Tagged: SKA Africa Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:53 pm on January 29, 2023 Permalink | Reply
    Tags: "Canadian researchers will have access to next-generation radio astronomy observatory", "SKA": The Square Kilometre Array, , , , , SKA Africa, SKA Murchison Widefield Array (AU), , ,   

    From The Dunlap Institute for Astronomy and Astrophysics (CA) At The University of Toronto (CA): “Canadian researchers will have access to next-generation radio astronomy observatory” 

    From The Dunlap Institute for Astronomy and Astrophysics (CA)

    At

    The University of Toronto (CA)

    1.27.23

    Canada intends to proceed to full membership in the Square Kilometre Array Observatory (SKAO), a next-generation radio astronomy observatory bringing together nations from around the world to build and operate cutting-edge radio telescopes.

    ______________________________________________
    The Square Kilometre Array (SKA)– a next-generation telescope due to be completed by the end of the decade – will likely be able to make images of the earliest light in the Universe, but for current telescopes the challenge is to detect the cosmological signal of the stars through the thick hydrogen clouds.

    SKA SARAO Meerkat Telescope (SA), 90 km outside the small Northern Cape town of Carnarvon, SA.

    SKA Hera at SKA South Africa.


    SKA Square Kilometre Array low frequency at the Inyarrimanha Ilgari Bundara Murchison Widefield Array, Boolardy station in outback Western Australia on the traditional lands of the Wajarri peoples.

    EDGES telescope in a radio quiet zone at the Inyarrimanha Ilgari Bundara Murchison Radio-astronomy Observatory in Western Australia, on the traditional lands of the Wajarri peoples.

    SKA Pathfinder – LOFAR location at Potsdam via Google Images.
    ______________________________________________
    SKAO will operate two telescopes – one in Australia and one in South Africa – with headquarters in the United Kingdom. The facility will enable discoveries that will advance our understanding of the universe, the fundamental laws of physics and the prospects for life on other planets. Membership in the SKAO will allow Canada to develop strong scientific, technical and industrial capabilities and collaborations well into the future.

    The decision to proceed with full membership, announced this week by Innovation, Science and Industry Minister François‑Philippe Champagne, is expected to provide Canadian astronomers with a six per cent use-share of the SKAO and support establishing a domestic regional centre. The centre will provide direct connections to data collected with the SKA telescopes and science support to enable ground-breaking discoveries.

    “This is tremendously exciting news,” says Bryan Gaensler, director of the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics in the Faculty of Arts & Science and former science director of the Canadian Square Kilometre Array, a global radio observatory. “Canadian membership in the SKAO was one of the marquee priorities in the Canadian Astronomy Long Range Plan for 2020-2030. Membership will open new opportunities for University of Toronto leadership at an international scale.”

    With full membership, U of T envisages significant involvement in a Canadian SKA Regional Centre as part of its recently established Data Sciences Institute.

    “The SKAO is a key part of U of T’s Strategic Research Plan for 2018 – 2023 and an important institutional priority,” says Leah Cowen, U of T’s vice-president, research and innovation, and strategic initiatives. “It is a brilliant example of a high-impact, interdisciplinary research collaboration that is a reflection of our incredible research community.”

    U of T also leads the $10-million Canadian Initiative for Radio Astronomy Data Analysis (CIRADA), a consortium of six Canadian universities, the National Research Council Canada and many international partners, whose goal is to establish Canadian capability for processing, archiving and sharing the enormous scientific data sets anticipated for the SKA.

    “I’m thrilled to congratulate everyone at U of T for their work over many years in bringing us to this historic commitment,” says Melanie Woodin, dean of the Faculty of Arts & Science. “It’s rewarding to know that the SKAO involves researchers from five Arts & Science units: the Dunlap Institute, the David A. Dunlap Department of Astronomy & Astrophysics, the Canadian Institute for Theoretical Astrophysics, the Department of Physics and the Department of Statistical Sciences.”

    The initial phase of the SKAO consists of 197 radio dishes located in South Africa [MeerKat] and 131,072 antennas located in Australia. Construction on Phase 1 began in June 2021 and is expected to be completed by 2029.

    Canada was one of six founding members of the initial SKAO consortium in 2000 and has maintained substantial involvement and engagement in the SKAO project to date. Canadian astronomers are playing leading roles in designing marquee SKA science programs – including tests of gravity, low-frequency cosmology, cosmic magnetism, dark energy and detecting transient systems. They have multi-wavelength expertise in galaxy evolution, multi-messenger astronomy and planetary system formation.

    “Canada’s commitment to the SKA secures our position at the forefront of astrophysics for the next few decades. Everybody at U of T that has the slightest interest in astronomy should prepare to get absolutely blown away by what the SKA is going to find,” says Roberto Abraham, chair of the David A. Dunlap department of astronomy and astrophysics. “And what makes it extra exciting is that U of T’s leadership in the national consortium means that many of the most amazing discoveries will get made right here. What an exciting time to be an astronomer. To all the young people just getting into the subject: Hold on to your hats – it’s going to be a wild ride!”

    As well as working on many aspects of the SKA project itself, Canadian astronomers are developing a variety of new facilities and experiments aimed at testing the technology needed for the SKAO. Foremost amongst these is the Canadian Hydrogen Intensity Mapping Experiment (CHIME) of which U of T is a member.

    CHIME is a unique radio telescope that can detect fast radio bursts and is making a three-dimensional map of the dark energy that is accelerating the expansion of the universe.

    The NRC points out that for the SKAO, respecting Indigenous cultures and the local populations has been a key consideration from the start: “These core principles are fully aligned with the priorities of the Canadian astronomical community as expressed in the Canadian Astronomy Long Range Plan 2020-2030.”

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Dunlap Institute campus

    The Dunlap Institute for Astronomy & Astrophysics (CA) at the University of Toronto (CA) is an endowed research institute with nearly 70 faculty, postdocs, students and staff, dedicated to innovative technology, ground-breaking research, world-class training, and public engagement. The research themes of its faculty and Dunlap Fellows span the Universe and include: optical, infrared and radio instrumentation; Dark Energy; large-scale structure; the Cosmic Microwave Background; the interstellar medium; galaxy evolution; cosmic magnetism; and time-domain science.

    The Dunlap Institute (CA), Department of Astronomy & Astrophysics (CA), Canadian Institute for Theoretical Astrophysics (CA), and Centre for Planetary Sciences (CA) comprise the leading centre for astronomical research in Canada, at the leading research university in the country, the University of Toronto (CA).

    The Dunlap Institute (CA) is committed to making its science, training and public outreach activities productive and enjoyable for everyone, regardless of gender, sexual orientation, disability, physical appearance, body size, race, nationality or religion.

    Our work is greatly enhanced through collaborations with the Department of Astronomy & Astrophysics (CA), Canadian Institute for Theoretical Astrophysics (CA), David Dunlap Observatory (CA), Ontario Science Centre (CA), Royal Astronomical Society of Canada (CA), the Toronto Public Library (CA), and many other partners.

    The University of Toronto participates in the CHIME Canadian Hydrogen Intensity Mapping Experiment at The Canada NRCC Dominion Radio Astrophysical Observatory in Penticton, British Columbia(CA) Altitude 545 m (1,788 ft).


    The The University of Toronto (CA) is a public research university in Toronto, Ontario, Canada, located on the grounds that surround Queen’s Park. It was founded by royal charter in 1827 as King’s College, the oldest university in the province of Ontario.

    Originally controlled by the Church of England, the university assumed its present name in 1850 upon becoming a secular institution.

    As a collegiate university, it comprises eleven colleges each with substantial autonomy on financial and institutional affairs and significant differences in character and history. The university also operates two satellite campuses located in Scarborough and Mississauga.

    The University of Toronto has evolved into Canada’s leading institution of learning, discovery and knowledge creation. We are proud to be one of the world’s top research-intensive universities, driven to invent and innovate.

    Our students have the opportunity to learn from and work with preeminent thought leaders through our multidisciplinary network of teaching and research faculty, alumni and partners.

    The ideas, innovations and actions of more than 560,000 graduates continue to have a positive impact on the world.

    Academically, The University of Toronto is noted for movements and curricula in literary criticism and communication theory, known collectively as the Toronto School.

    The university was the birthplace of insulin and stem cell research, and was the site of the first electron microscope in North America; the identification of the first black hole Cygnus X-1; multi-touch technology, and the development of the theory of NP-completeness.

    The university was one of several universities involved in early research of deep learning. It receives the most annual scientific research funding of any Canadian university and is one of two members of the Association of American Universities outside the United States, the other being McGill University [Université McGill] (CA) .

    The Varsity Blues are the athletic teams that represent the university in intercollegiate league matches, with ties to gridiron football, rowing and ice hockey. The earliest recorded instance of gridiron football occurred at University of Toronto’s University College in November 1861.

    The university’s Hart House is an early example of the North American student centre, simultaneously serving cultural, intellectual, and recreational interests within its large Gothic-revival complex.

    The University of Toronto has educated three Governors General of Canada, four Prime Ministers of Canada, three foreign leaders, and fourteen Justices of the Supreme Court. As of March 2019, ten Nobel laureates, five Turing Award winners, 94 Rhodes Scholars, and one Fields Medalist have been affiliated with the university.

    Early history

    The founding of a colonial college had long been the desire of John Graves Simcoe, the first Lieutenant-Governor of Upper Canada and founder of York, the colonial capital. As an University of Oxford (UK)-educated military commander who had fought in the American Revolutionary War, Simcoe believed a college was needed to counter the spread of republicanism from the United States. The Upper Canada Executive Committee recommended in 1798 that a college be established in York.

    On March 15, 1827, a royal charter was formally issued by King George IV, proclaiming “from this time one College, with the style and privileges of a University … for the education of youth in the principles of the Christian Religion, and for their instruction in the various branches of Science and Literature … to continue for ever, to be called King’s College.” The granting of the charter was largely the result of intense lobbying by John Strachan, the influential Anglican Bishop of Toronto who took office as the college’s first president. The original three-storey Greek Revival school building was built on the present site of Queen’s Park.

    Under Strachan’s stewardship, King’s College was a religious institution closely aligned with the Church of England and the British colonial elite, known as the Family Compact. Reformist politicians opposed the clergy’s control over colonial institutions and fought to have the college secularized. In 1849, after a lengthy and heated debate, the newly elected responsible government of the Province of Canada voted to rename King’s College as the University of Toronto and severed the school’s ties with the church. Having anticipated this decision, the enraged Strachan had resigned a year earlier to open Trinity College as a private Anglican seminary. University College was created as the nondenominational teaching branch of the University of Toronto. During the American Civil War the threat of Union blockade on British North America prompted the creation of the University Rifle Corps which saw battle in resisting the Fenian raids on the Niagara border in 1866. The Corps was part of the Reserve Militia lead by Professor Henry Croft.

    Established in 1878, the School of Practical Science was the precursor to the Faculty of Applied Science and Engineering which has been nicknamed Skule since its earliest days. While the Faculty of Medicine opened in 1843 medical teaching was conducted by proprietary schools from 1853 until 1887 when the faculty absorbed the Toronto School of Medicine. Meanwhile the university continued to set examinations and confer medical degrees. The university opened the Faculty of Law in 1887, followed by the Faculty of Dentistry in 1888 when the Royal College of Dental Surgeons became an affiliate. Women were first admitted to the university in 1884.

    A devastating fire in 1890 gutted the interior of University College and destroyed 33,000 volumes from the library but the university restored the building and replenished its library within two years. Over the next two decades a collegiate system took shape as the university arranged federation with several ecclesiastical colleges including Strachan’s Trinity College in 1904. The university operated the Royal Conservatory of Music from 1896 to 1991 and the Royal Ontario Museum from 1912 to 1968; both still retain close ties with the university as independent institutions. The University of Toronto Press was founded in 1901 as Canada’s first academic publishing house. The Faculty of Forestry founded in 1907 with Bernhard Fernow as dean was Canada’s first university faculty devoted to forest science. In 1910, the Faculty of Education opened its laboratory school, the University of Toronto Schools.

    World wars and post-war years

    The First and Second World Wars curtailed some university activities as undergraduate and graduate men eagerly enlisted. Intercollegiate athletic competitions and the Hart House Debates were suspended although exhibition and interfaculty games were still held. The David Dunlap Observatory in Richmond Hill opened in 1935 followed by the University of Toronto Institute for Aerospace Studies in 1949. The university opened satellite campuses in Scarborough in 1964 and in Mississauga in 1967. The university’s former affiliated schools at the Ontario Agricultural College and Glendon Hall became fully independent of the University of Toronto and became part of University of Guelph (CA) in 1964 and York University (CA) in 1965 respectively. Beginning in the 1980s reductions in government funding prompted more rigorous fundraising efforts.

    Since 2000

    In 2000 Kin-Yip Chun was reinstated as a professor of the university after he launched an unsuccessful lawsuit against the university alleging racial discrimination. In 2017 a human rights application was filed against the University by one of its students for allegedly delaying the investigation of sexual assault and being dismissive of their concerns. In 2018 the university cleared one of its professors of allegations of discrimination and antisemitism in an internal investigation after a complaint was filed by one of its students.

    The University of Toronto was the first Canadian university to amass a financial endowment greater than c. $1 billion in 2007. On September 24, 2020 the university announced a $250 million gift to the Faculty of Medicine from businessman and philanthropist James C. Temerty- the largest single philanthropic donation in Canadian history. This broke the previous record for the school set in 2019 when Gerry Schwartz and Heather Reisman jointly donated $100 million for the creation of a 750,000-square foot innovation and artificial intelligence centre.

    Research

    Since 1926 the University of Toronto has been a member of the Association of American Universities a consortium of the leading North American research universities. The university manages by far the largest annual research budget of any university in Canada with sponsored direct-cost expenditures of $878 million in 2010. In 2018 the University of Toronto was named the top research university in Canada by Research Infosource with a sponsored research income (external sources of funding) of $1,147.584 million in 2017. In the same year the university’s faculty averaged a sponsored research income of $428,200 while graduate students averaged a sponsored research income of $63,700. The federal government was the largest source of funding with grants from the Canadian Institutes of Health Research; the Natural Sciences and Engineering Research Council; and the Social Sciences and Humanities Research Council amounting to about one-third of the research budget. About eight percent of research funding came from corporations- mostly in the healthcare industry.

    The first practical electron microscope was built by the physics department in 1938. During World War II the university developed the G-suit- a life-saving garment worn by Allied fighter plane pilots later adopted for use by astronauts.Development of the infrared chemiluminescence technique improved analyses of energy behaviours in chemical reactions. In 1963 the asteroid 2104 Toronto was discovered in the David Dunlap Observatory (CA) in Richmond Hill and is named after the university. In 1972 studies on Cygnus X-1 led to the publication of the first observational evidence proving the existence of black holes. Toronto astronomers have also discovered the Uranian moons of Caliban and Sycorax; the dwarf galaxies of Andromeda I, II and III; and the supernova SN 1987A. A pioneer in computing technology the university designed and built UTEC- one of the world’s first operational computers- and later purchased Ferut- the second commercial computer after UNIVAC I. Multi-touch technology was developed at Toronto with applications ranging from handheld devices to collaboration walls. The AeroVelo Atlas which won the Igor I. Sikorsky Human Powered Helicopter Competition in 2013 was developed by the university’s team of students and graduates and was tested in Vaughan.

    The discovery of insulin at The University of Toronto in 1921 is considered among the most significant events in the history of medicine. The stem cell was discovered at the university in 1963 forming the basis for bone marrow transplantation and all subsequent research on adult and embryonic stem cells. This was the first of many findings at Toronto relating to stem cells including the identification of pancreatic and retinal stem cells. The cancer stem cell was first identified in 1997 by Toronto researchers who have since found stem cell associations in leukemia; brain tumors; and colorectal cancer. Medical inventions developed at Toronto include the glycaemic index; the infant cereal Pablum; the use of protective hypothermia in open heart surgery; and the first artificial cardiac pacemaker. The first successful single-lung transplant was performed at Toronto in 1981 followed by the first nerve transplant in 1988; and the first double-lung transplant in 1989. Researchers identified the maturation promoting factor that regulates cell division and discovered the T-cell receptor which triggers responses of the immune system. The university is credited with isolating the genes that cause Fanconi anemia; cystic fibrosis; and early-onset Alzheimer’s disease among numerous other diseases. Between 1914 and 1972 the university operated the Connaught Medical Research Laboratories- now part of the pharmaceutical corporation Sanofi-Aventis. Among the research conducted at the laboratory was the development of gel electrophoresis.

    The University of Toronto is the primary research presence that supports one of the world’s largest concentrations of biotechnology firms. More than 5,000 principal investigators reside within 2 kilometres (1.2 mi) from the university grounds in Toronto’s Discovery District conducting $1 billion of medical research annually. MaRS Discovery District is a research park that serves commercial enterprises and the university’s technology transfer ventures. In 2008, the university disclosed 159 inventions and had 114 active start-up companies. Its SciNet Consortium operates the most powerful supercomputer in Canada.

     
  • richardmitnick 8:28 pm on April 15, 2021 Permalink | Reply
    Tags: "$64.4 million for WA to process signals from the dawn of time", , , , , , , , SKA Africa   

    From International Centre for Radio Astronomy Research – ICRAR (AU): “$64.4 million for WA to process signals from the dawn of time” 

    ICRAR Logo

    From International Centre for Radio Astronomy Research – ICRAR (AU)

    April 16, 2021
    Dr Karen Lee-Waddell
    (AusSRC / ICRAR / CSIRO)
    +61 413 547 256
    Karen.Lee-Waddell@icrar.org

    Professor Peter Quinn
    (ICRAR / University of Western Australia)
    +61 8 466 710 590
    Peter.Quinn@icrar.org

    Pete Wheeler
    Media Contact, ICRAR
    Ph: +61 423 982 018
    Pete.Wheeler@icrar.org

    The federal government will invest AU$64.4 million to establish a centre in Perth to process and analyse data from the Square Kilometre Array (SKA) radio telescope.

    SKA- Square Kilometer Array

    A global collaboration of 16 countries, the SKA will be one of the world’s largest science facilities, exploring the entire history and evolution of the Universe, and uncovering advances in fundamental physics.

    1
    A 20-second exposure showing the Milky Way overhead the AAVS station. Credit: Michael Goh and ICRAR/Curtin University (AU).

    Construction of the telescope is expected to begin at the end of this year. Initially, it will comprise 131,072 low-frequency Christmas tree-shaped antennas located in WA’s remote Murchison region and 197 mid-frequency dish-shaped antennas hosted in South Africa’s Karoo region.

    SKA Square Kilometre Array -low frequency at Murchison Widefield Array, Boolardy station in outback Western Australia, at the Murchison Radio-astronomy Observatory (AU), on the traditional lands of the Wajarri peoples.

    SKA SARAO – South African Radio Astronomy Observatory (SA) Mid Frequency Aperture Array Karoo, South Africa.

    Around 7 terabits of data will travel from Australia’s SKA antennas to supercomputers in Perth every second.

    The Australian Square Kilometre Array Regional Centre (AusSRC), a collaboration between ICRAR, Australia’s national science agency CSIRO-Commonwealth Scientific and Industrial Research Organisation (AU) and the Pawsey Supercomputing Centre (AU), is part of an international network of SKA Regional Centres that will support the global flow of data and processing needed for the telescope.

    Pawsey Supercomputing Centre, Perth, AU

    Magnus Cray XC40 supercomputer

    Galaxy Cray XC30 Series Supercomputer

    Fujisto Raijin supercomputer

    Fujitsu Raijin Supercomputer

    Pausey HPE Cray EX supercomputer.

    “When the telescope is switched on, it will open the floodgates to a massive amount of data, as signals from all over the Universe pour in—it’s an enormous and very exciting challenge for us,” said AusSRC director, Dr Karen Lee-Waddell.

    “The flow of data will be roughly 100,000 times faster than your average home broadband speed.

    “Each year, we’ll store around 600 petabytes coming from the SKA telescopes for astronomers and astrophysicists from all over the world to access and analyse,” she said.

    “To put that into perspective, Netflix’s collection of movies is currently around 15,000 titles, and we’ll be storing 10,000 times more data than this every year.”

    4
    Composite image of the SKA-Low telescope in Western Australia. The image blends a real photo (on the left) of the SKA-Low prototype station AAVS2.0 which is already on site, with an artists impression of the future SKA-Low stations as they will look when constructed. These dipole antennas, which will number in their hundreds of thousands, will survey the radio sky in frequencies as low at 50Mhz. Credit ICRAR and SKAO.

    The federal funding to establish a facility in Perth is part of AU$387 million announced for the SKA project by Prime Minister Scott Morrison during a trip to Western Australia this week.

    In 2015, the Australian Government provided AU$293.7 million to support the SKA under the National Innovation and Science Agenda (NISA), in recognition that science, research and innovation projects can drive long-term economic prosperity, jobs and growth.

    Since 2009, the WA Government has provided AU$71 million in funding for the International Centre for Radio Astronomy Research (ICRAR), attracting the SKA to Western Australia and maximising benefits for the State through research, job creation, diversification of the economy and innovation.

    Executive director of ICRAR, Professor Peter Quinn, said, “This is an astronomical day for science in WA and Australia.”

    “After almost thirty years of design, development and preparation, this investment by the Commonwealth Government sends a message to the international community that Australia is fully ready to start building the SKA,” he said.

    “This project will not only help us better understand the Universe we live in, it will also provide STEM careers for the next generation and new technologies that benefit the everyday lives of millions of people around the world.

    “All Australians should be proud that this country is going to host the SKA, one of the biggest science projects in human history.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ICRAR(AU) is an equal joint venture between Curtin University and The University of Western Australia with funding support from the State Government of Western Australia. The Centre’s headquarters are located at UWA, with research nodes at both UWA and the Curtin Institute for Radio Astronomy (CIRA).
    ICRAR(AU) has strong support from the government of Australia and is working closely with industry and the astronomy community, including CSIRO(AU) and the Australian Telescope National Facility, <a
    ICRAR is:

    Playing a key role in the international Square Kilometre Array (SKA) project, the world's biggest ground-based telescope array.

    Attracting some of the world’s leading researchers in radio astronomy, who will also contribute to national and international scientific and technical programs for SKA and ASKAP.
    Creating a collaborative environment for scientists and engineers to engage and work with industry to produce studies, prototypes and systems linked to the overall scientific success of the SKA, MWA and ASKAP.

    Murchison Widefield Array,SKA Murchison Widefield Array, Boolardy station in outback Western Australia, at the Murchison Radio-astronomy Observatory (MRO)

    A Small part of the Murchison Widefield Array(AU)

    Enhancing Australia’s position in the international SKA program by contributing to the development process for the SKA in scientific, technological and operational areas.
    Promoting scientific, technical, commercial and educational opportunities through public outreach, educational material, training students and collaborative developments with national and international educational organisations.
    Establishing and maintaining a pool of emerging and top-level scientists and technologists in the disciplines related to radio astronomy through appointments and training.
    Making world-class contributions to SKA science, with emphasis on the signature science themes associated with surveys for neutral hydrogen and variable (transient) radio sources.
    Making world-class contributions to SKA capability with respect to developments in the areas of Data Intensive Science and support for the Murchison Radio-astronomy Observatory.

     
  • richardmitnick 10:34 am on November 4, 2020 Permalink | Reply
    Tags: "A 4G network on the Moon is bad news for Radio Astronomy", , , , , Jodrell Bank Observatory, , Radio frequency interference (RFI) is the long-term nemesis of radio astronomers., , SKA Africa, ,   

    From The Conversation: “A 4G network on the Moon is bad news for radio astronomy” 

    From The Conversation

    October 23, 2020
    Emma Alexander

    1
    A partial lunar eclipse above the Jodrell Bank Observatory in Cheshire in 2019. Credit: Peter Byrne/PA Archive/PA Images.

    As you drive down the road leading to Jodrell Bank Observatory, a sign asks visitors to turn off their mobile phones, stating that the Lovell telescope is so powerful it could detect a phone signal on Mars.

    Radio telescopes are designed to be incredibly sensitive. To quote the legendary astronomer Carl Sagan, “The total amount of energy from outside the solar system ever received by all the radio telescopes on the planet Earth is less than the energy of a single snowflake striking the ground.”

    The total energy now is probably a few snowflakes’ worth, but nevertheless it is still true that astronomical radio signals are typically magnitudes smaller than artificial ones. If Jodrell Bank could pick up interference from a phone signal on Mars, how would it fare with an entire 4G network on the Moon?

    That is the issue that is worrying astronomers like me, now that Nokia of America has been awarded US$14.1m (£10.8m) for the development of the first ever cellular network on the Moon. The LTE/4G network will aim to facilitate long term lunar habitability, providing communications for key aspects such as lunar rovers and navigation.

    Network interference

    Radio frequency interference (RFI) is the long-term nemesis of radio astronomers. Jodrell Bank – the earliest radio astronomy observatory in the world still in existence – was created because of RFI. Sir Bernard Lovell, one of the pioneers of radio astronomy, found his work at Manchester hampered by RFI from passing trams in the city, and he persuaded the university’s botany department to let him move to their fields in Cheshire for two weeks (he never left).

    2
    Sir Bernard Lovell, Director of Jodrell Bank Radio Astronomy Station, Cheshire, in 1964. Credit: PA/PA Archive/PA Images.

    Since then, radio telescopes have been built more and more remotely in an attempt to avoid RFI, with the upcoming Square Kilometre Array (SKA) telescope being built across remote areas of South Africa and Australia.


    SKA- Square Kilometer Array


    SKA- South Africa.


    SKA Meerkat South Africa


    SKA Square KIlometer Array Australia Boolardy station in outback Western Australia, at the Murchison Radio-astronomy Observatory (MRO).

    This helps to cut out many common sources for RFI, including mobile phones and microwave ovens. However, ground-based radio telescopes cannot completely avoid space-based sources of RFI such as satellites – or a future lunar telecommunications network.

    RFI can be mitigated at the source with appropriate shielding and precision in the emission of signals. Astronomers are constantly developing strategies to cut RFI from their data. But this increasingly relies on the goodwill of private companies to ensure that at least some radio frequencies are protected for astronomy.

    A long-term dream of many radio astronomers would be to have a radio telescope on the far side of the Moon. In addition to being shielded from Earth-based signals, it would also be able to observe at the lowest radio frequencies, which on Earth are particularly affected by a part of the atmosphere called the ionosphere. Observing at low radio frequencies can help answer fundamental questions about the universe, such as what it was like in the first few moments after the big bang.

    The science case has already been recognised with the Netherlands-China Low Frequency Explorer, a telescope repurposed from the Queqiao relay satellite sent to the Moon in the Chang’e 4 mission.

    3
    Netherlands-China Low Frequency Explorer

    5
    A render of the Chang’e-4 rover on the lunar surface, released Aug. 15, 2018 (Credit: CASC)

    Nasa has also funded a project on the feasibility of turning a lunar crater into a radio telescope with a lining of wire mesh.

    It’s not just 4G

    Despite its interest in these radio projects, NASA also has its eye commercial partnerships. Nokia is just one of 14 American companies NASA is working with in a new set of partnerships, worth more than US$370m, for the development of its Artemis programme, which aims to return astronauts to the Moon by 2024.

    NASA ARTEMIS spacecraft depiction.

    The involvement of private companies in space technology is not new. And the rights and wrongs have long been debated. Drawing possibly the most attention has been SpaceX’s Starlink satellites, which caused a stir among astronomers after their first major launch in 2019.

    Images quickly began to emerge with trails of Starlink satellites cutting across them – often obscuring or outshining the original astronomical targets.

    6
    An artist’s impression of the planned SKA-mid dishes in Africa.

    Astronomers have had to deal with satellites for a long time, but Starlink’s numbers and brightness are unprecedented and and their orbits are difficult to predict. These concerns apply to anyone doing ground-based astronomy, whether they use an optical or a radio telescope.

    A recent analysis of satellite impact on radio astronomy was released by the SKA Organisation, which is developing the next generation of radio telescope technology for the Square Kilometre Array. It calculated that the SKA telescopes would be 70% less sensitive in the radio band that Starlink uses for communications, assuming an eventual number of 6,400 Starlink satellites.

    As space becomes more and more commercialised, the sky is filling with an increasing volume of technology. That is why it has never been more important to have regulations protecting astronomy. To help ensure that as we take further steps into space, we’ll still be able to gaze at it from our home on Earth.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Conversation launched as a pilot project in October 2014. It is an independent source of news and views from the academic and research community, delivered direct to the public.
    Our team of professional editors work with university and research institute experts to unlock their knowledge for use by the wider public.
    Access to independent, high quality, authenticated, explanatory journalism underpins a functioning democracy. Our aim is to promote better understanding of current affairs and complex issues. And hopefully allow for a better quality of public discourse and conversation.

     
  • richardmitnick 9:52 am on October 19, 2020 Permalink | Reply
    Tags: "Negotiating an international astronomy treaty to help reveal the hidden Universe", , , , , , , , SKA Africa   

    From CSIROscope (AU): “Negotiating an international astronomy treaty to help reveal the hidden Universe” 

    CSIRO bloc

    From CSIROscope (AU)

    19 October 2020
    Annabelle Young

    1
    Negotiating an international astronomy treaty: A major milestone was achieved in 2019 when the SKA Convention was signed in Rome. The Australian delegation included representatives from the Australian Government, CSIRO and ICRAR.

    What goes into negotiating an international astronomy treaty? Our astrophysicist Dr Sarah Pearce recently represented Australia in the international negotiations to establish the Square Kilometre Array (SKA) Observatory as an intergovernmental organisation.

    When it’s established, the SKA Observatory will oversee the delivery of the world’s largest radio telescopes.

    Sarah was the chief science negotiator for the Australian team, which was led by Patricia Kelly from the Department of Industry, Science, Energy and Resources. Other team members included SKA Australia’s director David Luchetti, a Department of Foreign Affairs and Trade representative, and DISER’s Counsellor in Brussels. Most teams included a mix of government and science representatives. But Australia was the only country to be led by a woman throughout the negotiations.

    So, what goes into negotiating an international treaty? Sarah takes us behind-the-scenes.

    Australia in international astronomy treaty

    There are 15 countries involved in the SKA project, but Australia is one of two telescope host countries. This means we will have a critical role in the operation of the telescopes.

    SKA- Square Kilometer Array

    SKA- South Africa.

    Originally from the UK, Sarah calls herself a “relatively new Aussie” and was proud to represent Australia.

    “Australia is making a significant investment and I was pleased to have the opportunity to make sure these negotiations were successful for the international project, and for Australia in particular,” Sarah said.

    The negotiations started in Brussels in 2015, and then moved to four plenary negotiations in Rome. Sarah chaired the SKA working group on operations and access. This working group looked at two policies. They held regular meetings and then took drafts of the policies to the full plenary for approval.

    Negotiating the access policy was a delicate process. The working group had to balance the interests of all countries around the table on central topics such as access to time on the telescopes for non-member countries. Sarah was able to lead all the parties to a satisfactory end-point through empathy and constructive reasoning.

    2
    Sarah Pearce was the chief science negotiator for SKA Australia.

    Finding the balance

    The SKA is a mega-science project and the end-goal of these high-stakes negotiations for Australia and all the partner countries was to get agreement to build the SKA.

    For Sarah, the key challenge was balancing the needs of the SKA host countries – Australia, South Africa and the UK – with other partners. This required real collaboration and compromise to make sure all the parties could return with a deal to which their governments could commit.

    Another challenge was dealing with teams from different cultures. They all had different ways of approaching the negotiations.

    “Australians typically like to be quite direct in these negotiations – putting the issues on the table. But not all countries address negotiations that way,” Sarah said.

    The Murchison Radio-astronomy Observatory in outback Western Australia will house up to 130,000 antennas like these and the associated advanced technologies.

    The biggest lesson and greatest moment

    Sarah said the importance of really understanding the negotiating position of other countries was key to success throughout the five-year experience.

    “Not just listening to what they say but understanding why they’ve taken that position. Therefore, where there might be room to move or compromise. Also, the criticality of informal discussions in the breaks and over dinner, to address the really complex issues,” she said.

    And although there must have been many memorable moments along the way, Sarah was chuffed when the Convention Plenary signed off the operations and access policies.

    “I’d been through more than a dozen drafts with the working group and there were just two or three difficult issues remaining. It was exciting to lead the Plenary through these,” she said.

    In 2019, the Australian team shared in the joy of witnessing the signing of the Convention in Rome. The Australian Ambassador to Italy Dr Greg French signed the Convention – imagine the thrill!

    Sarah reflected that the biggest positive from the negotiations was all the countries were really trying to achieve the same thing.

    “Every country has their own individual priorities, whether it’s procurement rules or telescope access. But in the end, we were all trying to establish a new international Observatory for the next 50 years. Overall, it was a really positive experience,” she said.

    3
    His Excellency, General the Honourable David Hurley AC DSC (Retd), Governor-General of Australia, authorising Australia’s ratification of the SKA Observatory Convention.

    Building a future

    In September, the Minister for Industry, Science and Technology Karen Andrews announced that Australia had ratified the SKA Observatory Convention. This brings Sarah’s role in the negotiations to a successful end. She will now help lead Australia through its role in building and operating the SKA.

    Australia has joined South Africa, Italy and the Netherlands as SKA Convention signatories. And when the United Kingdom completes its ratification process, the SKA Observatory will be created. This will set up the SKA for the next 50 years as an intergovernmental organisation. Member countries are committing 10 years of funding which will enable the SKA telescopes to be built.

    SKA Observatory headquarters are in the UK, and the SKA telescopes will be built in Australia and South Africa. The Australian SKA site is our Murchison Radio-astronomy Observatory. It’s 800km north of Perth in Western Australia on the traditional land of the Wajarri Yamaji. Australia will host the SKA-Low frequency telescopes, consisting of up to 130,000 antennas.

    This is the first time Australia has hosted a mega-science project and Sarah said it shows the world that we’re a leader in radio astronomy.

    Does this sound like you? Advice from Sarah for anyone keen to take a seat at an international treaty negotiating table, is to start small. Take any opportunity to get involved with international collaborations and to lead small projects. Get to know people from different cultures and build experience.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Australian Square Kilometre Array Pathfinder (ASKAP) is a radio telescope array located at Murchison Radio-astronomy Observatory (MRO) in the Australian Mid West. ASKAP consists of 36 identical parabolic antennas, each 12 metres in diameter, working together as a single instrument with a total collecting area of approximately 4,000 square metres.

    So what can we expect these new radio projects to discover? We have no idea, but history tells us that they are almost certain to deliver some major surprises.

    Making these new discoveries may not be so simple. Gone are the days when astronomers could just notice something odd as they browse their tables and graphs.

    Nowadays, astronomers are more likely to be distilling their answers from carefully-posed queries to databases containing petabytes of data. Human brains are just not up to the job of making unexpected discoveries in these circumstances, and instead we will need to develop “learning machines” to help us discover the unexpected.

    With the right tools and careful insight, who knows what we might find.

    CSIRO campus

    CSIRO, the Commonwealth Scientific and Industrial Research Organisation (AU) , is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

     
  • richardmitnick 12:10 pm on July 24, 2019 Permalink | Reply
    Tags: , , , , , , , , SKA Africa   

    From Niels Bohr Institute: “Probing the beginning of the Universe can soon be done more accurately” 

    University of Copenhagen

    Niels Bohr Institute bloc

    From Niels Bohr Institute

    Measurement of the Cosmic Microwave Background radiation:

    In the Karoo desert in South Africa, scientists from all over the world plan to set up a huge array of telescopes – the Square Kilometer Array (SKA).


    SKA South Africa

    As many as 200 telescopes will be erected in the next decade, in order to achieve the highest possible precision in measuring radiation from the Universe.

    1
    Photograph of the SKA-MPG telescope for which the study was performed. The primary dish has a diameter of 15 meters and can receive signals between 1.7 and 3.5 Gigahertz. It is currently being installed in the South African Karoo desert. © South African Radio Astronomy Observatory (SARAO)

    Among the many scientific goals of the SKA are tests of Einstein’s relativity theory, probing the nature of Dark Energy, and studying the properties of our Galaxy, to name just a few. A team of researchers, amongst them Sebastian von Hausegger, who just finished as a PhD fellow in the Theoretical Particle Physics and Cosmology group of the Niels Bohr Institute, University of Copenhagen, has developed a plan to utilize the very first prototype, the SKA-MPG telescope, in the Karoo in a different way in the near future: the additional knowledge about our Galaxy which this telescope will bring can be used immediately for the study of the Cosmic Microwave Background (CMB), the earliest picture of our Universe. In a detailed study, they investigate the scientific potential of the SKA-MPG telescope – the prototype for those dishes which eventually should be built into the array is built by the German Max Planck Society – and demonstrate the huge advantage already this single dish will have for cosmology. This forecast was led by Aritra Basu from Bielefeld University and is now published in Monthly Notices of the Royal Astronomical Society.

    Separating the foreground from the background

    The Cosmic Microwave Background radiation (CMB) is the afterglow of the forming of our Universe.

    CMB per ESA/Planck

    ESA/Planck 2009 to 2013

    In this respect, it carries the fingerprint of how everything we know and are came to be. If analyzed correctly, it will tell us about the very early universe, perhaps including stories about gravitational waves generated by a process called inflation, the currently leading theory of the Universe’s beginning – obviously, we want to be able to study it as closely and accurately as possible.

    Inflation

    4
    Alan Guth, from Highland Park High School and M.I.T., who first proposed cosmic inflation

    HPHS Owls

    Lambda-Cold Dark Matter, Accelerated Expansion of the Universe, Big Bang-Inflation (timeline of the universe) Date 2010 Credit: Alex MittelmannColdcreation

    Alan Guth’s notes:

    Alan Guth’s original notes on inflation

    However, all measurements we attempt to take of the CMB are disturbed by the radiation emitted by our own Galaxy. This radiation is called `foreground emission’ in the CMB community, to distinguish it from the sought-for cosmic `background’. To reliably remove thisforeground, we must understand exactly what it is, and what is causing it. This is where telescopes like the one shown come into play.

    Sebastian von Hausegger’s work as a PhD student dealt with the problem of foreground separation. “Essentially, you take a picture of the sky at different frequencies, and by tracing the differences of those pictures, you understand what sort of foreground emission they contain. Once that is done properly, the real work with interpreting the background can begin”, Sebastian explains. “The more frequencies you take pictures at – the better your understanding gets of the physical processes, the structure, and the composition of the Milky Way!” The SKA-MPG telescope is able to measure at 2048 different frequencies between 1.7 and 3.5 GHz – many more than previously possible.

    Bringing the radio astronomy and the CMB community together

    Sebastian continues, “The radio emission of our Galaxy is mainly caused by electrons, zooming around in the Galactic disk, and they can do crazy things. As a part of my PhD, I visited the Astroparticle Physics and Cosmology group at Bielefeld University, Germany. The group includes experts on galactic radio emission – the emission we call foreground radiation. I visited them as a representative from the CMB research community, so to say. Our own Galaxy is not that interesting in the grand scale of things, but the insight gained from measurements of its emission can sure help us learn about this grand scale! In this collaboration,we tried to bring the two communities closer together.”

    Motivated by the properties of the telescope, the authors of this study consider a much more ambitious model for the radio-foregrounds than was done in previous efforts. Even considering the impact of the SKA-MPG prototype alone, the level of achievable detail is much higher than with current data and the inferred prospects for CMB analyses are highly promising.

    An array of up to 200 telescopes is the goal

    The ambition of the Square Kilometer Array is to finally place 200 telescopes in the South African desert. The reason for choosing a remote area like a desert for performing their measurements the restriction of radio emission in the surroundings(the Karoo desert has been made a so-called Radio Quiet Zone). The large number of telescopes will give the SKA unprecedented precision. “As we speak, the prototype telescope is being built, and is expected to be completed in the autumn. It will be very interesting to see what the data will tell us, once it is up – not to mention the future data of the entire array”, says Sebastian.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings


    Stem Education Coalition

    Niels Bohr Institute Campus

    Niels Bohr Institute (Danish: Niels Bohr Institutet) is a research institute of the University of Copenhagen. The research of the institute spans astronomy, geophysics, nanotechnology, particle physics, quantum mechanics and biophysics.

    The Institute was founded in 1921, as the Institute for Theoretical Physics of the University of Copenhagen, by the Danish theoretical physicist Niels Bohr, who had been on the staff of the University of Copenhagen since 1914, and who had been lobbying for its creation since his appointment as professor in 1916. On the 80th anniversary of Niels Bohr’s birth – October 7, 1965 – the Institute officially became The Niels Bohr Institute.[1] Much of its original funding came from the charitable foundation of the Carlsberg brewery, and later from the Rockefeller Foundation.[2]

    During the 1920s, and 1930s, the Institute was the center of the developing disciplines of atomic physics and quantum physics. Physicists from across Europe (and sometimes further abroad) often visited the Institute to confer with Bohr on new theories and discoveries. The Copenhagen interpretation of quantum mechanics is named after work done at the Institute during this time.

    On January 1, 1993 the institute was fused with the Astronomic Observatory, the Ørsted Laboratory and the Geophysical Institute. The new resulting institute retained the name Niels Bohr Institute.

    The University of Copenhagen (UCPH) (Danish: Københavns Universitet) is the oldest university and research institution in Denmark. Founded in 1479 as a studium generale, it is the second oldest institution for higher education in Scandinavia after Uppsala University (1477). The university has 23,473 undergraduate students, 17,398 postgraduate students, 2,968 doctoral students and over 9,000 employees. The university has four campuses located in and around Copenhagen, with the headquarters located in central Copenhagen. Most courses are taught in Danish; however, many courses are also offered in English and a few in German. The university has several thousands of foreign students, about half of whom come from Nordic countries.

    The university is a member of the International Alliance of Research Universities (IARU), along with University of Cambridge, Yale University, The Australian National University, and UC Berkeley, amongst others. The 2016 Academic Ranking of World Universities ranks the University of Copenhagen as the best university in Scandinavia and 30th in the world, the 2016-2017 Times Higher Education World University Rankings as 120th in the world, and the 2016-2017 QS World University Rankings as 68th in the world. The university has had 9 alumni become Nobel laureates and has produced one Turing Award recipient

     
  • richardmitnick 3:06 pm on July 14, 2018 Permalink | Reply
    Tags: , , , , , , SKA Africa,   

    From University of Oxford: “MeerKAT telescope unveiled in South Africa” 

    U Oxford bloc

    From University of Oxford

    SKA Meerkat telescope, South African design

    13 Jul 2018

    MeerKAT consists of 64 interconnected dishes, each 13.5m in diameter, that together form a single radio telescope. MeerKAT is an impressive South African achievement, assisted by a cohort of international scientists, including researchers from Oxford University and the Africa Oxford Initiative.

    MeerKAT will detect radio waves from the far reaches of the cosmos, allowing scientists to address some of the most puzzling questions and processes of the Universe. The device is able to better detect neutral hydrogen gas – the fundamental building block of the Universe, which is the building block of all the things that we see in the night sky, such as galaxies and stars. Insights from the telescope will support astrophysicists to understand how this gas becomes a star over time. MeerKAT will also be used to conduct tests in fundamental physics, including General Relativity and high-energy astrophysics through observations of pulsars and transients.

    The telescope was officially launched at a ceremony in Carnarvon in the Northern Cape, attended by David Mabuza the Deputy President of South Africa, and other science and technology ministers from the SA government, as well as representatives from the teams involved in building the telescope and those planning to lead the science based on the data it will deliver.

    Researchers from Oxford’s Department of Physics play leading roles in four of the largest surveys to be carried out with MeerKAT. The deep radio continuum survey (MIGHTEE) will study how galaxies evolve over the history of the universe, and THUNDERKAT aims to detect phenomena which go bang, such as when stars collide together, bursts of radiation when a star dies and accretion events that trigger black holes. The TRAPUM and MeerTIME projects aim at finding new pulsars and fast radio transients, and using them to test our understanding of extreme physics, respectively.

    Professor Matt Jarvis, Principal Investigator of the MIGHTEE survey and a Professor of Astrophysics at Oxford, said: Initial data from MeerKAT has shown that it will be one of the premier facilities for radio astronomy until the SKA, I’m sure that we will see some fantastic results over the next few years that will greatly enhance our understanding of how galaxies form and evolve.

    The telescope will be the largest of its kind, until the Square Kilometre Array (SKA). When completed, the SKA, will be 50 to 100 times more sensitive than any other radio telescope on Earth, and insights from MeerKAT will be combined with this data to give a comprehensive overview of the history of the universe. Dr Ian Heywood, a Hintze Fellow at Oxford’s Department of Astrophysics, has a leading role in the team, producing MeerKAT images, including some of the most impressive shots of the centre of our Galaxy ever generated, unveiled at the inauguration ceremony.

    2
    First Array Release 1.5 images taken with MeerKAT 32
    SKA SA Chief Scientist Dr Fernando Camilo and SKA SA Head of Science Commissioning Dr Sharmila Goedhart, released to the Minister of Science and Technology, Naledi Pandor, the recent AR1.5 results, images achieved by using various configurations of the 32 antennas currently operational in the Karoo.

    3
    MeerKAT produces First Light image
    The MeerKAT First Light image of the sky shows unambiguously that MeerKAT is already the best radio telescope of its kind in the Southern Hemisphere. Array Release 1 (AR1) provides 16 of an eventual 64 dishes integrated into a working telescope array. It is the first significant scientific milestone achieved by MeerKAT.

    5
    This Is The Clearest View of The Centre of The Milky Way to Date, And It Is Breathtaking. (SARAO). Science Alert

    Dr Aris Karastergiou, a Physics lecturer at Oxford, who co-leads the Thousand Pulsar Array survey in the MeerTIME project, added: ‘MeerKAT is a fantastic instrument for pulsar science and a stepping stone to the SKA – our work on it will essentially set the stage for the SKA and move us forward to a whole different era of radio astronomy. The telescope has been a long time in the making and we are incredibly excited we can now commence our science projects. It is a remarkable achievement by our South African colleagues in collaboration with a large international scientific community.

    The lessons learned from constructing MeerkAT are already feeding into the design specification of the SKA, allowing us to test new algorithms that will allow us to turn the raw data into exceptionally detailed maps and time-domain data products that will be used throughout the scientific community.

    Dr. Anne Makena, Program Coordinator at the Africa Oxford Initiative (AfOx), said: ‘The Africa Oxford Initiative (AfOx) celebrates the official unveiling of the MeerKAT Telescope in South Africa. We are proud to be associated with the academics involved in this groundbreaking work both in Oxford and our partner institutions in Africa. This incredible achievement reflects the power of research collaborations, which AfOx will continue to facilitate.’

    MeerKAT has been in the making for the better part of the last decade. It is expected to lead to groundbreaking results within the next 5 years, leading to the era of SKA science.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Oxford campus

    Oxford is a collegiate university, consisting of the central University and colleges. The central University is composed of academic departments and research centres, administrative departments, libraries and museums. The 38 colleges are self-governing and financially independent institutions, which are related to the central University in a federal system. There are also six permanent private halls, which were founded by different Christian denominations and which still retain their Christian character.

    The different roles of the colleges and the University have evolved over time.

     
  • richardmitnick 3:21 pm on April 9, 2018 Permalink | Reply
    Tags: , , , , , , SKA Africa,   

    From SKA: “In its first scientific publication, South Africa’s MeerKAT radio telescope observes a rare burst of activity from an exotic star” 


    SKA

    6 April 2018

    An article published today in The Astrophysical Journal presents the study of a magnetar – a star that is one of the most magnetic objects known in the universe – that awoke in 2017 from a 3-year slumber. Radio observations that could only be made with MeerKAT, an SKA precursor telescope being built in the Northern Cape province of South Africa, triggered observations with NASA X-ray telescopes orbiting the Earth. This first publication in the scientific literature of astronomical discoveries requiring the use of MeerKAT heralds its arrival into the stable of world-class research instruments.

    1
    The nearly completed MeerKAT array in the Karoo. Credit: SARAO

    NASA/Chandra Telescope

    NASA NuSTAR X-ray telescope

    “Well done to my colleagues in South Africa for this outstanding achievement”, declares Prof Phil Diamond, Director-General of the SKA Organisation leading the development of the Square Kilometre Array. “Building such telescopes is extremely difficult,” adds Diamond, “and this publication shows that MeerKAT is becoming ready for business. As one of the SKA precursor telescopes, this bodes well for the SKA. MeerKAT will eventually be integrated into Phase 1 of SKA-mid telescope bringing the total dishes at our disposal to 197, creating the most powerful radio telescope on the planet”.

    MeerKAT includes 64 dishes, each 13.5 metres in diameter, distributed across a span of 8 kilometres in a remote area of the Northern Cape in South Africa.

    “It’s been a long road getting to this point”, notes Dr Rob Adam, SARAO Managing Director. “It’s required the hard work and support of countless South Africans over more than a decade”. “We’re nearly there with MeerKAT”, continues Adam. “As this first article indicates, the telescope is now beginning to make scientific discoveries. As MeerKAT’s capabilities continue to grow, many more will follow”. “It’s tremendously gratifying to lead a team of such talented and passionate colleagues, who’ve been building in the Karoo a research instrument with few parallels anywhere”, concludes Adam.

    From SKA South Africa:
    Media release
    South Africa’s MeerKAT radio telescope observes a rare burst of activity from an exotic star, demonstrating outstanding capabilities as a new instrument for scientific exploration

    6 April 2018

    Lorenzo Raynard
    SKA SA Head: Communication and Stakeholder Relations
    Email: lraynard@ska.ac.za
    Mobile: +27 (0)71 454 0658

    An article published today in The Astrophysical Journal presents the study of a magnetar – a star that is one of the most magnetic objects known in the universe – that awoke in 2017 from a 3-year slumber. Radio observations that could only be made with MeerKAT, a telescope being built in the Northern Cape province of South Africa, triggered observations with NASA X-ray telescopes orbiting the Earth. This first publication in the scientific literature of astronomical discoveries requiring the use of MeerKAT heralds its arrival into the stable of world-class research instruments.

    Dr Fernando Camilo, Chief Scientist at the South African Radio Astronomy Observatory (SARAO, which includes the Square Kilometre Array South Africa project), describes the setting one year ago: “On 26 April 2017, while monitoring the long-dormant magnetar with the CSIRO Parkes Radio Telescope in Australia, one of our colleagues noticed that it was emitting bright radio pulses every 4 seconds”. A few days later Parkes underwent a planned month-long maintenance shutdown. Although MeerKAT was still under construction, with no more than 16 of its eventual 64 radio dishes available, the commissioning team started regular monitoring of the star 30,000 light years from Earth. According to Camilo, “the MeerKAT observations proved critical to make sense of the few X-ray photons we captured with NASA’s orbiting telescopes – for the first time X-ray pulses have been detected from this star, every 4 seconds. Put together, the observations reported today help us to develop a better picture of the behaviour of matter in unbelievably extreme physical conditions, completely unlike any that can be experienced on Earth”.

    The article, entitled Revival of the magnetar PSR J1622−4950: observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR, has 208 authors. A handful of these are astronomers specialising in the study of magnetars and related stars. The vast majority belong to the so-called MeerKAT Builders List: hundreds of engineers and scientists overwhelmingly from the SKA South Africa project and commercial enterprises in South Africa that over more than a decade have been developing and building MeerKAT – a project of the South African Department of Science and Technology, in which 75% of the overall construction budget has been spent in South Africa.

    “MeerKAT is an enormously complex machine”, says Thomas Abbott, MeerKAT Programme Manager. In order to make the exquisitely sensitive images of the radio sky that will allow scientists to better understand how galaxies like the Milky Way have formed and evolved over the history of the universe, the 64 MeerKAT antennas generate data at enormous rates. The challenges involved in dealing with so much data require clever solutions to a variety of problems at the cutting edge of technology. According to Abbott, “we have a team of the brightest engineers and scientists in South Africa and the world working on the project, because the problems that we need to solve are extremely challenging, and attract the best”.

    Some of these people were in high school when the project started. “We have implemented a human capital development programme focused on producing the South African engineers and scientists with the skills required to design, build, and use the telescope”, relates Kim de Boer, Head of the SARAO Human Capital Development Programme. Many of these young people are now employed at SARAO, at South African universities, and in the broader knowledge economy.

    “The first scientific publication based on MeerKAT data is a wonderful milestone”, says Prof Roy Maartens, SKA SA Research Chair at the University of the Western Cape. “Although MeerKAT isn’t yet complete, it’s now clearly a functioning telescope. We’ve been training a new generation of researchers, and soon our young scientists will be using what promises to be a remarkable discovery machine”.

    Early in 2018, SARAO received the first Early Science MeerKAT observing proposals from South African researchers. Later in the year, already approved Large Survey Projects that will use two-thirds of the available observing time over 5 years will start their investigations with the full array of MeerKAT antennas. These 64 dishes, each 13.5 metres in diameter, are distributed across a span of 8 kilometres in a remote area of the Northern Cape. The 64 MeerKAT antennas are standing tall in the Karoo. The official unveiling of the telescope is being planned for the second half of 2018.

    “Well done to my colleagues in South Africa for this outstanding achievement”, declares Prof Phil Diamond, Director-General of the SKA Organisation leading the development of the Square Kilometre Array. “Building such telescopes is extremely difficult,” adds Diamond, “and this publication shows that MeerKAT is becoming ready for business. As one of the SKA precursor telescopes, this bodes well for the SKA. MeerKAT will eventually be integrated into Phase 1 of SKA-mid telescope bringing the total dishes at our disposal to 197, creating the most powerful radio telescope on the planet”.

    “It’s been a long road getting to this point”, notes Dr Rob Adam, SARAO Managing Director. “It’s required the hard work and support of countless South Africans over more than a decade”. “We’re nearly there with MeerKAT”, continues Adam. “As this first article indicates, the telescope is now beginning to make scientific discoveries. As MeerKAT’s capabilities continue to grow, many more will follow”. “It’s tremendously gratifying to lead a team of such talented and passionate colleagues, who’ve been building in the Karoo a research instrument with few parallels anywhere”, concludes Adam.

    About neutron stars, pulsars, and magnetars

    Neutron stars are the collapsed remnants of giant stars that in their prime contained approximately 10 times the mass of our Sun. When they run out of fuel, after converting their hydrogen into heavier elements through a chain of nuclear fusion reactions, the outer layers of such stars are ejected in one of the most violent events in the universe, a supernova explosion. A dense core is left, made up mostly of neutrons. Such neutron stars are immensely dense – the size of a city but more massive than the Sun. They also spin rapidly, from once every few seconds up to several hundred times per second and have magnetic fields one trillion times stronger than the Earth’s. As they spin, beams of radio waves, and sometimes X-rays, focused along their magnetic fields, stream out of the neutron star into space. Given a fortuitous alignment, on Earth with the appropriate telescopes one can detect bursts of electromagnetic waves with every turn of the star, in lighthouse-like fashion. These neutron stars are therefore sometimes also known as pulsars, as they appear to pulsate, although in fact they are rotating. About 3000 pulsars are known in our Milky Way galaxy, a few percent of the total population thought to exist. By comparison, our galaxy contains more than 100 billion ordinary stars.

    Magnetars are a very rare subset of neutron stars/pulsars. Only two dozen are known in our galaxy. Their magnetic fields are up to 1000 times stronger than those of ordinary pulsars. The energy associated with such fields is so large that it almost breaks the star apart, and they tend to be unstable, displaying great variability in their physical properties and electromagnetic emission. All magnetars are known to emit X-rays, but only four are known to sometimes also emit radio waves. One of these is the subject of the first scientific publication based on MeerKAT data.

    See the full Press Release here .

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition


    SKA ASKAP Pathefinder Telescope

    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA


    SKA Meerkat Telescope

    Murchison Widefield Array,SKA Murchison Widefield Array, Boolardy station in outback Western Australia, at the Murchison Radio-astronomy Observatory (MRO)


    SKA Murchison Wide Field Array
    About SKA

    The Square Kilometre Array will be the world’s largest and most sensitive radio telescope. The total collecting area will be approximately one square kilometre giving 50 times the sensitivity, and 10 000 times the survey speed, of the best current-day telescopes. The SKA will be built in Southern Africa and in Australia. Thousands of receptors will extend to distances of 3 000 km from the central regions. The SKA will address fundamental unanswered questions about our Universe including how the first stars and galaxies formed after the Big Bang, how dark energy is accelerating the expansion of the Universe, the role of magnetism in the cosmos, the nature of gravity, and the search for life beyond Earth. Construction of phase one of the SKA is scheduled to start in 2016. The SKA Organisation, with its headquarters at Jodrell Bank Observatory, near Manchester, UK, was established in December 2011 as a not-for-profit company in order to formalise relationships between the international partners and centralise the leadership of the project.

    The Square Kilometre Array (SKA) project is an international effort to build the world’s largest radio telescope, led by SKA Organisation. The SKA will conduct transformational science to improve our understanding of the Universe and the laws of fundamental physics, monitoring the sky in unprecedented detail and mapping it hundreds of times faster than any current facility.

    Already supported by 10 member countries – Australia, Canada, China, India, Italy, New Zealand, South Africa, Sweden, The Netherlands and the United Kingdom – SKA Organisation has brought together some of the world’s finest scientists, engineers and policy makers and more than 100 companies and research institutions across 20 countries in the design and development of the telescope. Construction of the SKA is set to start in 2018, with early science observations in 2020.

     
  • richardmitnick 12:34 pm on November 10, 2017 Permalink | Reply
    Tags: , , , , In the next few decades pulsars and black holes will be some of most important focal points in astrophysics research, KAT-7 and MeerKAT telescopes, Looking ahead to the Square Kilometer Array, Physicists will either pin down more accurate descriptions of the Strong Equivalence Principle (SEP) and alternative theories of gravity or may find they need to scrap these theories entirely, Pulsar emissions and gravitational waves have been telling us interesting things about the universe, , , SKA Africa, , The SKA will be far more powerful and versatile than any telescopes before it, The Square Kilometer Array (SKA) an international partnership mainly supported by 10 countries is an interconnected web of telescopes being built in South Africa Western Australia and a number of Afri   

    From astronomy.com: “Looking ahead to the Square Kilometer Array” 

    Astronomy magazine

    astronomy.com

    November 06, 2017
    Tyler Krueger

    This web of telescopes will help astronomers unlock the mystery behind black holes, pulsars, and more.

    SKA Square Kilometer Array

    1
    Composite image bringing together the two SKA sites under a shared sky. Pictured here are some of the SKA precursor telescopes, South Africa’s KAT-7 and MeerKAT telescopes on the left and Australia’s ASKAP telescope on the right. SKA Organisation

    In the next few decades, pulsars and black holes will be some of most important focal points in astrophysics research. Researchers are working to build extremely powerful telescopes that aim to study pulsars and, if they are lucky, supermassive black holes found at the center of galaxies. The Square Kilometer Array (SKA), an international partnership mainly supported by 10 countries, is an interconnected web of telescopes being built in South Africa, Western Australia, and a number of African countries that will study these objects to test theories of gravity and the theory of general relativity.

    Pulsar emissions and gravitational waves have been telling us interesting things about the universe, and upcoming research is likely to bring improved and exciting insights. The SKA will be far more powerful and versatile than any telescopes before it, allowing for a diverse range of in-depth research.

    “What excites me is the finding of the unexpected,” SKA Science Director Robert Braun said. “You’ll be looking for one phenomenon, and you come away finding something completely unpredicted.”

    2
    Aerial view of the SKA dishes and MeerKAT dishes in South Africa. SKA Organisation

    The Relationship Between Pulsars and Gravitational Waves

    Pulsars are excellent timekeepers. As pulsars rotate on their axis, for a few milliseconds the radio waves they emit are shot directly at Earth, where researchers can record and analyze them. They rotate very consistently, so researchers can use them as precise clocks for experiments.

    The consistency of pulsars also makes them a reliable way to study gravitational waves. Gravitational waves warp space-time so that anything in their path is warped itself. If a gravitational wave from a pair of supermassive black holes orbiting each other were to propagate through the space between a pulsar and our planet, researchers would be able to detect a slight delay in the radio signal received, as space would be physically distorted. The SKA telescope will be able to use pulsars to detect gravitational waves from distant supermassive black holes binaries in more precise ways that current telescopes.

    According to Alberto Sesana, a research fellow at the University of Birmingham, a great challenge to searching for evidence of gravitational waves in pulsar radio emissions is separating the signals from the plethora of other sources of noise in the universe.

    “When it comes to gravitational wave detection, the hardest part is that we do not understand the intrinsic noise of pulsars very well.” Sesana said. “This is a problem, because detecting a signal means to single it out from noise and if you don’t know what your noise does, it becomes difficult to identify the signal.”

    It’s a bit like being at a concert with your eyes closed and trying to decipher which speaker is playing the bass guitar.

    3
    Close-up of the SKA’s low frequency aperture arrays and ASKAP dishes in Australia. SKA Organisation

    The telescopes currently in use are not sensitive enough to study these variations closely enough. The SKA telescope will provide more powerful instruments capable of higher precision than those before it and will help researchers study celestial bodies more accurately.

    Tests of General Relativity

    Until the first gravitational wave signal detected by LIGO, pairings of neutron stars were the best test of general relativity. According to the theory, the emission of gravitational waves as the stars rotate around each other causes the distance between the two neutron stars to shrink. This in turn shrinks the amount of time it takes the stars to orbit each other, and affects the timing of the pulsars. Studying these timing changes closely will allow researchers to pinpoint the rate of shrinkage in a concrete manner and compare it to what the theory of general relativity says will happen.

    PSR J0737-3039, a system of two neutron star pulsars orbiting each other, has so far been the best test of this principle. The observed rates of shrinking have agreed with (to within half of a percent) general relativity, but in typical science fashion, this is still not enough evidence to confirm existing theories.

    In future studies, SKA telescopes plan to find more binary systems like this, which will help build a stronger body of evidence for or against our current theory of general relativity.

    “With better telescopes and algorithms, we can find more pulsars, and among them, more exotic objects, like double neutron star binaries, which will help constrain general relativity, and pulsar – white dwarf binaries, which will help constrain alternative theories of gravity,” said Delphine Perrodin, a researcher at the Italian National Institute for Astrophysics (INAF).

    Alternative Theories of Gravity

    Pulsar-white dwarf systems can similarly test alternative theories of gravity. PSR J0337+1715 is a great example of this type of system. For the visual learners, here’s a short video describing this system:

    This is an important area of study because general relativity is not yet a completely sound theory. The theories of general relativity and quantum mechanics have been studied extensively, but physicists still cannot reconcile them with each other.

    The PSR J0337+1715 system has interested physicists since its discovery in 2007. Two white dwarfs orbit the pulsar – one very closely and one from far away. This system is fascinating because the outer white dwarf’s gravitational field accelerates the orbits of the inner pair at a much faster rate than predicted by current theories. With more sensitive telescopes, researchers aim to find more systems like this to study to more fully understand, among other things, the Strong Equivalence Principle (SEP). SEP states that the laws of gravity are not affected by velocity and location, but the way the PSR J0337+1715 system behaves, it appears that there is something beyond our understanding to be discovered. The SKA telescope will be able to more precisely study this supposed violation.

    Whatever conclusions come from it, physicists will either pin down more accurate descriptions of the SEP and alternative theories of gravity, or may find they need to scrap these theories entirely.

    The Future of Astrophysics

    SKA will practically revolutionize the study of astrophysics, and will even contribute to other fields of physics. With such a wide range of capability, SKA will advance theories of dark matter and dark energy, learn about galaxy formation in the early and local universe, and hopefully accurately locate the first recognized pair of supermassive black holes. Researchers hope to use the SKA to formulate a “movie” of the early universe’s progression to its current state by studying hydrogen recombination after the Big Bang.

    “If we can overcome the instrumental challenges, we’ll be able to see that ‘cosmic dawn,’ the first moments of time in which the universe starts to become ionized and watch as that ionization progresses,” Braun said.

    According to Sesana, the holy grail of this research would be to find interesting objects that are closer and easier to study.

    “Another ideal outcome will be to find, possibly – and this would be a dream – a pulsar closely orbiting the supermassive black hole in the Milky Way center. This will allow the testing of general relativity like in the pulsar-black hole case, but to an even greater precision.”

    3
    SKA Organisation

    With regard to the recent announcement of gravitational waves, gamma ways, and more from a pair of merging neutron stars, the SKA “will work in tandem with multi-messenger facilities to both alert other facilities to discoveries made by the SKA, and to react to discoveries made by LIGO, Virgo, etc.,” said a representative from the project. “The SKA’s reaction time will be about 30 seconds, meaning we can jump onto signals as soon as they are discovered by the electromagnetic, gravitational wave or neutrino signals. Additionally, the SKA will provide a deluge of new and exciting electromagnetic transient discoveries, which it will broadcast to other facilities for these to complement the observations, the aim being to achieve a full multi-messenger understanding of the new discovery space that SKA will open.”

    Exciting Discoveries Ahead

    The potential to discover groundbreaking phenomena in the universe is awe-inspiring to say the least. Some questions will be answered, but many more questions will be raised.

    4
    Artist’s composition of the entire SKA1 array, with SKA dishes and MeerKAT dishes in Africa and low frequency aperture arrays and ASKAP dishes in Australia. SKA Organisation

    “Nature is so inventive,” Braun said. “If you look with new capabilities, you find the most amazing, unexpected things that you never could have predicted. Nature just has so much more imagination than people do.”

    The overarching SKA project hopes to see an intergovernmental treaty signed in 2018, and should begin its five-year construction in 2019 or 2020. Braun says that the South African MeerKAT radio telescope, which is a precursor project that will be integrated into the SKA, is nearing completion and expects to be functioning in April 2018. Other first-class science precursor facilities located such as ASKAP and the MWA radio telescopes in Australia are already paving the way for SKA, as well as a number of smaller facilities around the world

    The wait seems long, but for astronomy fans, it’s going to be well worth it.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 1:49 pm on August 1, 2017 Permalink | Reply
    Tags: , , , , , , SKA Africa,   

    From Symmetry: “Tuning in for science” 

    Symmetry Mag

    Symmetry

    08/01/17
    By Mike Perricone

    1
    Square Kilometer Array

    The sprawling Square Kilometer Array radio telescope hunts signals from one of the quietest places on earth.

    SKA South Africa

    When you think of radios, you probably think of noise. But the primary requirement for building the world’s largest radio telescope is keeping things almost perfectly quiet.

    Radio signals are constantly streaming to Earth from a variety of sources in outer space. Radio telescopes are powerful instruments that can peer into the cosmos—through clouds and dust—to identify those signals, picking them up like a signal from a radio station. To do it, they need to be relatively free from interference emitted by cell phones, TVs, radios and their kin.

    NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

    That’s one reason the Square Kilometer Array is under construction in the Great Karoo, 400,000 square kilometers of arid, sparsely populated South African plain, along with a component in the Outback of Western Australia. The Great Karoo is also a prime location because of its high altitude—radio waves can be absorbed by atmospheric moisture at lower altitudes. SKA currently covers some 1320 square kilometers of the landscape.

    Even in the Great Karoo, scientists need careful filtering of environmental noise. Effects from different levels of radio frequency interference (RFI) can range from “blinding” to actually damaging the instruments. Through South Africa’s Astronomy Geographic Advantage Act, SKA is working toward “radio protection,” which would dedicate segments of the bandwidth for radio astronomy while accommodating other private and commercial RF service requirements in the region.

    “Interference affects observational data and makes it hard and expensive to remove or filter out the introduced noise,” says Bernard Duah Asabere, Chief Scientist of the Ghana team of the African Very Long Baseline Interferometry Network (African VLBI Network, or AVN), one of the SKA collaboration groups in eight other African nations participating in the project.

    2
    The Ghanaian and South African governments on Thursday announced the combination of ‘first light’ science observations, which confirm the successful conversion of the Ghana communications antenna from a redundant telecoms instrument into a functioning Very Long Baseline Interferometry (VLBI) radio telescope.

    Ghana is the first partner country of the African Very Large Baseline Interferometer (VLBI) Network (AVN) to complete the conversion of a communications antenna into a functioning radio telescope.

    SKA “will tackle some of the fundamental questions of our time, ranging from the birth of the universe to the origins of life,” says SKA Director-General Philip Diamond. Among the targets: dark energy, Einstein’s theory of gravity and gravitational waves, and the prevalence of the molecular building blocks of life across the cosmos.

    SKA-South Africa can detect radio spectrum frequencies from 350 megahertz to 14 gigahertz. Its partner Australian component will observe the lower-frequency scale, from 50 to 350 megahertz. Visible light, for comparison, has frequencies ranging from 400 to 800 million megahertz. SKA scientists will process radiofrequency waves to form a picture of their source.

    A precursor instrument to SKA called MeerKat (named for the squirrel-sized critters indigenous to the area), is under construction in the Karoo.

    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA

    This array of 16 dishes in South Africa achieved first light on June 19, 2016. MeerKAT focused on 0.01 percent of the sky for 7.5 hours and saw 1300 galaxies—nearly double the number previously known in that segment of the cosmos.

    Since then, MeerKAT met another milestone with 32 integrated antennas. MeerKat will also reach its full array of 64 dishes early next year, making it one of the world’s premier radio telescopes. MeerKAT will eventually be integrated into SKA Phase 1, where an additional 133 dishes will be built. That will bring the total number of antennas for SKA Phase I in South Africa to 197 by 2023. So far, 32 dishes are fully integrated and are being commissioned for science operations.

    On completion of SKA 2 by 2030, the detection area of the receiver dishes will exceed 1 square kilometer, or about 11,000 square feet. Its huge size will make it 50 times more sensitive than any other radio telescope. It is expected to operate for 50 years.

    SKA is managed by a 10-nation consortium, including the UK, China, India and Australia as well as South Africa, and receives support from another 10 countries, including the US. The project is headquartered at Jodrell Bank Observatory in the UK.

    The full SKA will use radio dishes across Africa and Australia, and collaboration members say it will have a farther reach and more detailed images than any existing radio telescope.

    Murchison Widefield Array,SKA Murchison Widefield Array, Boolardy station in outback Western Australia, at the Murchison Radio-astronomy Observatory (MRO)

    SKA/ASKAP radio telescope at the Murchison Radio-astronomy Observatory (MRO) in Mid West region of Western Australia

    In preparation for the SKA, South Africa and its partner countries developed AVN to establish a network of radiotelescopes across the African continent. One of its projects is the refurbishing of redundant 30-meter-class antennas, or building new ones across the partner countries, to operate as networked radio telescopes.

    4
    Hartebeesthoek Radio Astronomy Observatory in Gauteng.

    The first project of its kind is the AVN Ghana project, where an idle 32-meter diameter dish has been refurbished and revamped with a dual receiver system at 5 and 6.7 gigahertz central frequencies for use as a radio telescope. The dish was previously owned and operated by the government and the company Vodafone Ghana as a telecommunications facility. Now it will explore celestial objects such as extragalactic nebulae, pulsars and other RF sources in space, such as molecular clouds, called masers.

    Asabere’s group will be able to tap into areas of SKA’s enormous database (several supercomputers’ worth) over the Internet. So will groups in Botswana, Kenya, Madagascar, Mauritius, Mozambique, Namibia and Zambia. SKA is also offering extensive outreach in participating countries and has already awarded 931 scholarships, fellowships and grants.

    Other efforts in Ghana include introducing astronomy in the school curricula, training students in astronomy and related technologies, doing outreach in schools and universities, receiving visiting students at the telescope site and hosting programs such as the West African International Summer School for Young Astronomers taking place this week.

    Asabere, who achieved his advanced degrees in Sweden (Chalmers University of Technology) and South Africa (University of Johannesburg), would like to see more students trained in Ghana, and would like get more researchers on board. He also hopes for the construction of the needed infrastructure, more local and foreign partnerships and strong governmental backing.

    “I would like the opportunity to practice my profession on my own soil,” he says.

    That day might not be far beyond the horizon. The Leverhulme-Royal Society Trust and Newton Fund in the UK are co-funding extensive human capital development programs in the SKA-AVN partner countries. A seven-member Ghanaian team, for example, has undergone training in South Africa and has been instructed in all aspects of the project, including the operation of the telescope.

    Several PhD students and one MSc student from Ghana have received SKA-SA grants to pursue further education in astronomy and engineering. The Royal Society has awarded funding in collaboration with Leeds University to train two PhDs and 60 young aspiring scientists in the field of astrophysics.

    Based on the success of the Leverhulme-Royal Society program, a joint UK-South Africa Newton Fund intervention (DARA—the Development in Africa with Radio Astronomy) has since been initiated in other partner countries to grow high technology skills that could lead to broader economic development in Africa.

    As SKA seeks answers to complex questions over the next five decades, there should be plenty of opportunities for science throughout the Southern Hemisphere. Though it lives in one of the quietest places, SKA hopes to be heard loud and clear.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: