Tagged: SKA Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:09 pm on February 6, 2018 Permalink | Reply
    Tags: , , , , , SKA, SKA prototype dish assembled for the first time   

    From SKA: “SKA prototype dish assembled for the first time” 


    SKA

    2.6.18

    Contact:
    William Garnier
    Director of Communications, Outreach & Education
    SKA Organisation
    +44 161 306 9613
    +44 7814 908 932
    w.garnier@skatelescope.org

    1
    The fully assembled SKA dish prototype – SKA-P – at the CETC54 assembly workshop in Shijiazhuang, China. Credit: SKA Organisation

    The first fully assembled SKA dish was unveiled today at a ceremony in Shijiazhuang, China, by the Vice Minister of the Chinese Ministry of Science and Technology, in the presence of representatives from the countries involved and the SKA Organisation. The dish is one of two final prototypes that will be tested ahead of production of an early array.

    In a major milestone for the SKA Project, the 54th Institute of China Electronics Technology Group Corporation (CETC54) has completed the structural assembly of the first SKA dish, bringing together components from China, Germany, and Italy.

    The state-of-the-art 15-metre diameter dish was unveiled today at a ceremony in Shijiazhuang, China, hosted by the SKA Organisation and the SKA China Office and organised by the Joint Laboratory for Radio Astronomy Technology (JLRAT) and the SKA Dish consortium, supported by the Chinese Ministry of Science and Technology (MOST), the Chinese Academy of Sciences, the National Natural Science Foundation of China and the CETC group.

    “This is a major achievement by all the partners involved” said Prof. Philip Diamond, Director-General of the SKA Organisation, which is overseeing the project. “After many years of intense design effort, we have an actual SKA dish, built by an international collaboration between China, Germany and Italy that is very much representative of the global nature of the SKA project.”

    “Our Chinese partners are extremely well resourced. They’ve demonstrated that they have the technology and capability to construct a telescope with the specifications that the SKA requires”, adds Mark Harman, SKA Organisation Project Manager for the Dish consortium

    An international effort across 18 time zones

    This year will see the culmination of a 3-year effort by an international consortium that includes institutions in China acting as the consortium lead, Australia, Canada, France, Germany, Italy, South Africa, Spain, the United Kingdom and Sweden, overseen by the SKA Organisation.

    Across 18 time zones, extensive work has taken place to reach this point as the various teams around the world work towards building a fully functional SKA dish prototype.

    CETC54 has been leading the design and production of the prototype dish, in particular the production of its highly precise main reflector, sub-reflector, backup structure, and pedestal.

    “This is a mature method developed by CETC54. Applied to the SKA dish, it allows us to achieve and maintain the dish surface to a very precise surface-accuracy level as well as consistency for all panels”, said Wang Feng from the Joint Laboratory for Radio Astronomy Technology (JLRAT), recently appointed SKA Dish Consortium Lead.

    In Mainz, Germany, MT Mechatronics (MTM) have been designing and manufacturing the precise hardware and electronics – such as the Drive Units and Electronics – used to move the dish.

    “We’ve been entrusted with demonstrating precision engineering in order to move the telescopes with up to a thousandth of a degree accuracy, as well as reliability to produce over 130 such systems behaving equally well.” comments Lutz Stenvers, Managing Director from MTM and SKA Dish Structure Lead Engineer.

    In Italy, near Naples, the Società Aerospaziale Mediterranea (SAM) has been working on the design and production of the feed indexer, an electro-mechanical component that will support the various receivers and move them into position to align them with the optics of the dish when required, depending on the observations.

    “The feed indexer is a very innovative part of the dish, the first of its kind. We’ve got stringent requirements, as the indexer needs to move with high accuracy to position the receivers with sub-millimetric precision, and it also needs to be able to sustain heavy loads, with for example the Band 1 receiver alone weighing 165kg” explains Renato Aurigemma, the SAM team coordinator.

    Today, for the first time, all these components came together at CETC54’s assembly workshop to test how the structure as a whole behaves.

    “We will be putting the dish through its paces to see how it responds to different commands and whether it performs as expected” adds Wang Feng. “This will allow us to spot any discrepancies and fine tune the design if needed. The next step will be to test it on site with its instrumentation.”

    A second dish, currently under production at CETC54 and funded by the German Max Planck Society, will be shipped to South Africa and assembled at the South African SKA site in the next few months where it will be equipped with its instrumentation and used to conduct real observations for the first time to test its performance and calibrate all the systems.

    Instrumentation & control

    Onsala Space Observatory at Chalmers University of Technology, Sweden, EMSS Antennas in Stellenbosch, South Africa, and Oxford University and the Science and Technology Facilities Council (STFC) in the United Kingdom have been working on the various receivers that will be fitted on this second dish, covering a broad frequency range from 350 MHz to 15.3 GHz.

    Additional institutes involved include the Italian National Institute for Astrophysics (INAF), who are developing the software to monitor, coordinate and control the Dish subsystems. A group of engineers at the National Research Council (NRC) Canada, are developing the hardware that digitises the signals recorded with each of the five receivers while The University of Bordeaux, France contributes their expertise to digitise high frequency signals. SKA South Africa has been leading the System Engineering, which played a key role in coordinating the consortium.

    Early Production

    The SKA prototype dish unveiled today is being delivered as part of the consortium’s critical design review – the final stage of design work before construction. It and the Max-Planck funded dish, are the final precursors to a further series of up to six SKA dishes that will form an Early Production Array (EPA), expected to be built on site from 2019 under the leadership of the SKA Organisation.

    The EPA will be used to demonstrate a working array, allowing engineers to spot any further design or production issues ahead of full-scale production. Additionally, it will for the first time provide an opportunity to integrate dishes with prototypes of other critical SKA elements provided by their respective design institutions such as the Signal and Data network, the Central Signal Processor where the signals from all dishes are correlated, the Science Data Processor (the imaging software) and the Telescope Manager software used to send commands to the dishes and monitor their status.

    “The EPA will allow us not only to bring production and construction forward but it will also allow us to test how key SKA components work together on the field. In essence, it’s bringing the various pieces of this puzzle together to see if they match and produce the image that we expect” concludes Joe McMullin, recently appointed as SKA Programme Director.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition


    SKA ASKAP Pathefinder Telescope

    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA


    SKA Meerkat Telescope

    Murchison Widefield Array,SKA Murchison Widefield Array, Boolardy station in outback Western Australia, at the Murchison Radio-astronomy Observatory (MRO)


    SKA Murchison Wide Field Array
    About SKA

    The Square Kilometre Array will be the world’s largest and most sensitive radio telescope. The total collecting area will be approximately one square kilometre giving 50 times the sensitivity, and 10 000 times the survey speed, of the best current-day telescopes. The SKA will be built in Southern Africa and in Australia. Thousands of receptors will extend to distances of 3 000 km from the central regions. The SKA will address fundamental unanswered questions about our Universe including how the first stars and galaxies formed after the Big Bang, how dark energy is accelerating the expansion of the Universe, the role of magnetism in the cosmos, the nature of gravity, and the search for life beyond Earth. Construction of phase one of the SKA is scheduled to start in 2016. The SKA Organisation, with its headquarters at Jodrell Bank Observatory, near Manchester, UK, was established in December 2011 as a not-for-profit company in order to formalise relationships between the international partners and centralise the leadership of the project.

    The Square Kilometre Array (SKA) project is an international effort to build the world’s largest radio telescope, led by SKA Organisation. The SKA will conduct transformational science to improve our understanding of the Universe and the laws of fundamental physics, monitoring the sky in unprecedented detail and mapping it hundreds of times faster than any current facility.

    Already supported by 10 member countries – Australia, Canada, China, India, Italy, New Zealand, South Africa, Sweden, The Netherlands and the United Kingdom – SKA Organisation has brought together some of the world’s finest scientists, engineers and policy makers and more than 100 companies and research institutions across 20 countries in the design and development of the telescope. Construction of the SKA is set to start in 2018, with early science observations in 2020.

    Advertisements
     
  • richardmitnick 1:19 pm on December 21, 2017 Permalink | Reply
    Tags: Across 18 time zones extensive work has taken place over the past 19 months as the teams press on towards building a fully functional SKA dish prototype with all optics and three receivers, , , , , In the second part of our feature story on designing the SKA telescopes we look back at the ongoing global effort to deliver the SKA dish prototype with work happening in many countries, , SKA   

    From SKA: “Designing the SKA Telescopes – Across 18 time zones: a global effort to deliver a dish prototype” 


    SKA

    21 December 2017

    1

    In the second part of our feature story on designing the SKA telescopes, we look back at the ongoing global effort to deliver the SKA dish prototype, with work happening in many countries.

    As the year comes to a close and many of us wind down for the holiday season, teams of scientists, engineers and manufacturers in Canada, China, France, Germany, Italy, Sweden, UK and South Africa – all part of an international consortium – are busy designing, manufacturing, testing and refining optics, structures and instruments before they can be brought together to become what is perhaps the most familiar part of a radio telescope: a dish.

    Across 18 time zones, extensive work has taken place over the past 19 months as the teams press on towards building a fully functional SKA dish prototype with all optics and three receivers. Eventually, the SKA1-mid instrument, the South African arm of the first phase of the SKA telescope, will comprise of 133 dishes, complemented by the 64 dishes of the MeerKAT telescope already installed in the Karoo region.

    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA

    The background

    Three different antenna concepts were initially developed to be considered for the design of the SKA dish. All three were constructed using different technology from different partners, representing the very best in radio telescope dish technology currently available.

    2
    The international panel of experts chaired by Dr. Richard Hills at the CETC54 fabrication workshop in Shijiazhuang, China. Credit: CETC54

    In May 2016, following a unanimous recommendation by a five-strong selection panel of engineering experts in the fields of composites, radio telescope antennas and systems engineering, the SKA Organisation selected concepts proposed by a Shijiazhuang, China-based team composed of the 54th Research Institute of China Electronics Technology Group Corporation (CETC54) and their European partner, MT Mechatronics (MTM) of Mainz, Germany and S.A.M from Naples.

    The selected design was an optimised panel space-frame supported metal (PSM) concept, made up of 66 panels for the main reflector.

    Roger Franzen, SKA Dish Consortium Lead at the time said “We are confident the selected design will perform well in the harsh conditions of the Karoo in South Africa and will deliver the precision that the scientific community needs to answer the questions they’re trying to solve. The next step for us is to build and test a prototype at the South African site.”

    And this is exactly what the international team set out to achieve, each working against the clock on a piece of this international puzzle…

    Chinese innovation for high precision on a large scale.

    CETC54 have undertaken the production of the main reflector, sub-reflector, backup structure and pedestal for the dish. Since 2016, the group have produced 66 unique moulds to shape the 66 different metallic triangular 3m-a-side panels that make up the main reflector, each with its own specific curvature depending on its position.

    Each mould weighs between 4 and 5 tons and was made with an average surface accuracy between 0.010 and 0.030 mm – less than the width of a human hair.

    One of the main challenges faced by the group is to deliver optimum performance in terms of surface accuracy and curvature, replicated for each of the 66 panels, and in the future for each dish. In total, 8778 such panels will need to meet the exact same specifications in the first phase of construction of the SKA. Whilst the tolerances are not as tight as their optical counterparts due to the fact that radio wavelengths are longer than optical wavelengths, they still have to be built to a level of precision unsurpassed in the field of radio astronomy.

    The panel is formed and shaped on the mould using suction while its backup structure is attached and formed. It is then bonded using a special high performance adhesive.

    3
    4
    5

    “This is a mature method created by CETC54. Applied to the SKA panels, it allows us to achieve and maintain the dish surface to a very precise surface-accuracy level as well as consistency for all panels”, said Wang Feng from the Joint Laboratory for Radio Astronomy Technology (JLRAT), recently appointed SKA Dish Consortium Lead.

    “Our Chinese partners are extremely well resourced. They’ve demonstrated that they have the technology and capability to construct a telescope with the requirements that the SKA have”, adds Mark Harman, SKA Organisation Project Manager for the Dish consortium during a visit of the fabrication workshop in September 2017 as production was in full swing.


    As 2017 comes to an end, all moulds have been produced and the team is busy finishing the production of the 66 panels.

    German engineering for precision movement.

    Meanwhile at their integration facility in Mainz, Germany, MT Mechatronics (MTM) have been designing and manufacturing the precise hardware and electronics – such as the Drive Units and Electronics – used to move the dish.

    Their challenge is to manufacture high quality equipment to fit in a restricted space pre-determined by the diameter and height of the pedestal, as well as to make that equipment RFI-compliant.

    These servo drive systems are crucial to the proper and precise operation of the dish. If an alert is sent out, the SKA telescope will need to move and point at a new object with a precision of a few arcseconds (1/3600 of a degree) to follow up on transient events like supernovae and fast radio bursts. It’s an essential capability for a responsive telescope.

    “Our challenge is to design and manufacture servo drive systems that will be able to translate the instructions from the Telescope Manager software to move the hundreds of SKA dishes synchronously and with that level of precision under the harsh environmental conditions of the Karoo area” explains MTM’s Managing Director and SKA Dish Structure Lead Engineer Lutz Stenvers.

    This requirement adds another layer of complexity on top of the performance expected of the SKA-mid dish telescope.

    In the next few days, the servo systems will be packed and shipped to China to be assembled with the rest of the dish during the Christmas period. MTM engineers will then travel to CETC54 in January to commission the servomotors.

    ___________________________________________________________________________
    RFI compliance

    The SKA sites were chosen for their radio-quietness, which will allow the telescopes to detect the faint signals coming from Space. To preserve this pristine environment, the SKA project is going to great lengths to make sure that all equipment eventually installed on site – from the solar panels used to generate electricity to the large server racks needed to process the signals, the instrumentation on the dishes themselves and indeed the servomotors inside the pedestals – emits a minimum of radio frequency interference (RFI) and is properly shielded so that their emissions don’t swamp out the signals that the telescope is trying to pick up.

    ___________________________________________________________________________

    6
    8
    9

    Italian creativity for flexible & reliable instrumentation.

    10
    The feed indexer undergoing tests at the SAM workshop near Naples. Credit: SAM

    In Italy, near Naples, the Società Aerospaziale Mediterranea (SAM) is working on the design and production of the feed indexer, an electro-mechanical component that will support the various receivers and move them into position to align them with the optics of the dish when required, depending on the observations.

    Renato Aurigemma, the SAM team coordinator, is rightly very proud of it. “The feed indexer is a very innovative part of the dish, the first of its kind. We’ve got stringent requirements, as the indexer needs to move with high accuracy to position the receivers with sub-millimetric precision, and it also needs to be able to sustain heavy loads, with for example the Band 1 receiver alone weighing 165kg!”

    “I think the fact that we’re involved in such an international and dynamic team really valorises the italian industry participation to the project.”

    The team has recently conducted the final tests at their facility in Naples, before shipping the indexer to China for assembly on the dish in January.

    Instrumentation

    he Dish consortium also includes the delivery of some of the instrumentation – the receivers – for the dishes. A group of engineers at the National Research Council (NRC) Canada, are developing the hardware that digitises the signals recorded with each of the five feeds. The University of Bordeaux, France will contribute their expertise enabling the digitisation of high frequency signals.

    The receivers prepare the analogue signals from the feeds to a digitised data for transmission over optical fibre. As part of the consortium’s work for its Critical Design Review (CDR), prototype receivers are being developed for the high-priority Bands 1, 2 & 5, covering the frequency ranges of 350 MHz to 1.05 GHz, 950 MHz to 1.76 GHz and 4.6 to 15.3 GHz respectively, thus allowing to cover wavelengths from 2-86 cm.

    Band 1: Swedish craftsmanship, Canadian collaboration

    In 2016 the team from Onsala Space Observatory at Chalmers University of Technology, Sweden, designed and manufactured a first Band 1 feed for the SKA dish.

    In June 2016, it was shipped to the Dominion Radio Astronomy Observatory in British Columbia, Canada for site testing on a full-size SKA prototype dish built by the National Research Council of Canada a few years ago. The huge feed horn, with an opening close to 1m in diameter and weighing more than 100kg, was lifted 12m into the air to be fitted on the dish.

    Following a programme of different tests over 18 months in Canada and Sweden the team was able to improve the design of the feed to maximise its performance. The new improved feed uses components made in Onsala together with others from the Swedish company Ventana Hackås AB – at almost 63 degrees North! – and ridges made by MegaMETA in Lithuania.

    “We’re very proud of the Band 1 feed that we’ve manufactured and hand-assembled in our own workshop at Onsala Space Observatory”, explains Miroslav Pantaleev, Project Manager for the Band 1. “The test campaign in Canada gave us valuable feedback which we’re now integrating into the design of a second receiver to increase its performance.”

    A key component in the Band 1 success story are its low-noise amplifiers, developed by the Gothenburg company Low Noise Factory. Normally, amplifiers for radio telescopes have to be cooled to a few degrees above absolute zero. Instead, the amplifiers have been specially designed to maintain sensitivity without using any cooling at all. For the SKA, that translates into potential savings in energy, maintenance and investment.

    The upgraded feed will be shipped to South Africa in 2018 to be fitted onto the SKA dish prototype at the South African SKA site.

    12
    13
    14
    15

    Band 2: Early success in South Africa.

    16
    The assembled band 2 feed with the review panel and teams from EMSS and SARAO. Credit: EMSS

    Early in December 2017, a development team from EMSS Antennas in Stellenbosch, South Africa, working on the band 2 receiver and assisted by the South African Radio Astronomy Observatory system engineering team successfully concluded the CDR for their sub-deliverable with the dish consortium.

    The panel included international experts on radio astronomy receivers, including representatives from SKA Organisation, the National Research Centre of Canada, the European Space Agency and the Instituto de Astrofísica de Andalucía in Spain.

    Encouragingly, the results are much better than the required receiver noise temperature, which would result in very good system sensitivity on the optimised optics.

    “This is quite a milestone” explains Mark Bowen dish engineer at SKA Organisation and chair of the review panel “It’s the first successful CDR within the dish consortium and actually, it’s the first successful CDR of the SKA pre-production project!”

    Band 5: high frequency performance.

    A later addition to the project was the Band 5 Feed system developed in the UK by Oxford University and the Science and Technology Facilities Council (STFC). This feed system will provide SKA with capability to observe from frequencies of 4.8-15.3 GHz. The group are in the design stage and have recently undertaken a major review of the design. Prototyping of critical components is underway to validate their performance.

    It’s also been proposed to expand the upper edge of band 5 from 15.3 GHz to 25 GHz.

    “Thanks the very good performance of the dish surface, we’re able to look at increasing the frequency coverage in the future, going up to 25 GHz and possibly higher. This would allow the SKA to play an important role in fields like planet-formation and exobiology” explains Tyler Bourke, Project Scientist for the SKA Organisation.

    Monitoring & Control: another success.

    To control the dish system a Team of specialist Telescope Software engineers at the Italian National Institute for Astrophysics (INAF) are developing the Local Monitor and Control (LMC) system. This will monitor, coordinate and control the Dish subsystems. This requires close interaction with all the teams. The INAF LMC control system will act a glue to harmonise all the components in the dish to act as one system. This is no simple task when they need to coordinate the activities of 200 engineers in seven countries.

    In June 2017, the South African and Italian engineers led by Corrado Trigilio, coordinator of the LMC group for INAF, successfully carried out a communication and operation test between the central control of the Dish, the LMC element and the receiver system controller that will be installed at the focus of the telescope.

    The next steps.

    16
    In June 2017 the infrastructure team from SARAO poured the concrete foundation – using 120m3 of concrete – for the first SKA prototype dish at the South African SKA site in the Karoo. Credit: Telalo Lekalake / SARAO.

    So what next? 2018 will be an exciting year as the work of the consortium will be nearing completion and the pieces of this international puzzle come together ahead of their Critical Design Review.

    A ceremony at the CETC54 factory in China in early February will mark the first assembly of the dish with its main reflector, sub-reflector, back structure and pedestal from China, servomotors from Germany and feed indexer from Italy.

    Shortly after, a second dish, currently under production by the same partners and funded by the German Max-Planck Institute, will be shipped to South Africa and assembled at the South African SKA site where in June 2017 teams from the South African Radio Astronomy Observatory SARAO poured the concrete foundation on top of which it will stand. For the first time, a full SKA dish prototype will be assembled at the site of the future SKA1-mid telescope with its various components from Dish consortium partners.

    “No doubt we will learn very valuable lessons from those site tests”, says Mark Harman. “This will allow us to further refine the design and make any tweaks necessary to ensure optimal performance in the harsh conditions of the Karoo.”

    “At that point, we will be confident that we’ve delivered a reliable and high performance dish that meets, and very likely, exceeds the specifications. After that, we’ll be ready to mass produce them in the hundreds!”, he concludes.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition


    SKA ASKAP Pathefinder Telescope

    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA


    SKA Meerkat Telescope

    Murchison Widefield Array,SKA Murchison Widefield Array, Boolardy station in outback Western Australia, at the Murchison Radio-astronomy Observatory (MRO)


    SKA Murchison Wide Field Array
    About SKA

    The Square Kilometre Array will be the world’s largest and most sensitive radio telescope. The total collecting area will be approximately one square kilometre giving 50 times the sensitivity, and 10 000 times the survey speed, of the best current-day telescopes. The SKA will be built in Southern Africa and in Australia. Thousands of receptors will extend to distances of 3 000 km from the central regions. The SKA will address fundamental unanswered questions about our Universe including how the first stars and galaxies formed after the Big Bang, how dark energy is accelerating the expansion of the Universe, the role of magnetism in the cosmos, the nature of gravity, and the search for life beyond Earth. Construction of phase one of the SKA is scheduled to start in 2016. The SKA Organisation, with its headquarters at Jodrell Bank Observatory, near Manchester, UK, was established in December 2011 as a not-for-profit company in order to formalise relationships between the international partners and centralise the leadership of the project.

    The Square Kilometre Array (SKA) project is an international effort to build the world’s largest radio telescope, led by SKA Organisation. The SKA will conduct transformational science to improve our understanding of the Universe and the laws of fundamental physics, monitoring the sky in unprecedented detail and mapping it hundreds of times faster than any current facility.

    Already supported by 10 member countries – Australia, Canada, China, India, Italy, New Zealand, South Africa, Sweden, The Netherlands and the United Kingdom – SKA Organisation has brought together some of the world’s finest scientists, engineers and policy makers and more than 100 companies and research institutions across 20 countries in the design and development of the telescope. Construction of the SKA is set to start in 2018, with early science observations in 2020.

     
  • richardmitnick 6:41 pm on November 30, 2017 Permalink | Reply
    Tags: , SKA, SKA signs Big Data cooperation agreement with CERN   

    From SKA: “SKA signs Big Data cooperation agreement with CERN” 


    SKA

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    14 July 2017 [Just now in social media.]

    William Garnier
    Director of Communications, Outreach and Education
    SKA Organisation
    Mob: +447814908932
    Email: w.garnier@skatelescope.org

    Arnaud Marsollier
    Head of Press
    CERN
    Email: Arnaud.Marsollier@cern.ch

    1
    Dr. Fabiola Gianotti, CERN Director-General, and Prof. Philip Diamond, SKA Director-General, signing a cooperation agreement between the two organisations on Big Data. © 2017 CERN

    SKA Organisation and CERN, the European Laboratory for Particle Physics, yesterday signed an agreement formalising their growing collaboration in the area of extreme-scale computing.

    The agreement establishes a framework for collaborative projects that addresses joint challenges in approaching Exascale* computing and data storage, and comes as the LHC will generate even more data in the coming decade and SKA is preparing to collect a vast amount of scientific data as well.

    Around the world, countries are engaged in efforts to cope with a leap in the demands of Information and Communication Technology. The Square Kilometre Array (SKA) project, the world’s largest radio telescope when built, and CERN’s Large Hadron Collider (LHC), the world’s largest particle accelerator, famous for discovering the Higgs Boson, will contribute in driving the required technological developments.

    LHC

    CERN/LHC Map

    CERN LHC Tunnel

    CERN LHC particles

    “The signature of this collaboration agreement between two of the largest producers of science data on the planet shows that we are really entering a new era of science worldwide”, said Prof. Philip Diamond, SKA Director-General. “Both CERN and SKA are and will be pushing the limits of what is possible technologically, and by working together and with industry, we are ensuring that we are ready to make the most of this upcoming data and computing surge.”

    “The LHC computing demands are tackled by the Worldwide LHC computing grid which employs more than half a million computing cores around the globe interconnected by a powerful network. As our demands increase with the planned intensity upgrade of the LHC we want to expand this concept by using common ideas and infrastructure, into a scientific cloud. SKA will be an ideal partner in this endeavour.” said Prof. Eckhard Elsen, CERN Director of Research and Computing.

    CERN and SKA have identified the acquisition, storage, management, distribution, and analysis of scientific data as particularly burning topics to meet the technological challenges.

    In the case of the SKA, it is expected that phase 1 of the project – representing approximately 10% of the whole SKA – will generate around 300 PB (petabytes) of data products every year. This is ten times more than today’s biggest science experiments.

    CERN has just surpassed the 200 PB limit for raw data collected by the experiments at the LHC over the past seven years. A layered (tiered) system provides for data storage in the remote centres. The High-Luminosity LHC is estimated to exceed this level every year.

    “This in itself will be a challenge for both CERN and SKA given the step change in the amounts of data we will have to handle in the next 5-10 years”, explains Miles Deegan, High-Performance Computing Specialist for the SKA. “Transferring an average dataset will take days on the SKA’s ultra-fast fibre optic networks, which are 300 times faster than your average broadband connection, so storing or even downloading this data at home or even at your local university is clearly impractical.”

    As is already the case at CERN, SKA data will also be analysed by scientific collaborations distributed across the planet. There will be common computational and storage resource needs by both institutions and their respective researchers, with a shared challenge of taking this volume of data and turning them into science that can be published, understood, explained, reproduced, preserved and presented.

    “Processing such volumes of complex data to extract useful science is an exciting challenge that we face”, adds Antonio Chrysostomou, Head of Science Operations Planning for the SKA. “Our aim is to provide that processing capability through an alliance of regional centres located across the world in SKA member countries. Using cloud-based solutions, our scientific community will have access to the equivalent of today’s 35 biggest supercomputers to do the intensive processing needed to extract scientific results. In short, we need to fundamentally change how science is done.”

    “CERN has proposed the concept of the Federated Open Science Cloud with other EIROForum members. This agreement is an important step in this direction.” said Ian Bird, responsible at CERN for the World-wide LHC Computing Grid. “Essentially, we will provide a giant cloud-based, Dropbox-like, facility to science users around the world, where they will be able to not only access incredibly large files, but will also be able to do extremely intensive processing on those files to extract the science.”

    As part of the agreement, CERN and SKA will hold regular meetings to monitor progress and discuss the strategic direction of their collaboration. They will organise collaborative workshops on specific technical areas of mutual interest and propose demonstrator projects or prototypes to investigate concepts for managing and analysing Exascale data sets in a globally distributed environment. The agreement also includes the exchange of experts in the field of Big Data as well as joint publications.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II


    SKA ASKAP Pathefinder Telescope

    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA


    SKA Meerkat Telescope

    Murchison Widefield Array,SKA Murchison Widefield Array, Boolardy station in outback Western Australia, at the Murchison Radio-astronomy Observatory (MRO)


    SKA Murchison Wide Field Array
    About SKA

    The Square Kilometre Array will be the world’s largest and most sensitive radio telescope. The total collecting area will be approximately one square kilometre giving 50 times the sensitivity, and 10 000 times the survey speed, of the best current-day telescopes. The SKA will be built in Southern Africa and in Australia. Thousands of receptors will extend to distances of 3 000 km from the central regions. The SKA will address fundamental unanswered questions about our Universe including how the first stars and galaxies formed after the Big Bang, how dark energy is accelerating the expansion of the Universe, the role of magnetism in the cosmos, the nature of gravity, and the search for life beyond Earth. Construction of phase one of the SKA is scheduled to start in 2016. The SKA Organisation, with its headquarters at Jodrell Bank Observatory, near Manchester, UK, was established in December 2011 as a not-for-profit company in order to formalise relationships between the international partners and centralise the leadership of the project.

    The Square Kilometre Array (SKA) project is an international effort to build the world’s largest radio telescope, led by SKA Organisation. The SKA will conduct transformational science to improve our understanding of the Universe and the laws of fundamental physics, monitoring the sky in unprecedented detail and mapping it hundreds of times faster than any current facility.

    Already supported by 10 member countries – Australia, Canada, China, India, Italy, New Zealand, South Africa, Sweden, The Netherlands and the United Kingdom – SKA Organisation has brought together some of the world’s finest scientists, engineers and policy makers and more than 100 companies and research institutions across 20 countries in the design and development of the telescope. Construction of the SKA is set to start in 2018, with early science observations in 2020.

     
  • richardmitnick 6:22 pm on November 30, 2017 Permalink | Reply
    Tags: , SKA, SKA Organisation and the US National Radio Astronomy Observatory team up to develop next-generation astronomy data reduction software   

    From SKA and NRAO: “SKA Organisation and the US National Radio Astronomy Observatory team up to develop next-generation astronomy data reduction software” 

    SKA

    NRAO Icon
    National Radio Astronomy Observatory

    NRAO Banner

    11.9.17

    1
    Prof. Philip Diamond, SKA Director-General, and Dr. Tony Beasley, Director of the US National Radio Astronomy Observatory, signing a Memorandum of Understanding between the two organisations on CASA workpackage collaboration.

    On the occasion of the 25th meeting of the SKA Board of Directors, SKA Organisation and the National Radio Astronomy Observatory (NRAO), the US National Science Foundation facility operating telescopes in the United States and South America, signed a Memorandum of Understanding (MoU) for the design and development of new data models to address the data processing requirements of their next-generation telescopes. The Memorandum establishes an agreement for collaborative and continued development work on the Common Astronomy Software Applications (CASA) software package, initially developed by NRAO and partners in the early 1990s. CASA is the leading package for radio astronomy data reduction around the world and is used currently for the international Atacama Large Millimeter/sub-millimeter Array (ALMA) and the NRAO Jansky Very Large Array (JVLA) telescopes, amongst other facilities. Both ALMA and JVLA are presently the largest telescopes of their kind in the world, respectively observing in millimetre/sub-millimetre and radio wavelengths.

    “Next-generation radio telescopes such as the SKA will have extreme processing requirements and CASA doesn’t currently have the capabilities to handle such large bandwidths and Field of View datasets that will be produced by these telescopes”, says Prof Philip Diamond, SKA Organisation Director General. “The collaboration we are formalising today with a renowned institution such as NRAO is very much welcome and will enable extensive collaborative work to update the CASA core data models for it to become scalable to the needs of our worldwide community.”

    “We are pleased to work with our SKA colleagues to extend the CASA framework to support several future radio telescopes”, says Dr. Tony Beasley, Director of the US National Radio Astronomy Observatory. “We are building upon the investment made by the global astronomy community in CASA over the past two decades, enabling new science and instrumental capabilities.”

    This overhaul of the CASA software will be necessary for a new era of astronomy, which will not only benefit the next-generation telescopes, but also the radio astronomy world as a whole, who would be able to use the updated CASA software to better improve the data processing needs of their observatories, which can process both interferometric and single dish data.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

    The NRAO operates a complementary, state-of-the-art suite of radio telescope facilities for use by the scientific community, regardless of institutional or national affiliation: the Very Large Array (VLA), and the Very Long Baseline Array (VLBA)*.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).

    NRAO VLBA

    NRAO VLBA

    *The Very Long Baseline Array


    SKA ASKAP Pathefinder Telescope

    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA


    SKA Meerkat Telescope

    Murchison Widefield Array,SKA Murchison Widefield Array, Boolardy station in outback Western Australia, at the Murchison Radio-astronomy Observatory (MRO)


    SKA Murchison Wide Field Array
    About SKA

    The Square Kilometre Array will be the world’s largest and most sensitive radio telescope. The total collecting area will be approximately one square kilometre giving 50 times the sensitivity, and 10 000 times the survey speed, of the best current-day telescopes. The SKA will be built in Southern Africa and in Australia. Thousands of receptors will extend to distances of 3 000 km from the central regions. The SKA will address fundamental unanswered questions about our Universe including how the first stars and galaxies formed after the Big Bang, how dark energy is accelerating the expansion of the Universe, the role of magnetism in the cosmos, the nature of gravity, and the search for life beyond Earth. Construction of phase one of the SKA is scheduled to start in 2016. The SKA Organisation, with its headquarters at Jodrell Bank Observatory, near Manchester, UK, was established in December 2011 as a not-for-profit company in order to formalise relationships between the international partners and centralise the leadership of the project.

    The Square Kilometre Array (SKA) project is an international effort to build the world’s largest radio telescope, led by SKA Organisation. The SKA will conduct transformational science to improve our understanding of the Universe and the laws of fundamental physics, monitoring the sky in unprecedented detail and mapping it hundreds of times faster than any current facility.

    Already supported by 10 member countries – Australia, Canada, China, India, Italy, New Zealand, South Africa, Sweden, The Netherlands and the United Kingdom – SKA Organisation has brought together some of the world’s finest scientists, engineers and policy makers and more than 100 companies and research institutions across 20 countries in the design and development of the telescope. Construction of the SKA is set to start in 2018, with early science observations in 2020.

     
  • richardmitnick 12:34 pm on November 10, 2017 Permalink | Reply
    Tags: , , , , In the next few decades pulsars and black holes will be some of most important focal points in astrophysics research, KAT-7 and MeerKAT telescopes, Looking ahead to the Square Kilometer Array, Physicists will either pin down more accurate descriptions of the Strong Equivalence Principle (SEP) and alternative theories of gravity or may find they need to scrap these theories entirely, Pulsar emissions and gravitational waves have been telling us interesting things about the universe, , SKA, , , The SKA will be far more powerful and versatile than any telescopes before it, The Square Kilometer Array (SKA) an international partnership mainly supported by 10 countries is an interconnected web of telescopes being built in South Africa Western Australia and a number of Afri   

    From astronomy.com: “Looking ahead to the Square Kilometer Array” 

    Astronomy magazine

    astronomy.com

    November 06, 2017
    Tyler Krueger

    This web of telescopes will help astronomers unlock the mystery behind black holes, pulsars, and more.

    SKA Square Kilometer Array

    1
    Composite image bringing together the two SKA sites under a shared sky. Pictured here are some of the SKA precursor telescopes, South Africa’s KAT-7 and MeerKAT telescopes on the left and Australia’s ASKAP telescope on the right. SKA Organisation

    In the next few decades, pulsars and black holes will be some of most important focal points in astrophysics research. Researchers are working to build extremely powerful telescopes that aim to study pulsars and, if they are lucky, supermassive black holes found at the center of galaxies. The Square Kilometer Array (SKA), an international partnership mainly supported by 10 countries, is an interconnected web of telescopes being built in South Africa, Western Australia, and a number of African countries that will study these objects to test theories of gravity and the theory of general relativity.

    Pulsar emissions and gravitational waves have been telling us interesting things about the universe, and upcoming research is likely to bring improved and exciting insights. The SKA will be far more powerful and versatile than any telescopes before it, allowing for a diverse range of in-depth research.

    “What excites me is the finding of the unexpected,” SKA Science Director Robert Braun said. “You’ll be looking for one phenomenon, and you come away finding something completely unpredicted.”

    2
    Aerial view of the SKA dishes and MeerKAT dishes in South Africa. SKA Organisation

    The Relationship Between Pulsars and Gravitational Waves

    Pulsars are excellent timekeepers. As pulsars rotate on their axis, for a few milliseconds the radio waves they emit are shot directly at Earth, where researchers can record and analyze them. They rotate very consistently, so researchers can use them as precise clocks for experiments.

    The consistency of pulsars also makes them a reliable way to study gravitational waves. Gravitational waves warp space-time so that anything in their path is warped itself. If a gravitational wave from a pair of supermassive black holes orbiting each other were to propagate through the space between a pulsar and our planet, researchers would be able to detect a slight delay in the radio signal received, as space would be physically distorted. The SKA telescope will be able to use pulsars to detect gravitational waves from distant supermassive black holes binaries in more precise ways that current telescopes.

    According to Alberto Sesana, a research fellow at the University of Birmingham, a great challenge to searching for evidence of gravitational waves in pulsar radio emissions is separating the signals from the plethora of other sources of noise in the universe.

    “When it comes to gravitational wave detection, the hardest part is that we do not understand the intrinsic noise of pulsars very well.” Sesana said. “This is a problem, because detecting a signal means to single it out from noise and if you don’t know what your noise does, it becomes difficult to identify the signal.”

    It’s a bit like being at a concert with your eyes closed and trying to decipher which speaker is playing the bass guitar.

    3
    Close-up of the SKA’s low frequency aperture arrays and ASKAP dishes in Australia. SKA Organisation

    The telescopes currently in use are not sensitive enough to study these variations closely enough. The SKA telescope will provide more powerful instruments capable of higher precision than those before it and will help researchers study celestial bodies more accurately.

    Tests of General Relativity

    Until the first gravitational wave signal detected by LIGO, pairings of neutron stars were the best test of general relativity. According to the theory, the emission of gravitational waves as the stars rotate around each other causes the distance between the two neutron stars to shrink. This in turn shrinks the amount of time it takes the stars to orbit each other, and affects the timing of the pulsars. Studying these timing changes closely will allow researchers to pinpoint the rate of shrinkage in a concrete manner and compare it to what the theory of general relativity says will happen.

    PSR J0737-3039, a system of two neutron star pulsars orbiting each other, has so far been the best test of this principle. The observed rates of shrinking have agreed with (to within half of a percent) general relativity, but in typical science fashion, this is still not enough evidence to confirm existing theories.

    In future studies, SKA telescopes plan to find more binary systems like this, which will help build a stronger body of evidence for or against our current theory of general relativity.

    “With better telescopes and algorithms, we can find more pulsars, and among them, more exotic objects, like double neutron star binaries, which will help constrain general relativity, and pulsar – white dwarf binaries, which will help constrain alternative theories of gravity,” said Delphine Perrodin, a researcher at the Italian National Institute for Astrophysics (INAF).

    Alternative Theories of Gravity

    Pulsar-white dwarf systems can similarly test alternative theories of gravity. PSR J0337+1715 is a great example of this type of system. For the visual learners, here’s a short video describing this system:

    This is an important area of study because general relativity is not yet a completely sound theory. The theories of general relativity and quantum mechanics have been studied extensively, but physicists still cannot reconcile them with each other.

    The PSR J0337+1715 system has interested physicists since its discovery in 2007. Two white dwarfs orbit the pulsar – one very closely and one from far away. This system is fascinating because the outer white dwarf’s gravitational field accelerates the orbits of the inner pair at a much faster rate than predicted by current theories. With more sensitive telescopes, researchers aim to find more systems like this to study to more fully understand, among other things, the Strong Equivalence Principle (SEP). SEP states that the laws of gravity are not affected by velocity and location, but the way the PSR J0337+1715 system behaves, it appears that there is something beyond our understanding to be discovered. The SKA telescope will be able to more precisely study this supposed violation.

    Whatever conclusions come from it, physicists will either pin down more accurate descriptions of the SEP and alternative theories of gravity, or may find they need to scrap these theories entirely.

    The Future of Astrophysics

    SKA will practically revolutionize the study of astrophysics, and will even contribute to other fields of physics. With such a wide range of capability, SKA will advance theories of dark matter and dark energy, learn about galaxy formation in the early and local universe, and hopefully accurately locate the first recognized pair of supermassive black holes. Researchers hope to use the SKA to formulate a “movie” of the early universe’s progression to its current state by studying hydrogen recombination after the Big Bang.

    “If we can overcome the instrumental challenges, we’ll be able to see that ‘cosmic dawn,’ the first moments of time in which the universe starts to become ionized and watch as that ionization progresses,” Braun said.

    According to Sesana, the holy grail of this research would be to find interesting objects that are closer and easier to study.

    “Another ideal outcome will be to find, possibly – and this would be a dream – a pulsar closely orbiting the supermassive black hole in the Milky Way center. This will allow the testing of general relativity like in the pulsar-black hole case, but to an even greater precision.”

    3
    SKA Organisation

    With regard to the recent announcement of gravitational waves, gamma ways, and more from a pair of merging neutron stars, the SKA “will work in tandem with multi-messenger facilities to both alert other facilities to discoveries made by the SKA, and to react to discoveries made by LIGO, Virgo, etc.,” said a representative from the project. “The SKA’s reaction time will be about 30 seconds, meaning we can jump onto signals as soon as they are discovered by the electromagnetic, gravitational wave or neutrino signals. Additionally, the SKA will provide a deluge of new and exciting electromagnetic transient discoveries, which it will broadcast to other facilities for these to complement the observations, the aim being to achieve a full multi-messenger understanding of the new discovery space that SKA will open.”

    Exciting Discoveries Ahead

    The potential to discover groundbreaking phenomena in the universe is awe-inspiring to say the least. Some questions will be answered, but many more questions will be raised.

    4
    Artist’s composition of the entire SKA1 array, with SKA dishes and MeerKAT dishes in Africa and low frequency aperture arrays and ASKAP dishes in Australia. SKA Organisation

    “Nature is so inventive,” Braun said. “If you look with new capabilities, you find the most amazing, unexpected things that you never could have predicted. Nature just has so much more imagination than people do.”

    The overarching SKA project hopes to see an intergovernmental treaty signed in 2018, and should begin its five-year construction in 2019 or 2020. Braun says that the South African MeerKAT radio telescope, which is a precursor project that will be integrated into the SKA, is nearing completion and expects to be functioning in April 2018. Other first-class science precursor facilities located such as ASKAP and the MWA radio telescopes in Australia are already paving the way for SKA, as well as a number of smaller facilities around the world

    The wait seems long, but for astronomy fans, it’s going to be well worth it.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 9:45 am on October 11, 2017 Permalink | Reply
    Tags: , , , , , SaDT-Signal and Data Transport, SKA, Synchronisation System Designs Chosen for SKA telescopes   

    From SKA: “Synchronisation System Designs Chosen for SKA telescopes” 

    SKA Square Kilometer Array


    SKA

    11 October, 2017

    1
    Left: Synchronisation distribution system designed by ICRAR selected for SKA-mid dishes in South Africa. Right: Synchronisation distribution system designed by Tsinghua University selected for SKA-low antennas in Australia. Credit: ICRAR / Tsinghua University

    On Monday the Board of the SKA’s international Signal and Data Transport (SaDT) consortium selected the synchronisation distribution system designs to be used for both SKA telescopes, endorsing the decision of a panel of leading experts in the field of time synchronisation.

    While optical fibres are incredibly stable and suited to transport data, mechanical stresses and thermal changes do affect the fibre, degrading the stability of the transmitted signals over long distances.

    The long distances between the SKA antennas means radio waves from the sky reach each antenna at different times. With eventually thousands of antennas spread over continental scales and therefore thousands of kilometres of fibre, one of the most complex technical challenges for the SKA to function properly is to make sure the signals from the antennas are aligned with extreme precision to be successfully combined by the SKA’s supercomputers.

    “Given the scale of the SKA, this is an engineering problem that hadn’t really been faced before by any astronomical observatory” said André Van Es, the SaDT Engineering Project Manager supervising the consortium’s work for SKA Organisation (SKAO).

    To achieve this level of precision or “coherence” across the array, the SKA requires a synchronisation distribution system that supresses these fibre fluctuations in real time.

    “The performance required is for less than 2% coherence loss. Bearing in mind a 1% loss is equivalent to losing two dishes or antenna stations, it’s crucial that we get this right for the telescopes to be effective” explained SKAO timing domain specialist Rodrigo Olguin.

    The pulses sent by the synchronisation distribution system travel to each antenna using the optical fibre network also used for transporting astronomical data to the SKA’s central computer. The system then takes into account the mechanical stresses and thermal changes in the fibre and corrects the timing difference to make sure all signals coming from the antennas are digitised synchronously.

    An optical fibre-based synchronisation distribution system designed by a team from the International Centre for Radio Astronomy Research (ICRAR) in Perth was selected for the SKA-mid dishes in South Africa, and a system designed by Tsinghua University in Beijing for the SKA-low antennas in Australia.

    “This decision based on the SKA’s requirements combines both cost-effectiveness and reliability of the designs, resulting in an optimal two-system solution for the telescopes” explained André Van Es.

    “Our SKA frequency synchronisation system continuously measures changes in the fibre link and applies corrections in real-time with fluctuations of no more than five parts in one-hundred trillion over a 1-second period”, said lead designer, Dr Sascha Schediwy from ICRAR and The University of Western Australia (UWA). “A clock relying on a signal of that stability would only gain or lose a second after 600,000 years.”

    Dr. Bo Wang of Tsinghua University explains “Our system employs a frequency dissemination and synchronisation method that features phase-noise compensation performed at the client site. One central transmitting module can thus be linked to multiple client sites, and future expansion to additional receiving sites can be realised without disrupting the structure of the central transmitting station.”

    The very accurate timing and synchronisation systems will enable the SKA to contribute to many fields from mapping the distribution of hydrogen in the Universe over time to studying pulsars and detecting gravitational waves on a galactic scale, making it complementary to the LIGO & VIRGO gravitational wave observatories.

    “The technologies behind these synchronisation systems are also likely to find applications beyond astronomy. Think about currency trading, which requires extreme accuracy in transactions” added André Van Es.

    3

    The synchronisation system designs chosen were developed as part of the SaDT Consortium led by Prof. Keith Grainge of the University of Manchester, UK and which includes institutes from eight countries, including the University of Western Australia and Tsinghua University from Beijing, China. SaDT is responsible for the transmission of SKA data and the provision of timing, across two telescope-wide networks. Read more about SaDT’s work: http://skatelescope.org/sadt/

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    SKA Square Kilometer Array


    SKA ASKAP Pathefinder Telescope

    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA


    SKA Meerkat Telescope

    Murchison Widefield Array,SKA Murchison Widefield Array, Boolardy station in outback Western Australia, at the Murchison Radio-astronomy Observatory (MRO)


    SKA Murchison Wide Field Array
    About SKA

    The Square Kilometre Array will be the world’s largest and most sensitive radio telescope. The total collecting area will be approximately one square kilometre giving 50 times the sensitivity, and 10 000 times the survey speed, of the best current-day telescopes. The SKA will be built in Southern Africa and in Australia. Thousands of receptors will extend to distances of 3 000 km from the central regions. The SKA will address fundamental unanswered questions about our Universe including how the first stars and galaxies formed after the Big Bang, how dark energy is accelerating the expansion of the Universe, the role of magnetism in the cosmos, the nature of gravity, and the search for life beyond Earth. Construction of phase one of the SKA is scheduled to start in 2016. The SKA Organisation, with its headquarters at Jodrell Bank Observatory, near Manchester, UK, was established in December 2011 as a not-for-profit company in order to formalise relationships between the international partners and centralise the leadership of the project.

    The Square Kilometre Array (SKA) project is an international effort to build the world’s largest radio telescope, led by SKA Organisation. The SKA will conduct transformational science to improve our understanding of the Universe and the laws of fundamental physics, monitoring the sky in unprecedented detail and mapping it hundreds of times faster than any current facility.

    Already supported by 10 member countries – Australia, Canada, China, India, Italy, New Zealand, South Africa, Sweden, The Netherlands and the United Kingdom – SKA Organisation has brought together some of the world’s finest scientists, engineers and policy makers and more than 100 companies and research institutions across 20 countries in the design and development of the telescope. Construction of the SKA is set to start in 2018, with early science observations in 2020.

     
  • richardmitnick 8:38 am on September 27, 2017 Permalink | Reply
    Tags: , , , , , Few Australians know the unique role the country plays in the global space network, , , SKA   

    From CSIROscope: “Few Australians know the unique role the country plays in the global space network” 

    CSIRO bloc

    CSIROscope

    27 September 2017
    Dr. Larry Marshall

    1
    CSIRO leases time from NovaSAR satellite for images of SA bushfires, floods. No image credit.

    In 1969, I sat on the floor of my classroom watching, spellbound, as Neil Armstrong took his first steps on the Moon. I never dreamt that a few decades later, I’d be one of the first to see images from Pluto as part of the critical role CSIRO’s team at the Canberra Deep Space Communication Complex plays in NASA’s New Horizons and Cassini missions.

    NASA Canberra, AU, Deep Space Network

    How could a kid sitting in a classroom in Sydney, miles away from the rest of the world, believe Australia had such an important part to play in our exploration of space?

    Today few schoolchildren — in fact, probably few adults as well — know the unique role Australia plays in the global space network. Australia is positioned perfectly to look up into the centre of the galaxy — something you can’t do from many other parts of the world. That outstanding location and our world-class capability in space science underpins a phenomenal contribution to international space programs.

    CSIRO and NASA’s partnership stretches back more than 50 years, grounded in our world-class infrastructure and scientists at Canberra and Parkes, and fuelled into the future by our shared ambition to push the boundaries of exploration to benefit life back on earth.

    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia

    From November, CSIRO will control all NASA’s deep space assets worldwide for about a third of every day, using the ‘follow the sun’ protocol, as well as communicating with European and Indian spacecraft. It’s a rare day in our control centres when we don’t talk to partners on every part of the globe.

    But beyond the beauty, the mystery, and the innate lure of the vast universe that surrounds us — what’s in it for Australia to invest in space?

    For a start, if you’re reading this online, chances are you’re using WiFi, invented by CSIRO and using an algorithm we developed in radio astronomy work. But what about implications for the environment? On a daily basis, many dedicated people across CSIRO deliver crucial insights through Earth observation.

    They work closely with more than a dozen international space organisations to turn big data into insights that solve challenges ranging from disaster prevention, bushfires, floods and spills, to biosecurity threats.

    We partner with the European Space Agency (ESA) to access their international satellite data, and with NASA to monitor places from the Great Barrier Reef to the Great Australian Bight, to the Lake Eyre Basin to the Adelaide Hills.

    And today, here in Adelaide, we were thrilled to announce CSIRO has purchased a 10 per cent share of the NovaSAR Earth observation satellite, giving Australian scientists first usage rights when it flies over Australia and Southeast Asia, strengthening our ability to understand our environment and prepare for our future, and for the first time, giving Australian scientists the ability to control an imaging satellite.

    2
    UrtheCast said that SSTL’s experience with the NovaSAR synthetic aperture radar satellite (above) was a key reason it selected the company to work on its Generation 3 satellite constellation. Credit: SSTL

    But you don’t have to be a space organisation to be part of CSIRO’s space team.

    We work with Australian businesses up and down the space supply chain who benefit economically.

    For example, our partnership with EMC, a small business based in Perth, is about to deliver the world’s first solar power solution suitable for a radioastronomy site at our Australian Square Kilometre Array Pathfinder (ASKAP) in Murchison, WA.

    SKA/ASKAP radio telescope at the Murchison Radio-astronomy Observatory (MRO) in Mid West region of Western Australia

    This same site will soon be the Australian home to the world’s largest telescope.

    SKA Square Kilometer Array

    The project has been a brilliant result for EMC, which grew from a workforce of 10 to over 100 during the project. They’re now positioned to take on global radio astronomy energy tenders — and beyond.

    Building on our long, strong history of partnerships with international space organisations, we’re seeing more deeply into the Universe, in more detail into our own environment, and sharing the benefits across our economy.

    So what’s next? Australian science created the coatings on every Boeing aircraft, and as we go to Mars don’t be surprised to see Aussie innovation along for the ride.

    CSIRO collaborates with every Australian research institution, with the nation’s space advantage driven by this network of brilliant minds, working collaboratively to deliver the best outcomes for our nation.

    Our opportunity is as unlimited as space itself.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SKA/ASKAP radio telescope at the Murchison Radio-astronomy Observatory (MRO) in Mid West region of Western Australia

    So what can we expect these new radio projects to discover? We have no idea, but history tells us that they are almost certain to deliver some major surprises.

    Making these new discoveries may not be so simple. Gone are the days when astronomers could just notice something odd as they browse their tables and graphs.

    Nowadays, astronomers are more likely to be distilling their answers from carefully-posed queries to databases containing petabytes of data. Human brains are just not up to the job of making unexpected discoveries in these circumstances, and instead we will need to develop “learning machines” to help us discover the unexpected.

    With the right tools and careful insight, who knows what we might find.

    CSIRO campus

    CSIRO, the Commonwealth Scientific and Industrial Research Organisation, is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

     
  • richardmitnick 8:06 am on August 22, 2017 Permalink | Reply
    Tags: , , , , , , , , SKA   

    From CSIRO blog: “Ernie Dingo visits our outback astronomy observatory – in his beloved backyard” 

    CSIRO bloc

    CSIRO blog

    22 August 2017
    Annabelle Young

    SKA Square Kilometer Array

    1
    Mr Ernie Dingo and Ms Leonie Boddington, our Aboriginal Liaison Officer, under one of the ASKAP antennas at the Murchison Radio-astronomy Observatory. No image credit.

    We searched far and wide for a place in Australia to build a world class radio astronomy observatory.

    The location had to be remote and far from man-made radio interference, to ensure quietness for these instruments to detect radio waves travelling from billions of light years away. It also needed to be somewhere relatively accessible for construction and observatory management.

    We found the perfect spot in the Murchison area of Western Australia, 700 kilometres northeast of Perth and in traditional Wajarri Yamatji country.

    It’s now home to our new Australian Square Kilometre Array Pathfinder telescope (ASKAP) and the Murchison Widefield Array telescope (MWA) led by Curtin University. It’s also a future site for the Square Kilometre Array (SKA) – the world’s largest and most ambitious international radio astronomy project ever realised.

    SKA/ASKAP radio telescope at the Murchison Radio-astronomy Observatory (MRO) in Mid West region of Western Australia

    3
    ASKAP will capture radio images of the sky in more detail and faster than ever before. No image credit.

    4
    MWA, led by Curtin University

    Wajarri Yamatji Elder and Australian TV personality Ernie Dingo was passing by recently, so we invited him in for a tour and a chat about the Murchison Radio-astronomy Observatory (MRO), situated on his ancestral and beloved homeland.

    “This is where I come from, my home soil and I’m really glad the MRO is here to allow scientific visitors on Wajarri Yamatji ground. We are proud of our corner of the world, there are lots of secrets in the mid-west and it’s wonderful that this land has been adopted by scientists to unlock the secrets of the Universe.”

    Telescopes at the MRO will provide astronomers with the capability to answer fundamental questions about our Universe, such as the nature of cosmic magnetism and the evolution and formation of galaxies.

    Ernie is excited by the potential the facility brings to the local and global community; “It will inspire young people and further this part of the world. The antennas have a relatively small impact on the land, which is good from my point of view,” he said.

    Many partners have come together to create an Indigenous Land Use Agreement (ILUA) for the MRO to operate, and to ensure educational, social and economic benefits flow to the Wajarri Yamatji.

    The ILUA includes a cadetship program that runs for the life of the telescopes and our staff visit the remote Pia Community School as part of a mentoring program. We’ve co-created resources on Wajarri culture and the MRO. A new ILUA for the SKA will expand on these benefits.

    ASKAP’s 36 individual dish antennas spread out across a six kilometre area. In contrast to the rustic colours of the Australian outback, they’re bright white but Ernie says they fit in the landscape, like part of the furniture!

    “This is wildflower country and they’re like beautiful giant white wildflowers growing up out of the earth”.

    4
    Lechenaultia macrantha or Wreath Flower found near the MRO.

    On his visit Ernie finds bushfood growing under the telescope and although he recognises the site is generally closed to visitors for radio quiet purposes.

    “I hope the scientists get a chance to stop and smell the flowers – there’s plenty of bush food out here and it’s the only place in the world where the wreath flower grows.”

    CSIRO acknowledges the Wajarri Yamatji as the traditional custodians of the MRO site and gratefully acknowledge the important role the Wajarri Yamatji have played in enabling Australia to secure the rights to co-host the SKA.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    CSIRO campus

    CSIRO, the Commonwealth Scientific and Industrial Research Organisation, is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

    The CSIRO blog is designed to entertain, inform and inspire by generally digging around in the work being done by our terrific scientists, and leaving the techie speak and jargon for the experts.

    We aim to bring you stories from across the vast breadth and depth of our organisation: from the wild sea voyages of our Research Vessel Investigator to the mind-blowing astronomy of our Space teams, right through all the different ways our scientists solve national challenges in areas as diverse as Health, Farming, Tech, Manufacturing, Energy, Oceans, and our Environment.

    If you have any questions about anything you find on our blog, we’d love to hear from you. You can reach us at socialmedia@csiro.au.

    And if you’d like to find out more about us, our science, or how to work with us, head over to CSIRO.au

     
  • richardmitnick 12:46 pm on August 16, 2017 Permalink | Reply
    Tags: , As time passes and we still haven’t detected WIMPs, , , , Can Radio Telescopes Find Axions?, , , Galactic halo model, Magnetic fields can change axions to and from photons, , , SKA   

    From AAS NOVA: “Can Radio Telescopes Find Axions?” 

    AASNOVA

    American Astronomical Society

    16 August 2017
    Susanna Kohler

    1
    A simulation showing the distribution of dark matter in the universe. [AMNH]

    Dark matter halo Image credit: Virgo consortium / A. Amblard / ESA

    In the search for dark matter, the most commonly accepted candidates are invisible, massive particles commonly referred to as WIMPs. But as time passes and we still haven’t detected WIMPs, alternative scenarios are becoming more and more appealing. Prime among these is the idea of axions.

    2
    The Italian PVLAS is an example of a laboratory experiment that attempted to confirm the existence of axions. [PVLAS]

    A Bizarre Particle

    Axions are a type of particle first proposed in the late 1970s. These theorized particles arose from a new symmetry introduced to solve ongoing problems with the standard model for particle physics, and they were initially predicted to have more than a keV in mass. For this reason, their existence was expected to be quickly confirmed by particle-detector experiments — yet no detections were made.

    Today, after many unsuccessful searches, experiments and theory tell us that if axions exist, their masses must lie between 10-6–10-3 eV. This is minuscule — an electron’s mass is around 500,000 eV, and even neutrinos are on the scale of a tenth of an eV!

    But enough of anything, even something very low-mass, can weigh a lot. If they are real, then axions were likely created in abundance during the Big Bang — and unlike heavier particles, they can’t decay into anything lighter, so we would expect them all to still be around today. Our universe could therefore be filled with invisible axions, potentially providing an explanation for dark matter in the form of many, many tiny particles.

    4
    Artist’s impression of the central core of proposed Square Kilometer Array antennas. [SKA/Swinburne Astronomy Productions]

    How Do We Find Them?

    Axions barely interact with ordinary matter and they have no electric charge. One of the few ways we can detect them is with magnetic fields: magnetic fields can change axions to and from photons.

    While many studies have focused on attempting to detect axions in laboratory experiments, astronomy provides an alternative: we can search for cosmological axions. Now scientists Katharine Kelley and Peter Quinn at ICRAR, University of Western Australia, have explored how we might use next-generation radio telescopes to search for photons that were created by axions interacting with the magnetic fields of our galaxy.

    5
    Potential axion coupling strengths vs. mass (click for a closer look). The axion mass is thought to lie between a µeV and a meV; two theoretical models are shown with dashed lines. The plot shows the sensitivity of the upcoming SKA and its precursors, ASKAP and MEERKAT. [Kelley&Quinn 2017]

    SKA/ASKAP radio telescope at the Murchison Radio-astronomy Observatory (MRO) in Mid West region of Western Australia

    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA

    Hope for Next-Gen Telescopes

    By using a simple galactic halo model and reasonable assumptions for the central galactic magnetic field — even taking into account the time dependence of the field — Kelley and Quinn estimate the radio-frequency power density that we would observe at Earth from axions being converted to photons within the Milky Way’s magnetic field.

    The authors then compare this signature to the detection capabilities of upcoming radio telescope arrays. They show that the upcoming Square Kilometer Array and its precursors should have the capability to detect signs of axions across large parts of parameter space.

    Kelley and Quinn conclude that there’s good cause for optimism about future radio telescopes’ ability to detect axions. And if we did succeed in making a detection, it would be a triumph for both particle physics and astrophysics, finally providing an explanation for the universe’s dark matter.

    Citation

    Katharine Kelley and P. J. Quinn 2017 ApJL 845 L4. doi:10.3847/2041-8213/aa808d

    Related Journal Articles
    See the full article for further references with links.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    1

    AAS Mission and Vision Statement

    The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

    The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
    The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
    The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
    The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
    The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

    Adopted June 7, 2009

     
  • richardmitnick 4:26 pm on August 11, 2017 Permalink | Reply
    Tags: , SKA, Supercomputing together   

    From CERN and SKA: “SKA and CERN co-operate on extreme computing” 

    SKA Square Kilometer Array

    1
    Big-data co-operation agreement

    On 14 July, the Square Kilometre Array (SKA) organisation signed an agreement with CERN to formalize their collaboration in the area of extreme-scale computing. The agreement will address the challenges of “exascale” computing and data storage, with the SKA and the Large Hadron Collider (LHC) to generate an overwhelming volume of data in the coming years.

    When completed, SKA will be the world’s largest radio telescope with a total collecting area of more than 1 km2 using thousands of high-frequency dishes and many more low- and mid-frequency aperture array telescopes distributed across Africa, Australia and the UK. Phase 1 of the project, representing approximately 10% of the final array, will generate around 300 PB of data every year – 50% more than has been collected by the LHC experiments in the last seven years. As is the case at CERN, SKA data will be analysed by scientific collaborations distributed across the planet. The acquisition, storage, management, distribution and analysis of such volumes of scientific data is a major technological challenge.

    “Both CERN and SKA are and will be pushing the limits of what is possible technologically, and by working together and with industry, we are ensuring that we are ready to make the most of this upcoming data and computing surge,”says SKA director-general Philip Diamond.

    CERN and SKA have agreed to hold regular meetings to discuss the strategic direction of their collaborations, and develop demonstrator projects or prototypes to investigate concepts for managing and analysing exascale data sets in a globally distributed environment. “The LHC computing demands are tackled by the Worldwide LHC computing grid, which employs more than half a million computing cores around the globe interconnected by a powerful network,” says CERN’s director of research and computing Eckhard Elsen. “As our demands increase with the planned intensity upgrade of the LHC, we want to expand this concept by using common ideas and infrastructure into a scientific cloud. SKA will be an ideal partner in this endeavour.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: