Tagged: Sky & Telescope Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:53 pm on May 19, 2023 Permalink | Reply
    Tags: "Webb May Have Spotted a Baby Galaxy Merger", , , , Sky & Telescope, ,   

    From The NASA/ESA/CSA James Webb Space Telescope Via “Sky & Telescope” : “Webb May Have Spotted a Baby Galaxy Merger” 

    NASA Webb Header

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) James Webb Infrared Space Telescope annotated, finally launched December 25, 2021, ten years late.

    From The NASA/ESA/CSA James Webb Space Telescope

    Via

    “Sky & Telescope”

    5.15.23
    Arwen Rimmer

    New JWST images reveal that one of the most distant objects ever observed is actually two baby galaxies on a possible collision course.

    1
    The massive gravity of galaxy cluster MACS0647 acts as a cosmic lens to bend and magnify light from the more distant MACS0647-JD system. It also triply lensed the JD system, causing its image to appear in three separate locations. These images, which are highlighted with white boxes, are marked JD1, JD2, and JD3; zoomed-in views are shown in the panels at right. Credit: Science: Rebecca Larson (UT) / Yu-Yang Hsiao (JHU) NASA / ESA / CSA / Dan Coe (STScI) / Rebecca Larson (UT) / Yu-Yang Hsiao (JHU); Image processing: Alyssa Pagan (STScI)

    Big galaxies like the Milky Way — a spiral disk 100,000 light years across containing some 200 billion stars — are thought to come from the celestial meet-and-greets of the first galaxies, which were originally little more than tiny clumps of stars. Now, the James Webb Space Telescope (JWST) has imaged two baby galaxies that existed just 430 million years after the Big Bang, each only hundreds of light-years across. Astronomers think they might be merging, shedding light on galaxy growth in the early universe.

    “Most galaxies today will have been through several merger events,” says Tiger Yu-Yang Hsiao, (Johns Hopkins University), who led the study. “So [mergers] are key to studying the formation and evolution of galaxies today. Our target is from such an early time, right at the very beginning of this process. There is much we can learn from it.”

    MACS0647–JD (MACS-JD) is an extremely distant object first observed about 10 years ago. At the time, it was considered to be the most distant galaxy ever observed, and it is still one of the earliest things we can study in detail with JWST.

    Generally speaking, galaxies from the dawn of time are too faint and too far away to see. The reason we can see MACS-JD is because its light has been triply lensed, magnified and distorted by a massive galaxy cluster lying in front of it from our point of view.

    The cluster warps spacetime, splitting the light into three images of the same system. The images are magnified by factors of eight, five, and two, so they appear brighter than other galaxies at similar distances.

    Hsiao’s JWST observations of MAC-JD verified previous conclusions about its distance, size, and physical properties — but with a surprising twist. What was once seen as a single object now appears to be two baby galaxies, labeled A and B. A is brighter and larger with very recent star formation and no dust, while B looks older and has a little bit of dust. Their differing star formation histories suggest they formed farther apart, only coming together recently.

    “The researchers did a very good job approaching this problem, but there is a lot of uncertainty,” says Andrea Ferrara (Scuola Normale Superiore, Italy), who was not part of the study. He suggests that while a merger is a possibility, it’s also possible that one of the galaxies is a satellite of the other. Alternatively, the two components might be part of the same galaxy.

    “We do expect that galaxies at this very high redshift are in the assembly process,” he notes, but he adds that additional data about the galaxies’ motions would help clarify their relationship.

    Hsiao’s team based this study, posted in a science paper for The Astrophysical Journal Letters [below], solely on JWST images. Upcoming spectroscopic observations, also with JWST, should tell us how A and B are moving with respect to each other. If they are both part of the same galaxy, the difference between their velocities would be relatively small; if they are actually two merging galaxies, there would be a larger discrepancy. Besides shedding light on the objects’ motions, spectra will also tell us more about the chemical properties of these tiny, highly magnified galaxies observed in the early universe.

    The Astrophysical Journal Letters
    JWST NIRSpec [below] spectroscopy of the triply-lensed z = 10.17 galaxy MACS0647–JD

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The NASA/ESA/CSA James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror. Webb was finally launched December 25, 2021, ten years late. Webb will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    Webb is the world’s largest, most powerful, and most complex space science telescope ever built. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it.

    Webb was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between National Aeronautics and Space Administration, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center managed the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute operates Webb.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There are four science instruments on Webb: The Near InfraRed Camera (NIRCam), The Near InfraRed Spectrograph (NIRspec), The Mid-InfraRed Instrument (MIRI), and The Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS).

    Webb’s instruments are designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.
    National Aeronautics Space Agency Webb NIRCam.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) Webb MIRI schematic.

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Launch was December 25, 2021, ten years late on an Ariane 5 rocket. The launch was from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb is located at the second Lagrange point, about a million miles from the Earth.

    ESA50 Logo large

    Canadian Space Agency

     
  • richardmitnick 6:35 am on May 8, 2023 Permalink | Reply
    Tags: "Second Ring Around Quaoar Puzzles Astronomers", A ring shouldn’t be stable so far out., , , , , Scientists found the far-out dwarf planet Quaoar., Scientists found the first ring now called Q1R., Scientists mark the discovery of an inner second ring called Q2R., Sky & Telescope, The “Roche limit” is the distance from a celestial body within which a second celestial body held together by gravity will disintegrate., The ring Q1R orbits 4060 kilometers (2520 miles) from Quaoar., The ring Q2R is about 10 km wide and orbits 2520 km out., There’s a second ring around the far-out dwarf planet Quaoar adding to the mystery of how this world hosts rings at such wide orbits., With now two rings to explain the researchers investigated possible resonances within the Quaoar system.   

    From “Sky & Telescope” : “Second Ring Around Quaoar Puzzles Astronomers” 

    From “Sky & Telescope”

    5.7.23
    Jeff Hecht

    There’s a second ring around the far-out dwarf planet Quaoar, adding to the mystery of how this world hosts rings at such wide orbits.

    1
    An artist’s impression shows a single ring around the distant dwarf planet Quaoar. The moon Weywot is shown on the left and the distant Sun on the right. Now, astronomers have discovered a second ring around this world. Credit: ESA / CC BY-SA 3.0 IGO.

    The international team of astronomers who earlier this year reported [Nature (below)] a ring orbiting unexpectedly far from the distant dwarf planet 50000 Quaoar have gone back to check their puzzling find with bigger telescopes. Their new observations verified the existence of the ring — and turned up a second one closer to Quaoar but still well outside its “Roche limit”, where theory says ring material should clump together rather than spread out.

    Australian amateur astronomers Jonathan Bradshaw, Renato Langersek, and John Broughton discovered the first ring in 2021 by observing background stars blocked, or occulted, as Quaoar and material orbiting it passed in front of them. A group of 59 astronomers followed up, watching other background stars wink out during occultations. The group mapped the rings in Nature [below].

    Now, in Astronomy and Astrophysics [below] a group of 69 astronomers led by Chrystian Luciano Pereira (Brazil National Observatory) used two large telescopes on Mauna Kea, Hawai‘i, Gemini North and the Canada France-Hawaii Telescope, and a host of smaller ones to study an additional occultation that occurred in August 2022.



    “These are the best data sets we have up to now,” says team member Felipe Braga-Ribas (Federal University of Technology, Brazil).

    The data confirm that the first ring, now called Q1R, orbits 4,060 kilometers (2,520 miles) from Quaoar. It also showed the ring has a dense and narrow middle that’s about 5 km across, surrounded by an envelope of more dispersed material that’s about 60 km wide. Its structure resembles that of the F ring around Saturn. The widest part of the ring yet observed is 300 km. Although individual occultations can only sample one or two slices of the ring at a time, the ring is probably complete.

    The new observations also led to the discovery of an inner ring, called Q2R, which is about 10 km wide and orbits 2,520 km out. Like the outer ring, the second ring is outside the “Roche limit”. While only seen during a single occultation event, and thus not yet examined in much detail, the areas probed so far seem to be more constant in width and density. “This reveals how curious and complex Quaoar’s system can be,” observes Luciano Pereira.

    Generally speaking, rings exist only inside a world’s Roche limit, where the larger object’s gravity breaks up any would-be moons. Outside this limit, though, material ought to coagulate; in other words, a ring shouldn’t be stable so far out.

    With now two rings to explain, the researchers investigated possible resonances within the Quaoar system. They found that the dwarf planet is in a 1:3 resonance with its outer ring: one orbit of the ring particles to three rotations of Quaoar. The period of the inner ring puts it close to a 5:7 resonance.

    The rings surrounding two other small bodies, the asteroid 10199 Chariklo and the Pluto-size 136108 Haumea, have a 1:3 resonance like Q1R; however, neither world’s ring is outside the Roche limit. It’s also possible small “shepherd” satellites might stabilize the rings, Luciano Pereira adds, but none have yet been discovered.

    The findings “are very credible,” says Matthew Hedman (University of Idaho), who was not involved in either ring study. “This second ring implies that there is something very unusual about this system that we do not yet understand.” Most interestingly, he adds, the existence of the second ring “implies that whatever led to the formation of the rings far from Quaoar was not a one-off event.”

    Nature
    Astronomy and Astrophysics

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Sky & Telescope, founded in 1941 by Charles A. Federer Jr. and Helen Spence Federer, has the largest, most experienced staff of any astronomy magazine in the world. Its editors are virtually all amateur or professional astronomers, and every one has built a telescope, written a book, done original research, developed a new product, or otherwise distinguished him or herself.

    Sky & Telescope magazine, now in its eighth decade, came about because of some happy accidents. Its earliest known ancestor was a four-page bulletin called The Amateur Astronomer, which was begun in 1929 by the Amateur Astronomers Association in New York City. Then, in 1935, the American Museum of Natural History opened its Hayden Planetarium and began to issue a monthly bulletin that became a full-size magazine called The Sky within a year. Under the editorship of Hans Christian Adamson, The Sky featured large illustrations and articles from astronomers all over the globe. It immediately absorbed The Amateur Astronomer.

    Despite initial success, by 1939 the planetarium found itself unable to continue financial support of The Sky. Charles A. Federer, who would become the dominant force behind Sky & Telescope, was then working as a lecturer at the planetarium. He was asked to take over publishing The Sky. Federer agreed and started an independent publishing corporation in New York.

    “Our first issue came out in January 1940,” he noted. “We dropped from 32 to 24 pages, used cheaper quality paper…but editorially we further defined the departments and tried to squeeze as much information as possible between the covers.” Federer was The Sky’s editor, and his wife, Helen, served as managing editor. In that January 1940 issue, they stated their goal: “We shall try to make the magazine meet the needs of amateur astronomy, so that amateur astronomers will come to regard it as essential to their pursuit, and professionals to consider it a worthwhile medium in which to bring their work before the public.”

     
  • richardmitnick 5:38 am on May 8, 2023 Permalink | Reply
    Tags: "Four of Uranus's Moons Might Contain Briny Oceans", A salty ocean would be detectable from a spacecraft equipped with a magnetometer while an ammonia-water ocean would not., Astronomers have concluded from Voyager 2 data that four of Uranus’s five icy moons likely contain a thin layer of briny (or otherwise enriched) water., , , , , If the oceans exist they would be left over from much larger liquid layers that formed when the moons first formed., In most of the solar system water is frozen as hard as rock., , Sky & Telescope, The oceans are desperately thin: less than 30 kilometers (20 miles) thick inside Ariel and Umbriel and less than 50 kilometers thick within Titania and Oberon., The possibility that four of Uranus’ five icy satellites also host oceans: Ariel and Umbriel and Titania and Oberon., To validate these models we would need to send a spacecraft.   

    From “Sky & Telescope” : “Four of Uranus’s Moons Might Contain Briny Oceans” 

    From “Sky & Telescope”

    5.6.23
    Emily Lakdawalla

    Four of Uranus’s five icy moons likely contain a thin layer of briny (or otherwise enriched) water, astronomers have concluded from Voyager 2 data.

    Water is everywhere. We think of it as a liquid, but in most of the solar system, water is frozen as hard as rock, forming the crystalline surfaces of moons, comets, and other wandering bodies. Some icy moons, like Europa and Enceladus, famously host global layers of liquid ocean deep beneath their frozen exteriors. Ganymede, Callisto, and Titan likely do as well. How many other moons are in the ocean club?

    A new paper [JGR Planets (below)] re-analyzing Voyager observations suggests that four of Uranus’ five icy satellites also host oceans: Ariel, Umbriel, Titania, and Oberon. (Only small Miranda, intermediate in size between Saturn’s Mimas and Enceladus, appears not to.) The oceans are desperately thin: less than 30 kilometers (20 miles) thick inside Ariel and Umbriel (both of which are about 1,000 kilometers across, similar in size to Saturn’s Tethys and Dione), and less than 50 kilometers thick within Titania and Oberon (which are larger at about 1,500 kilometers, similar to Saturn’s Rhea and Iapetus).

    3
    Voyager 2 captured the images that were used to create these mosaics of some of the moons of Uranus during its closest approach to the planet on January 24, 1986. The four largest moons are all icy and are thought to contain a thin liquid-water layer; Miranda, the fifth and smallest of the icy moons, does not. Credit: Ted Stryk/NASA/JPL-Caltech.

    If the oceans exist, they would be left over from much larger liquid layers that formed when the moons first formed. The remnant liquid would be snuggled close to the waning heat of the moons’ rocky cores, sheltered beneath hundreds of kilometers of solid ice. They would be extremely briny, hyper-concentrated with whatever dissolved materials helped to lower the temperature at which water would otherwise freeze. There are two candidate materials: salt and ammonia.

    To validate these models, we would need to send a spacecraft. A salty ocean would be detectable from a spacecraft equipped with a magnetometer, while an ammonia-water ocean would not. But even an ammonia-water ocean remains detectable, because a global layer of liquid would mechanically disconnect the icy mantle from the rocky core. Careful tracking of the motion of surface features as the moons nutate [nodding motion in the axis of rotation of a largely axially symmetric object] in their elliptical orbits around Uranus could reveal that the icy moons’ outer layers are decoupled from their cores.

    3
    New computer models show that there likely is an ocean layer in four of Uranus’s major moons: Ariel, Umbriel, Titania, and Oberon. Salty — or briny — oceans lie under the ice and atop layers of water-rich rock and dry rock. Miranda is too small to retain enough heat for an ocean layer. Credit: NASA / JPL-Caltech.

    There’s hope that we’ll get to test the conclusions of this paper. A once-a-decade survey of the scientific community conducted by the National Academy of Sciences determined that an orbiter and probe to the Uranus system is the top scientific priority for the next new flagship mission, now that the Mars Sample Return and a Europa-focused Jupiter mission are in process. Learn about the potential of the Uranus Orbiter and Probe mission in the July issue of Sky & Telescope magazine, on newsstands in a couple weeks. Do lots of icy moons host oceans? The only way to know for sure is to visit them!

    JGR Planets

    2
    Figure 1.
    Densities and mean radii of the Uranian moons compared to those of other large moons and dwarf planets. Miranda has a low density similar to Saturn’s moon Mimas, whereas the densities of the other Uranian moons are more similar to Saturn’s moons Dione and Rhea. After Hussmann et al. (2006).

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Sky & Telescope, founded in 1941 by Charles A. Federer Jr. and Helen Spence Federer, has the largest, most experienced staff of any astronomy magazine in the world. Its editors are virtually all amateur or professional astronomers, and every one has built a telescope, written a book, done original research, developed a new product, or otherwise distinguished him or herself.

    Sky & Telescope magazine, now in its eighth decade, came about because of some happy accidents. Its earliest known ancestor was a four-page bulletin called The Amateur Astronomer, which was begun in 1929 by the Amateur Astronomers Association in New York City. Then, in 1935, the American Museum of Natural History opened its Hayden Planetarium and began to issue a monthly bulletin that became a full-size magazine called The Sky within a year. Under the editorship of Hans Christian Adamson, The Sky featured large illustrations and articles from astronomers all over the globe. It immediately absorbed The Amateur Astronomer.

    Despite initial success, by 1939 the planetarium found itself unable to continue financial support of The Sky. Charles A. Federer, who would become the dominant force behind Sky & Telescope, was then working as a lecturer at the planetarium. He was asked to take over publishing The Sky. Federer agreed and started an independent publishing corporation in New York.

    “Our first issue came out in January 1940,” he noted. “We dropped from 32 to 24 pages, used cheaper quality paper…but editorially we further defined the departments and tried to squeeze as much information as possible between the covers.” Federer was The Sky’s editor, and his wife, Helen, served as managing editor. In that January 1940 issue, they stated their goal: “We shall try to make the magazine meet the needs of amateur astronomy, so that amateur astronomers will come to regard it as essential to their pursuit, and professionals to consider it a worthwhile medium in which to bring their work before the public.”

     
  • richardmitnick 1:45 pm on March 11, 2023 Permalink | Reply
    Tags: "Do Diamonds Rain on the Ice Giants?", New research shows diamonds might condense out of Neptune’s mantle but not Uranus’ explaining a decades-old discrepancy., , Sky & Telescope,   

    From The Institute of Science and Technology [Institut für Wissenschaft und Technologie Österreich] (AT) Via “Sky & Telescope” : “Do Diamonds Rain on the Ice Giants?” 

    1

    From The Institute of Science and Technology [Institut für Wissenschaft und Technologie Österreich] (AT)

    Via

    “Sky & Telescope”

    3.8.23
    Elise Cutts

    New research shows diamonds might condense out of Neptune’s mantle but not Uranus’ explaining a decades-old discrepancy.

    2
    In 2005 astronomers used the Hubble Space Telescope to photograph the delicate ring system of Uranus, as well as a southern collar of clouds and a bright, discrete cloud in the northern hemisphere. Credit: M. Showalter/NASA / ESA / (SETI Institute)

    Below the frosty hydrogen-helium atmospheres of Neptune and Uranus lie fluid mantles rich in water, ammonia, methane, and possibly something far more dazzling: diamonds. Scientists have long suspected these dense gems might rain out of the ice giants’ mantles and into their rocky cores.

    However, Uranus’ interior might not be as glitzy as previously thought. Theoretical results published February 27th in Nature Communications [below] suggest that while ideal diamond-forming conditions could occur within Neptune’s mantle, they might not exist on Uranus. But the ice giants’ interiors are still so mysterious that confidently forecasting diamond drizzles on either world will have to wait for future missions to the outer solar system, other researchers say.

    “Planets with the mass of Uranus and Neptune seem to be quite common in the in the galaxy,” says Ravit Helled (University of Zurich), who wasn’t involved in the study. Understanding what goes on inside the ice giants, she adds, is “very important for the characterization of exoplanets, as well as our understanding of our own origin.”

    Diamonds in the Sky?

    After the Voyager 2 flybys in the 1980s, scientists noticed that Neptune glows with its own internal heat, while Uranus only throws back the energy it receives from the Sun. They’ve been struggling to explain the difference ever since.

    “The name of the game for these planets for the past [decades] has been trying to think about why are they actually different, because they look so similar,” says Jonathan Fortney (University of California, Santa Cruz), who also wasn’t involved in the study.

    The new study, led by Bingqing Cheng (Institute of Science And Technology Austria), suggests that diamond rain could be a piece of this puzzle. As the gemstones fall through the mantle, they would release gravitational energy as heat. Although less dramatic than an asteroid burning up in our atmosphere, the principle is similar. Meteorites (or diamonds) rub against whatever medium they’re falling through, and this friction releases heat.

    When Cheng’s team calculated the “freezing point” of carbon under conditions like those within Neptune and Uranus, they discovered that there’s a narrow band of temperatures and pressures ideal for forming diamonds. Under these conditions, carbon and hydrogen separate from one another, concentrating carbon into a carbon-rich fluid that’s perfect for forming diamonds. This concentrated fluid can freeze out as diamond rain.

    Cheng and colleagues suggest that while this diamond weather is possible on Neptune, the conditions aren’t right for it on Uranus. If true, this could help explain the planet’s mysteriously dim glow compared to its farther-out sibling.

    Unsolved Mysteries

    Still, Fortney and Helled both caution that scientists still don’t really have a good idea of what it’s like inside the ice giants. Humanity’s only up-close glimpses of Uranus and Neptune were the Voyager 2 flybys. Until we return to the outer solar system, it’ll be hard to say for sure whether jewels fall from the sky on either planet.

    In the meantime, building the new carbon-freezing calculations into computer models of Uranus and Neptune would be a way to test the influence of diamonds on the planets’ heat budgets. Scientists have a good understanding of how this works for helium rain on Saturn, says Fortney, but diamond formation on the ice giants hasn’t been included in the state-of-the-art models for the ice giants.

    “This [study] to me is trying to get Uranus and Neptune into that same level of sophistication,” he says, “And I think we have not been at that point until now.”

    Nature Communications

    Fig. 1: Thermodynamics for diamond formation in pure liquid carbon.
    2
    The color scale shows the chemical potential of diamond, ΔμD, referenced to pure liquid carbon. The stability region of graphite at P ⪅ 10 GPa is not shown. The melting curve Tm is compared to previous calculations using thermodynamic integration (TI) employing a semi-empirical potential by Ghiringhelli et al.[31*], TI using DFT by Wang et al.[28], coexistence DFT simulations by Correa et al.[29], an analytic free-energy model fitted to DFT data by Benedict et al.[30], and a shock-compression experiment by Eggert et al.[27] with uncertainties indicated using the shaded area. The gray line shows the inferred threshold conditions with a diamond nucleation rate J of 10^−40m^−3s^−1 from pure liquid carbon by Ghiringhelli et al.[25]. The P-T curves of planetary interior conditions for Uranus (green line) and Neptune (orange line) are from Ref. 40.
    *References in the science paper

    Fig. 2: Bonding behavior in the CH4 mixture at high-pressure high-temperature conditions.
    3
    a Snapshots from MD simulations using the MLP. Carbon atoms are shown as small gray spheres, while hydrogen atoms are not drawn for clarity. Bonds are drawn for C-C pairs with distances within 1.6 Å. b,c Average number of C-C bonds (b) and C-H bonds (c) per carbon atom from MD simulations of CH4 composition. d,e Average lifetimes of the C-C bonds (d) and C-H bonds (e).

    For further illustrations see the science paper.

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 5:35 pm on March 3, 2023 Permalink | Reply
    Tags: "A Fresh Look at Kepler-444’s Ancient Planetary System", , , , , Sky & Telescope,   

    From The University of California-Santa Cruz Via “Sky & Telescope” : “A Fresh Look at Kepler-444’s Ancient Planetary System” 

    From The University of California-Santa Cruz

    Via

    “Sky & Telescope”

    2.28.23

    Astronomers have taken a closer look at a system containing three stars and five planets and may have solved a mystery around its formation.

    1
    Artist’s impression of a star orbited by five planets. NASA / JPL-Caltech.

    Astronomers have just taken a closer look at an unusual system containing three stars and at least five planets. In doing so they may have solved a mystery around its formation. The system, known as Kepler-444, is also around 11 billion years old, showing that such systems can be stable over a significant fraction of the universe’s current age.

    One System, Three Stars, Five Planets

    Located 117 light-years away toward the constellation Lyra, the system is centered around the K0 star Kepler-444 A. Then there’s a tight-knit binary pair of M-type stars orbiting it some 66 astronomical units away (known as Kepler-444 BC). A quintet of planets also orbits Kepler-444 A. All five worlds have radii between 0.4 and 0.7 Earth radius, and every one has an orbital period under 10 days.

    2

    A team of astronomers led by Zhoujian Zhang (University of California-Santa Cruz) recently set about measuring the properties of the crowded system more precisely in several different ways. They used the High Resolution Spectrograph of the Hobby-Eberly Telescope at the McDonald Observatory in Texas to measure Kepler-444 A’s radial velocity.

    The star’s speed changes as it is pulled around by the other objects in the system. Zhang’s team also measured the relative radial velocities between the binary pair and the central star using the High Resolution Echelle Spectrometer at the W. M. Keck Observatory in Hawai’i.

    The gravitational pull of its companions causes Kepler-444 A to follow a wiggling path across the night sky. Measuring this changing position is known as astrometry. Zhang’s team conducted astrometric measurements of Kepler-444 A using Keck’s near-infrared imager (NIRC2).

    Expanding Planet-Forming Potential

    Putting all these pieces of the puzzle together, the team arrived at a deeper understanding of the Kepler-444 system and its history. Previous measurements of the system suggested that the binary swings in to within 5 astronomical units of Kepler-444 A. That would have truncated Kepler-444 A’s protoplanetary disk, severely depleting the amount of planet-forming material available. It wasn’t clear how five rocky planets could have formed there.

    3
    Top panel: Observed (orange circles) and modeled (green lines) separations between Kepler-444 A and Kepler-444 BC. The black line shows the best-fitting model. Bottom panel: Observed values minus modeled values. Adapted from Zhang et al. 2023.

    Now, based on their new measurements, Zhang’s team conclude that the Kepler-444 BC binary only gets within 23 astronomical units of Kepler-444 A. This wider separation would have led to a larger and more massive protoplanetary disk truncated to 8 astronomical units. The team calculate that there would have been 500 Earth masses’ worth of dust available from which to build planets. That compares to just 4 Earth masses of dust using previous estimates. Suddenly the presence of five planets is less perplexing.

    As astronomers gain a greater understanding of exoplanets, it’s becoming clear that there’s more than one way to make a solar system.

    The Astronomical Journal
    https://iopscience.iop.org/article/10.3847/1538-3881/aca88c/pdf
    6
    5
    Figure 1. Top left: a typical reduced and north-aligned J-band science frame of Kepler-444 observed on 2019 July 7 UT. Insets present the 20 pixel × 20 pixel vicinity of A (left) and BC (right) components with their centroids marked by plus signs, computed using a 3-pixel-radius circular region (white circle). A coronagraph mask is visible to the northeast of Kepler-444 A and does not impact our relative astrometry measurements. Top right: centroids of A and BC iteratively computed using a range of circular radii (Section 3.1). At each radius, we show the computed separation and position angle of individual science frames observed on 2019 July 7 UT (gray circle), as well as the resulting separation and position angle measurements with uncertainties computed from Equation (2) (black circle). Our final separation and position angle measurements for the J-band data are based on a circular radius of 3 pixels and are highlighted as blue stars. Bottom: analysis of K S-band data observed on 2022 July 12 UT with the same format as the top panel. The white circles in the insets and our final relative astrometry all correspond to a radius of 5 pixels.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC Santa Cruz campus.

    The University of California-Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    The University of California-Santa Cruz is a public land-grant research university in Santa Cruz, California. It is one of the ten campuses in the University of California system. Located on Monterey Bay, on the edge of the coastal community of Santa Cruz, the campus lies on 2,001 acres (810 ha) of rolling, forested hills overlooking the Pacific Ocean.

    Founded in 1965, The University of California-Santa Cruz began with the intention to showcase progressive, cross-disciplinary undergraduate education, innovative teaching methods and contemporary architecture. The residential college system consists of ten small colleges that were established as a variation of the Oxbridge collegiate university system.

    Among the Faculty is 1 Nobel Prize Laureate, 1 Breakthrough Prize in Life Sciences recipient, 12 members from the National Academy of Sciences, 28 members of the American Academy of Arts and Sciences, and 40 members of the American Association for the Advancement of Science. Eight University of California-Santa Cruz alumni are winners of 10 Pulitzer Prizes. The University of California-Santa Cruz is classified among “R1: Doctoral Universities – Very high research activity”. It is a member of the Association of American Universities, an alliance of elite research universities in the United States and Canada.

    The university has five academic divisions: Arts, Engineering, Humanities, Physical & Biological Sciences, and Social Sciences. Together, they offer 65 graduate programs, 64 undergraduate majors, and 41 minors.

    Popular undergraduate majors include Art, Business Management Economics, Chemistry, Molecular and Cell Biology, Physics, and Psychology. Interdisciplinary programs, such as Computational Media, Feminist Studies, Environmental Studies, Visual Studies, Digital Arts and New Media, Critical Race & Ethnic Studies, and the History of Consciousness Department are also hosted alongside UCSC’s more traditional academic departments.

    A joint program with The University of California-Hastings enables University of California-Santa Cruz students to earn a bachelor’s degree and Juris Doctor degree in six years instead of the usual seven. The “3+3 BA/JD” Program between University of California-Santa Cruz and The University of California-Hastings College of the Law in San Francisco accepted its first applicants in fall 2014. University of California-Santa Cruz students who declare their intent in their freshman or early sophomore year will complete three years at The University of California-Santa Cruz and then move on to The University of California-Hastings to begin the three-year law curriculum. Credits from the first year of law school will count toward a student’s bachelor’s degree. Students who successfully complete the first-year law course work will receive their bachelor’s degree and be able to graduate with their University of California-Santa Cruz class, then continue at The University of California-Hastings afterwards for two years.

    According to the National Science Foundation, The University of California-Santa Cruz spent $127.5 million on research and development in 2018, ranking it 144th in the nation.

    Although designed as a liberal arts-oriented university, The University of California-Santa Cruz quickly acquired a graduate-level natural science research component with the appointment of plant physiologist Kenneth V. Thimann as the first provost of Crown College. Thimann developed The University of California-Santa Cruz’s early Division of Natural Sciences and recruited other well-known science faculty and graduate students to the fledgling campus. Immediately upon its founding, The University of California-Santa Cruz was also granted administrative responsibility for the Lick Observatory, which established the campus as a major center for Astronomy research. Founding members of the Social Science and Humanities faculty created the unique History of Consciousness graduate program in The University of California-Santa Cruz’s first year of operation.

    Famous former University of California-Santa Cruz faculty members include Judith Butler and Angela Davis.

    The University of California-Santa Cruz’s organic farm and garden program is the oldest in the country, and pioneered organic horticulture techniques internationally.

    As of 2015, The University of California-Santa Cruz’s faculty include 13 members of the National Academy of Sciences, 24 fellows of the American Academy of Arts and Sciences, and 33 fellows of the American Association for the Advancement of Science. The Baskin School of Engineering, founded in 1997, is The University of California-Santa Cruz’s first and only professional school. Baskin Engineering is home to several research centers, including the Center for Biomolecular Science and Engineering and Cyberphysical Systems Research Center, which are gaining recognition, as has the work that UCSC researchers David Haussler and Jim Kent have done on the Human Genome Project, including the widely used University of California-Santa Cruz Genome Browser. The University of California-Santa Cruz administers the National Science Foundation’s Center for Adaptive Optics.

    Off-campus research facilities maintained by The University of California-Santa Cruz include the Lick and The W. M. Keck Observatory, Mauna Kea, Hawai’i and the Long Marine Laboratory. From September 2003 to July 2016, The University of California-Santa Cruz managed a University Affiliated Research System (UARC) for the NASA Ames Research Center under a task order contract valued at more than $330 million.

    The University of California-Santa Cruz was tied for 58th in the list of Best Global Universities and tied for 97th in the list of Best National Universities in the United States by U.S. News & World Report’s 2021 rankings. In 2017 Kiplinger ranked The University of California-Santa Cruz 50th out of the top 100 best-value public colleges and universities in the nation, and 3rd in California. Money Magazine ranked The University of California-Santa Cruz 41st in the country out of the nearly 1500 schools it evaluated for its 2016 Best Colleges ranking. In 2016–2017, The University of California-Santa Cruz Santa Cruz was rated 146th in the world by Times Higher Education World University Rankings. In 2016 it was ranked 83rd in the world by the Academic Ranking of World Universities and 296th worldwide in 2016 by the QS World University Rankings.

    In 2009, RePEc, an online database of research economics articles, ranked the The University of California-Santa Cruz Economics Department sixth in the world in the field of international finance. In 2007, High Times magazine placed The University of California-Santa Cruz as first among US universities as a “counterculture college.” In 2009, The Princeton Review (with Gamepro magazine) ranked The University of California-Santa Cruz’s Game Design major among the top 50 in the country. In 2011, The Princeton Review and Gamepro Media ranked The University of California-Santa Cruz’s graduate programs in Game Design as seventh in the nation. In 2012, The University of California-Santa Cruz was ranked No. 3 in the Most Beautiful Campus list of Princeton Review.

    The University of California-Santa Cruz is the home base for the Lick Observatory.

    UCO Lick Observatory’s 36-inch Great Refractor telescope housed in the South (large) Dome of main building.

    The University of California-Santa Cruz Lick Observatory Since 1888 Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    UC Observatories Lick Automated Planet Finder fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA.

    The UCO Lick C. Donald Shane telescope is a 120-inch (3.0-meter) reflecting telescope located at the Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft).

    Search for extraterrestrial intelligence expands at Lick Observatory

    New instrument scans the sky for pulses of infrared light

    March 23, 2015
    By Hilary Lebow
    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at The University of California-Santa Cruz’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at The University of California-San Diego who led the development of the new instrument while at The University of Toronto (CA)’s Dunlap Institute for Astronomy and Astrophysics (CA).

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch.)

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at University of California’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    Alumna Shelley Wright, now an assistant professor of physics at The University of California- San Diego, discusses the dichroic filter of the NIROSETI instrument, developed at the University of Toronto Dunlap Institute for Astronomy and Astrophysics (CA) and brought to The University of California-San Diego and installed at the UC Santa Cruz Lick Observatory Nickel Telescope (Photo by Laurie Hatch).


    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at The University of California-San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy and Astrophysics (CA).

    NIROSETI team from left to right Rem Stone UCO Lick Observatory Dan Werthimer, UC Berkeley; Jérôme Maire, U Toronto; Shelley Wright, The University of California-San Diego Patrick Dorval, U Toronto; Richard Treffers, Starman Systems. (Image by Laurie Hatch).

    Wright worked on an earlier SETI project at Lick Observatory as a University of California-Santa Cruz undergraduate, when she built an optical instrument designed by University of California-Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at The University of California-Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    Frank Drake with his Drake Equation. Credit Frank Drake.

    Drake Equation, Frank Drake, Seti Institute.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

     
  • richardmitnick 4:03 pm on February 25, 2023 Permalink | Reply
    Tags: "Italian Amateur Astronomer Discovers Dwarf Galaxies", , , , , LBNL DESI, Sky & Telescope, , Three dwarf galaxies around the Sculptor Galaxy have come to light thanks to the work of an amateur astronomer.   

    From “Sky & Telescope” : “Italian Amateur Astronomer Discovers Dwarf Galaxies” 

    From “Sky & Telescope”

    2.20.23
    Kit Gilchrist

    Three dwarf galaxies around the Sculptor Galaxy have come to light thanks to the work of an amateur astronomer.

    1
    In the middle of this Hubble Space Telescope image, nestled amongst a smattering of distant stars and even more distant galaxies, lies the newly discovered dwarf galaxy known as Donatiello II. Credit: G. Donatiello/ NASA ESA Hubble/
    B. Mutlu-Pakdil.

    Between January and June 2020, as COVID-19 was sweeping the world, an amateur astronomer living in the province of Brindisi in southern Italy made a series of exhilarating discoveries.

    Giuseppe Donatiello was poring over images made public by the Dark Energy Survey (DES), which had scanned the southern sky from the Cerro Tololo Inter-American Observatory in Chile.

    ___________________________________________________________________
    The Dark Energy Survey

    Dark Energy Camera [DECam] built at The DOE’s Fermi National Accelerator Laboratory.

    NOIRLab National Optical Astronomy Observatory Cerro Tololo Inter-American Observatory (CL) Victor M Blanco 4m Telescope which houses the Dark-Energy-Camera – DECam at Cerro Tololo, Chile at an altitude of 7200 feet.

    NOIRLabNSF NOIRLab NOAO Cerro Tololo Inter-American Observatory(CL) approximately 80 km to the East of La Serena, Chile, at an altitude of 2200 meters.

    The Dark Energy Survey is an international, collaborative effort to map hundreds of millions of galaxies, detect thousands of supernovae, and find patterns of cosmic structure that will reveal the nature of the mysterious dark energy that is accelerating the expansion of our Universe. The Dark Energy Survey began searching the Southern skies on August 31, 2013.

    According to Albert Einstein’s Theory of General Relativity, gravity should lead to a slowing of the cosmic expansion. Yet, in 1998, two teams of astronomers studying distant supernovae made the remarkable discovery that the expansion of the universe is speeding up.

    Nobel Prize in Physics for 2011 Expansion of the Universe

    4 October 2011

    The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2011

    with one half to

    Saul Perlmutter

    The Supernova Cosmology Project

    The DOE’s Lawrence Berkeley National Laboratory and The University of California-Berkeley,

    and the other half jointly to

    Brian P. Schmidt
    The High-z Supernova Search Team,
    The Australian National University, Weston Creek, Australia.

    And

    Adam G. Riess
    The High-z Supernova Search Team,The Johns Hopkins University and
    The Space Telescope Science Institute, Baltimore, MD.

    Written in the stars

    “Some say the world will end in fire, some say in ice…” *

    What will be the final destiny of the Universe? Probably it will end in ice, if we are to believe this year’s Nobel Laureates in Physics. They have studied several dozen exploding stars, called supernovae, and discovered that the Universe is expanding at an ever-accelerating rate. The discovery came as a complete surprise even to the Laureates themselves.

    In 1998, cosmology was shaken at its foundations as two research teams presented their findings. Headed by Saul Perlmutter, one of the teams had set to work in 1988. Brian Schmidt headed another team, launched at the end of 1994, where Adam Riess was to play a crucial role.

    The research teams raced to map the Universe by locating the most distant supernovae. More sophisticated telescopes on the ground and in space, as well as more powerful computers and new digital imaging sensors (CCD, Nobel Prize in Physics in 2009), opened the possibility in the 1990s to add more pieces to the cosmological puzzle.

    The teams used a particular kind of supernova, called Type 1a supernova. It is an explosion of an old compact star that is as heavy as the Sun but as small as the Earth. A single such supernova can emit as much light as a whole galaxy. All in all, the two research teams found over 50 distant supernovae whose light was weaker than expected – this was a sign that the expansion of the Universe was accelerating. The potential pitfalls had been numerous, and the scientists found reassurance in the fact that both groups had reached the same astonishing conclusion.

    For almost a century, the Universe has been known to be expanding as a consequence of the Big Bang about 14 billion years ago. However, the discovery that this expansion is accelerating is astounding. If the expansion will continue to speed up the Universe will end in ice.

    The acceleration is thought to be driven by dark energy, but what that dark energy is remains an enigma – perhaps the greatest in physics today. What is known is that dark energy constitutes about three quarters of the Universe. Therefore, the findings of the 2011 Nobel Laureates in Physics have helped to unveil a Universe that to a large extent is unknown to science. And everything is possible again.

    *Robert Frost, Fire and Ice, 1920

    To explain cosmic acceleration, cosmologists are faced with two possibilities: either 70% of the universe exists in an exotic form, now called Dark Energy, that exhibits a gravitational force opposite to the attractive gravity of ordinary matter, or Albert Einstein’s Theory of General Relativity must be replaced by a new theory of gravity on cosmic scales.

    The Dark Energy Survey is designed to probe the origin of the accelerating universe and help uncover the nature of Dark Energy by measuring the 14-billion-year history of cosmic expansion with high precision. More than 400 scientists from over 25 institutions in the United States, Spain, the United Kingdom, Brazil, Germany, Switzerland, and Australia are working on the project. The collaboration built and is using an extremely sensitive 570-Megapixel digital camera, DECam, mounted on the Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory, high in the Chilean Andes, to carry out the project.

    Over six years (2013-2019), the Dark Energy Survey collaboration used 758 nights of observation to carry out a deep, wide-area survey to record information from 300 million galaxies that are billions of light-years from Earth. The survey imaged 5000 square degrees of the southern sky in five optical filters to obtain detailed information about each galaxy. A fraction of the survey time is used to observe smaller patches of sky roughly once a week to discover and study thousands of supernovae and other astrophysical transients.
    ___________________________________________________________________

    Amid the smattering of stars, gas, and dust, he noticed first one, then two, then three new satellites of the Sculptor Galaxy (NGC 253). Dwarf-size and spheroidal in shape, they had been overlooked by the algorithm set up to spot them.

    It isn’t hard to see why. The starlight emitted from them is feeble, faint and shrouded in a haze of interference from objects in the foreground and background. Even the brightest regions are ultra-dim, as is common with dwarf galaxies. Yet they were most assuredly there, and they appeared to be affiliated with NGC 253.

    The dwarfs were dubbed Donatiello II, III and IV. A previous quest to photograph the major satellites of Andromeda (Messier 31) had already led Giuseppe to unearth Donatiello I, another far-off dwarf. Including two others in the Local Group, his total count is now six.

    A paper detailing the newest discoveries was published in collaboration with David Martinez-Delgado (Institute of Astrophysics of Andalucía, Spain) and others in 2021 [Astronomy & Astrophysics (below)]. David is “unique in the professional scenario” in terms of the working relationships he maintains with amateur astronomers, remarks Giuseppe.

    The study draws on the discoveries as well as additional data from the Dark Energy Spectroscopic Instrument (DESI) Legacy Surveys, which combine DES data with that from two other cameras located at Kitt Peak in Arizona. These data aided the analysis by reducing the amount of noise obstructing the signal.

    _________________________________________________________
    LBNL DESI


    _________________________________________________________
    More recently, a different team headed up by Burçin Mutlu-Pakdil (Dartmouth College), also in search of satellites of NGC 253, used the Hubble Space Telescope to obtain images of a number of them. Among them was Donatiello II, which they named Scl-MM-dw3. They thus independently corroborated Giuseppe’s discovery. Hubble, with its more precise measurements, was moreover able to conclusively demonstrate Donatiello II’s association with NGC 253 and rule out the possibility that it was a background projection.

    Studying the satellite dwarf galaxies arrayed around NGC 253 helps us build a clearer understanding of how such systems function. The more complete the census, the more accurate our conclusions will be.

    The case is emblematic of the way in which dedicated amateurs, in synergy with professionals, continue to push the boundaries of astronomical knowledge. Since the dawn of the internet, institutions have placed large volumes of archived data online, enabling anybody with a computer to comb through and participate in what was previously an exclusive pursuit. Humans are natural image processors and complement the scrutinizing capabilities of automatic detection software.

    Giuseppe has been looking skyward since being inspired at a young age, like so many others, by the Apollo missions. Now he has many years of experience under his belt.

    Knowing what to look for is key, as imposter artifacts abound. “Before venturing into a search, it is necessary to thoroughly study the morphology [of dwarf galaxies] and their appearance,” notes Giuseppe. “What make the difference between an artifact and a promising source,” he adds, “are cross-checks and mental associations.”

    The work is at times arduous and requires “preparation, creativity, and an acceptance that you will spend a lot of time potentially without any results,” says Giuseppe. The rewards, however, are immense.

    Astronomy & Astrophysics

    From the science paper:
    Fig. 1.
    2
    Left panel: position of the three dwarf galaxies (solid red circles) reported in this study with respect to the spiral NGC 253. The red circular line corresponds to the area explored by the PISCes survey (Toloba et al. 2016) extending up to ∼150 kpc from the centre of NGC 253. The total field of view of this image is 450′×480′. Right panel: full colour version of the image cutouts obtained with LEGACYPIPE for Do II, Do III, and Do IV. North is up and east is left. The field of view of all these image cutouts is 3.3′×3.3′.

    Fig.2
    3
    From left to right: dwarf galaxies in r-band, the GALFIT models, and the residual images after subtracting the model. The image scales and min max are the same for all the panels. The same procedure is done for modelling the g and z-band images. We mark the position of a few partially resolved sources in the galaxies that are visible in the residual images with red circles.

    For further images see the science paper.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Sky & Telescope, founded in 1941 by Charles A. Federer Jr. and Helen Spence Federer, has the largest, most experienced staff of any astronomy magazine in the world. Its editors are virtually all amateur or professional astronomers, and every one has built a telescope, written a book, done original research, developed a new product, or otherwise distinguished him or herself.

    Sky & Telescope magazine, now in its eighth decade, came about because of some happy accidents. Its earliest known ancestor was a four-page bulletin called The Amateur Astronomer, which was begun in 1929 by the Amateur Astronomers Association in New York City. Then, in 1935, the American Museum of Natural History opened its Hayden Planetarium and began to issue a monthly bulletin that became a full-size magazine called The Sky within a year. Under the editorship of Hans Christian Adamson, The Sky featured large illustrations and articles from astronomers all over the globe. It immediately absorbed The Amateur Astronomer.

    Despite initial success, by 1939 the planetarium found itself unable to continue financial support of The Sky. Charles A. Federer, who would become the dominant force behind Sky & Telescope, was then working as a lecturer at the planetarium. He was asked to take over publishing The Sky. Federer agreed and started an independent publishing corporation in New York.

    “Our first issue came out in January 1940,” he noted. “We dropped from 32 to 24 pages, used cheaper quality paper…but editorially we further defined the departments and tried to squeeze as much information as possible between the covers.” Federer was The Sky’s editor, and his wife, Helen, served as managing editor. In that January 1940 issue, they stated their goal: “We shall try to make the magazine meet the needs of amateur astronomy, so that amateur astronomers will come to regard it as essential to their pursuit, and professionals to consider it a worthwhile medium in which to bring their work before the public.”

     
  • richardmitnick 12:44 pm on February 6, 2023 Permalink | Reply
    Tags: "Jupiter's moon count jumps to 92 - most in solar system", , , Sky & Telescope, Solar System Lunar Studies   

    From “Sky & Telescope” : “Jupiter’s moon count jumps to 92 – most in solar system” 

    From “Sky & Telescope”

    1.31.23

    The biggest planet in the solar system now has the largest family of moons. Since December 20th, the Minor Planet Center (MPC) has published orbits for 12 previously unreported moons of Jupiter. More publications are expected, says Scott Sheppard (Carnegie Institute for Science), who recently submitted observations of the Jovian system taken between 2021 and 2022. The discoveries bring the list of Jovian moons to 92, a hefty 15% increase from the previous tally of 80.

    The MPC’s orbital calculations confirm the new objects are in orbit around Jupiter. Other data from Sheppard’s observations even enabled recovery of the last “missing” Jovian moon, S/2003 J 10; the newest observations extended the track of its orbit to 18 years.

    1
    Jovian moons up to 92.
    While not up to date with all 92 of Jupiter’s known moons, this diagram nevertheless helps visualize the grouping of moons by their orbits: The Galilean moons are the innermost and most massive moons (purple). The planet’s prograde moons (purple, blue) orbit relatively close to Jupiter while its retrograde moons (red) are farther out. One exceptions is Valetudo (green), a prograde-moving body that’s far out. Credit: Roberto Molar Candanosa/ Carnegie Inst. for Science.

    2
    This top-down diagram shows the orbits of moons around Jupiter: Purple denotes the Galilean moons, yellow for Themisto, blue for the Himalia group, cyan and green for Carpo and Valetudo, respectively, and red for far-out retrograde moons. (Note: The number of moons in this diagram is not up to date.) Credit: Scott Sheppard.

    Jupiter vs. Saturn

    The new finds put Jupiter’s lunar family count well ahead of Saturn’s 83 confirmed moons. However, while Jupiter may have the most moons for now, Saturn might catch up. A search for objects with sizes down to about 3 kilometers across that are moving along with the gas giants found three times more near Saturn than near Jupiter [The Planetary Science Journal (below)]. The more numerous Saturnian objects might have come from a collision that disrupted a larger moon a few hundred million years ago. (The fragments have not been tracked carefully enough to count as moons yet, though.)

    If we could count all moons measuring at least 3 kilometers across, “Saturn would have more moons than all the rest of the solar system,” says Brett Gladman (University of British Columbia, Canada), who helped identify the new Saturnian objects but was not involved in the Jovian observations.

    New Moons

    All of the newly discovered moons are small and far out, taking more than 340 days to orbit Jupiter. Nine of the 12 are among the 71 outermost Jovian moons, whose orbits are more than 550 days. Jupiter probably captured these moons, as evidenced by their retrograde orbits, opposite in direction to the inner moons. Only five of all the retrograde moons are larger than 8 kilometers (5 miles); Sheppard says the smaller moons probably formed when collisions fragmented larger objects.

    Three of the newly discovered moons are in among 13 others that orbit in a prograde direction and lie between the large, close-in Galilean moons and the far-out retrograde moons. These prograde moons are thought to have formed where they are.

    They’re harder to find than the more distant retrograde moons, though, says Sheppard. “The reason is that they are closer to Jupiter and the scattered light from the planet is tremendous,” he says. That light obscures them in the sky. Five were found before 2000, and only eight more have been discovered since then.

    Besides the interest in their origins, these prograde moons could make suitable targets for a flyby from an upcoming mission. Three missions are in the works for the Jupiter system: the European Space Agency’s Jupiter Icy Moon Explorer (JUICE), scheduled for launch in April; NASA’s Europa Clipper, set for launch late next year; and a Chinese mission being considered for the 2030s.



    Beyond the Galilean Moons

    The prograde objects outside the Galilean moons fall into two groups: the nine moons of the Himalia group orbit 11 to 12 million km from Jupiter, and the more distant duo in the Carpo group at 17 million km. The new discoveries added two of Himalia’s current tally of nine, and one of Carpo’s duo.

    Searches for prograde moons outside these groups turned up nothing.

    In the yawning gap between Himalia and the Galilean moons, there’s only one moon known: Themisto, a 9-kilometer object discovered by Elizabeth Roemer and Charles Kowal in 1975 but not recovered until 2000. It orbits 7.5 million kilometers (4.6 million miles) from Jupiter, roughly halfway between Callisto at 1.9 million km and the group of prograde moons starting at 11 million km.

    That’s a big hole. “We have searched very deeply for objects near Themisto, and have found nothing else to date,” says Sheppard. He says glare from Jupiter is so strong it would hide anything smaller than 3 kilometers across.

    A single prograde moon, the 1-km Valetudo, orbits beyond the Carpo group, at 19 million km from Jupiter. After discovering it in 2018, Sheppard called Valetudo an “oddball” because its orbit crosses those of a few retrograde moons. This highly unstable situation is likely to lead to head-on collisions that would shatter one or both objects. Sheppard adds that Valetudo might be all that remains of a larger prograde moon that had suffered from earlier collisions. No other members have been found to date.

    Discovering New Moons

    Discoveries of small moons of Jupiter or Saturn are typically reported in Minor Planet Center Electronic Circulars. But those reports take time.

    Analyzing observations and calculating trajectories is more complex for planetary moons than for asteroids or comets, because a moon’s path depends on both the gravity of its planet as well as the Sun. Observations must also track the moon for a full orbit to show it really orbits the planet, and the outer moons of Jupiter take about two years to orbit the planet. For asteroids and comets, on the other hand, a few weeks of observations may suffice to predict their course because their path depends only on the Sun.

    We can expect more reports as Sheppard, Gladman, and others continue the hunt for new moons in the outer solar system.

    The Planetary Science Journal 2021

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Sky & Telescope, founded in 1941 by Charles A. Federer Jr. and Helen Spence Federer, has the largest, most experienced staff of any astronomy magazine in the world. Its editors are virtually all amateur or professional astronomers, and every one has built a telescope, written a book, done original research, developed a new product, or otherwise distinguished him or herself.

    Sky & Telescope magazine, now in its eighth decade, came about because of some happy accidents. Its earliest known ancestor was a four-page bulletin called The Amateur Astronomer, which was begun in 1929 by the Amateur Astronomers Association in New York City. Then, in 1935, the American Museum of Natural History opened its Hayden Planetarium and began to issue a monthly bulletin that became a full-size magazine called The Sky within a year. Under the editorship of Hans Christian Adamson, The Sky featured large illustrations and articles from astronomers all over the globe. It immediately absorbed The Amateur Astronomer.

    Despite initial success, by 1939 the planetarium found itself unable to continue financial support of The Sky. Charles A. Federer, who would become the dominant force behind Sky & Telescope, was then working as a lecturer at the planetarium. He was asked to take over publishing The Sky. Federer agreed and started an independent publishing corporation in New York.

    “Our first issue came out in January 1940,” he noted. “We dropped from 32 to 24 pages, used cheaper quality paper…but editorially we further defined the departments and tried to squeeze as much information as possible between the covers.” Federer was The Sky’s editor, and his wife, Helen, served as managing editor. In that January 1940 issue, they stated their goal: “We shall try to make the magazine meet the needs of amateur astronomy, so that amateur astronomers will come to regard it as essential to their pursuit, and professionals to consider it a worthwhile medium in which to bring their work before the public.”

     
  • richardmitnick 8:49 pm on January 27, 2023 Permalink | Reply
    Tags: "Hubble and Webb Image Galaxies’ Lost Stars", , , , , Sky & Telescope, , ,   

    From NASA/Hubblesite and ESA/Hubble And From The NASA/ESA/CSA James Webb Space Telescope Via “Sky & Telescope” : “Hubble and Webb Image Galaxies’ Lost Stars” 

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganization](EU) Hubble Space Telescope.

    From NASA/Hubblesite and ESA/Hubble

    And

    NASA Webb Header

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) James Webb Infrared Space Telescope annotated, finally launched December 25, 2021, ten years late.

    From The NASA/ESA/CSA James Webb Space Telescope

    Via

    “Sky & Telescope”

    1.25.23
    Monica Young

    Deep images of galaxy clusters reveals the light of wandering stars. What set these stars free from their hosts?

    Sometimes, galaxies lose their stars. Just as a jostle on a crowded sidewalk might leave pennies dropped on the ground, gravitational interactions between crowded-together galaxies can fling a few stars out of their hosts and into the space between.

    Astronomers term this faintest of glows intracluster light, and they must use powerful observatories to look for it — including the Hubble and James Webb telescopes. For the past two decades, we’ve seen this glimmer of wandering stars in pretty much every galaxy cluster we’ve looked at. But how it gets there has remained unclear: Do gravitational interactions within the cluster slowly strip stars from their hosts? Or are a bunch of stars lost all in one go as clusters come together?

    Hubble’s View

    In the January 5th Nature [below], Hyungjin Joo and M. James Jee (Yonsei University, Republic of Korea) went a step beyond previous studies by studying a set of 10 galaxy clusters. Long-exposure Hubble images reveal intracluster light within the inner 650,000 light-years or so of each cluster. The clusters are at a range of distances from Earth, representing the universe at roughly a quarter to half its current age.

    1
    These are Hubble Space Telescope images of two massive clusters of galaxies named MOO J1014+0038 (left panel) and SPT-CL J2106-5844 (right panel). The added blue color is translated from Hubble data to show intracluster light. Science: James Jee (Yonsei University)/NASA / ESA / STScI; Image processing: Joseph DePasquale (STScI).

    Despite the range of distances, Joo and Jee find that the clusters all have about the same fraction of intracluster light. That seems to imply that that fraction doesn’t change over cosmic time. The result, the researchers argue, suggests that most of the wandering stars aren’t torn one-by-one from their galaxies as they pass through the cluster, but rather are lost wholesale as clusters merge and galaxies are torn apart.

    At first blush, this appears to contradict theoretical predictions, which would have the glow of intracluster light grow over time. But Chris Mihos (Case Western Reserve University), who has helped make some of those predictions [The Astrophysical Journal (below)], says it’s actually right in line with theory.

    Mihos notes that even though the 10 clusters Joo and Jee investigated are at a range of distances, and thus reside in the universe at different ages, the clusters themselves are all fully grown. The researchers acknowledge this, noting that each of their clusters contains between 100 trillion and 1,000 trillion Suns’ worth of mass, typical of mature galaxy clusters.

    “It’s not the universe clock that’s important, it’s the cluster clock . . . how quickly did the cluster form,” Mihos says. Current theory says that every cluster forms from many collision of smaller groups of galaxies, and it’s these mergers that tear at galaxies and release some fraction of their stars into intergalactic space.

    Theoretical predictions therefore actually agree with what Joo and Jee found: When astronomers look at a fully mature cluster, most of the light they see should indeed come from major mergers rather than from the slower stripping of stars.

    “What would be really interesting would be to look at the diffuse light in [smaller] groups of galaxies, because those are going to grow up to be the clusters today,” Mihos says. But then he laughs: “I’m asking for the impossible. Maybe with James Webb.”

    Wandering Stars with Webb

    2
    Webb’s first image to be released was of a galaxy cluster dubbed SMACS 0723. NASA / ESA / CSA / STScI.

    A recent study by Mireia Montes and Ignacio Trujillo [Astrophysical Journal Letters (below)] (both at the Astrophysical Institute of the Canaries, Spain) shows that Webb is indeed capable of probing intracluster light. The astronomers went to Webb’s early-release image of the SMACS 0723 galaxy cluster, measuring its intracluster light out to 1.5 million light-years — twice as far out as has been possible with Hubble.

    In agreement with Joo and Jee, Montes and Trujillo find that the lost stars in the innermost regions probably came from a major merger; however, they think the wanderers in the sparser outer regions are more likely to come from gravitational interactions over cosmic time. “The diffuse extended component is being built now,” they write.

    3
    Arrows point to some prominent features of the intracluster light in this composite image of the galaxy cluster SMACS 0723. Montes & Trujillo / Astrophysical Journal Letters 2022.

    This study is only the beginning. Over this year, Webb is set to observe several protoclusters, shedding light on the lost stars within these less mature structures. “Future studies of the intracluster light are set to revolutionize our understanding of cluster formation,” Montes and Trujillo write.

    Nature
    The Astrophysical Journal 2011
    Astrophysical Journal Letters 2022
    See the above two science papers for instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The NASA/ESA/CSA James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror. Webb was finally launched December 25, 2021, ten years late. Webb will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    Webb is the world’s largest, most powerful, and most complex space science telescope ever built. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it.

    Webb was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between National Aeronautics and Space Administration, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center managed the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute operates Webb.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There are four science instruments on Webb: The Near InfraRed Camera (NIRCam), The Near InfraRed Spectrograph (NIRspec), The Mid-InfraRed Instrument (MIRI), and The Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS).

    Webb’s instruments are designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.
    National Aeronautics Space Agency Webb NIRCam.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) Webb MIRI schematic.

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Launch was December 25, 2021, ten years late, on an Ariane 5 rocket. The launch was from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb is located at the second Lagrange point, about a million miles from the Earth.

    ESA50 Logo large

    Canadian Space Agency

    The NASA/ESA Hubble Space Telescope is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most versatile, renowned both as a vital research tool and as a public relations boon for astronomy. The Hubble telescope is named after astronomer Edwin Hubble and is one of NASA’s Great Observatories, along with the NASA Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the NASA Spitzer Infrared Space Telescope.

    National Aeronautics Space Agency Compton Gamma Ray Observatory
    National Aeronautics and Space Administration Chandra X-ray telescope.
    National Aeronautics and Space AdministrationSpitzer Infrared Apace Telescope no longer in service. Launched in 2003 and retired on 30 January 2020.

    Edwin Hubble at Caltech Palomar Samuel Oschin 48 inch Telescope Credit: Emilio Segre Visual Archives/AIP/SPL.

    Edwin Hubble looking through the 100-inch Hooker telescope at Mount Wilson in Southern California, 1929 discovers the Universe is Expanding. Credit: Margaret Bourke-White/Time & Life Pictures/Getty Images.

    Hubble features a 2.4-meter (7.9 ft) mirror, and its four main instruments observe in the ultraviolet, visible, and near-infrared regions of the electromagnetic spectrum. Hubble’s orbit outside the distortion of Earth’s atmosphere allows it to capture extremely high-resolution images with substantially lower background light than ground-based telescopes. It has recorded some of the most detailed visible light images, allowing a deep view into space. Many Hubble observations have led to breakthroughs in astrophysics, such as determining the rate of expansion of the universe.

    The Hubble telescope was built by the United States space agency National Aeronautics Space Agency with contributions from the The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU). The Space Telescope Science Institute (STScI) selects Hubble’s targets and processes the resulting data, while the NASA Goddard Space Flight Center controls the spacecraft. Space telescopes were proposed as early as 1923. Hubble was funded in the 1970s with a proposed launch in 1983, but the project was beset by technical delays, budget problems, and the 1986 Challenger disaster. It was finally launched by Space Shuttle Discovery in 1990, but its main mirror had been ground incorrectly, resulting in spherical aberration that compromised the telescope’s capabilities. The optics were corrected to their intended quality by a servicing mission in 1993.

    Hubble is the only telescope designed to be maintained in space by astronauts. Five Space Shuttle missions have repaired, upgraded, and replaced systems on the telescope, including all five of the main instruments. The fifth mission was initially canceled on safety grounds following the Columbia disaster (2003), but NASA administrator Michael D. Griffin approved the fifth servicing mission which was completed in 2009. The telescope was still operating as of April 24, 2020, its 30th anniversary, and could last until 2030–2040. One successor to the Hubble telescope is the National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne](EU)/Canadian Space Agency(CA) Webb Infrared Space Telescope.

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) Webb Infrared Space Telescope James Webb Space Telescope annotated . Launched December 25, 2021, ten years late.

    Proposals and precursors

    In 1923, Hermann Oberth—considered a father of modern rocketry, along with Robert H. Goddard and Konstantin Tsiolkovsky—published Die Rakete zu den Planetenräumen (“The Rocket into Planetary Space“), which mentioned how a telescope could be propelled into Earth orbit by a rocket.

    The history of the Hubble Space Telescope can be traced back as far as 1946, to astronomer Lyman Spitzer’s paper entitled Astronomical advantages of an extraterrestrial observatory. In it, he discussed the two main advantages that a space-based observatory would have over ground-based telescopes. First, the angular resolution (the smallest separation at which objects can be clearly distinguished) would be limited only by diffraction, rather than by the turbulence in the atmosphere, which causes stars to twinkle, known to astronomers as seeing. At that time ground-based telescopes were limited to resolutions of 0.5–1.0 arcseconds, compared to a theoretical diffraction-limited resolution of about 0.05 arcsec for an optical telescope with a mirror 2.5 m (8.2 ft) in diameter. Second, a space-based telescope could observe infrared and ultraviolet light, which are strongly absorbed by the atmosphere.

    Spitzer devoted much of his career to pushing for the development of a space telescope. In 1962, a report by the National Academy of Sciences recommended development of a space telescope as part of the space program, and in 1965 Spitzer was appointed as head of a committee given the task of defining scientific objectives for a large space telescope.

    Space-based astronomy had begun on a very small-scale following World War II, as scientists made use of developments that had taken place in rocket technology. The first ultraviolet spectrum of the Sun was obtained in 1946, and the National Aeronautics and Space Administration launched the Orbiting Solar Observatory (OSO) to obtain UV, X-ray, and gamma-ray spectra in 1962.
    National Aeronautics Space Agency Orbiting Solar Observatory

    An orbiting solar telescope was launched in 1962 by the United Kingdom as part of the Ariel space program, and in 1966 NASA launched the first Orbiting Astronomical Observatory (OAO) mission. OAO-1’s battery failed after three days, terminating the mission. It was followed by OAO-2, which carried out ultraviolet observations of stars and galaxies from its launch in 1968 until 1972, well beyond its original planned lifetime of one year.

    The OSO and OAO missions demonstrated the important role space-based observations could play in astronomy. In 1968, NASA developed firm plans for a space-based reflecting telescope with a mirror 3 m (9.8 ft) in diameter, known provisionally as the Large Orbiting Telescope or Large Space Telescope (LST), with a launch slated for 1979. These plans emphasized the need for crewed maintenance missions to the telescope to ensure such a costly program had a lengthy working life, and the concurrent development of plans for the reusable Space Shuttle indicated that the technology to allow this was soon to become available.

    Quest for funding

    The continuing success of the OAO program encouraged increasingly strong consensus within the astronomical community that the LST should be a major goal. In 1970, NASA established two committees, one to plan the engineering side of the space telescope project, and the other to determine the scientific goals of the mission. Once these had been established, the next hurdle for NASA was to obtain funding for the instrument, which would be far more costly than any Earth-based telescope. The U.S. Congress questioned many aspects of the proposed budget for the telescope and forced cuts in the budget for the planning stages, which at the time consisted of very detailed studies of potential instruments and hardware for the telescope. In 1974, public spending cuts led to Congress deleting all funding for the telescope project.
    In response a nationwide lobbying effort was coordinated among astronomers. Many astronomers met congressmen and senators in person, and large-scale letter-writing campaigns were organized. The National Academy of Sciences published a report emphasizing the need for a space telescope, and eventually the Senate agreed to half the budget that had originally been approved by Congress.

    The funding issues led to something of a reduction in the scale of the project, with the proposed mirror diameter reduced from 3 m to 2.4 m, both to cut costs and to allow a more compact and effective configuration for the telescope hardware. A proposed precursor 1.5 m (4.9 ft) space telescope to test the systems to be used on the main satellite was dropped, and budgetary concerns also prompted collaboration with the European Space Agency. ESA agreed to provide funding and supply one of the first-generation instruments for the telescope, as well as the solar cells that would power it, and staff to work on the telescope in the United States, in return for European astronomers being guaranteed at least 15% of the observing time on the telescope. Congress eventually approved funding of US$36 million for 1978, and the design of the LST began in earnest, aiming for a launch date of 1983. In 1983 the telescope was named after Edwin Hubble, who confirmed one of the greatest scientific discoveries of the 20th century, made by Georges Lemaitre, that the universe is expanding.

    Construction and engineering

    Once the Space Telescope project had been given the go-ahead, work on the program was divided among many institutions. NASA Marshall Space Flight Center was given responsibility for the design, development, and construction of the telescope, while Goddard Space Flight Center was given overall control of the scientific instruments and ground-control center for the mission. MSFC commissioned the optics company Perkin-Elmer to design and build the Optical Telescope Assembly (OTA) and Fine Guidance Sensors for the space telescope. Lockheed was commissioned to construct and integrate the spacecraft in which the telescope would be housed.

    Optical Telescope Assembly

    Optically, the HST is a Cassegrain reflector of Ritchey–Chrétien design, as are most large professional telescopes. This design, with two hyperbolic mirrors, is known for good imaging performance over a wide field of view, with the disadvantage that the mirrors have shapes that are hard to fabricate and test. The mirror and optical systems of the telescope determine the final performance, and they were designed to exacting specifications. Optical telescopes typically have mirrors polished to an accuracy of about a tenth of the wavelength of visible light, but the Space Telescope was to be used for observations from the visible through the ultraviolet (shorter wavelengths) and was specified to be diffraction limited to take full advantage of the space environment. Therefore, its mirror needed to be polished to an accuracy of 10 nanometers, or about 1/65 of the wavelength of red light. On the long wavelength end, the OTA was not designed with optimum IR performance in mind—for example, the mirrors are kept at stable (and warm, about 15 °C) temperatures by heaters. This limits Hubble’s performance as an infrared telescope.

    Perkin-Elmer intended to use custom-built and extremely sophisticated computer-controlled polishing machines to grind the mirror to the required shape. However, in case their cutting-edge technology ran into difficulties, NASA demanded that PE sub-contract to Kodak to construct a back-up mirror using traditional mirror-polishing techniques. (The team of Kodak and Itek also bid on the original mirror polishing work. Their bid called for the two companies to double-check each other’s work, which would have almost certainly caught the polishing error that later caused such problems.) The Kodak mirror is now on permanent display at the National Air and Space Museum. An Itek mirror built as part of the effort is now used in the 2.4 m telescope at the Magdalena Ridge Observatory.

    Construction of the Perkin-Elmer mirror began in 1979, starting with a blank manufactured by Corning from their ultra-low expansion glass. To keep the mirror’s weight to a minimum it consisted of top and bottom plates, each one inch (25 mm) thick, sandwiching a honeycomb lattice. Perkin-Elmer simulated microgravity by supporting the mirror from the back with 130 rods that exerted varying amounts of force. This ensured the mirror’s final shape would be correct and to specification when finally deployed. Mirror polishing continued until May 1981. NASA reports at the time questioned Perkin-Elmer’s managerial structure, and the polishing began to slip behind schedule and over budget. To save money, NASA halted work on the back-up mirror and put the launch date of the telescope back to October 1984. The mirror was completed by the end of 1981; it was washed using 2,400 US gallons (9,100 L) of hot, deionized water and then received a reflective coating of 65 nm-thick aluminum and a protective coating of 25 nm-thick magnesium fluoride.

    Doubts continued to be expressed about Perkin-Elmer’s competence on a project of this importance, as their budget and timescale for producing the rest of the OTA continued to inflate. In response to a schedule described as “unsettled and changing daily”, NASA postponed the launch date of the telescope until April 1985. Perkin-Elmer’s schedules continued to slip at a rate of about one month per quarter, and at times delays reached one day for each day of work. NASA was forced to postpone the launch date until March and then September 1986. By this time, the total project budget had risen to US$1.175 billion.

    Spacecraft systems

    The spacecraft in which the telescope and instruments were to be housed was another major engineering challenge. It would have to withstand frequent passages from direct sunlight into the darkness of Earth’s shadow, which would cause major changes in temperature, while being stable enough to allow extremely accurate pointing of the telescope. A shroud of multi-layer insulation keeps the temperature within the telescope stable and surrounds a light aluminum shell in which the telescope and instruments sit. Within the shell, a graphite-epoxy frame keeps the working parts of the telescope firmly aligned. Because graphite composites are hygroscopic, there was a risk that water vapor absorbed by the truss while in Lockheed’s clean room would later be expressed in the vacuum of space; resulting in the telescope’s instruments being covered by ice. To reduce that risk, a nitrogen gas purge was performed before launching the telescope into space.

    While construction of the spacecraft in which the telescope and instruments would be housed proceeded somewhat more smoothly than the construction of the OTA, Lockheed still experienced some budget and schedule slippage, and by the summer of 1985, construction of the spacecraft was 30% over budget and three months behind schedule. An MSFC report said Lockheed tended to rely on NASA directions rather than take their own initiative in the construction.

    Computer systems and data processing

    The two initial, primary computers on the HST were the 1.25 MHz DF-224 system, built by Rockwell Autonetics, which contained three redundant CPUs, and two redundant NSSC-1 (NASA Standard Spacecraft Computer, Model 1) systems, developed by Westinghouse and GSFC using diode–transistor logic (DTL). A co-processor for the DF-224 was added during Servicing Mission 1 in 1993, which consisted of two redundant strings of an Intel-based 80386 processor with an 80387-math co-processor. The DF-224 and its 386 co-processor were replaced by a 25 MHz Intel-based 80486 processor system during Servicing Mission 3A in 1999. The new computer is 20 times faster, with six times more memory, than the DF-224 it replaced. It increases throughput by moving some computing tasks from the ground to the spacecraft and saves money by allowing the use of modern programming languages.

    Additionally, some of the science instruments and components had their own embedded microprocessor-based control systems. The MATs (Multiple Access Transponder) components, MAT-1 and MAT-2, utilize Hughes Aircraft CDP1802CD microprocessors. The Wide Field and Planetary Camera (WFPC) also utilized an RCA 1802 microprocessor (or possibly the older 1801 version). The WFPC-1 was replaced by the WFPC-2 [below] during Servicing Mission 1 in 1993, which was then replaced by the Wide Field Camera 3 (WFC3) [below] during Servicing Mission 4 in 2009.

    Initial instruments

    When launched, the HST carried five scientific instruments: the Wide Field and Planetary Camera (WF/PC), Goddard High Resolution Spectrograph (GHRS), High Speed Photometer (HSP), Faint Object Camera (FOC) and the Faint Object Spectrograph (FOS). WF/PC was a high-resolution imaging device primarily intended for optical observations. It was built by NASA JPL-Caltech, and incorporated a set of 48 filters isolating spectral lines of particular astrophysical interest. The instrument contained eight charge-coupled device (CCD) chips divided between two cameras, each using four CCDs. Each CCD has a resolution of 0.64 megapixels. The wide field camera (WFC) covered a large angular field at the expense of resolution, while the planetary camera (PC) took images at a longer effective focal length than the WF chips, giving it a greater magnification.

    The GHRS was a spectrograph designed to operate in the ultraviolet. It was built by the Goddard Space Flight Center and could achieve a spectral resolution of 90,000. Also optimized for ultraviolet observations were the FOC and FOS, which were capable of the highest spatial resolution of any instruments on Hubble. Rather than CCDs these three instruments used photon-counting digicons as their detectors. The FOC was constructed by ESA, while the University of California, San Diego, and Martin Marietta Corporation built the FOS.

    The final instrument was the HSP, designed and built at the University of Wisconsin–Madison. It was optimized for visible and ultraviolet light observations of variable stars and other astronomical objects varying in brightness. It could take up to 100,000 measurements per second with a photometric accuracy of about 2% or better.

    HST’s guidance system can also be used as a scientific instrument. Its three Fine Guidance Sensors (FGS) are primarily used to keep the telescope accurately pointed during an observation, but can also be used to carry out extremely accurate astrometry; measurements accurate to within 0.0003 arcseconds have been achieved.

    Ground support

    The Space Telescope Science Institute is responsible for the scientific operation of the telescope and the delivery of data products to astronomers. STScI is operated by the Association of Universities for Research in Astronomy and is physically located in Baltimore, Maryland on the Homewood campus of Johns Hopkins University, one of the 39 U.S. universities and seven international affiliates that make up the AURA consortium. STScI was established in 1981 after something of a power struggle between NASA and the scientific community at large. NASA had wanted to keep this function in-house, but scientists wanted it to be based in an academic establishment. The Space Telescope European Coordinating Facility, established at Garching bei München near Munich in 1984, provided similar support for European astronomers until 2011, when these activities were moved to the European Space Astronomy Centre.

    One rather complex task that falls to STScI is scheduling observations for the telescope. Hubble is in a low-Earth orbit to enable servicing missions, but this means most astronomical targets are occulted by the Earth for slightly less than half of each orbit. Observations cannot take place when the telescope passes through the South Atlantic Anomaly due to elevated radiation levels, and there are also sizable exclusion zones around the Sun (precluding observations of Mercury), Moon and Earth. The solar avoidance angle is about 50°, to keep sunlight from illuminating any part of the OTA. Earth and Moon avoidance keeps bright light out of the FGSs, and keeps scattered light from entering the instruments. If the FGSs are turned off, the Moon and Earth can be observed. Earth observations were used very early in the program to generate flat-fields for the WFPC1 instrument. There is a so-called continuous viewing zone (CVZ), at roughly 90° to the plane of Hubble’s orbit, in which targets are not occulted for long periods.

    Challenger disaster, delays, and eventual launch

    By January 1986, the planned launch date of October looked feasible, but the Challenger explosion brought the U.S. space program to a halt, grounding the Shuttle fleet and forcing the launch of Hubble to be postponed for several years. The telescope had to be kept in a clean room, powered up and purged with nitrogen, until a launch could be rescheduled. This costly situation (about US$6 million per month) pushed the overall costs of the project even higher. This delay did allow time for engineers to perform extensive tests, swap out a possibly failure-prone battery, and make other improvements. Furthermore, the ground software needed to control Hubble was not ready in 1986, and was barely ready by the 1990 launch.

    Eventually, following the resumption of shuttle flights in 1988, the launch of the telescope was scheduled for 1990. On April 24, 1990, Space Shuttle Discovery successfully launched it during the STS-31 mission.

    From its original total cost estimate of about US$400 million, the telescope cost about US$4.7 billion by the time of its launch. Hubble’s cumulative costs were estimated to be about US$10 billion in 2010, twenty years after launch.

    List of Hubble instruments

    Hubble accommodates five science instruments at a given time, plus the Fine Guidance Sensors, which are mainly used for aiming the telescope but are occasionally used for scientific astrometry measurements. Early instruments were replaced with more advanced ones during the Shuttle servicing missions. COSTAR was a corrective optics device rather than a science instrument, but occupied one of the five instrument bays.
    Since the final servicing mission in 2009, the four active instruments have been ACS, COS, STIS and WFC3. NICMOS is kept in hibernation, but may be revived if WFC3 were to fail in the future.

    Advanced Camera for Surveys (ACS; 2002–present)
    Cosmic Origins Spectrograph (COS; 2009–present)
    Corrective Optics Space Telescope Axial Replacement (COSTAR; 1993–2009)
    Faint Object Camera (FOC; 1990–2002)
    Faint Object Spectrograph (FOS; 1990–1997)
    Fine Guidance Sensor (FGS; 1990–present)
    Goddard High Resolution Spectrograph (GHRS/HRS; 1990–1997)
    High Speed Photometer (HSP; 1990–1993)
    Near Infrared Camera and Multi-Object Spectrometer (NICMOS; 1997–present, hibernating since 2008)
    Space Telescope Imaging Spectrograph (STIS; 1997–present (non-operative 2004–2009))
    Wide Field and Planetary Camera (WFPC; 1990–1993)
    Wide Field and Planetary Camera 2 (WFPC2; 1993–2009)
    Wide Field Camera 3 (WFC3; 2009–present)

    Of the former instruments, three (COSTAR, FOS and WFPC2) are displayed in the Smithsonian National Air and Space Museum. The FOC is in the Dornier Museum, Germany. The HSP is in the Space Place at the University of Wisconsin–Madison. The first WFPC was dismantled, and some components were then re-used in WFC3.

    Flawed mirror

    Within weeks of the launch of the telescope, the returned images indicated a serious problem with the optical system. Although the first images appeared to be sharper than those of ground-based telescopes, Hubble failed to achieve a final sharp focus and the best image quality obtained was drastically lower than expected. Images of point sources spread out over a radius of more than one arcsecond, instead of having a point spread function (PSF) concentrated within a circle 0.1 arcseconds (485 nrad) in diameter, as had been specified in the design criteria.

    Analysis of the flawed images revealed that the primary mirror had been polished to the wrong shape. Although it was believed to be one of the most precisely figured optical mirrors ever made, smooth to about 10 nanometers, the outer perimeter was too flat by about 2200 nanometers (about 1⁄450 mm or 1⁄11000 inch). This difference was catastrophic, introducing severe spherical aberration, a flaw in which light reflecting off the edge of a mirror focuses on a different point from the light reflecting off its center.

    The effect of the mirror flaw on scientific observations depended on the particular observation—the core of the aberrated PSF was sharp enough to permit high-resolution observations of bright objects, and spectroscopy of point sources was affected only through a sensitivity loss. However, the loss of light to the large, out-of-focus halo severely reduced the usefulness of the telescope for faint objects or high-contrast imaging. This meant nearly all the cosmological programs were essentially impossible, since they required observation of exceptionally faint objects. This led politicians to question NASA’s competence, scientists to rue the cost which could have gone to more productive endeavors, and comedians to make jokes about NASA and the telescope − in the 1991 comedy The Naked Gun 2½: The Smell of Fear, in a scene where historical disasters are displayed, Hubble is pictured with RMS Titanic and LZ 129 Hindenburg. Nonetheless, during the first three years of the Hubble mission, before the optical corrections, the telescope still carried out a large number of productive observations of less demanding targets. The error was well characterized and stable, enabling astronomers to partially compensate for the defective mirror by using sophisticated image processing techniques such as deconvolution.

    Origin of the problem

    A commission headed by Lew Allen, director of the Jet Propulsion Laboratory, was established to determine how the error could have arisen. The Allen Commission found that a reflective null corrector, a testing device used to achieve a properly shaped non-spherical mirror, had been incorrectly assembled—one lens was out of position by 1.3 mm (0.051 in). During the initial grinding and polishing of the mirror, Perkin-Elmer analyzed its surface with two conventional refractive null correctors. However, for the final manufacturing step (figuring), they switched to the custom-built reflective null corrector, designed explicitly to meet very strict tolerances. The incorrect assembly of this device resulted in the mirror being ground very precisely but to the wrong shape. A few final tests, using the conventional null correctors, correctly reported spherical aberration. But these results were dismissed, thus missing the opportunity to catch the error, because the reflective null corrector was considered more accurate.

    The commission blamed the failings primarily on Perkin-Elmer. Relations between NASA and the optics company had been severely strained during the telescope construction, due to frequent schedule slippage and cost overruns. NASA found that Perkin-Elmer did not review or supervise the mirror construction adequately, did not assign its best optical scientists to the project (as it had for the prototype), and in particular did not involve the optical designers in the construction and verification of the mirror. While the commission heavily criticized Perkin-Elmer for these managerial failings, NASA was also criticized for not picking up on the quality control shortcomings, such as relying totally on test results from a single instrument.

    Design of a solution

    Many feared that Hubble would be abandoned. The design of the telescope had always incorporated servicing missions, and astronomers immediately began to seek potential solutions to the problem that could be applied at the first servicing mission, scheduled for 1993. While Kodak had ground a back-up mirror for Hubble, it would have been impossible to replace the mirror in orbit, and too expensive and time-consuming to bring the telescope back to Earth for a refit. Instead, the fact that the mirror had been ground so precisely to the wrong shape led to the design of new optical components with exactly the same error but in the opposite sense, to be added to the telescope at the servicing mission, effectively acting as “spectacles” to correct the spherical aberration.

    The first step was a precise characterization of the error in the main mirror. Working backwards from images of point sources, astronomers determined that the conic constant of the mirror as built was −1.01390±0.0002, instead of the intended −1.00230. The same number was also derived by analyzing the null corrector used by Perkin-Elmer to figure the mirror, as well as by analyzing interferograms obtained during ground testing of the mirror.

    Because of the way the HST’s instruments were designed, two different sets of correctors were required. The design of the Wide Field and Planetary Camera 2, already planned to replace the existing WF/PC, included relay mirrors to direct light onto the four separate charge-coupled device (CCD) chips making up its two cameras. An inverse error built into their surfaces could completely cancel the aberration of the primary. However, the other instruments lacked any intermediate surfaces that could be figured in this way, and so required an external correction device.

    The Corrective Optics Space Telescope Axial Replacement (COSTAR) system was designed to correct the spherical aberration for light focused at the FOC, FOS, and GHRS. It consists of two mirrors in the light path with one ground to correct the aberration. To fit the COSTAR system onto the telescope, one of the other instruments had to be removed, and astronomers selected the High Speed Photometer to be sacrificed. By 2002, all the original instruments requiring COSTAR had been replaced by instruments with their own corrective optics. COSTAR was removed and returned to Earth in 2009 where it is exhibited at the National Air and Space Museum. The area previously used by COSTAR is now occupied by the Cosmic Origins Spectrograph.

    NASA COSTAR

    NASA COSTAR installation

    Servicing missions and new instruments

    Servicing Mission 1

    The first Hubble serving mission was scheduled for 1993 before the mirror problem was discovered. It assumed greater importance, as the astronauts would need to do extensive work to install corrective optics; failure would have resulted in either abandoning Hubble or accepting its permanent disability. Other components failed before the mission, causing the repair cost to rise to $500 million (not including the cost of the shuttle flight). A successful repair would help demonstrate the viability of building Space Station Alpha, however.

    STS-49 in 1992 demonstrated the difficulty of space work. While its rescue of Intelsat 603 received praise, the astronauts had taken possibly reckless risks in doing so. Neither the rescue nor the unrelated assembly of prototype space station components occurred as the astronauts had trained, causing NASA to reassess planning and training, including for the Hubble repair. The agency assigned to the mission Story Musgrave—who had worked on satellite repair procedures since 1976—and six other experienced astronauts, including two from STS-49. The first mission director since Project Apollo would coordinate a crew with 16 previous shuttle flights. The astronauts were trained to use about a hundred specialized tools.

    Heat had been the problem on prior spacewalks, which occurred in sunlight. Hubble needed to be repaired out of sunlight. Musgrave discovered during vacuum training, seven months before the mission, that spacesuit gloves did not sufficiently protect against the cold of space. After STS-57 confirmed the issue in orbit, NASA quickly changed equipment, procedures, and flight plan. Seven total mission simulations occurred before launch, the most thorough preparation in shuttle history. No complete Hubble mockup existed, so the astronauts studied many separate models (including one at the Smithsonian) and mentally combined their varying and contradictory details. Service Mission 1 flew aboard Endeavour in December 1993, and involved installation of several instruments and other equipment over ten days.

    Most importantly, the High-Speed Photometer was replaced with the COSTAR corrective optics package, and WFPC was replaced with the Wide Field and Planetary Camera 2 (WFPC2) with an internal optical correction system. The solar arrays and their drive electronics were also replaced, as well as four gyroscopes in the telescope pointing system, two electrical control units and other electrical components, and two magnetometers. The onboard computers were upgraded with added coprocessors, and Hubble’s orbit was boosted.

    On January 13, 1994, NASA declared the mission a complete success and showed the first sharper images. The mission was one of the most complex performed up until that date, involving five long extra-vehicular activity periods. Its success was a boon for NASA, as well as for the astronomers who now had a more capable space telescope.

    Servicing Mission 2

    Servicing Mission 2, flown by Discovery in February 1997, replaced the GHRS and the FOS with the Space Telescope Imaging Spectrograph (STIS) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS), replaced an Engineering and Science Tape Recorder with a new Solid State Recorder, and repaired thermal insulation. NICMOS contained a heat sink of solid nitrogen to reduce the thermal noise from the instrument, but shortly after it was installed, an unexpected thermal expansion resulted in part of the heat sink coming into contact with an optical baffle. This led to an increased warming rate for the instrument and reduced its original expected lifetime of 4.5 years to about two years.

    Servicing Mission 3A

    Servicing Mission 3A, flown by Discovery, took place in December 1999, and was a split-off from Servicing Mission 3 after three of the six onboard gyroscopes had failed. The fourth failed a few weeks before the mission, rendering the telescope incapable of performing scientific observations. The mission replaced all six gyroscopes, replaced a Fine Guidance Sensor and the computer, installed a Voltage/temperature Improvement Kit (VIK) to prevent battery overcharging, and replaced thermal insulation blankets.

    Servicing Mission 3B

    Servicing Mission 3B flown by Columbia in March 2002 saw the installation of a new instrument, with the FOC (which, except for the Fine Guidance Sensors when used for astrometry, was the last of the original instruments) being replaced by the Advanced Camera for Surveys (ACS). This meant COSTAR was no longer required, since all new instruments had built-in correction for the main mirror aberration. The mission also revived NICMOS by installing a closed-cycle cooler and replaced the solar arrays for the second time, providing 30 percent more power.

    Servicing Mission 4

    Plans called for Hubble to be serviced in February 2005, but the Columbia disaster in 2003, in which the orbiter disintegrated on re-entry into the atmosphere, had wide-ranging effects on the Hubble program. NASA Administrator Sean O’Keefe decided all future shuttle missions had to be able to reach the safe haven of the International Space Station should in-flight problems develop. As no shuttles were capable of reaching both HST and the space station during the same mission, future crewed service missions were canceled. This decision was criticized by numerous astronomers who felt Hubble was valuable enough to merit the human risk. HST’s planned successor, the James Webb Telescope (JWST), as of 2004 was not expected to launch until at least 2011. A gap in space-observing capabilities between a decommissioning of Hubble and the commissioning of a successor was of major concern to many astronomers, given the significant scientific impact of HST. The consideration that JWST will not be located in low Earth orbit, and therefore cannot be easily upgraded or repaired in the event of an early failure, only made concerns more acute. On the other hand, many astronomers felt strongly that servicing Hubble should not take place if the expense were to come from the JWST budget.

    In January 2004, O’Keefe said he would review his decision to cancel the final servicing mission to HST, due to public outcry and requests from Congress for NASA to look for a way to save it. The National Academy of Sciences convened an official panel, which recommended in July 2004 that the HST should be preserved despite the apparent risks. Their report urged “NASA should take no actions that would preclude a space shuttle servicing mission to the Hubble Space Telescope”. In August 2004, O’Keefe asked Goddard Space Flight Center to prepare a detailed proposal for a robotic service mission. These plans were later canceled, the robotic mission being described as “not feasible”. In late 2004, several Congressional members, led by Senator Barbara Mikulski, held public hearings and carried on a fight with much public support (including thousands of letters from school children across the U.S.) to get the Bush Administration and NASA to reconsider the decision to drop plans for a Hubble rescue mission.

    The nomination in April 2005 of a new NASA Administrator, Michael D. Griffin, changed the situation, as Griffin stated he would consider a crewed servicing mission. Soon after his appointment Griffin authorized Goddard to proceed with preparations for a crewed Hubble maintenance flight, saying he would make the final decision after the next two shuttle missions. In October 2006 Griffin gave the final go-ahead, and the 11-day mission by Atlantis was scheduled for October 2008. Hubble’s main data-handling unit failed in September 2008, halting all reporting of scientific data until its back-up was brought online on October 25, 2008. Since a failure of the backup unit would leave the HST helpless, the service mission was postponed to incorporate a replacement for the primary unit.

    Servicing Mission 4 (SM4), flown by Atlantis in May 2009, was the last scheduled shuttle mission for HST. SM4 installed the replacement data-handling unit, repaired the ACS and STIS systems, installed improved nickel hydrogen batteries, and replaced other components including all six gyroscopes. SM4 also installed two new observation instruments—Wide Field Camera 3 (WFC3) and the Cosmic Origins Spectrograph (COS)—and the Soft Capture and Rendezvous System, which will enable the future rendezvous, capture, and safe disposal of Hubble by either a crewed or robotic mission. Except for the ACS’s High-Resolution Channel, which could not be repaired and was disabled, the work accomplished during SM4 rendered the telescope fully functional.

    Major projects

    Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey [CANDELS]

    The survey “aims to explore galactic evolution in the early Universe, and the very first seeds of cosmic structure at less than one billion years after the Big Bang.” The CANDELS project site describes the survey’s goals as the following:

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey is designed to document the first third of galactic evolution from z = 8 to 1.5 via deep imaging of more than 250,000 galaxies with WFC3/IR and ACS. It will also find the first Type Ia SNe beyond z > 1.5 and establish their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected; each has multi-wavelength data from Spitzer and other facilities, and has extensive spectroscopy of the brighter galaxies. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to 109 solar masses out to z ~ 8.

    Frontier Fields program

    The program, officially named Hubble Deep Fields Initiative 2012, is aimed to advance the knowledge of early galaxy formation by studying high-redshift galaxies in blank fields with the help of gravitational lensing to see the “faintest galaxies in the distant universe”. The Frontier Fields web page describes the goals of the program being:

    To reveal hitherto inaccessible populations of z = 5–10 galaxies that are ten to fifty times fainter intrinsically than any presently known
    To solidify our understanding of the stellar masses and star formation histories of sub-L* galaxies at the earliest times
    To provide the first statistically meaningful morphological characterization of star forming galaxies at z > 5
    To find z > 8 galaxies stretched out enough by cluster lensing to discern internal structure and/or magnified enough by cluster lensing for spectroscopic follow-up.

    Cosmic Evolution Survey (COSMOS)

    The Cosmic Evolution Survey (COSMOS) is an astronomical survey designed to probe the formation and evolution of galaxies as a function of both cosmic time (redshift) and the local galaxy environment. The survey covers a two square degree equatorial field with spectroscopy and X-ray to radio imaging by most of the major space-based telescopes and a number of large ground-based telescopes, making it a key focus region of extragalactic astrophysics. COSMOS was launched in 2006 as the largest project pursued by the Hubble Space Telescope at the time, and still is the largest continuous area of sky covered for the purposes of mapping deep space in blank fields, 2.5 times the area of the moon on the sky and 17 times larger than the largest of the CANDELS regions. The COSMOS scientific collaboration that was forged from the initial COSMOS survey is the largest and longest-running extragalactic collaboration, known for its collegiality and openness. The study of galaxies in their environment can be done only with large areas of the sky, larger than a half square degree. More than two million galaxies are detected, spanning 90% of the age of the Universe. The COSMOS collaboration is led by Caitlin Casey, Jeyhan Kartaltepe, and Vernesa Smolcic and involves more than 200 scientists in a dozen countries.

    Important discoveries

    Hubble has helped resolve some long-standing problems in astronomy, while also raising new questions. Some results have required new theories to explain them.

    Age of the universe

    Among its primary mission targets was to measure distances to Cepheid variable stars more accurately than ever before, and thus constrain the value of the Hubble constant, the measure of the rate at which the universe is expanding, which is also related to its age. Before the launch of HST, estimates of the Hubble constant typically had errors of up to 50%, but Hubble measurements of Cepheid variables in the Virgo Cluster and other distant galaxy clusters provided a measured value with an accuracy of ±10%, which is consistent with other more accurate measurements made since Hubble’s launch using other techniques. The estimated age is now about 13.7 billion years, but before the Hubble Telescope, scientists predicted an age ranging from 10 to 20 billion years.

    Expansion of the universe

    Nobel Prize in Physics for 2011 Expansion of the Universe

    4 October 2011

    The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2011

    with one half to

    Saul Perlmutter
    The Supernova Cosmology Project
    The DOE’s Lawrence Berkeley National Laboratory and The University of California-Berkeley,

    and the other half jointly to

    Brian P. SchmidtThe High-z Supernova Search Team, The Australian National University, Weston Creek, Australia.

    and

    Adam G. Riess

    The High-z Supernova Search Team,The Johns Hopkins University and The Space Telescope Science Institute, Baltimore, MD.

    Written in the stars

    “Some say the world will end in fire, some say in ice…” *

    What will be the final destiny of the Universe? Probably it will end in ice, if we are to believe this year’s Nobel Laureates in Physics. They have studied several dozen exploding stars, called supernovae, and discovered that the Universe is expanding at an ever-accelerating rate. The discovery came as a complete surprise even to the Laureates themselves.

    In 1998, cosmology was shaken at its foundations as two research teams presented their findings. Headed by Saul Perlmutter, one of the teams had set to work in 1988. Brian Schmidt headed another team, launched at the end of 1994, where Adam Riess was to play a crucial role.

    The research teams raced to map the Universe by locating the most distant supernovae. More sophisticated telescopes on the ground and in space, as well as more powerful computers and new digital imaging sensors (CCD, Nobel Prize in Physics in 2009), opened the possibility in the 1990s to add more pieces to the cosmological puzzle.

    The teams used a particular kind of supernova, called Type 1a supernova. It is an explosion of an old compact star that is as heavy as the Sun but as small as the Earth. A single such supernova can emit as much light as a whole galaxy. All in all, the two research teams found over 50 distant supernovae whose light was weaker than expected – this was a sign that the expansion of the Universe was accelerating. The potential pitfalls had been numerous, and the scientists found reassurance in the fact that both groups had reached the same astonishing conclusion.

    For almost a century, the Universe has been known to be expanding as a consequence of the Big Bang about 14 billion years ago. However, the discovery that this expansion is accelerating is astounding. If the expansion will continue to speed up the Universe will end in ice.

    The acceleration is thought to be driven by dark energy, but what that dark energy is remains an enigma – perhaps the greatest in physics today. What is known is that dark energy constitutes about three quarters of the Universe. Therefore the findings of the 2011 Nobel Laureates in Physics have helped to unveil a Universe that to a large extent is unknown to science. And everything is possible again.

    *Robert Frost, Fire and Ice, 1920
    ______________________________________________________________________________

    The NASA/ESA/CSA James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror. Webb was finally launched December 25, 2021, ten years late. The James Webb Space Telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    The James Webb Space Telescope is the world’s largest, most powerful, and most complex space science telescope ever built. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it.

    Webb telescope was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between National Aeronautics and Space Administration, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center managed the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute operates Webb.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There are four science instruments on Webb: The Near InfraRed Camera (NIRCam), The Near InfraRed Spectrograph (NIRspec), The Mid-InfraRed Instrument (MIRI), and The Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS). Webb’s instruments are designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.
    National Aeronautics Space Agency Webb NIRCam.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Webb MIRI schematic.

    Webb Fine Guidance Sensor-Near InfraRed Imager and Slitless Spectrograph FGS/NIRISS.

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Launch was December 25, 2021 on an Ariane 5 rocket. The launch was from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb is located at the second Lagrange point, about a million miles from the Earth.

    ESA50 Logo large

    Canadian Space Agency

    The cause of this acceleration remains poorly understood; the most common cause attributed is Dark Energy.

    Black holes

    The high-resolution spectra and images provided by the HST have been especially well-suited to establishing the prevalence of black holes in the center of nearby galaxies. While it had been hypothesized in the early 1960s that black holes would be found at the centers of some galaxies, and astronomers in the 1980s identified a number of good black hole candidates, work conducted with Hubble shows that black holes are probably common to the centers of all galaxies. The Hubble programs further established that the masses of the nuclear black holes and properties of the galaxies are closely related. The legacy of the Hubble programs on black holes in galaxies is thus to demonstrate a deep connection between galaxies and their central black holes.

    Extending visible wavelength images

    A unique window on the Universe enabled by Hubble are the Hubble Deep Field, Hubble Ultra-Deep Field, and Hubble Extreme Deep Field images, which used Hubble’s unmatched sensitivity at visible wavelengths to create images of small patches of sky that are the deepest ever obtained at optical wavelengths. The images reveal galaxies billions of light years away, and have generated a wealth of scientific papers, providing a new window on the early Universe. The Wide Field Camera 3 improved the view of these fields in the infrared and ultraviolet, supporting the discovery of some of the most distant objects yet discovered, such as MACS0647-JD.

    The non-standard object SCP 06F6 was discovered by the Hubble Space Telescope in February 2006.

    On March 3, 2016, researchers using Hubble data announced the discovery of the farthest known galaxy to date: GN-z11. The Hubble observations occurred on February 11, 2015, and April 3, 2015, as part of the CANDELS/GOODS-North surveys.

    Solar System discoveries

    HST has also been used to study objects in the outer reaches of the Solar System, including the dwarf planets Pluto and Eris.

    The collision of Comet Shoemaker-Levy 9 with Jupiter in 1994 was fortuitously timed for astronomers, coming just a few months after Servicing Mission 1 had restored Hubble’s optical performance. Hubble images of the planet were sharper than any taken since the passage of Voyager 2 in 1979, and were crucial in studying the dynamics of the collision of a comet with Jupiter, an event believed to occur once every few centuries.

    During June and July 2012, U.S. astronomers using Hubble discovered Styx, a tiny fifth moon orbiting Pluto.

    In March 2015, researchers announced that measurements of aurorae around Ganymede, one of Jupiter’s moons, revealed that it has a subsurface ocean. Using Hubble to study the motion of its aurorae, the researchers determined that a large saltwater ocean was helping to suppress the interaction between Jupiter’s magnetic field and that of Ganymede. The ocean is estimated to be 100 km (60 mi) deep, trapped beneath a 150 km (90 mi) ice crust.

    From June to August 2015, Hubble was used to search for a Kuiper belt object (KBO) target for the New Horizons Kuiper Belt Extended Mission (KEM) when similar searches with ground telescopes failed to find a suitable target.

    National Aeronautics Space Agency/New Horizons spacecraft.

    This resulted in the discovery of at least five new KBOs, including the eventual KEM target, 486958 Arrokoth, that New Horizons performed a close fly-by of on January 1, 2019.

    In August 2020, taking advantage of a total lunar eclipse, astronomers using NASA’s Hubble Space Telescope have detected Earth’s own brand of sunscreen – ozone – in our atmosphere. This method simulates how astronomers and astrobiology researchers will search for evidence of life beyond Earth by observing potential “biosignatures” on exoplanets (planets around other stars).
    Hubble and ALMA image of MACS J1149.5+2223.

    Supernova reappearance

    On December 11, 2015, Hubble captured an image of the first-ever predicted reappearance of a supernova, dubbed “Refsdal”, which was calculated using different mass models of a galaxy cluster whose gravity is warping the supernova’s light. The supernova was previously seen in November 2014 behind galaxy cluster MACS J1149.5+2223 as part of Hubble’s Frontier Fields program. Astronomers spotted four separate images of the supernova in an arrangement known as an “Einstein Cross”.

    The light from the cluster has taken about five billion years to reach Earth, though the supernova exploded some 10 billion years ago. Based on early lens models, a fifth image was predicted to reappear by the end of 2015. The detection of Refsdal’s reappearance in December 2015 served as a unique opportunity for astronomers to test their models of how mass, especially dark matter, is distributed within this galaxy cluster.

    Impact on astronomy

    Many objective measures show the positive impact of Hubble data on astronomy. Over 15,000 papers based on Hubble data have been published in peer-reviewed journals, and countless more have appeared in conference proceedings. Looking at papers several years after their publication, about one-third of all astronomy papers have no citations, while only two percent of papers based on Hubble data have no citations. On average, a paper based on Hubble data receives about twice as many citations as papers based on non-Hubble data. Of the 200 papers published each year that receive the most citations, about 10% are based on Hubble data.

    Although the HST has clearly helped astronomical research, its financial cost has been large. A study on the relative astronomical benefits of different sizes of telescopes found that while papers based on HST data generate 15 times as many citations as a 4 m (13 ft) ground-based telescope such as the William Herschel Telescope, the HST costs about 100 times as much to build and maintain.

    Isaac Newton Group 4.2 meter William Herschel Telescope at Roque de los Muchachos Observatory | Instituto de Astrofísica de Canarias • IAC(ES) on La Palma in the Canary Islands(ES), 2,396 m (7,861 ft)

    Deciding between building ground- versus space-based telescopes is complex. Even before Hubble was launched, specialized ground-based techniques such as aperture masking interferometry had obtained higher-resolution optical and infrared images than Hubble would achieve, though restricted to targets about 108 times brighter than the faintest targets observed by Hubble. Since then, advances in “adaptive optics” have extended the high-resolution imaging capabilities of ground-based telescopes to the infrared imaging of faint objects.

    Glistening against the awesome backdrop of the night sky above ESO’s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT, a major asset of the Adaptive Optics system.

    UCO KeckLaser Guide Star Adaptive Optics on two 10 meter Keck Observatory telescopes, Maunakea Hawaii, altitude 4,207 m (13,802 ft).

    The usefulness of adaptive optics versus HST observations depends strongly on the particular details of the research questions being asked. In the visible bands, adaptive optics can correct only a relatively small field of view, whereas HST can conduct high-resolution optical imaging over a wide field. Only a small fraction of astronomical objects are accessible to high-resolution ground-based imaging; in contrast Hubble can perform high-resolution observations of any part of the night sky, and on objects that are extremely faint.

    Impact on aerospace engineering

    In addition to its scientific results, Hubble has also made significant contributions to aerospace engineering, in particular the performance of systems in low Earth orbit. These insights result from Hubble’s long lifetime on orbit, extensive instrumentation, and return of assemblies to the Earth where they can be studied in detail. In particular, Hubble has contributed to studies of the behavior of graphite composite structures in vacuum, optical contamination from residual gas and human servicing, radiation damage to electronics and sensors, and the long-term behavior of multi-layer insulation. One lesson learned was that gyroscopes assembled using pressurized oxygen to deliver suspension fluid were prone to failure due to electric wire corrosion. Gyroscopes are now assembled using pressurized nitrogen. Another is that optical surfaces in LEO can have surprisingly long lifetimes; Hubble was only expected to last 15 years before the mirror became unusable, but after 14 years there was no measurable degradation. Finally, Hubble servicing missions, particularly those that serviced components not designed for in-space maintenance, have contributed towards the development of new tools and techniques for on-orbit repair.

    Archives

    All Hubble data is eventually made available via the Mikulski Archive for Space Telescopes at STScI, CADC and ESA/ESAC. Data is usually proprietary—available only to the principal investigator (PI) and astronomers designated by the PI—for twelve months after being taken. The PI can apply to the director of the STScI to extend or reduce the proprietary period in some circumstances.

    Observations made on Director’s Discretionary Time are exempt from the proprietary period, and are released to the public immediately. Calibration data such as flat fields and dark frames are also publicly available straight away. All data in the archive is in the FITS format, which is suitable for astronomical analysis but not for public use. The Hubble Heritage Project processes and releases to the public a small selection of the most striking images in JPEG and TIFF formats.

    Outreach activities

    It has always been important for the Space Telescope to capture the public’s imagination, given the considerable contribution of taxpayers to its construction and operational costs. After the difficult early years when the faulty mirror severely dented Hubble’s reputation with the public, the first servicing mission allowed its rehabilitation as the corrected optics produced numerous remarkable images.

    Several initiatives have helped to keep the public informed about Hubble activities. In the United States, outreach efforts are coordinated by the Space Telescope Science Institute (STScI) Office for Public Outreach, which was established in 2000 to ensure that U.S. taxpayers saw the benefits of their investment in the space telescope program. To that end, STScI operates the HubbleSite.org website. The Hubble Heritage Project, operating out of the STScI, provides the public with high-quality images of the most interesting and striking objects observed. The Heritage team is composed of amateur and professional astronomers, as well as people with backgrounds outside astronomy, and emphasizes the aesthetic nature of Hubble images. The Heritage Project is granted a small amount of time to observe objects which, for scientific reasons, may not have images taken at enough wavelengths to construct a full-color image.

    Since 1999, the leading Hubble outreach group in Europe has been the Hubble European Space Agency Information Centre (HEIC). This office was established at the Space Telescope European Coordinating Facility in Munich, Germany. HEIC’s mission is to fulfill HST outreach and education tasks for the European Space Agency. The work is centered on the production of news and photo releases that highlight interesting Hubble results and images. These are often European in origin, and so increase awareness of both ESA’s Hubble share (15%) and the contribution of European scientists to the observatory. ESA produces educational material, including a videocast series called Hubblecast designed to share world-class scientific news with the public.

    The Hubble Space Telescope has won two Space Achievement Awards from the Space Foundation, for its outreach activities, in 2001 and 2010.

    A replica of the Hubble Space Telescope is on the courthouse lawn in Marshfield, Missouri, the hometown of namesake Edwin P. Hubble.

    Major Instrumentation

    Hubble WFPC2 no longer in service.

    Wide Field Camera 3 [WFC3]

    National Aeronautics Space Agency/The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) Hubble Wide Field Camera 3

    Advanced Camera for Surveys [ACS]

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) NASA/ESA Hubble Space Telescope Advanced Camera for Surveys

    Cosmic Origins Spectrograph [COS]

    National Aeronautics Space Agency Cosmic Origins Spectrograph.

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy for NASA, conducts Hubble science operations.

    ESA50 Logo large

    The National Aeronautics and Space Administration is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA Science is focused on better understanding Earth through the Earth Observing System, advancing Heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [NASA/ESA Hubble, NASA Chandra, NASA Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from [JAXA]Greenhouse Gases Observing Satellite.

    Sky & Telescope, founded in 1941 by Charles A. Federer Jr. and Helen Spence Federer, has the largest, most experienced staff of any astronomy magazine in the world. Its editors are virtually all amateur or professional astronomers, and every one has built a telescope, written a book, done original research, developed a new product, or otherwise distinguished him or herself.

    Sky & Telescope magazine, now in its eighth decade, came about because of some happy accidents. Its earliest known ancestor was a four-page bulletin called The Amateur Astronomer, which was begun in 1929 by the Amateur Astronomers Association in New York City. Then, in 1935, the American Museum of Natural History opened its Hayden Planetarium and began to issue a monthly bulletin that became a full-size magazine called The Sky within a year. Under the editorship of Hans Christian Adamson, The Sky featured large illustrations and articles from astronomers all over the globe. It immediately absorbed The Amateur Astronomer.

    Despite initial success, by 1939 the planetarium found itself unable to continue financial support of The Sky. Charles A. Federer, who would become the dominant force behind Sky & Telescope, was then working as a lecturer at the planetarium. He was asked to take over publishing The Sky. Federer agreed and started an independent publishing corporation in New York.

    “Our first issue came out in January 1940,” he noted. “We dropped from 32 to 24 pages, used cheaper quality paper…but editorially we further defined the departments and tried to squeeze as much information as possible between the covers.” Federer was The Sky’s editor, and his wife, Helen, served as managing editor. In that January 1940 issue, they stated their goal: “We shall try to make the magazine meet the needs of amateur astronomy, so that amateur astronomers will come to regard it as essential to their pursuit, and professionals to consider it a worthwhile medium in which to bring their work before the public.”

     
  • richardmitnick 4:10 pm on January 15, 2023 Permalink | Reply
    Tags: "Images Capture 850-year-old Aftermath of Stellar Collision - Supernova Left "Zombie Star" Behind", , , , , , In the 1970s astronomers speculated that supernova remnant 3C58 and the associated pulsar PSR J0205+6449 were the most likely remains of the 12th-century blast., Sky & Telescope, SN1181-a zero-magnitude supernova that appeared in northern Cassiopeia on August 6th of 1181 CE.   

    From Dartmouth College Via “Sky & Telescope” : “Images Capture 850-year-old Aftermath of Stellar Collision – Supernova Left “Zombie Star” Behind” 

    From Dartmouth College

    Via

    “Sky & Telescope”

    1.14.23
    Govert Schilling
    Morgan Kelley | Dartmouth College

    1
    The unusual fireworks-like structure of nebula Pa 30 may result from the merger of two dying stars.Credit: Robert Fesen.

    A supernova explosion that skywatchers in the Far East observed almost 850 years ago has produced the most unusual remnant astronomers have ever found. “I’ve worked on supernovae for [decades], and I’ve never seen anything like this,” says Robert Fesen (Dartmouth College), who photographed the weird object in late October 2022 with the 2.4-meter Hiltner telescope at Kitt Peak.

    1
    Hiltner telescope at Kitt Peak. Credit: NOIRLab.

    Fesen presented his results at the 241st meeting of the American Astronomical Society (AAS) in Seattle; a paper has been submitted to The Astrophysical Journal Letters [below]. In other work presented at the AAS meeting and submitted to MNRAS [below], his coauthor Bradley Schaefer (Louisiana State University) argues that the supernova resulted when two white dwarf stars collided, leaving an extremely energetic “zombie” star behind.

    Amateur astronomer (and Fesen’s second coauthor) Dana Patchick discovered the nebula in August 2013 in archived images from NASA’s Widefield Infrared Survey Explorer (WISE).

    The infrared images didn’t show much detail, though. Originally, Patchick believed he had found a planetary nebula — his 30th find, hence the name Pa 30 — but later spectroscopic observations revealed that it’s more likely to be a supernova remnant. However, the nebula doesn’t produce many radio or X-ray waves, and there’s no neutron star or black hole in its center. Instead, the central star (sometimes known as Parker’s Star, after University of Hong Kong astronomer Quentin Parker who first studied its spectrum) turns out to be a peculiar white dwarf.

    Still, astronomers are now confident about its relation with SN1181-a zero-magnitude supernova that appeared in northern Cassiopeia on August 6th of 1181 CE. Chinese and Japanese observers recorded this “guest star” slowly fading over a period of six months.

    In the 1970s astronomers speculated that supernova remnant 3C58 and the associated pulsar PSR J0205+6449 were the most likely remains of the 12th-century blast. However, says Schaefer, later research showed that 3C58 is much too old. Also, the sky position doesn’t match the Chinese observations. Pa 30 fits the bill on all accounts, according to a 2021 study by Andreas Ritter (University of Hong Kong), Parker, and their colleagues. In particular, the measured expansion velocity of the nebula — some 11,000 kilometers per second — puts its age at 850 years old.

    Then again, says Schaefer, the central white dwarf star is “a whacko weird thing.” Its surface temperature is some 200,000 kelvin; it shines at 130 times the luminosity of the Sun, and it is fading quite rapidly, by 1.7 magnitudes over the past century. Most remarkably, it produces an unprecedentedly speedy stellar wind that travels outward at 16,000 kilometers per second, or 5% the speed of light.

    “It’s insane,” Fesen says. “Stars simply don’t have 16,000 km/s winds. Even giant, luminous Wolf-Rayet stars have winds at a few thousand km/s at most.” So what peculiar kind of supernova might explain all this?

    Fesen’s new observations of Pa 30, obtained in the light of ionized sulfur and revealing much more detail than infrared or visible-light broadband images, contain the last piece in the puzzle of SN1181. Despite the nebula’s distance of almost 8,000 light-years, the image shows intriguing radial filaments, presumably produced when the fierce stellar wind erodes away small clumps of lower-velocity gas ejected by the explosion. AAS media fellow Ben Cassese, who just happened to be in the control room of the telescope when the observations were carried out, vividly remembers Fesen’s excitement that night. “Even the raw data clearly showed the remarkable pattern,” he says.

    According to the 2021 paper by Ritter and his colleagues [The Astrophysical Journal Letters] [below], SN1181 was a low-luminosity supernova of the rare type Iax. While “normal” Type Ia supernovae result from the catastrophic detonation of a white dwarf star, in less luminous Type Iax supernovae the exploding star somehow survives.

    Theorists have come up with various scenarios to explain Iax explosions. Some of these predict the existence of a matter-donating companion star; however in the case of Parker’s Star, detailed observations by NASA’s TESS observatory indicate that it’s single.

    According to Schaefer, only one model matches the observations of Pa 30 and its “whacko weird” central star: the collision of two white dwarfs, one of which consists mainly of carbon and oxygen and the other of oxygen and neon.

    Jacco Vink (University of Amsterdam), an expert on supernova remnants who was not involved in these studies, agrees. “It’s great that they have identified a remnant” for SN1181, he says, “especially since it is from a type of supernova that is not yet completely understood.”

    Future observations of the intriguing remnant and the “zombie star” at its core will shed more light on this rare and peculiar type of supernova explosion. Fesen has already applied for observing time on both the Hubble Space Telescope and the James Webb Space Telescope. “The JWST image will be simply amazing,” he says. “It would make for a great 4th of July image.”

    Science papers:
    The Astrophysical Journal Letters
    MNRAS 2021
    The Astrophysical Journal Letters 2021
    See the science papers for instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Dartmouth College campus

    Dartmouth College is a private Ivy League research university in Hanover, New Hampshire. Established in 1769 by Eleazar Wheelock, Dartmouth is one of the nine colonial colleges chartered before the American Revolution and among the most prestigious in the United States. Although founded to educate Native Americans in Christian theology and the English way of life, the university primarily trained Congregationalist ministers during its early history before it gradually secularized, emerging at the turn of the 20th century from relative obscurity into national prominence.

    Following a liberal arts curriculum, Dartmouth provides undergraduate instruction in 40 academic departments and interdisciplinary programs, including 60 majors in the humanities, social sciences, natural sciences, and engineering, and enables students to design specialized concentrations or engage in dual degree programs. In addition to the undergraduate faculty of arts and sciences, Dartmouth has four professional and graduate schools: the Geisel School of Medicine, the Thayer School of Engineering, the Tuck School of Business, and the Guarini School of Graduate and Advanced Studies. The university also has affiliations with the Dartmouth–Hitchcock Medical Center. Dartmouth is home to the Rockefeller Center for Public Policy and the Social Sciences, the Hood Museum of Art, the John Sloan Dickey Center for International Understanding, and the Hopkins Center for the Arts. With a student enrollment of about 6,700, Dartmouth is the smallest university in the Ivy League. Undergraduate admissions are highly selective with an acceptance rate of 6.24% for the class of 2026, including a 4.7% rate for regular decision applicants.

    Situated on a terrace above the Connecticut River, Dartmouth’s 269-acre (109 ha) main campus is in the rural Upper Valley region of New England. The university functions on a quarter system, operating year-round on four ten-week academic terms. Dartmouth is known for its strong undergraduate focus, Greek culture, and wide array of enduring campus traditions. Its 34 varsity sports teams compete intercollegiately in the Ivy League conference of the NCAA Division I.

    Dartmouth is consistently cited as a leading university for undergraduate teaching by U.S. News & World Report. In 2021, the Carnegie Classification of Institutions of Higher Education listed Dartmouth as the only majority-undergraduate, arts-and-sciences focused, doctoral university in the country that has “some graduate coexistence” and “very high research activity”.

    The university has many prominent alumni, including 170 members of the U.S. Senate and the U.S. House of Representatives, 24 U.S. governors, 23 billionaires, 8 U.S. Cabinet secretaries, 3 Nobel Prize laureates, 2 U.S. Supreme Court justices, and a U.S. vice president. Other notable alumni include 79 Rhodes Scholars, 26 Marshall Scholarship recipients, and 14 Pulitzer Prize winners. Dartmouth alumni also include many CEOs and founders of Fortune 500 corporations, high-ranking U.S. diplomats, academic scholars, literary and media figures, professional athletes, and Olympic medalists.

    Comprising an undergraduate population of 4,307 and a total student enrollment of 6,350 (as of 2016), Dartmouth is the smallest university in the Ivy League. Its undergraduate program, which reported an acceptance rate around 10 percent for the class of 2020, is characterized by the Carnegie Foundation and U.S. News & World Report as “most selective”. Dartmouth offers a broad range of academic departments, an extensive research enterprise, numerous community outreach and public service programs, and the highest rate of study abroad participation in the Ivy League.

    Dartmouth, a liberal arts institution, offers a four-year Bachelor of Arts and ABET-accredited Bachelor of Engineering degree to undergraduate students. The college has 39 academic departments offering 56 major programs, while students are free to design special majors or engage in dual majors. For the graduating class of 2017, the most popular majors were economics, government, computer science, engineering sciences, and history. The Government Department, whose prominent professors include Stephen Brooks, Richard Ned Lebow, and William Wohlforth, was ranked the top solely undergraduate political science program in the world by researchers at The London School of Economics (UK) in 2003. The Economics Department, whose prominent professors include David Blanchflower and Andrew Samwick, also holds the distinction as the top-ranked bachelor’s-only economics program in the world.

    In order to graduate, a student must complete 35 total courses, eight to ten of which are typically part of a chosen major program. Other requirements for graduation include the completion of ten “distributive requirements” in a variety of academic fields, proficiency in a foreign language, and completion of a writing class and first-year seminar in writing. Many departments offer honors programs requiring students seeking that distinction to engage in “independent, sustained work”, culminating in the production of a thesis. In addition to the courses offered in Hanover, Dartmouth offers 57 different off-campus programs, including Foreign Study Programs, Language Study Abroad programs, and Exchange Programs.

    Through the Graduate Studies program, Dartmouth grants doctorate and master’s degrees in 19 Arts & Sciences graduate programs. Although the first graduate degree, a PhD in classics, was awarded in 1885, many of the current PhD programs have only existed since the 1960s. Furthermore, Dartmouth is home to three professional schools: the Geisel School of Medicine (established 1797), Thayer School of Engineering (1867)—which also serves as the undergraduate department of engineering sciences—and Tuck School of Business (1900). With these professional schools and graduate programs, conventional American usage would accord Dartmouth the label of “Dartmouth University”; however, because of historical and nostalgic reasons (such as Dartmouth College v. Woodward), the school uses the name “Dartmouth College” to refer to the entire institution.

    Dartmouth employs a total of 607 tenured or tenure-track faculty members, including the highest proportion of female tenured professors among the Ivy League universities, and the first black woman tenure-track faculty member in computer science at an Ivy League university. Faculty members have been at the forefront of such major academic developments as the Dartmouth Workshop, the Dartmouth Time Sharing System, Dartmouth BASIC, and Dartmouth ALGOL 30. In 2005, sponsored project awards to Dartmouth faculty research amounted to $169 million.

    Dartmouth serves as the host institution of the University Press of New England, a university press founded in 1970 that is supported by a consortium of schools that also includes Brandeis University, The University of New Hampshire, Northeastern University, Tufts University and The University of Vermont.

    Rankings

    Dartmouth was ranked tied for 13th among undergraduate programs at national universities by U.S. News & World Report in its 2021 rankings. U.S. News also ranked the school 2nd best for veterans, tied for 5th best in undergraduate teaching, and 9th for “best value” at national universities in 2020. Dartmouth’s undergraduate teaching was previously ranked 1st by U.S. News for five years in a row (2009–2013). Dartmouth College is accredited by The New England Commission of Higher Education.

    In Forbes’ 2019 rankings of 650 universities, liberal arts colleges and service academies, Dartmouth ranked 10th overall and 10th in research universities. In the Forbes 2018 “grateful graduate” rankings, Dartmouth came in first for the second year in a row.

    The 2021 Academic Ranking of World Universities ranked Dartmouth among the 90–110th best universities in the nation. However, this specific ranking has drawn criticism from scholars for not adequately adjusting for the size of an institution, which leads to larger institutions ranking above smaller ones like Dartmouth. Dartmouth’s small size and its undergraduate focus also disadvantage its ranking in other international rankings because ranking formulas favor institutions with a large number of graduate students.

    The 2006 Carnegie Foundation classification listed Dartmouth as the only “majority-undergraduate”, “arts-and-sciences focus[ed]”, “research university” in the country that also had “some graduate coexistence” and “very high research activity”.

    The Dartmouth Plan

    Dartmouth functions on a quarter system, operating year-round on four ten-week academic terms. The Dartmouth Plan (or simply “D-Plan”) is an academic scheduling system that permits the customization of each student’s academic year. All undergraduates are required to be in residence for the fall, winter, and spring terms of their freshman and senior years, as well as the summer term of their sophomore year. However, students may petition to alter this plan so that they may be off during their freshman, senior, or sophomore summer terms. During all terms, students are permitted to choose between studying on-campus, studying at an off-campus program, or taking a term off for vacation, outside internships, or research projects. The typical course load is three classes per term, and students will generally enroll in classes for 12 total terms over the course of their academic career.

    The D-Plan was instituted in the early 1970s at the same time that Dartmouth began accepting female undergraduates. It was initially devised as a plan to increase the enrollment without enlarging campus accommodations, and has been described as “a way to put 4,000 students into 3,000 beds”. Although new dormitories have been built since, the number of students has also increased and the D-Plan remains in effect. It was modified in the 1980s in an attempt to reduce the problems of lack of social and academic continuity.

    3

    Sky & Telescope, founded in 1941 by Charles A. Federer Jr. and Helen Spence Federer, has the largest, most experienced staff of any astronomy magazine in the world. Its editors are virtually all amateur or professional astronomers, and every one has built a telescope, written a book, done original research, developed a new product, or otherwise distinguished him or herself.

    Sky & Telescope magazine, now in its eighth decade, came about because of some happy accidents. Its earliest known ancestor was a four-page bulletin called The Amateur Astronomer, which was begun in 1929 by the Amateur Astronomers Association in New York City. Then, in 1935, the American Museum of Natural History opened its Hayden Planetarium and began to issue a monthly bulletin that became a full-size magazine called The Sky within a year. Under the editorship of Hans Christian Adamson, The Sky featured large illustrations and articles from astronomers all over the globe. It immediately absorbed The Amateur Astronomer.

    Despite initial success, by 1939 the planetarium found itself unable to continue financial support of The Sky. Charles A. Federer, who would become the dominant force behind Sky & Telescope, was then working as a lecturer at the planetarium. He was asked to take over publishing The Sky. Federer agreed and started an independent publishing corporation in New York.

    “Our first issue came out in January 1940,” he noted. “We dropped from 32 to 24 pages, used cheaper quality paper…but editorially we further defined the departments and tried to squeeze as much information as possible between the covers.” Federer was The Sky’s editor, and his wife, Helen, served as managing editor. In that January 1940 issue, they stated their goal: “We shall try to make the magazine meet the needs of amateur astronomy, so that amateur astronomers will come to regard it as essential to their pursuit, and professionals to consider it a worthwhile medium in which to bring their work before the public.”

     
  • richardmitnick 5:24 pm on January 6, 2023 Permalink | Reply
    Tags: "Light Pollution Is Creeping Up on the World's Observatories", Astronomical observatories enjoy some of the world’s darkest night skies. But a new study suggests even there light pollution is spreading., , , , , Sky & Telescope   

    From “Sky & Telescope” : “Light Pollution Is Creeping Up on the World’s Astronomical Observatories” 

    From “Sky & Telescope”

    1.6.23
    Jan Hattenbach

    Astronomical observatories enjoy some of the world’s darkest night skies. But a new study suggests even there light pollution is spreading.

    If you want to escape light pollution and experience a truly dark sky, go where the pros go. The World Atlas of Artificial Sky Brightness, first compiled in 2000 and updated in 2016 [Science Advances (below)], shows that most major professional observatories in the world lie in “black spots”, meaning their sky is almost as dark as it was when humans first started lighting up the night.

    1
    The World Atlas view of North America shows light pollution is strongest in the eastern half. But light pollution is also creeping up on observatories in the western half. (Explore light pollution all over the globe.)
    Esri / HERE / Garmin / FAO / NOAA; Source: Airbus / USGS / NGA / NASA / CGIAR / NLS / OS / NMA / Geodatastyrelsen / GSA / GSI / GIS User Community

    To put it into numbers: The measured sky brightness over these telescopes is less than 1% brighter than the assumed natural sky brightness. In some of those regions, laws have even been enacted to stop the spread of light pollution and secure an unhindered view into the cosmos.

    But this strategy isn’t working particularly well, according to a new study published in the MNRAS [below]. Light pollution is spreading even where the night was truly dark. As of 2021, only a handful of all large observatories resulted to remain below the 1%-line, while almost two-thirds have already seen their night skies brighten 10% over the assumed natural levels, the researchers report. Which means their locations in the World Atlas are no longer “black” or even “dark-grey.”

    Eyes from Orbit

    Fabio Falchi (Light Pollution Science and Technology Institute, Italy) and colleagues analyzed data gathered in 2021 by the Suomi NPP satellite’s Visible Infrared Imaging Radiometer Suite (VIIRS), collecting all the sources of light in a radius of 500km of major observatories.

    The sites investigated include all active or planned professional observatories with telescope apertures of 3 meters or larger, as well as potential and historic sites. They also included a selection of spots used by amateur astronomers, such as observatories offering rental telescopes.

    Falchi’s team then employed a light propagation model to compute the sky brightness created by the visible light sources that VIIRS found, taking into account the difference between light sources’ and observatories’ elevation and the general topography between them. From this model, they then calculated five indicators of sky brightness, including the radiance at different altitudes above the horizon as well as an average all-sky radiance. 

    2
    Light pollution isn’t as strong in South America, but even here observatories are not immune. Esri / HERE / Garmin / FAO / NOAA; Source: Airbus / USGS / NGA / NASA / CGIAR / NLS / OS / NMA / Geodatastyrelsen / GSA / GSI / GIS User Community

    Volcanoes, “Friendly Fire,” and Streetlights

    The sharp resolution VIIRS affords enables scientists to disentangle individual light sources contributing to a site’s sky brightness. Some of them were quite unexpected: For example, the active Kilauea volcano on Hawai‘i, 50 km from the Mauna Kea observatory, emits mostly at infrared wavelengths, but some of its light spills into visible wavelengths.

    3
    Kilauea volcano. Credit: Getty.

    Also surprising was strong light pollution affecting the Tokyo Atacama Observatory (TAO) in Chile, which turned out to be “friendly fire” from the Atacama Large Millimeter/submillimeter Array.

    4
    Tokyo Atacama Observatory. Credit: University of Tokyo.

    The radio astronomers who operate ALMA might not appreciate the problem visible light presents. Without their pollution however, TAO would have won the contest for darkest observatory, as measured by the amount of radiance direct overhead (at zenith).

    As it stands, though, the Paranal Observatory, also in the Atacama Desert in Chile, is the winner.

    This is despite the temporary nuisance of light emitted by workers’ lodging near the European Southern Observatory’s under-construction Extremely Large Telescope.

    Once completed, the telescope’s 39-meter mirror will be the largest in the world.

    Other findings are more troublesome. A single partially illuminated highway 40 km away heavily affects the Las Campanas Observatory, home of the twin 6.5-meter Magellan telescopes and future site of the Giant Magellan Telescope (GMT).

    The highway contributes more than 50% of overhead radiance in the otherwise pitch-dark Chilean desert.

    Losing the Night

    There’s some hope that such sources of light pollution could be removed or at least reduced relatively easy, the researchers say. However, the general trend seems more complicated. The lowest light pollution level in the World Atlas, which is a maximum of 1% over the assumed natural level of 22.0 magnitudes per square arcsecond at zenith, only occurs over seven major observatories. The only one of these on U.S. soil, on Mauna Kea in Hawai‘i [above], is already at the critical 1% mark.

    “All other major astronomical observatories in the continental U.S. have already crossed the 10% limit,” Falchi and colleagues write, “while most Chilean ones are still below it, even if some are relatively close.” Potential future sites, like the GMT’s, may cross critical limits even before they become operational, the researchers worry.

    The sky brightness at zenith can be relatively forgiving, since most of the light directed overhead escapes to space rather than scattering around the sky. But sky radiance at lower angles matters, too. While professional telescopes rarely observe at angles lower than 30° above the horizon, the radiance in the first 10° above the horizon matters to night-sky observers of any stripe. Thanks to the effect of forward scattering, even very far away sources can ruin the nocturnal landscape: The city of Antofagasta can be seen from Paranal, Honolulu from Mauna Kea and Las Vegas from the Grand Canyon National Park. The impact on the near-horizon therefore serves as an early warning, Falchi and his team suggest.

    The results are “the last call for a serious, collective, unambiguous, no-compromise action to lower light pollution now,” Falchi’s team concludes. “Failing to take action implies a progressive decline of the ability to explore our universe.”

    Astronomical observatory sites, due to their remote locations, are the least affected by light pollution, which makes them the proverbial canary in the coal mine: “If we are not able to keep the canary alive, then we can forget being able to solve the problem of light pollution as a global environmental issue.”
        

    Science papers:
    Science Advances
    MNRAS
    See the science papers for instructive material with images and suppporting tables and mathematics.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Sky & Telescope, founded in 1941 by Charles A. Federer Jr. and Helen Spence Federer, has the largest, most experienced staff of any astronomy magazine in the world. Its editors are virtually all amateur or professional astronomers, and every one has built a telescope, written a book, done original research, developed a new product, or otherwise distinguished him or herself.

    Sky & Telescope magazine, now in its eighth decade, came about because of some happy accidents. Its earliest known ancestor was a four-page bulletin called The Amateur Astronomer, which was begun in 1929 by the Amateur Astronomers Association in New York City. Then, in 1935, the American Museum of Natural History opened its Hayden Planetarium and began to issue a monthly bulletin that became a full-size magazine called The Sky within a year. Under the editorship of Hans Christian Adamson, The Sky featured large illustrations and articles from astronomers all over the globe. It immediately absorbed The Amateur Astronomer.

    Despite initial success, by 1939 the planetarium found itself unable to continue financial support of The Sky. Charles A. Federer, who would become the dominant force behind Sky & Telescope, was then working as a lecturer at the planetarium. He was asked to take over publishing The Sky. Federer agreed and started an independent publishing corporation in New York.

    “Our first issue came out in January 1940,” he noted. “We dropped from 32 to 24 pages, used cheaper quality paper…but editorially we further defined the departments and tried to squeeze as much information as possible between the covers.” Federer was The Sky’s editor, and his wife, Helen, served as managing editor. In that January 1940 issue, they stated their goal: “We shall try to make the magazine meet the needs of amateur astronomy, so that amateur astronomers will come to regard it as essential to their pursuit, and professionals to consider it a worthwhile medium in which to bring their work before the public.”

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: