ways water freezes, depending on pressure and temperature. Under the conditions on our planet’s surface, water crystallizes in only one way, dubbed ice Ih (“ice one-H”) or simply “hexagonal ice,” whether in glaciers or ice cube trays in the freezer.

    Delving into extraterrestrial ice types, including ice VII, will help scientists model such remote environments as comet impacts, the internal structures of potentially life-supporting, water-filled moons like Jupiter’s Europa, and the dynamics of jumbo, rocky, oceanic exoplanets called super-Earths.

    “Any icy satellite or planetary interior is intimately connected to the object’s surface,” Gleason said. “Learning about these icy interiors will help us understand how the worlds in our solar system formed and how at least one of them, so far as we know, came to have all the necessary characteristics for life.”

    Other co-authors on the study include Cindy Bolme of Los Alamos National Laboratory; Eric Galtier, Hae Ja Lee and Eduardo Granados of the SLAC National Accelerator Laboratory; Dan Dolan, Chris Seagle and Tom Ao of Sandia National Laboratories; and Suzanne Ali, Amy Lazicki, Damian Swift and Peter Celliers of Lawrence Livermore National Laboratory.

    Funding was provided by the National Science Foundation, the Los Alamos National Laboratory, the U.S. Department of Energy Office of Science, Fusion Energy Science and the SLAC National Accelerator Laboratory.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 8:17 am on July 7, 2017 Permalink | Reply
    Tags: , , , , , Scientists Get First Direct Look at How Electrons ‘Dance’ with Vibrating Atoms, SLAC LCLS   

    From SLAC: “Scientists Get First Direct Look at How Electrons ‘Dance’ with Vibrating Atoms” 


    SLAC Lab

    July 6, 2017
    No writer credit

    A precise new way to study materials shows this ‘electron-phonon coupling’ can be far stronger than predicted, and could potentially play a role in unconventional superconductivity.

    1
    In this illustration, an infrared laser beam (orange) triggers atomic vibrations in a thin layer of iron selenide, which are then recorded by ultrafast X-ray laser pulses (white) to create an ultrafast movie. The motion of the selenium atoms (red) changes the energy of the electron orbitals of the iron atoms (blue), and the resulting electron vibrations are recorded separately with a technique called ARPES (not shown). The coupling of atomic positions and electronic energies is much stronger than previously thought and may significantly impact the material’s superconductivity. (Greg Stewart/SLAC National Accelerator Laboratory)

    Scientists at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University have made the first direct measurements, and by far the most precise ones, of how electrons move in sync with atomic vibrations rippling through an exotic material, as if they were dancing to the same beat.

    The vibrations are called phonons, and the electron-phonon coupling the researchers measured was 10 times stronger than theory had predicted – making it strong enough to potentially play a role in unconventional superconductivity, which allows materials to conduct electricity with no loss at unexpectedly high temperatures.

    What’s more, the approach they developed gives scientists a completely new and direct way to study a wide range of “emergent” materials whose surprising properties emerge from the collective behavior of fundamental particles, such as electrons. The new approach investigates these materials through experiments alone, rather than relying on assumptions based on theory.

    The experiments were carried out with SLAC’s Linac Coherent Light Source (LCLS) X-ray free-electron laser and with a technique called angle-resolved photoemission spectroscopy (ARPES) on the Stanford campus. The researchers described the study today in Science.

    SLAC/LCLS

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.
    i1

     
  • richardmitnick 8:22 am on June 23, 2017 Permalink | Reply
    Tags: , , , How a Single Chemical Bond Balances Cells Between Life and Death, Protein cytochrome c, SLAC LCLS, , ,   

    From SLAC: “How a Single Chemical Bond Balances Cells Between Life and Death” 


    SLAC Lab

    June 22, 2017
    Amanda Solliday

    1
    An optical laser (green) excites the iron-containing active site of the protein cytochrome c, and then an X-ray laser (white) probes the iron a few femtoseconds to picoseconds later. The critical iron-sulfur bond is broken as the optical laser heats the protein, and rebinds as the system cools. (Greg Stewart/SLAC National Accelerator Laboratory)

    Slight changes in the machinery of a cell determine whether it lives or begins a natural process known as programmed cell death. In many forms of life—from bacteria to humans—a single chemical bond in a protein called cytochrome c can make this call. As long as the bond is intact, the protein transfers electrons needed to produce energy through respiration. When the bond breaks, the protein switches gear and triggers the breakdown of mitochondria, the structures that power the cell’s activities.

    For the first time, scientists have measured exactly how much energy cytochrome c puts into maintaining that bond in a state where it’s strong enough to endure, but easy enough to break when the cell’s life span is ending.

    They used intense X-rays from two facilities, the Linac Coherent Light Source (LCLS) X-ray free-electron laser and the Stanford Synchrotron Radiation Lightsource (SSRL) at the Department of Energy’s SLAC National Accelerator Laboratory.

    SLAC/LCLS

    SLAC/SSRL

    The collaboration, led by Edward Solomon, professor of chemistry at Stanford University and of photon science at SLAC, published their results today in Science.

    “This is a very general yet extremely important process in biochemistry, and with an X-ray laser we now have insight into how this regulation works,” says Roberto Alonso-Mori, LCLS staff scientist and a co-author of the study. “These are processes that are going on a million-fold in our bodies and everywhere there is life.”

    The study marks the first time that anyone has been able to experimentally quantify how the rigid structure of the cytochrome c molecule supports this crucial bond between iron and sulfur atoms in what’s known as an entatic state, where the protein maintains a bond that is just strong enough to perform both of its jobs, says Michael Mara, lead author of the study and a former postdoctoral researcher at Stanford University, now at University of California, Berkeley.

    “This was important because we had shown the bond is weak and shouldn’t be present at room temperature in the absence of the protein constraints,” says Solomon. “But the protein is able to contribute energy to keep this bond intact for electron transfer. In this LCLS experiment, we determined exactly how much energy the rest of the protein contributes to maintaining the bond: about 4 kcal/mol that is derived from an adjacent hydrogen bond network.”

    “We were able to show how nature tunes this system to change the properties on a fundamental level and perform two very different functions,” Mara says. “The energy contribution by cytochrome c is really at a sweet spot. It makes me wonder what sort of similar effects you might see in other protein systems, and it makes us realize that there is exciting new science on the horizon.”

    Ultrafast Changes

    Cytochrome c is present in a wide range of life forms and contributes to both cellular respiration and programmed cell death, the pathway to the natural end of a cell’s life cycle. How exactly the state of the bond relates to these two functions had not yet been demonstrated or quantified.

    Scientists knew from earlier studies that a particular iron-sulfur bond is key. When iron in the protein binds to sulfur contained in one of the protein’s amino-acid building blocks, cytochrome c participates in electron transfer. By transferring electrons, the protein helps generate energy needed for biological processes that maintain life.

    But when cytochrome c encounters cardiolipin, a lipid present in the membrane of the cell’s mitochondria, the iron-sulfur bond breaks, and the protein becomes an enzyme that creates holes in the mitochondria’s outer membrane – the first step in programmed cell death.

    These changes occur incredibly fast, in less than 20 picoseconds, so the experiment required ultrafast pulses of X-rays generated by LCLS to take snapshots of the process.

    “We photoexcited the iron atoms in the protein’s active site—which contains an iron-rich compound known as heme—with an ultrafast laser before probing it with the LCLS X-ray pulses at different time delays,” says Alonso-Mori.

    Each 50-femtosecond laser pulse heated the heme by a couple of hundred degrees. X-ray pulses from LCLS took images of what happened as the heat traveled from the iron to other parts of the protein. After 100 femtoseconds, the iron-sulfur bond would break, only to form again once the sample cooled. Watching this process allowed the scientists to measure energy fluctuations in real time and better understand how this critical bond forms and breaks.

    “The entatic state concept is really interesting, but you have to come up with creative ways to demonstrate and quantify it,” says Ryan Hadt, a former Stanford University doctoral student on an Enrico Fermi Fellowship at Argonne National Laboratory who together with his advisor, Professor Solomon, came up with the idea for the experiment and co-wrote the initial proposal around the time LCLS first came online in 2009.

    “Our research group was excited about this new instrument and wanted to use it to do a definitive experiment,” Hadt adds.

    A Question Raised by Earlier Work

    This experiment builds on an earlier study [JACS] conducted at SSRL that found that the iron-sulfur bond was quite weak, says Thomas Kroll, staff scientist at SSRL and lead author of this prior study.

    In the latest study, spectroscopy at SSRL also built the framework for the LCLS pump-probe experiment. It allowed the scientists to compare what the molecule originally looked like to how it changed when the temperature rose.

    “It’s important to understand how these proteins actually work,” Kroll says. “Because if you don’t understand how they work, how can we create better medicines in an informed and controlled way?”

    Knowledge of cytochrome c’s function is also valuable to the fields of bioenergy and environmental science, since it is a critically important protein in bacteria and plants.

    The DOE Office of Science and the National Institute of General Medical Sciences of the National Institutes of Health supported this research. The Structural Molecular Biology program at SSRL is funded by DOE Office of Science and the National Institutes of Health, National Institute of General Medical Sciences. LCLS and SSRL are DOE Office of Science User Facilities.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.
    i1

     
  • richardmitnick 8:06 am on June 23, 2017 Permalink | Reply
    Tags: A Single Electron’s Tiny Leap Sets Off ‘Molecular Sunscreen’ Response, , , , , , SLAC LCLS,   

    From SLAC: “A Single Electron’s Tiny Leap Sets Off ‘Molecular Sunscreen’ Response” 


    SLAC Lab

    June 22, 2017
    Glennda Chui

    1
    Thymine – the molecule illustrated in the foreground – is one of the four basic building blocks that make up the double helix of DNA. It’s such a strong absorber of ultraviolet light that the UV in sunlight should deactivate it, yet this does not happen. Researchers used an X-ray laser at SLAC National Accelerator Laboratory to observe the infinitesimal leap of a single electron that sets off a protective response in thymine molecules, allowing them to shake off UV damage. (Greg Stewart/SLAC National Accelerator Laboratory)

    In experiments at the Department of Energy’s SLAC National Accelerator Laboratory, scientists were able to see the first step of a process that protects a DNA building block called thymine from sun damage: When it’s hit with ultraviolet light, a single electron jumps into a slightly higher orbit around the nucleus of a single oxygen atom.

    This infinitesimal leap sets off a response that stretches one of thymine’s chemical bonds and snaps it back into place, creating vibrations that harmlessly dissipate the energy of incoming ultraviolet light so it doesn’t cause mutations.

    The technique used to observe this tiny switch-flip at SLAC’s Linac Coherent Light Source (LCLS) X-ray free-electron laser can be applied to almost any organic molecule that responds to light – whether that light is a good thing, as in photosynthesis or human vision, or a bad thing, as in skin cancer, the scientists said. They described the study in Nature Communications today.

    SLAC/LCLS

    “All of these light-sensitive organic molecules tend to absorb light in the ultraviolet. That’s not only why you get sunburn, but it’s also why your plastic eyeglass lenses offer some UV protection,” said Phil Bucksbaum, a professor at SLAC and Stanford University and director of the Stanford PULSE Institute at SLAC. “You can even see these effects in plastic lawn furniture – after a couple of seasons it can become brittle and discolored simply due to the fact that the plastic was absorbing ultraviolet light all the time, and the way it absorbs sun results in damage to its chemical bonds.”

    Catching Electrons in Action

    Thymine and the other three DNA building blocks also strongly absorb ultraviolet light, which can trigger mutations and skin cancer, yet these molecules seem to get by with minimal damage. In 2014, a team led by Markus Guehr ­– then a SLAC senior staff scientist and now on the faculty of the University of Potsdam in Germany – reported that they had found the answer: The stretch-snap of a single bond and resulting energy-dissipating vibrations, which took place within 200 femtoseconds, or millionths of a billionth of a second after UV light exposure.

    But what made the bond stretch? The team knew the answer had to involve electrons, which are responsible for forming, changing and breaking bonds between atoms. So they devised an ingenious way to catch the specific electron movements that trigger the protective response.

    It relied on the fact that electrons don’t orbit an atom’s nucleus in neat concentric circles, like planets orbiting a sun, but rather in fuzzy clouds that take a different shape depending on how far they are from the nucleus. Some of these orbitals are in fact like a fuzzy sphere; others look a little like barbells or the start of a balloon animal. You can see examples here.

    2
    No image caption or credit, but there is a comment,
    “I see the distribution in different orbitals. So if for example I take the S orbitals, they are all just a sphere. So wont the 2S orbital overlap with the 1S overlap, making the electrons in each orbital “meet” at some point? Or have I misunderstood something?”

    Strong Signal Could Solve Long-Standing Debate

    For this new experiment, the scientists hit thymine molecules with a pulse of UV laser light and tuned the energy of the LCLS X-ray laser pulses so they would home in on the response of the oxygen atom that’s at one end of the stretching, snapping bond.

    The energy from the UV light excited one of the atom’s electrons to jump into a higher orbital. This left the atom in a sort of tippy state where just a little more energy would boost a second electron into a higher orbital; and that second jump is what sets off the protective response, changing the shape of the molecule just enough to stretch the bond.

    The first jump, which was previously known to happen, is difficult to detect because the electron winds up in a rather diffuse orbital cloud, Guehr said. But the second, which had never been observed before, was much easier to spot because that electron ended up in an orbital with a distinctive shape that gave off a big signal.

    “Although this was a very tiny electron movement, the signal kind of jumped out at us in the experiment,” Guehr said. “I always had a feeling this would be a strong transition, just intuitively, but when we saw this come in it was a special moment, one of the best moments an experimentalist can have.”

    Settling a Longstanding Debate

    Study lead author Thomas Wolf, an associate staff scientist at SLAC, said the results should settle a longstanding debate about how long after UV exposure the protective response kicks in: It happens 60 femtoseconds after UV light hits. This time span is important, he said, because the longer the atom spends in the tippy state between the first jump and the second, the more likely it is to undergo some sort of reaction that could damage the molecule.

    Henrik Koch, a theorist at NTNU in Norway who was a guest professor at Stanford at the time, led the study with Guehr. He led the effort to model, understand and interpret what happened in the experiment, and he participated in it to an unusual extent, Guehr said.

    “He is extremely experienced in applying theory to methodology development, and he had this curiosity to bring this to our experiment,” Guehr said. “He was so fascinated by this research that he did something completely untypical of a theorist – he came to LCLS, into the control room, and he wanted to see the data coming in. I found that completely amazing and very motivating. It turned out that some of my previous thinking was completely right but other aspects were completely wrong, and Henrik did the right theory at the right level so we could learn from it.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.
    i1

     
  • richardmitnick 5:09 pm on June 20, 2017 Permalink | Reply
    Tags: , , In order to use the limited beam time and the precious sample material more efficiently the team developed a new method., Micro-patterned chip containing thousands of tiny pores to hold the protein crystals, SLAC LCLS, Speed up protein analysis, Structural biology, , X-ray free-electron laser,   

    From SLAC: “SLAC Experiment is First to Decipher Atomic Structure of an Intact Virus with an X-ray Laser” 


    SLAC Lab

    June 20, 2017

    1
    Surface structure of the bovine enterovirus 2. The three virus proteins are color-coded. (Jingshan Ren/University of Oxford)

    A ground-breaking experimental method developed by an international research team will substantially speed up protein analysis.

    An international team of scientists has for the first time used an X-ray free-electron laser to unravel the structure of an intact virus particle on the atomic level. The method dramatically reduces the amount of virus material required, while also allowing the investigations to be carried out several times faster than before. This opens up entirely new research opportunities, as the research team led by Alke Meents, a scientist at Germany’s DESY lab, reports in the journal Nature Methods.

    The researchers tested their method with the Linac Coherent Light Source (LCLS) X-ray free-electron laser at the Department of Energy’s SLAC National Accelerator Laboratory. Now they are working to increase the capacity and speed of the technique in anticipation of future experiments at the European XFEL X-ray free-electron laser, which is just going into operation near Hamburg, Germany.

    SLAC/LCLS

    European XFEL

    “This is a much-welcome and important technological development that will greatly optimize data collection at LCLS and other X-ray free-electron lasers for certain classes of challenging experiments,” says co-author Roberto Alonso Mori, a staff scientist in the LCLS hard X-ray group. “The same technology could be used not only for biological science but could also help data collection in other areas.”

    2
    Micrograph of the microstructured chip, loaded with crystals for the investigation. Each square is a tiny crystal. (Philip Roedig/DESY)

    A Well-Rounded View of Life

    In the field known as structural biology, scientists examine the three-dimensional structure of biological molecules in order to work out how they function. This knowledge enhances our understanding of fundamental biological processes, such as the way substances are transported in and out of a cell, and can also inform drug development.

    “Knowing the three-dimensional structure of a molecule like a protein gives great insight into its biological behaviour,” explains co-author David Stuart, director of life sciences at the Diamond Light Source synchrotron facility in the United Kingdom and a professor at the University of Oxford. “One example is how understanding the structure of a protein that a virus uses to ‘hook’ onto a cell could mean that we’re able to design a defense for the cell to make the virus incapable of attacking it.”

    X-ray crystallography is by far the most prolific tool used by structural biologists and has already been used to determine the structure of thousands of biological molecules. Tiny crystals of the protein of interest are grown, and then illuminated using high-energy X-rays. The crystals diffract the X-rays in characteristic ways so that the resulting diffraction patterns can be used to deduce the spatial structure of the crystal – and hence of its components – on the atomic scale. However, protein crystals are nowhere near as stable and sturdy as salt crystals, for example. They are difficult to grow, often remaining tiny, and are easily damaged by the X-rays.

    “X-ray lasers have opened up a new path to protein crystallography, because their extremely intense pulses can be used to analyse even extremely tiny crystals that would not produce a sufficiently bright diffraction image using other X-ray sources,” says co-author Armin Wagner from Diamond Light Source. However, each of these microcrystals can only produce a single diffraction image before it evaporates as a result of the X-ray pulse. To perform the structural analysis, though, hundreds or even thousands of diffraction images are needed. In such experiments, scientists therefore inject a fine liquid jet of protein crystals through an X-ray laser beam that pulses in a rapid sequence of extremely short bursts. Each time an X-ray pulse happens to strike a microcrystal, a diffraction image is produced and recorded.

    This method is very successful and has already been used to determine the structure of more than 80 biomolecules, the researchers point out in their paper. However, most of the sample material is wasted. “The hit rate is typically less than 2 percent of pulses, so most of the precious microcrystals end up unused in the collection container,” says Meents, who is based at the Center for Free-Electron Laser Science (CFEL) in Hamburg, a cooperation of DESY, the University of Hamburg and the German Max Planck Society. The standard method therefore typically requires several hours of beam time and significant amounts of sample material.

    Protein Crystals on a Chip

    In order to use the limited beam time and the precious sample material more efficiently, the team developed a new method. The scientists use a micro-patterned chip containing thousands of tiny pores to hold the protein crystals. The X-ray laser then scans the chip line by line, and ideally this allows a diffraction image to be recorded for each pulse of the laser.

    The research team tested its method on two virus samples using SLAC’s LCLS X-ray laser, which produces 120 pulses per second. They loaded their sample holder with a small amount of microcrystals of the bovine enterovirus 2 (BEV2), a virus that causes miscarriages, stillbirths and infertility in cattle, and which is very difficult to crystallise.

    In this experiment, the scientists achieved a hit rate – where the X-ray laser successfully targeted the crystal – of up to 9 percent, five times the hit rate of the previous method. Within just 14 minutes they had collected enough data to determine the correct structure of the virus – which was already known from other experiments – down to a scale of 2.3 angstroms.

    “To the best of our knowledge, this is the first time the atomic structure of an intact virus particle has been determined using an X-ray laser,” Meents says. “Whereas earlier methods at other X-ray light sources required crystals with a total volume of 3.5 nanoliters, or billionths of a liter, we managed using crystals that were more than 10 times smaller, having a total volume of just 0.23 nanoliters.”

    This experiment was conducted at room temperature; while rapidly cooling the protein crystals would protect them to some extent from radiation damage, this is not generally feasible when working with extremely sensitive virus crystals. Crystals of isolated virus proteins can, however, be frozen and in a second test, the researchers studied a viral protein called polyhedrin that makes up a viral occlusion body — a container used by certain virus species to protect up to several thousand virus particles at a time against environmental influences so they can remain intact much longer.

    From Room Temperature to a Deep Chill

    For the second test, the scientist loaded their chip with polyhedrin crystals and examined them using the X-ray laser while keeping the chip at temperatures below minus 180 degrees Celsius. Here, the scientists achieved a hit rate of up to 90 percent. In just 10 minutes they recorded more than enough diffraction images to determine the protein structure to within 2.4 angstroms.

    “For the structure of polyhedrin, we only had to scan a single chip that was loaded with four micrograms of protein crystals; that is orders of magnitude less than the amount that would normally be needed,” explains Meents.

    “Our approach not only reduces the data collection time and the quantity of the sample needed, it also opens up the opportunity of analysing entire viruses using X-ray lasers,” Meents sums up. The scientists now want to increase the capacity of their chip by a factor of ten, from 22,500 to some 200,000 micropores, and further increase the scanning speed to up to one thousand samples per second. This would better exploit the potential of the European XFEL, which will be able to produce up to 27,000 X-ray laser pulses per second, as well as an upgraded LCLS that is scheduled to come on line in the early 2020s and produce up to a million pulses per second. Furthermore, the next generation of chips will expose only those micropores that are targeted for analysis, to prevent the remaining crystals from being damaged by scattered radiation from the X-ray laser.

    Diamond scientists have collaborated with the team at DESY, with much of the development and testing of the micro-patterned chip being on Diamond’s I02 and I24 beamlines. Researchers from the University of Oxford, the University of Eastern Finland, the Swiss Paul Scherrer Institute, Lawrence Berkeley National Laboratory and SLAC were also involved in the research. LCLS is a DOE Office of Science User Facility.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.
    i1

     
  • richardmitnick 12:01 pm on June 19, 2017 Permalink | Reply
    Tags: , , , , First atomic structure of an intact virus deciphered with an X-ray laser, SLAC LCLS,   

    From DESY: “First atomic structure of an intact virus deciphered with an X-ray laser” 

    DESY
    DESY

    2017/06/19

    Groundbreaking experimental method will speed up protein analysis substantially.

    1
    Surface structure of the bovine enterovirus 2, the three virus proteins are colour coded. Credit: Jingshan Ren, University of Oxford

    An international team of scientists has for the first time used an X-ray free-electron laser to unravel the structure of an intact virus particle on the atomic level. The method used dramatically reduces the amount of virus material required, while also allowing the investigations to be carried out several times faster than before. This opens up entirely new research opportunities, as the research team lead by DESY scientist Alke Meents reports in the journal Nature Methods.

    In the field known as structural biology, scientists examine the three-dimensional structure of biological molecules in order to work out how they function. This knowledge enhances our understanding of the fundamental biological processes taking place inside organisms, such as the way in which substances are transported in and out of a cell, and can also be used to develop new drugs.

    “Knowing the three-dimensional structure of a molecule like a protein gives great insight into its biological behaviour,” explains co-author David Stuart, Director of Life Sciences at the synchrotron facility Diamond Light Source in the UK and a professor at the University of Oxford. “One example is how understanding the structure of a protein that a virus uses to ‘hook’ onto a cell could mean that we’re able to design a defence for the cell to make the virus incapable of attacking it.”

    X-ray crystallography is by far the most prolific tool used by structural biologists and has already revealed the structures of thousands of biological molecules. Tiny crystals of the protein of interest are grown, and then illuminated using high-energy X-rays. The crystals diffract the X-rays in characteristic ways so that the resulting diffraction patterns can be used to deduce the spatial structure of the crystal – and hence of its components – on the atomic scale. However, protein crystals are nowhere near as stable and sturdy as salt crystals, for example. They are difficult to grow, often remaining tiny, and are easily damaged by the X-rays.

    “X-ray lasers have opened up a new path to protein crystallography, because their extremely intense pulses can be used to analyse even extremely tiny crystals that would not produce a sufficiently bright diffraction image using other X-ray sources,” adds co-author Armin Wagner from Diamond Light Source. However, each of these microcrystals can only produce a single diffraction image before it evaporates as a result of the X-ray pulse. To perform the structural analysis, though, hundreds or even thousands of diffraction images are needed. In such experiments, scientists therefore inject a fine liquid jet of protein crystals through a pulsed X-ray laser, which releases a rapid sequence of extremely short bursts. Each time an X-ray pulse happens to strike a microcrystal, a diffraction image is produced and recorded.

    This method is very successful and has already been used to determine the structure of more than 80 biomolecules. However, most of the sample material is wasted. “The hit rate is typically less than two per cent of pulses, so most of the precious microcrystals end up unused in the collection container,” says Meents, who is based at the Center for Free-Electron Laser Science (CFEL) in Hamburg, a cooperation of DESY, the University of Hamburg and the German Max Planck Society. The standard method therefore typically requires several hours of beamtime and significant amounts of sample material.

    3
    Micrograph of the microstructured chip, loaded with crystals for the investigation. Each square is a tiny crystal. Credit: Philip Roedig, DESY

    n order to use the limited beamtime and the precious sample material more efficiently, the team developed a new method. The scientists use a micro-patterned chip containing thousands of tiny pores to hold the protein crystals. The X-ray laser then scans the chip line by line, and ideally this allows a diffraction image to be recorded for each pulse of the laser.

    The research team tested its method on two different virus samples using the LCLS X-ray laser at the SLAC National Accelerator Laboratory in the US, which produces 120 pulses per second.

    SLAC/LCLS

    They loaded their sample holder with a small amount of microcrystals of the bovine enterovirus 2 (BEV2), a virus that can cause miscarriages, stillbirths, and infertility in cattle, and which is very difficult to crystallise.

    In this experiment, the scientists achieved a hit rate – where the X-ray laser successfully targeted the crystal – of up to nine per cent. Within just 14 minutes they had collected enough data to determine the correct structure of the virus – which was already known from experiments at other X-ray light sources – down to a scale of 0.23 nanometres (millionths of a millimetre).

    “To the best of our knowledge, this is the first time the atomic structure of an intact virus particle has been determined using an X-ray laser,” Meents points out. “Whereas earlier methods at other X-ray light sources required crystals with a total volume of 3.5 nanolitres, we managed using crystals that were more than ten times smaller, having a total volume of just 0.23 nanolitres.”

    This experiment was conducted at room temperature. While cooling the protein crystals would protect them to some extent from radiation damage, this is not generally feasible when working with extremely sensitive virus crystals. Crystals of isolated virus proteins can, however, be frozen, and in a second test, the researchers studied the viral protein polyhedrin that makes up a viral occlusion body for up to several thousands of virus particles of certain species. The virus particles use these containers to protect themselves against environmental influences and are therefore able to remain intact for much longer times.

    4
    Schematic of the experimental set-up: The chip loaded with nanocrystals is scanned by the fine X-ray beam (green) pore by pore. Ideally, each crystal produces a distinctive diffraction pattern. Credit: Philip Roedig, DESY

    For the second test, the scientist loaded their chip with polyhedrin crystals and examined them using the X-ray laser while keeping the chip at temperatures below minus 180 degrees Celsius. Here, the scientists achieved a hit rate of up to 90 per cent. In just ten minutes they had recorded more than enough diffraction images to determine the protein structure to within 0.24 nanometres. “For the structure of polyhedrin, we only had to scan a single chip which was loaded with four micrograms of protein crystals; that is orders of magnitude less than the amount that would normally be needed,” explains Meents.

    “Our approach not only reduces the data collection time and the quantity of the sample needed, it also opens up the opportunity of analysing entire viruses using X-ray lasers,” Meents sums up. The scientists now want to increase the capacity of their chip by a factor of ten, from 22,500 to some 200,000 micropores, and further increase the scanning speed to up to one thousand samples per second. This would better exploit the potential of the new X-ray free-electron laser European XFEL, which is just going into operation in the Hamburg region and which will be able to produce up to 27,000 pulses per second.

    European XFEL

    Furthermore, the next generation of chips will only expose those micropores that are currently being analysed, to prevent the remaining crystals from being damaged by scattered radiation from the X-ray laser.

    Researchers from the University of Oxford, the University of Eastern Finland, the Swiss Paul Scherrer Institute, the Lawrence Berkeley National Laboratory in the US and SLAC were also involved in the research. Diamond scientists have collaborated with the team at DESY, with much of the development and testing of the micro-patterned chip being done on Diamond’s I02 and I24 beamlines.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    desi

    DESY is one of the world’s leading accelerator centres. Researchers use the large-scale facilities at DESY to explore the microcosm in all its variety – from the interactions of tiny elementary particles and the behaviour of new types of nanomaterials to biomolecular processes that are essential to life. The accelerators and detectors that DESY develops and builds are unique research tools. The facilities generate the world’s most intense X-ray light, accelerate particles to record energies and open completely new windows onto the universe. 
That makes DESY not only a magnet for more than 3000 guest researchers from over 40 countries every year, but also a coveted partner for national and international cooperations. Committed young researchers find an exciting interdisciplinary setting at DESY. The research centre offers specialized training for a large number of professions. DESY cooperates with industry and business to promote new technologies that will benefit society and encourage innovations. This also benefits the metropolitan regions of the two DESY locations, Hamburg and Zeuthen near Berlin.

     
  • richardmitnick 1:44 pm on May 31, 2017 Permalink | Reply
    Tags: , , , SLAC LCLS,   

    From SLAC: “The World’s Most Powerful X-ray Laser Beam Creates ‘Molecular Black Hole’” 


    SLAC Lab

    May 31, 2017
    Andrew Gordon
    agordon@slac.stanford.edu
    (650) 926-2282

    When the X-rays blast electrons out of one atom, stripping it from the inside out, it steals more from its neighbors – a new insight that could help advance high-res imaging of whole viruses, bacteria and complex materials.

    1
    In this illustration, an ultra-intense X-ray laser pulse from SLAC’s Linac Coherent Light Source knocks so many electrons out of a molecule’s iodine atom (right) that the iodine starts pulling in electrons from the rest of the molecule (lower left), like an electromagnetic version of a black hole. Many of the stolen electrons are also knocked out by the laser pulse; then the molecule explodes. (DESY/Science Communication Lab)

    When scientists at the Department of Energy’s SLAC National Accelerator Laboratory focused the full intensity of the world’s most powerful X-ray laser on a small molecule, they got a surprise: A single laser pulse stripped all but a few electrons out of the molecule’s biggest atom from the inside out, leaving a void that started pulling in electrons from the rest of the molecule, like a black hole gobbling a spiraling disk of matter.

    Within 30 femtoseconds – millionths of a billionth of a second – the molecule lost more than 50 electrons, far more than scientists anticipated based on earlier experiments using less intense beams or isolated atoms. Then it blew up.

    The results, published today in Nature, give scientists fundamental insights they need to better plan and interpret experiments using the most intense and energetic X-ray pulses from SLAC’s Linac Coherent Light Source (LCLS) X-ray free-electron laser.

    SLAC/LCLS

    Experiments that require these ultrahigh intensities include attempts to image individual biological objects, such as viruses and bacteria, at high resolution. They are also used to study the behavior of matter under extreme conditions, and to better understand charge dynamics in complex molecules for advanced technological applications.

    “For any type of experiment you do that focuses intense X-rays on a sample, you want to understand how it reacts to the X-rays,” said Daniel Rolles of Kansas State University. “This paper shows that we can understand and model the radiation damage in small molecules, so now we can predict what damage we will get in other systems.”

    Like Focusing the Sun Onto a Thumbnail

    The experiment, led by Rolles and Artem Rudenko of Kansas State, took place at LCLS’s Coherent X-ray Imaging instrument (CXI). It delivers X-rays with the highest possible energies achievable at LCLS, known as hard X-rays, and records data from samples in the instant before the laser pulse destroys them.

    How intense are those X-ray pulses?

    “They are about a hundred times more intense than what you would get if you focused all the sunlight that hits the Earth’s surface onto a thumbnail,” said LCLS staff scientist and co-author Sebastien Boutet.

    For this study, researchers used special mirrors to focus the X-ray beam into a spot just over 100 nanometers in diameter – about a hundredth the size of the one used in most CXI experiments, and a thousand times smaller than the width of a human hair. They looked at three types of samples: individual xenon atoms, which have 54 electrons each, and two types of molecules that each contain a single iodine atom, which has 53 electrons.

    Heavy atoms around this size are important in biochemical reactions, and researchers sometimes add them to biological samples to enhance contrast for imaging and crystallography applications. But until now, no one had investigated how the ultra-intense CXI beam affects molecules with atoms this heavy.

    X-rays Trigger Electron Cascades

    The team tuned the energy of the CXI pulses so they would selectively strip the innermost electrons from the xenon or iodine atoms, creating “hollow atoms.” Based on earlier studies with less energetic X-rays, they thought cascades of electrons from the outer parts of the atom would drop down to fill the vacancies, only to be kicked out themselves by subsequent X-rays. That would leave just a few of the most tightly bound electrons. And, in fact, that’s what happened in both the freestanding xenon atoms and the iodine atoms in the molecules.

    But in the molecules, the process didn’t stop there. The iodine atom, which had a strong positive charge after losing most of its electrons, continued to suck in electrons from neighboring carbon and hydrogen atoms, and those electrons were also ejected, one by one.

    Rather than losing 47 electrons, as would be the case for an isolated iodine atom, the iodine in the smaller molecule lost 54, including the ones it grabbed from its neighbors – a level of damage and disruption that’s not only higher than would normally be expected, but significantly different in nature.

    Results Feed Into Theory to Improve Experiments

    “We think the effect was even more important in the larger molecule than in the smaller one, but we don’t know how to quantify it yet,” Rudenko said. “We estimate that more than 60 electrons were kicked out, but we don’t actually know where it stopped because we could not detect all the fragments that flew off as the molecule fell apart to see how many electrons were missing. This is one of the open questions we need to study.”

    For the data analyzed to date, the theoretical model provided excellent agreement with the observed behavior, providing confidence that more complex systems can now be studied, said LCLS Director Mike Dunne. “This has important benefits for scientists wishing to achieve the highest-resolution images of biological molecules to inform the development of better pharmaceuticals, for example,” he said. “These experiments will also guide the development of a next-generation instrument for the LCLS-II upgrade project, which will provide a major leap in capability due to the increase in repetition rate from 120 pulses per second to 1 million.”

    SLAC LCLS-II

    The theory work for the study was led by Robin Santra of the Center for Free-Electron Laser Science at DESY and the University of Hamburg in Germany. Other research institutions contributing to the study were Tohoku University in Japan; Max Planck Institute for Nuclear Physics, Max Planck Institute for Medical Research, Hamburg Center for Ultrafast Imaging and the National Metrology Institute (PTB) in Germany; the University of Science and Technology in Beijing; Aarhus University in Denmark; Sorbonne University in France; the DOE’s Argonne National Laboratory and Brookhaven National Laboratory; the University of Chicago; and Northwestern University. Funding for the research came from the DOE Office of Science and from the German Research Foundation (DFG).

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.
    i1

     
  • richardmitnick 1:45 pm on April 18, 2017 Permalink | Reply
    Tags: , , , Gabriella Carini, How do you catch femtosecond light?, , , , SLAC LCLS, ,   

    From SLAC: “How do you catch femtosecond light?” 


    SLAC Lab

    1
    Gabriella Carini
    Staff Scientist
    Joined SLAC: 2011
    Specialty: Developing detectors that capture light from X-ray sources
    Interviewed by: Amanda Solliday

    Gabriella Carini enjoys those little moments—after hours and hours of testing in clean rooms, labs and at X-ray beamlines—when she first sees an instrument work.

    She earned her PhD in electronic engineering at the University of Palermo in Italy and now heads the detectors department at the Linac Coherent Light Source (LCLS), the X-ray free-electron laser at SLAC.

    SLAC/LCLS

    Scientists from around the world use the laser to probe natural processes that occur in tiny slivers of time. To see on this timescale, they need a way to collect the light and convert it into data that can be examined and interpreted.

    It’s Carini’s job to make sure LCLS has the right detector equipment at hand to catch the “precious”, very intense laser pulses, which may last only a few femtoseconds.

    When the research heads in new directions, as it constantly does, this requires her to look for fresh technology and turn these ideas into reality.

    When did you begin working with detectors?

    I moved to the United States as a doctoral student. My professor at the time suggested I join a collaboration at Brookhaven National Laboratory, where I started developing gamma ray detectors to catch radioactive materials.

    Radioactive materials give off gamma rays as they decay, and gamma rays are the most energetic photons, or particles of light. The detectors I worked on were made from cadmium zinc telluride, which has very good stopping power for highly energetic photons. These detectors can identify radioactive isotopes for security—such as the movement of nuclear materials—and contamination control, but also gamma rays for medical and astrophysical observations.

    We had some medical projects going on at the time, too, with detectors that scan for radioactive tracers used to map tissues and organs with positron emission tomography.

    From gamma ray detectors, I then moved to X-rays, and I began working on the earliest detectors for LCLS.

    How do you explain your job to someone outside the X-ray science community?

    I say, “There are three ingredients for an experiment—the source, the sample and the detector.”

    You need a source of light that illuminates your sample, which is the problem you want to solve or investigate. To understand what is happening, you have to be able to see the signal produced by the light as it interacts with the sample. That’s where the detector comes in. For us, the detector is like the “eyes” of the experimental set-up.

    What do you like most about your work?

    2

    There’s always a way we can help researchers optimize their experiments, tweak some settings, do more analysis and correction.

    This is important because scientists are going to encounter a lot of different types of detectors if they work at various X-ray facilities.

    I like to have input from people who are running the experiments. Because I did experiments myself as a graduate student, I’m very sensitive to whether a system is user-friendly. If you don’t make something that researchers can take the best advantage of, then you didn’t do your job fully.

    And detectors are never perfect, no matter which one you buy or build.

    There are a lot of people who have to come together to make a detector system. It’s not one person’s work. It’s many, many people with lots of different expertise. You need to have lots of good interpersonal skills.

    What are some of the challenges of creating detectors for femtosecond science?

    In more traditional X-ray sources the photons arrive distributed over time, one after the other, but when you work with ultrafast laser pulses like the ones from LCLS, all your information about a sample arrives in a few femtoseconds. Your detector has to digest this entire signal at once, process the information and send it out before another pulse comes. This requires deep understanding of the detector physics and needs careful engineering. You need to optimize the whole signal chain from the sensor to the readout electronics to the data transmission.

    We also have mechanical challenges because we have to operate in very unusual conditions: intense optical lasers, injectors with gas and liquids, etc. In many cases we need to use special filters to protect the detectors from these sources of contamination.

    4
    And often, you work in vacuum. With “soft” or low-energy X-rays, they are absorbed very quickly in air. Your entire system has to be vacuum-compatible. With many of our substantial electronics, this requires some care.

    So there are lots of things to take into account. Those are just a few examples. It’s very complicated and can vary quite a bit from experiment to experiment.

    Is there a new project you are really excited about?

    All of LCLS-II—this fills my life! We’re coming up with new ideas and new technologies for SLAC’s next X-ray laser, which will have a higher firing rate—up to a million pulses per second. For me, this is a multidimensional puzzle. Every science case and every instrument has its own needs and we have to find a route through the many options and often-competing parameters to achieve our goals.

    X-ray free-electron lasers are a big driver for detector development. Ten years ago, no one would have talked about X-ray cameras delivering 10,000 pictures per second. The new X-ray lasers are really a game-changer in developing detectors for photon science, because they require detectors that are just not readily available.

    LCLS-II will be challenging, but it’s exciting. For me, it’s thinking about what we can do now for the very first day of operation. And while doing that, we need to keep pushing the limits of what we have to do next to take full advantage of our new machine.

    6

    SLAC LCLS-II

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.
    i1

     
  • richardmitnick 7:10 am on April 18, 2017 Permalink | Reply
    Tags: Agostino Marinelli, , , SLAC LCLS   

    From SLAC: “Seeing the World in Femtoseconds” 


    SLAC Lab

    Q&A series with SLAC scientists

    4.17.17
    Kathryn Jepsen

    1
    Agostino Marinelli
    Accelerator Physicist

    Joined SLAC: 2012

    Specialty: Improving the capabilities of the Linac Coherent Light Source

    SLAC/LCLS

    Agostino “Ago” Marinelli first met pioneering accelerator physicist Claudio Pellegrini as an undergraduate student at the University of Rome. It was 2007, a couple of years before the Linac Coherent Light Source (LCLS) came online at SLAC, and people were abuzz about free-electron laser physics.

    Caught up in the excitement, Marinelli pursued a PhD in accelerator physics at the University of California, Los Angeles under Jamie Rosenzweig’s mentorship. Today he is involved in research and development related to femtosecond science at LCLS.

    Marinelli focuses on research at the femtosecond timescale because, he says, “it’s the fastest we can reach now with X-rays, and as an accelerator physicist, I get excited about technical things like that.”

    Why did you get involved in X-ray science?

    2
    Claudio Pellegrini

    Part of it was Claudio—he’s a very charismatic character. He’s an inspiring character. The field was very interesting. I thought it was a good way to spend my PhD.
    LCLS was promising so much innovation: a laser 10 billion times brighter than we had then. That sounds like something that somebody who is 24 would love to get involved in. It just sounded like something that would change science in a positive way, and I wanted to be a part of it.

    What is a free-electron laser?
    Free-electron lasers were invented by John Madey at Stanford in 1971; later on in the ’90s Claudio Pellegrini and collaborators proposed to extend free-electron lasers to the X-ray regime. They were the next step after synchrotron light sources.

    Synchrotrons send electrons around in a circle. That gives you radiation you can use in experiments. The difference between a synchrotron and the free-electron laser is the same difference between this light [points to a ceiling light] and a laser. It’s the difference between a bunch of kids making noise and a choir.

    In a synchrotron, the electrons are all doing the same thing, going around in a circle, but they are unaware of each other. They are all emitting X-rays in a random way. What makes a free-electron laser a laser is that all the electrons are emitting radiation in a coherent way. They are all synchronized.

    Also, since in an FEL you are using very intense and short electron bunches, the X-ray pulses will also be very short, down to the femtosecond level.

    What do you do with the free-electron laser?

    We talk to the users—they’re researchers that have some science they want to study with the machine. Then we “shape” the X-rays—set up the machine in a way that’s ideal for that experiment. The LCLS accelerator is very flexible. You can do all sorts of tricks with it—like arbitrarily changing the pulse duration, varying the X-ray polarization or making multiple pulses of different colors.

    Speaking of which, in 2014 the European Physical Society awarded you the Frank Sacherer Prize for your work using “two-color” beams with LCLS. What is that about?

    Normally LCLS shoots 120 X-ray pulses a second. But you can also make it send two pulses of different energies, separated by a few to 100 femtoseconds. You excite your sample with the first one and probe it with the second. You have to observe it within femtoseconds after you excite it because reactions happen that fast.

    3
    Normally you would excite the sample with an external optical laser; that’s how pump-probe is done. But in molecular dynamics, if you can excite a molecule with X-rays instead of an optical laser, you can get atom specificity—you can target a specific atom in the molecule.

    Each atom has a core energy level. If you know that, you can shoot the X-ray and hit only the oxygen in a molecule; oxygen is the only thing that is going to react. With two pulses at separate energies, you can target different atoms in a molecule to see which one triggers a certain reaction.

    What kinds of things do you study on the femtosecond scale?

    A femtosecond is close to the fundamental scale of atomic and molecular physics—so, things like chemistry.

    A chemical reaction is essentially two molecules or atoms interacting in some way and sharing charge and giving away energy. Ultimately to understand that, you have to understand how charge and energy flow in a molecule. You have to understand the very fundamental motion of electrons and ions in the molecule. On the femtosecond scale, you can see the positions of the atoms rearranging as it happens.

    Chemical reactions are a dynamic process. They start with something. They end with something. We want to know what happens in between.

    Why?

    If you want the reaction to end with something else, if you want it to end with something slightly different, you want to understand how it happens so you can make changes on purpose.

    What are you most excited about now?

    I’m really excited about what I’m about to do, which is this sub-femtosecond project called XLEAP. We will shape the LCLS electron beam with a high-power infrared laser and use it to generate pulses that are shorter than a femtosecond! What we will be looking at is energy and electrons moving around a molecule, which happens even faster than the atoms rearranging.

    Right now we’re really blind to all of this. To me, the way I understand it is, going to that timescale, you’re peeking into the very fundamental, quantum nature of the electrons in the molecule.

    If you ask me, “What is the ultimate problem it will solve for us?”—the answer is: I don’t know. In general when you’re blind to some fundamental process in nature and suddenly you can see it, my guess is something good is going to come of it.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.
    i1

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: