Tagged: ShakeAlert system Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:33 am on October 18, 2018 Permalink | Reply
    Tags: , , , ShakeAlert system,   

    From UCLA Newsroom: “The evolution of earthquake science” 


    From UCLA Newsroom

    October 11, 2018

    1
    Jonathan Stewart, a professor in the UCLA Department of Civil and Environmental Engineering, at a Los Angeles Department of Water and Power facility.

    It’s a scene of post-mayhem disaster. In front of the Acacia residential building on the west end of the UCLA campus. Victims are everywhere, bleeding, confused, in and out of consciousness. A small boy in a baseball hat and shorts is laid out on a red tarp. “Very low pulse,” says one of the people who helped carry him over, before rushing back to the search and rescue. It’s hard to tell if anyone hears her, given the commotion. Nearby, a woman sits upright, a drop of blood rolling out of her ear and down her cheek, and another woman props her bloodied leg inside a makeshift cardboard splint.

    A few dozen first responders move victims onto colorcoded tarps — green for the most stable, yellow for those in need of a medic and red for the most critical. One of the vested first responders kneels beside the boy to check his pulse, and quickly stands up again. “We have a dead over here,” she calls out. But there’s no time to stop.

    This is the aftermath of a 6.8 magnitude earthquake centered on the Santa Monica Fault just south of campus. It’s the “big one” that Southern Californians had known could one day happen. That day is today.

    Except it’s not. The “victims” are all actors, the injuries painted on and the small boy alive and well. The first responders are volunteers from the Community Emergency Response Team, running a drill to test emergency response procedures on campus.

    While this 6.8 quake didn’t actually happen, through the work of researchers and scientists across UCLA, we know with certainty the probable impact of such a temblor, how to warn those who would feel its shaking, how to plan around its destructive power and even how to ensure that buildings like the Acacia dorms don’t fall. From the deepest motions of our planet’s structure to the foundations of our buildings to the crucial urban systems underpinning modern society, UCLA research is increasing our understanding of how the land beneath us moves and how to survive a major quake.

    It’s estimated that up to 3,000 people died in San Francisco in 1906 as a result of the 7.9 magnitude quake, and more than 140,000 died in the 1923 Great Kanto earthquake in Japan. Fortunately, in more recent years, particularly in the United States, earthquake-caused deaths have been relatively rare. Unlike in the past, when buildings crumbled and crushed the people inside, we now know how to construct buildings that can withstand quakes.

    We learned from buildings that fell. In 1994, a 6.7 magnitude earthquake that struck in the San Fernando Valley destroyed or significantly damaged an estimated 90,000 buildings. Of the approximately 60 people killed, 33 were in buildings that fell. The most common were small apartment buildings perched over space left largely empty for parking. With enough shaking, the apartments come crashing down on the mostly hollow space below.

    Scott Brandenberg, a professor of civil and environmental engineering at the UCLA Henry Samueli School of Engineering and Applied Science, studies the impact of earthquakes on the built environment. He lives in a soft story building.“It’s hard to find buildings in the area I can afford,” he says. Soft story buildings were not designed to resist earthquake forces specified in the current building code and should be evaluated for retrofit. A number of these buildings collapsed during the 1994 Northridge earthquake.

    Today, Brandenberg’s building, as well as thousands of others across the region, have been retrofitted through mandatory retrofit ordinances.

    Learning from the past is key to UCLA’s earthquake research across multiple fields. Brandenberg, for example, is creating an international database on liquefaction, the phenomenon sometimes observed during earthquakes in which soil flows like a liquid, causing land to slide and foundations of buildings to slip away. He and his colleagues are collecting case studies globally that shed light on the consequences of liquefaction. “We’ve never really had a database that was available to the whole community,” says Brandenberg. He hopes broad access to the data will help standardize the science behind liquefaction.

    Researchers can’t wait around for earthquakes to strike; the stakes are too high. Jonathan Stewart, a professor in the Department of Civil and Environmental Engineering, has been collecting global data on earthquake impacts on levees and their associated drinking water systems. His major area: a 1,100-mile network of levees in California that directs water into the State Water Project’s drinking and agricultural water conveyances and prevents salt water intrusion from the San Francisco Bay.

    “A good 40 percent of the water in Southern California is coming through this system,” he says. “So the stability and viability of this system is really a big deal. For the system to work, the whole thing has to work. You can’t just analyze individual sections. So we’ve developed methods to do that.”

    Based on previous seismic activity near levee systems in places like Japan, Stewart and his colleagues can determine the dynamic properties of the peat that makes up much of the structure of the foundation beneath the levees in the Delta, learning how much levees can settle, which can lead to overtopping and cause erosion. They also determine how much soil to keep in reserve to patch breaches that occur. Add in computer modeling, and they can predict worst-case scenarios for disruptions to the system and plan how to respond.

    This type of systemic, model-based thinking is new for earthquake research, a field that has been largely based on observations of specific events. “[Research] was being done on a small-time basis: individual faculty and their grad students working on something, producing a paper, other people doing the same thing, and we get all these disparate documents out there,” Stewart explains. “And then somebody has to figure out what to do with it all. We’re trying to change the paradigm by which this research is done.”

    Practitioners outside the university who are applying this information to the real world say UCLA’s work is making a difference. Ronald T. Eguchi is president and CEO of Long Beach-based ImageCat, which creates earthquake maps and hazard exposure models for buildings and infrastructure. The company serves clients like NASA and FEMA, as well as private insurance companies. Eguchi says the data coming out of UCLA has helped make these maps more accurate.

    “Without [that UCLA] research, I don’t think we’d be able to come up with these quantitative assessments,” he says. “We use that information to [learn] what the extent of displacement or ground failure would be.”

    Useful data can come from surprising sources. Engineering Professor Ertugrul Taciroglu, who studies earthquake effects on urban infrastructure — ports, bridges, power lines — has developed a way to use the abundant images available from Google to visually analyze infrastructures and develop predictive simulation models to quantify their seismic risks.

    “My students and I developed computer codes that will locate each bridge and examine it through Google Street from multiple angles. Our algorithms extract key measurements, such as column heights and cross-sectional dimension. We use those measurements to create a structural analysis model. We intend to do that for all 25,000 bridges in California,” he says. These images are remarkably accurate. Taciroglu says he has checked his models using Google’s images against Caltrans’ original bridge blueprints, and the measurements match up at the sub-inch level.

    Google Earth also has been a rich source of data for power lines and other lifeline transmission corridors that provide electricity across the state. “I can create structural analysis models of power distribution networks by going around with my preprogrammed robot inside Google Earth and extracting where the transmission towers are, the length of the cables, the sag of the cables,” Taciroglu adds. “Because I know where they are, I know what kind of an earthquake shaking we can expect in the future for each structure.”

    Knowing how transmission lines may fail in a big earthquake can show, for example, what hospitals should be better equipped with backup power. Modeling which bridges could fail will help us understand how to prevent parts of cities from being cut off from essential services. Taciroglu says a dream project would be to integrate all this information into one massive model that encompasses the full complexity of an entire urban region and all its interrelated risks. Such a tool would be immensely valuable to government agencies, facility operators and insurance agencies.

    This kind of metropolitan-wide thinking may not be far off. A task force of UCLA earthquake researchers is developing plans to better integrate systems thinking and earthquake consciousness into the operations of city and county entities, such as utilities. “Lifeline infrastructure can be impacted by big earthquakes,” says Ken Hudnut, a geophysicist for Risk Reduction at the U.S. Geological Survey and a lecturer in UCLA’s Department of Civil and Environmental Engineering, who advises the L.A. Mayor’s Office of Resilience.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    UC LA Campus

    For nearly 100 years, UCLA has been a pioneer, persevering through impossibility, turning the futile into the attainable.

    We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

    This can-do perspective has brought us 12 Nobel Prizes, 12 Rhodes Scholarships, more NCAA titles than any university and more Olympic medals than most nations. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

     
  • richardmitnick 2:46 pm on October 11, 2018 Permalink | Reply
    Tags: An earthquake with a magnitude of M = 7.0 earthquake struck today in New Britain, , , , Papua New Guinea, , ShakeAlert system, Subduction megathrust earthquake preceded by a foreshock,   

    From temblor: “Subduction megathrust earthquake preceded by a foreshock” 

    1

    From temblor

    October 10, 2018
    Jason Patton

    An earthquake with a magnitude of M = 7.0 earthquake struck today in New Britain, Papua New Guinea. New Britain is an island northeast of the Island of Papua New Guinea and Australia. While the earthquake struck on a subduction zone, the Pacific Tsunami Warning Center states that there is no tsunami threat.

    Tectonic Hazards

    Hundreds of millions of people globally live along plate margins called subduction zones. These plate boundaries are formed as the result of millions of years of plate convergence. Earthquakes that occur along subduction zone megathrust faults are compressional earthquakes (aka thrust or reverse).

    Earthquake size is related to the material properties of the earth surrounding the slipped fault, the size of the fault that slipped (the area), and the amount that the fault slipped (distance). Earthquakes occur in specific depth ranges depending upon the conditions. Typical plate boundary earthquakes due to brittle failure along a fault extend to several tens of kilometers into the Earth. Because subduction zone megathrust faults dip into the earth at an angle, the fault area that can slip can be larger than for strike-slip faults. Megathrust earthquakes can therefore have magnitudes larger than strike-slip (shear) earthquakes.

    Do you live along a subduction zone or other plate boundary fault? What about another kind of fault?

    To learn more about your exposure to these hazards, visit http://www.temblor.net.

    Several governments and non-governmental organizations prepare estimates of seismic hazard so that people can ensure their building codes are designed to mitigate these hazards. The Global Earthquake Model (GEM) is an example of our efforts to estimate seismic hazards on a global scale. Temblor.net uses the Global Earth Activity Rate (GEAR) model to provide estimates of seismic hazard at a global to local scale (Bird et al., 2015). GEAR blends quakes during the past 41 years with strain of the Earth’s crust as measured using Global Positioning System (GPS) observations.

    Below is a map prepared using the temblor.net app. Seismicity from the past month, week, and day are shown as colored circles. The rainbow color scale represents the chance of a given earthquake magnitude, for a given location, within the lifetime of a person (technically, it is the magnitude with a 1% chance per year of occurring within 100 km). The temblor app suggests that this region could have an earthquake of M=7.9 in a typical lifetime, and so the M=7.0 was by no means rare or unexpected.

    There was a magnitude M = 5.9 earthquake just 12 minutes before the M 7.0 earthquake, and so, in retrospect, we might consider the M = 5.9 a ‘foreshock’ to the much larger M = 7.0 earthquake. This happens only about 5-10% of the time, which means that foreshocks are a poor predictor of mainshocks.

    1
    Global Earthquake Activity Rate map for this region of the western equatorial Pacific. Faults are shown as red lines and the megathrust faults are shown as pink regions because they dip into the earth at an angle. Warmer colors represent regions that are more likely to experience a larger earthquake than the regions with cooler colors. Seismicity from the past is shown and the location of the M 7.0 earthquake is located near the blue teardrop symbol.

    New Britain Tectonics

    This area of the world is one of the most active and tortured plate boundaries in the world. There are several subduction zones, oceanic spreading ridges, and transform plate boundary faults that interact to form the island of New Britain, Bougainville Island, and the ocean basins below the Solomon and Bismarck seas.

    New Britain is part of a magmatic arc (volcanic island) related to the subduction of the Solomon Sea plate beneath the Bismarck Sea plate. Below is a map showing the major plate boundary faults in this region. The Island of New Britain is located in the southern part of the South Bismarck plate.

    2
    Plate tectonic map from Oregon State University. The Solomon Sea plate subducts beneath the South Bismarck plate to the north, the Pacific plate to the east, and the Australia plate to the south. There are oceanic spreading ridges shown as double black lines. Some of these ridges are offset by transform (strike-slip) faults between the South and North Bismarck Sea plates.

    Earlier this year, there was an earthquake about 20 miles from today’s earthquake. Dr. Stephen Hicks is a postdoctoral research fellow in seismology from the University of Southampton who has been studying the geometry of the subduction zone in associated with the New Britain Trench. Here is his tweet regarding the M = 6.6 earthquake in March 2018. This was a foreshock to an M = 6.9 earthquake a few days later.

    Below are the two panels that show earthquake epicenters on the left and earthquake in cross-section on the right. The location for the M = 6.6 is shown as an orange star on the cross section and a yellow star on the map. We have added the location of the M = 6.9 earthquake using the same color scheme. We also added the location for the M = 7.0 earthquake from today as a blue star.

    4
    Seismicity map and cross section (modified from Dr. Hicks, 2018). Epicenters are shown on the map, with the earthquakes selected for the cross section is outlined as a dashed rectangle labelled A-A’. Hypocenters along cross section A-A’ are shown relative to distance from the trench axis.

    Take Away

    A subduction zone megathrust earthquake with a magnitude M = 7.0 happened along one of the most seismically active subduction zones, the New Britain Trench. The magnitude and depth are the probable reasons that the Pacific Tsunami Warning Center announced that there is no tsunami threat from this earthquake, locally or globally. There was a M = 5.9 foreshock several minutes prior to the mainshock. This subduction zone has a potential for a larger earthquake.

    References

    Bird, P., Jackson, D. D., Kagan, Y. Y., Kreemer, C., and Stein, R. S., 2015. GEAR1: A global earthquake activity rate model constructed from geodetic strain rates and smoothed seismicity, Bull. Seismol. Soc. Am., v. 105, no. 5, p. 2538–2554, DOI: 10.1785/0120150058

    Hamilton, W., 1979, Tectonics of the Indonesian region: U.S. Geological Survey Prof. Paper 1078.

    Holm, R. and Richards, S.W., 2013. A re-evaluation of arc-continent collision and along-arc variation in the Bismarck Sea region, Papua New Guinea in Australian Journal of Earth Sciences, v. 60, p. 605-619.

    Lin, J., and R. S. Stein (2004), Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults, J. Geophys. Res., 109, B02303, doi:10.1029/2003JB002607

    More can be found about the seismotectonics of this region here.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 1:28 pm on September 29, 2018 Permalink | Reply
    Tags: At Least 384 Killed, , Hundreds Injured After Earthquake And Tsunami Hit Indonesia, In August more than 500 were killed in an earthquake that struck Indonesia's Lombok island, More than a dozen other earthquakes with a magnitude of at least 5.0 hit the same area of Sulawesi over the course of several hours the USGS said, , , ShakeAlert system, The U.S. Geological Survey said a 7.5 magnitude quake just 6 miles deep hit a sparsely populated area in the early evening. The epicenter was about 50 miles north of Palu   

    From National Public Radio (NPR): “At Least 384 Killed, Hundreds Injured After Earthquake And Tsunami Hit Indonesia” 

    NPR

    From National Public Radio (NPR)

    1
    A man surveys damage caused by the earthquakes and tsunami in Palu, central Sulawesi, Indonesia, Saturday. Hundreds of people were killed.
    Rifki/AP

    Updated at 4:07 a.m. ET Saturday

    At least 384 people were killed and at least 540 injured Friday after powerful earthquakes struck along the western coast of the Indonesian island of Sulawesi, triggering a tsunami that caused “extensive” damage.

    “When the [tsunami] threat arose yesterday, people were still doing their activities on the beach and did not immediately run and they became victims,” Sutopo Purwo Nugroho, spokesman for BNPB, Indonesia’s disaster response agency, told reporters in Jakarta, Reuters reported.

    “Many bodies were found along the shoreline because of the tsunami,” he said earlier.

    Hundreds of people were on hand for a beach festival, which would have started Friday night.

    Nugroho earlier said four hospitals in Palu reported 48 people dead, though also said “many victims” are still unaccounted for, according to the Associated Press.

    The wire service said a reporter saw “numerous bodies in a hard-hit city,” which “was strewn with debris from collapsed buildings.”

    Nugroho told reporters the damage was “extensive,” with thousands of buildings destroyed.

    Damaged roads and power and communication outages were reportedly hindering rescue efforts.

    2
    A house in Donggala on the Indonesian island of Sulawesi sits damaged after an earthquake early Friday.
    Disaster Management Agency /AP

    The U.S. Geological Survey said a 7.5 magnitude quake just 6 miles deep hit a sparsely populated area in the early evening. The epicenter was about 50 miles north of Palu.

    The strong quake followed a milder 6.1 magnitude temblor hours earlier in the same area.

    More than a dozen other earthquakes with a magnitude of at least 5.0 hit the same area of Sulawesi over the course of several hours, the USGS said.

    Indonesia’s Meteorology, Climatology and Geophysics Agency initially announced that the largest quake was “not capable of generating a tsunami affecting the Indian Ocean region.” However, agency chief Dwikorita Karnawati later told Reuters that a tsunami had struck Palu, located on the Makassar Strait, which connects the Celebes and Java seas.

    “The 1.5- to 2-meter [6 1/2-foot] tsunami has receded,” Karnawati told the news service. “The situation is chaotic, people are running on the streets and buildings collapsed. There is a ship washed ashore.”

    An official of the Central Sulawesi Museum in Palu told The Jakarta Post, “Yes, there was a smashing of seawater.” Then, the newspaper reported, the phone connection “broke down.”

    Nugroho said the city of Donggala was also hit by the tsunami, the AP reported.

    “The cut to telecommunications and darkness are hampering efforts to obtain information,” he said, according to the AP. “All national potential will be deployed, and tomorrow morning we will deploy Hercules and helicopters to provide assistance in tsunami-affected areas.”

    The devastating South Asian tsunami in 2004 brought waves that witnesses in Aceh Province, Indonesia, said were 50 to 70 feet tall, NPR reported.

    As NPR’s Mark Memmott has noted, “an estimated 230,000 people died after an earthquake triggered a massive tsunami that devastated South Asian coasts from Indonesia to Thailand, Sri Lanka and India.”

    In August, more than 500 were killed in an earthquake that struck Indonesia’s Lombok island.

    See the full article here.

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Great storytelling and rigorous reporting. These are the passions that fuel us. Our business is telling stories, small and large, that start conversations, increase understanding, enrich lives and enliven minds.

    We are reporters in Washington D.C., and in bunkers, streets, alleys, jungles and deserts around the world. We are engineers, editors, inventors and visionaries. We are Member stations around the country who are deeply connected to our communities. We are listeners and donors who support public radio because we know how it has enriched our own lives and want it to grow strong in a new age.

    We are NPR. And this is our story.

     
  • richardmitnick 9:54 am on September 14, 2018 Permalink | Reply
    Tags: , , , Earthquake research, EPOS-European Plate Observing System, , , ShakeAlert system   

    From Horizon The EU Research and Innovation Magazine : “Plate tectonics observatory to create seismic shift in earthquake research” 

    1

    From Horizon The EU Research and Innovation Magazine

    13 September 2018
    Gareth Willmer

    1
    A 6.2-magnitude earthquake in Amatrice, Italy, in August 2016 killed nearly 300 people. Image credit – Amatrice Corso by Mario1952 is licensed under Creative Commons CC-BY-SA-2.5 and 2016 Amatrice earthquake by Leggi il Firenzepost is licensed under CC BY 3.0

    We may never be able to entirely predict earthquakes such as those that hit central Italy in 2016, but we could better assess how they’re going to play out by joining up data from different scientific fields in a new Europe-wide observatory, say scientists.

    In 2016 and early 2017, a series of major earthquakes rocked central Italy. In the hill town of Amatrice, one magnitude-6.2 earthquake devastated the town and claimed the lives of nearly 300 people, with hundreds more injured.

    Richard Walters, an assistant professor in the Department of Earth Sciences at Durham University, UK, has been studying a variety of datasets to understand how these quakes played out.

    Durham U bloc

    From Durham University

    He and his colleagues found that a network of underground faults meant there was a series of seismic events rather than one major earthquake – a finding that could help scientists predict how future seismic events unroll.

    ‘We were only able to achieve this by analysing a huge variety of datasets,’ said Dr Walters. These included catalogues of thousands of tiny aftershocks, maps of earthquake ruptures measured by geologists clambering over Italian hillslopes, GPS-based ground-motion measurements, data collected by a satellite hundreds of kilometres up, and seismological data from a global network of instruments.

    ‘Many of these datasets or processed products were generously shared by other scientists for free, and were fundamental to our results,’ he said. ‘This is how we make big advances.’

    At the moment, this type of research can rely on having a strong network of contacts and disadvantage those without them. That’s where a new initiative called the European Plate Observing System (EPOS), set to launch in 2020, comes in.

    The aim is to create an online tool that brings together data products and knowledge into a central hub across the solid Earth science disciplines.

    ‘The idea is that a scientist can go to the EPOS portal, where they can find a repository with all the earthquake rupture models, historical earthquake data and strain maps, and use this data to make an interpretative model,’ said Professor Massimo Cocco, the project’s coordinator.

    ‘A scientist studying an earthquake, a volcano, a tsunami, and so on, needs to be able to access very different data generated by different communities.’

    __________________________________________________

    ‘While in Europe’s current climate politicians may be putting up borders, scientists in those same countries are trying even harder to break down national barriers.’

    Dr Richard Walters, Durham University, UK
    __________________________________________________

    Mosaic

    At the moment, findings on solid Earth science at a European scale are scattered among a mosaic of hundreds of research organisations. The challenge is to incorporate a variety of accessible information from many different scientific fields, using a combination of real-time, historical and interpretative data.

    EPOS will integrate data from 10 areas of Earth science, including seismology, geodesy, geological data, volcano observations, satellite data products and anthropogenic – or human-influenced – hazards.

    It will help build on the type of data integration that happened after the Amatrice quake, in which the lead organisation behind EPOS – Italy’s National Institute of Geophysics and Volcanology (INGV) – was involved in coordinating and fostering data sharing.

    This included real-time data from temporary sensor deployments, as well as seismic hazard maps, satellite data products and geophysical data – leading to a first model of the quake’s causative source within 48 hours to aid emergency planning.

    So far, a prototype of the portal has been developed and it will now be tested by users over the coming year to make sure it meets needs.

    Dr Walters said that EPOS is right on time. ‘Projects like EPOS are especially timely and valuable right now, as many of the subdisciplines that make up solid Earth geoscience are entering the era of big data,’ he said.

    Eyjafjallajökull

    The eruption of Icelandic volcano Eyjafjallajökull in 2010 highlights another issue that EPOS is hoping to improve – the challenge of coordination across borders. Though this event did not cost human lives, it had a much wider impact in Europe, leading to flights being grounded throughout the region and costing airlines an estimated €1.3 billion.

    In such cases, said Prof. Cocco, it helps to know factors such as the ash’s composition, something that affects how a plume travels but is not necessarily included in the models of meteorologists. That knowledge could be gained through access to volcanology data, and also used by aviation authorities and airlines, potentially to design systems to protect engines.

    Prof. Cocco said the idea is that EPOS could also be used by people outside the research community to ‘increase the resilience of society to geohazards’. An engineer or organisation could use data on ground shaking or earthquake occurrence to aid safe exploitation of resources or evaluate risks in building a nuclear power plant, for example.

    In addition, the aim is to make it easier for students or young scientists to interpret data through tools, software, tutorials and discovery services, rather than having access to just raw data. ‘Otherwise, you are providing only usability to skilled scientists,’ said Prof. Cocco. ‘This, to me, is the only way to achieve open science.’

    At present, the EPOS community comprises about 50 partners across 25 European countries, with hundreds of research infrastructures, institutes and organisations providing data. The organisation has, meanwhile, submitted a final application to become a legal entity known as a European Research Infrastructure Consortium (ERIC), with a decision establishing the ERIC expected within the next two months. This official status will aid integration with other national and European organisations, and have benefits in the allocation of funding, said Prof. Cocco.

    Professor Giulio Di Toro, a structural geologist at the University of Padova in Italy, said it is great to have this type of hub to bring information together and improve access, but also important to ensure that it doesn’t lead to an increase in bureaucracy. If institutions come up against funding issues, it could also pose a challenge to their ability to share data, he added: ‘If for some years you don’t get grants, you will not produce data to share.’

    Meanwhile, Dr Walters sees a positive spirit reflected in these types of initiative. ‘While in Europe’s current climate politicians may be putting up borders,’ he said, ‘scientists in those same countries are trying even harder to break down national barriers, and working together to build something better for everyone.’

    The implementation phase of EPOS is being part-funded by the EU. If you liked this article, please consider sharing it on social media.

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

     
  • richardmitnick 2:43 pm on September 7, 2018 Permalink | Reply
    Tags: , , , , , ShakeAlert system, , The ongoing earthquake sequence on the island of Hokkaido Japan   

    From temblor: “The ongoing earthquake sequence on the island of Hokkaido, Japan” 

    1

    From temblor

    September 6, 2018
    Jason Patton
    Jason R. Patton, Ph.D., Ross Stein, Ph.D., Shinji Toda, Ph.D, Volkan Sevilgen, M.Sc.

    The Nation of Japan is one of the most seismically active regions in the world and the people of Japan devote significant efforts to be resilient in the face of these hazards associated with earthquakes. These hazards include ground shaking, tsunami, landslides, and liquefaction. The historical knowledge of these hazards extends centuries into the past. Because of their efforts to learn using scientific methods, the world has learned more about earthquake processes.

    Everyone can benefit from learning about their exposure to natural hazards from earthquakes. To learn more about your exposure to these hazards, visit temblor.net.

    In this report, we discuss the ongoing earthquake sequence on the island of Hokkaido, Japan. Below is a map that shows the epicenter for the mainshock, an earthquake with a magnitude M = 6.6. This map shows the coastline and active faults. There are over 700 aftershocks plotted here.

    1
    Figure 1: Regional seismicity map showing earthquake epicenters from the past 30 days. Faults are in red.

    The major source of earthquakes in Japan are the numerous plate boundary fault systems, which include subduction zones, “forearc sliver” strike slip faults, and a collision zone (another form of convergent plate boundary). The figure below is from the American Geophysical Union blog “Trembling Earth,” written by Dr. Austin Elliot. Great earthquakes, quakes with M ≥ 8.0, in the 20th century include the 1923 Great Kantō subduction earthquake and the 1944 and 1946 Tōnankai and Nankai subduction earthquakes. Subduction zones are convergent plate boundaries where an oceanic plate is subducting beneath a continental or oceanic plate. These events helped shape the earth science programs in Japan, especially regarding efforts to learn about subduction zone processes. The 2011 M 9.1 Tohoku-oki subduction zone earthquake generated a trans-pacific tsunami and reminded the public that their efforts to be resilient are well founded.

    2
    Figure 2: Oblique view showing the configuration of the plate boundaries in the region of Japan.

    The various plates and how they are configured is very complicated in Japan and we learn more about them every year. The recent M 6.6 Sapporo earthquake along the southern part of Hokkaido, Japan was also associated with a plate boundary, but not a subduction zone. In northern Japan, the North America/Okhotsk plate is moving southwestward and converging towards the Amuria/Eurasia plate. This plate motion leads to northeast-southwest oriented compression. This compression has led to the formation of tectonic deformation and thrust faults involved in the Hidaka Collision Zone. Collision zones are convergent plate boundaries where two continental plates are converging. An analogical collision zone is the collision of the India and Eurasia plates that form the Himalayas. The map below shows a generalized view of the geologic rocks in Japan, along with the location of different plate boundary faults (Van Horne et al., 2013). The Hidaka Collision Zone is labeled on the map. I placed a blue star in the location of the M 6.6 earthquake.

    3
    Figure 3: Geologic map of Japan showing the plate boundaries and key tectonic features including the Hidaka Collision Zone (Van Horne et al., 2016).

    Ground Shaking

    The M 6.6 Sapporo earthquake generated significant ground shaking and triggered landslides across the region. There are 3 main factors that control the intensity of ground shaking from earthquakes: (1) the magnitude of the earthquake, (2) the distance from the earthquake, and (3) the earth materials between the earthquake and one’s location. Earthquake magnitude is a measure of the amount of energy released during an earthquake, while intensity is a measure of how strongly the ground shakes (and how damaging the shaking is). It makes sense that when there is a larger magnitude, there is the potential for stronger shaking and a higher intensity. The magnitude does not change with distance, but intensity does. The further away from the earthquake source, the less shaking one might observe.

    Here is a figure prepared using the J-SHIS Japan Seismic Hazard Information website. The color represents Peak Ground Acceleration, a measure of ground shaking. The units are also in g, an acceleration, where g = 9.8/m2. If ground shaking is about 1 g, there is possibly enough energy to throw materials into the air (like rocks, cars, or buildings). The symbols represent locations where instruments made these acceleration measurements. Between symbols, the color represents an estimate of the ground shaking at those locations. Note that one site near the earthquake epicenter has a measured acceleration of 1.5 g!

    4
    Figure 4: Ground shaking map showing Peak Ground Acceleration (PGA) represented by color.

    Many governments and non-governmental organizations prepare estimates of seismic hazard so that people can ensure their building codes are designed to mitigate these hazards. The Global Earthquake Model (GEM) is an example of our efforts to estimate seismic hazards, though on a global scale. Temblor.net uses the Global Earth Activity Rate (GEAR) model to prepare estimates of seismic hazard at a global to local scale (Bird et al., 2015). Each of these models incorporate earthquake information from different sources including, but not limited to, fault slip rates, records of prehistoric earthquakes, historic seismicity, and strain of the Earth’s crust as measured using Global Positioning System (GPS) observations.

    Below is a map prepared using the temblor.net app. The rainbow color scale represents the change of a given earthquake magnitude, for a given location, within the lifetime of a person. The temblor app suggests that this region could have an earthquake of M 7.1 in a human lifetime.

    5
    Figure 5: Global Earthquake Activity Rate map for this region of the northwest Pacific. Warmer colors represent regions that are more likely to experience a larger earthquake than the regions with cooler colors. Seismicity from the past is shown and the location of the M 6.6 earthquake is located near the blue teardrop symbol.

    Landslides

    There are many different ways in which a landslide can be triggered. The first order relations behind slope failure (landslides) is that the “resisting” forces that are preventing slope failure (e.g. the strength of the land) are overcome by the “driving” forces that are pushing this land downwards (e.g. gravity). The ratio of resisting forces to driving forces is called the Factor of Safety (FOS). We can write this ratio like this:

    FOS = Resisting Force / Driving Force

    When FOS > 1, the slope is stable and when FOS < 1, the slope fails and we get a landslide. The illustration below shows these relations. Note how the slope angle α can take part in this ratio (the steeper the slope, the greater impact of the mass of the slope can contribute to driving forces).

    6
    Figure 6: Landslide force balance diagram showing how driving and resisting forces balance for a stable slope.

    Some factors that change this ratio include rainfall, over steepening of the slope, undercutting of the base of the slope, and earthquakes. There are other factors as well.

    Japan recently experienced the most severe Typhoon in decades, which resulted in significant rainfall. When rain water infiltrates into the earth, that water can fill the spaces between soil particles and rock cracks so that the water pressure pushes apart these particles or rocks. If this pressure is large enough, the strength of the material (a resisting force) becomes weaker and there can be a landslide. Even if there is not enough reduction in resisting force, the strength of the material is still potentially weaker.

    Landslide ground shaking can change the Factor of Safety in several ways that might increase the driving force or decrease the resisting force. Keefer (1984) studied a global data set of earthquake triggered landslides. The plot presented here shows that that larger earthquake magnitudes (horizontal axis) can result in landslides across a larger area.

    7
    Figure 7: Spatial extent of landslide triggering by earthquakes relative to earthquake magnitude (Keefer, 1984).

    As a result of the M 6.6 Sapporo earthquake, there were a large number of slope failures in the epicentral region. These landslides have covered many buildings and unfortunately have trapped many dozens of people within the debris. We will learn more about this in the coming days as search and rescue teams respond to this disaster.

    There have been many videos posted online, possibly the best ones from Nippon Hōsō Kyōkai (NHK), Japan’s national public broadcasting organization. NHK also acquired the best aerial videos from the inundation of the 2011 Tohoko-oki earthquake and tsunami. There have also been some excellent comparisons between pre-landslide and post-landslide aerial imagery.

    Here is another spectacular view of some of these triggered landslides here.

    Below is a pair of images that presents a comparison of the landscape from before and after the earthquake. These come from social media here.

    8
    9
    Figure 8: A comparison of imagery from before and from after the earthquake. The earthquake triggered landslides in the second image are identified in this photo by the areas of exposed brown colored soil.

    These landslides appear to be failures within the soil mantle of the hillsides. While these landslides were triggered by the earthquake, it is highly likely that the water content from the Typhoon decreased the Factor of Safety prior to the earthquake. It is possible that without this preceding Typhoon, the slope failures might have been less catastrophic.

    Active Faults in Hokkaido

    There are a number of active crustal faults in southern Hokkaido, Japan. One may view the location of these faults on the Japan Seismic Hazard Information Station (J-SHIS) website here. In addition, estimates for seismic hazard are also placed on that website. For example, the National Seismic Hazard Map for Japan is included there. There are various versions of this map, but the most useful version is the map that shows the chance that an area in Japan will experience earthquake ground shaking at least JMA 6, for the next 30 years. The Japan Meteorological Agency Seismic Intensity Scale (JMA) is an intensity scale with a range of 0 – 7, with 7 being the highest intensity, the strongest ground shaking. To give us an idea about how strong the shaking might be for an earthquake with a JMA 6 intensity, this is what a person might experience: “Impossible to keep standing and to move without crawling.”

    Below is a map that is based upon the J-SHIS website. We plot USGS earthquake epicenters from this earthquake sequence as circles colored relative to their depth with circle size relative to earthquake magnitude. Included in this map are also the active fault sources, shown as red rectangles and black lines. The two active faults in the region are different parts of the Ishikari-teichi-toen fault (the main part and the southern part). Based upon expert knowledge, these faults have the potential to produce an M 7.2 and M 7.1 earthquake for the main part and southern part, respectively. Combined, these faults may produce an M 7.9 earthquake. The USGS fault plane solution (moment tensor) is shown, along with a legend that helps one interpret this diagram. More can be found about these “beach balls” here.

    10
    Figure 9: Earthquake shaking potential and active fault map. Warmer colors (red) represent areas that are more likely to shake strongly (minimum JMA 6) compared to the less warm colors (yellow). Active faults are shown as red rectangles or black lines.

    This M 6.6 earthquake was about 33 km (20 miles) deep, deeper than the active crustal faults in the National Seismic Hazard Map. The earthquake was a thrust or reverse earthquake (oriented as a result of northeast-southwest compression, consistent with the orientation of the Hidaka Collision Zone).

    This M 6.6 earthquake has changed the stresses within the crust surrounding the earthquake. The amount of this stress change is moderate, especially when compared with the amount of stress that is typically released during an earthquake. We label the faults in the above map that may or may not have an increased amount of stress (the Ishikari fault system).

    This change in stress is called a change in “static coulomb stress” and a paper that discusses the fundamental factors controlling these stress increases is from Lin and Stein (2004). There is software available to the public from the USGS to perform these calculations. This software is called “Coulomb 3” and is available online here. An introduction to this software and the physics behind the calculations can be found in Stein (2003).

    An earthquake occurs when the stress is greater than the strength of the rock. Rocks can have strengths that range dozens of Mega Pascal (1,000,000 Pa = 1 MPa). When earthquakes slip they release stress on the order of several to a dozen MPa. In order for an earthquake to trigger another earthquake due to these changes in stress, the triggered earthquake fault needs to have a pre-existing level of stress that is somewhat close to failure.

    Dr. Shinji Toda has calculated the change in static coulomb stress as a result of the M 6.6 earthquake. They prepared two different analyses. (1) Dr. Toda first used a computer model to estimate the increased stress that could be observed on a generic fault parallel to the M 6.6 earthquake. (2) Then Dr. Toda used a computer model to estimate what the increase in stress that might be observed on a known active fault near the M 6.6 earthquake epicenter.

    For both analyses, the process begins by choosing a fault geometry for the source earthquake fault (e.g. the M 6.6 earthquake fault). This includes the size (length and width) and the geometry (angle dip beneath horizontal and compass orientation) of the fault. The analysis also requires information about how much the fault slipped along this fault, which controls the magnitude of these stress changes. Finally assumptions need to be made about the material properties of the crust (i.e. the rheology), which controls the spatial distribution and extent of these stress changes. Dr. Toda used the mainshock focal mechanism and seismic moment, centered in the hypocenter.

    One may then calculate the change in stress on generic receiver faults in the region surrounding the source fault. Receiver faults are the faults that may have triggered earthquakes from an increase in stress. Dr. Toda calculated the change in stress for two potential source fault orientations. The figure below shows that there are regions of increased stress (red) and decreased stress (blue). The units for these stress changes are bar, a measure of force. 1 bar = 100,000 Pascal (Pa), or 0.1 MPa. If there were a fault in the red region, and this fault were parallel to the source fault, those faults have the potential to be triggered by this change in stress. Faults that are parallel to the source fault and are located in blue areas, they would have a decrease in stress, inhibiting the possibility of a triggered earthquake.

    11
    Figure 10: Static coulomb stress change imparted by the M 6.6 earthquake onto generic receiver faults that are parallel to the source fault. Red represents regions of increased stress and blue represents regions of decreased stress.

    The next step is to input the fault geometry for a “receiver” fault based upon known active faults in the National Seismic Hazard Map database. Dr. Toda selected a fault similar to the southern part of the Ishikari fault in the active fault database from Japan. The map below shows the configuration of this experiment (north is up, units on both axes is kilometers), including the shoreline and fault geometry. The source fault is the blue rectangle in the center of the map. The receiver fault is the series of small rectangles that compose a larger rectangle. Notice how the receiver fault overlaps the source fault.

    12
    Figure 11: Static coulomb stress change imparted by the M 6.6 earthquake onto an active fault with a known geometry. Red represents regions of increased stress and blue represents regions of decreased stress.

    The figure here shows that there is a strong decrease in stress (-0.5 bar) in the area of the fault near the epicenter and a modest increase in stress (0.15 bar) further to the north. Drs. Toda and Stein hypothesize that the net effect probably inhibits failure on this receiver fault. The Ishikari fault is capable of producing an earthquake M > 7 and this fault did not rupture during the M 6.6 earthquake. So, those who live in the region would benefit from continuing their efforts to mitigate the earthquake hazards that they are faced with.

    Here is another perspective of these data. The view is from the southeast looking into the Earth.

    13
    Figure 12: Low Angle Oblique Stress Changes: Static coulomb stress change imparted by the M 6.6 earthquake onto an active fault with a known geometry. Red represents regions of increased stress and blue represents regions of decreased stress.
    References:

    Bird, P., Jackson, D. D., Kagan, Y. Y., Kreemer, C., and Stein, R. S., 2015. GEAR1: A global earthquake activity rate model constructed from geodetic strain rates and smoothed seismicity, Bull. Seismol. Soc. Am., v. 105, no. 5, p. 2538–2554, DOI: 10.1785/0120150058

    Keefer, D.K., 1984. Landslides caused by earthquakes. GSA Bulletin 95, 406-421

    Lin, J., and R. S. Stein (2004), Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults, J. Geophys. Res., 109, B02303, doi:10.1029/2003JB002607

    Stein, R.S., 2003. Earthquake conversations, Scientific American, v. 288, no. 1, p. 72-79

    Travasarou, T., Bray, J.D., Abrahamson, N.A., 2003. Empirical attenuation relationship for Arias Intensity. Earthquake Engineering and Structural Dynamics 32, 1133-1155

    Van Horne, A., Sato, H., Ishiyama, T., 2017. Evolution of the Sea of Japan back-arc and some unsolved issues in Tectonophysics, v. 710-711, p. 6-20, http://dx.doi.org/10.1016/j.tecto.2016.08.020

    More information about the tectonics in this region can be found here.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 1:37 pm on August 31, 2018 Permalink | Reply
    Tags: "Earthquake Precursors", , and Predictions, , , , Processes, , ShakeAlert system   

    From Eos: “Earthquake Precursors, Processes, and Predictions “ 

    From AGU
    Eos news bloc

    From Eos

    8.31.18
    Dimitar Ouzounov

    A new book presents various studies that may establish a link between earthquakes and different types of precursor signals from the Earth, atmosphere and space.

    1
    The village of Onna was severely damaged in the 2009 earthquake that struck the Abruzzo region of Italy. Our goal is to find robust earthquake precursors that may be able to predict some of the most damaging events, like Onna. The proposed earthquake precursor signals described in our book could contribute to reliable forecasting of future seismic events; however, additional study and testing is needed. Credit: Angelo_Giordano / 170 images (CC0)

    Scientists know much more about what happens after an earthquake (e.g. fault geometry, slip rates, ground deformation) than the various and complex phenomena accompanying the preparatory phases before a seismic event. Pre-Earthquake Processes: A Multi-disciplinary Approach to Earthquake Prediction Studies, a new book just published by the American Geophysical Union, explores different signals that have been recorded prior to some earthquakes and the extent to which they might be used for forecasting or prediction.

    The reporting of physical phenomena observed before large earthquakes has a long history, with fogs, clouds, and animal behavior recorded since the days of Aristotle in Ancient Greece, Pliny in Ancient Rome, and multiple scholars in ancient China [Martinelli, 2018]. Many more recent case studies have suggested geophysical and geochemical “anomalies” occurring before earthquakes [Tributsch, 1978; Cicerone et al., 2009 Nature].

    It should not be surprising that a large accumulation of stress in the Earth’s crust would produce precursory signals. Some of these precursors have been correlated with a range of anomalous phenomena recorded both in the ground and in the atmosphere. These have been measured by variations in radon, the electromagnetic field, thermal infrared radiation, outgoing longwave radiation, and the total electron content of the ionosphere.

    Earth observations from sensors both in space and on the ground present new possibilities for investigating the build-up of stress within the Earth’s crust prior to earthquakes and monitoring a broad range of abnormal phenomena that may be connected. This could enable us to improve our understanding of the lead up to earthquakes at global scales by observing possible lithosphere-atmosphere coupling.

    For example, the French Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite mission (2004-2010) was the first to systematically study electro-magnetic signals in relation to earthquakes and volcanoes. Earlier in 2018, the China Seismo-Electromagnetic Satellite (CSES-1) was launched, dedicated to monitoring electromagnetic fields and particles. There is also a global initiative to develop and coordinate test sites for observation and validation of pre-earthquake signals located in Japan, Taiwan, Italy, Greece, China, Russia, and the United States of America.

    We have carried out statistical checks of historic data to study the correlations between precursor signals and major earthquake events. For example, a decadal study of statistical data for Japan and Taiwan suggested a significant increase in the probability of electromagnetic, thermal infrared, outgoing longwave radiation, and total electron content measurements before large earthquakes [Hattori and Han, 2018; Liu et al., 2018]. A study of satellite data from DEMETER for more than 9000 earthquakes indicated a decrease of the intensity of electromagnetic radiation prior to earthquakes with a magnitude greater than five [Píša et al. 2013, Parrot and Li, 2018]. These results suggest that the earthquake detection based on measurements of these variables is better than a random guess and could potentially be of use in forecasting.

    Our book also presents testing of the CN earthquake prediction algorithm for seismicity in Italy [Peresan, 2018], the first attempt of combining probabilistic seismicity models with precursory information [Shebalin, 2018], and the testing of short-term alerts based on a multi-parameter approach for major seismic events in Japan, Chile, Nepal and Iran [Ouzounov et al., 2018]. Further testing is needed to better understand false alarm ratios and the overall physics of earthquake preparation.

    2
    Conceptual diagram of an integrated satellite and terrestrial framework for multiparameter observations of pre‐earthquake signals in Japan. The ground component includes seismic, electro-magnetic observations, radon, weather, VLF–VHF radio frequencies, and ocean‐bottom electro-magnetic sensors. Satellite component includes GPS/total electron content, synthetic-aperture radar, Swarm, microwave, and thermal infrared satellites. Credit: Katsumi Hattori, presented in Ouzounov et al, 2018, Chapter 20

    Based on our international collaborative work, we found that reliable detection of pre-earthquake signals associated with major seismicity (magnitude greater than 6) could be done only by integration of space- and ground-based observations. However, a major challenge for using precursor signals for earthquake prediction is gathering data from a regional or global network of monitoring stations to a central location and conducting an analysis to determine if, based on previous measurements, they indicate an impending earthquake.

    We also found that no single existing method for precursor monitoring can provide reliable short-term forecasting on a regional or global scale, probably because of the diversity of geologic regions where seismic activity takes place and the complexity of earthquake processes.

    The pre-earthquake phenomena that we observe are intrinsically dynamic but new Earth observations and analytical information systems could enhance our ability to observe and better understand these phenomena.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 12:37 pm on August 25, 2018 Permalink | Reply
    Tags: , , , ShakeAlert system, Venezuela Rocked By Large Earthquake   

    From Discover Magazine: “Venezuela Rocked By Large Earthquake” 

    DiscoverMag

    From Discover Magazine

    August 21, 2018
    Erik Klemetti

    1
    Map of shaking felt by the M7.3 earthquake in Venezuela on August 21, 2018. USGS.

    Venezuela was hit by a M7.3 earthquake today, causing extensive damage across the northern part of the country as well as nearby Trinidad & Tobago. Shaking was felt as far away at Bogotá, Martinique and Guyana, thousands of kilometers from the earthquake’s epicenter. This temblor may have been the largest earthquake to strike Venezuela since a M7.7 hit off of Caracas in 1900.

    The depth of the earthquake meant the shaking was felt widely across the region and from the looks of it, there was some sustained shaking but that depth might also mean that massive destruction was avoided. Some reports suggest that only minor to moderate damage was seen in cities relatively close to the epicenter. No injuries have been reported so far, however, news is slow to come out of the country due to its current political crisis.

    The region where the earthquake struck is tectonically complicated, with the Lesser Antilles subduction zone just to the east and a strike-slip boundary running across northern South America and the Caribbean Plate. Today’s earthquake was not a strike-slip event like one might expect for the region. Instead, it was a reverse fault where plates are moving towards each other at a depth of ~123 kilometers. This might suggest that the earthquake was rooted in the South American plate’s subduction.

    Focal mechanism (as shown by the “beachball” in the map) is unusual and doesn’t seem to indicate simple strike-slip faulting along a transform fault. Maybe the southernmost edge of the South American plate that is subducting under the Lesser Antilles arc might have been involved. pic.twitter.com/6CytpaDJPx
    3

    The region where the earthquake struck is tectonically complicated, with the Lesser Antilles subduction zone just to the east and a strike-slip boundary running across northern South America and the Caribbean Plate. Today’s earthquake was not a strike-slip event like one might expect for the region. Instead, it was a reverse fault where plates are moving towards each other at a depth of ~123 kilometers. This might suggest that the earthquake was rooted in the South American plate’s subduction.

    August has been a busy month for earthquakes, with 8 M6.5 or greater earthquakes, including a M8.2 that hit Fiji on August 19. That earthquake was centered very deep — about 563 kilometers down (so in the mantle!) — so it did not cause as much shaking felt at the surface as today’s Venezuela earthquake. Before anyone jumps to the conclusion that this cluster of earthquakes means something, Dr. Lucy Jones made it clear that this is just business as usual:

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 9:39 pm on August 22, 2018 Permalink | Reply
    Tags: , , , ShakeAlert system,   

    From temblor: “M=7.3 earthquake rattles Venezuela and the Caribbean” 

    1

    From temblor

    August 22, 2018
    David Jacobson, M.Sc.

    1
    Port of Spain, the capital of Trinidad and Tobago sustained damage in yesterday’s M=7.3 earthquake in northeastern Venezuela.

    A large earthquake causes damage but no fatalities

    Yesterday, at just past 9:30 p.m. local time, a M=7.3 earthquake struck the northeastern coast of Venezuela. Fortunately, this quake occurred in a relatively remote area, and there are no reported deaths as of this morning. However, there is damage from the quake, including in Caracas, Venezuela’s capital, nearly 600 km (370 mi) away. Even though only light shaking was recorded in Caracas, according to the USGS ShakeMap, it was great enough to cause the top ten floors of an abandoned skyscraper to shift and lean precariously over the road far below. According to CNN, that area has been evacuated. Closer to the epicenter, in places such as Port of Spain, Trinidad and Tobago, additional structural damage has been observed in buildings.

    2
    This Temblor map shows the location of yesterday’s earthquake in northeastern Venezuela. Also visible on the left and right sides of the map respectively are Venezuela’s capital city of Caracas and Trinidad and Tobago’s capital Port of Spain.

    A region marked by strike-slip activity

    While seismic activity is not uncommon in this region, yesterday’s M=7.3 quake is much deeper, and had different motion than the majority of quakes that impact Venezuela. Northern Venezuela is marked by the boundary between the South American and Caribbean plates. In this location, plate motion is approximately 20 mm/yr, and typically results in right-lateral strike-slip earthquakes at shallow depths. However, yesterday’s earthquake was compressional in nature, and occurred at a depth of 123 km. Therefore, it did not occur on the plate boundary, but rather well beneath it.

    Even though much of the seismicity in the region is dominated by the strike-slip plate boundary, the region is also subject to compression and some believe that off the northeastern coast of Venezuela there is an ancient, or not fully-formed subduction zone (Pindell et al., 2015). This zone, which Pindell et al. term the Proto-Caribbean Inversion Zone has the same rough orientation as the strike of yesterday’s earthquake. So, it at least seems possible that the event occurred on this structure, which could pose additional hazards for Venezuela and the southeastern Caribbean.

    Regardless of what structure yesterday’s earthquake occurred on, what this event highlights is the seismic hazard of the region. This illustrates both that large earthquakes are possible, and that even weak to light shaking can cause significant damage to buildings not of the highest build quality, as was seen in Caracas. Therefore, it is not only important to know the seismic hazard of where you live, but whether or not your home or office is capable of withstanding shaking.

    References
    USGS
    CNN
    Jame L. Pindell, Lorcan Kennan, David Wright & Johan Erikson, Clastic domains of sandstones in central/eastern Venezuela, Trinidad, and Barbados: heavy mineral and tectonic constraints on provenance and palaeogeography, From James, K. H., Lorente, M. A. & Pindell, J. L. (eds) The Origin and Evolution of the Caribbean Plate. Geological Society, London, Special Publications, 328, 743–797

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 3:02 pm on June 18, 2018 Permalink | Reply
    Tags: , , , ShakeAlert system,   

    From temblor: “Today’s deadly Japan earthquake could be related to the 1995 Kobe earthquake” 

    1

    From temblor

    1
    Today’s M=5.9 earthquake in Japan struck just north of the city of Osaka, which is home to 2.7 million people.

    At 7:58 a.m. local time, a M=5.9 earthquake struck Osaka, Japan, leaving 3 people, dead, and hundreds injured. The quake resulted in numerous collapsed walls, broken water pipes, and left 170,000 homes without power. Since the mainshock, over 100 aftershocks have continued to rattle the city, which is home to approximately 2.7 million people.

    2
    Today’s M=5.9 earthquake just north of Japan resulted in three fatalities, hundreds of injuries and significant damage throughout the city. This photo shows the collapsed gate at the Myotoku-ji temple. (Photo from: SF Gate)

    Near but not on a major fault

    Based on the earthquake’s location, today’s quake struck just off the Takatsuki Fault, a right-lateral strike-slip fault in the northern part of Osaka. This fault last ruptured in 1596, and typically ruptures every 2,600 years in M≈6.8 events. Therefore, this fault is susceptible to rupturing in large events, which could be devastating to Osaka.

    3
    This Temblor map shows the location of today’s earthquake just north of the city of Osaka, Japan. This earthquake struck just off the Takatsuki Fault, which has a rough recurrence interval of 2,600 years.

    Very Strong Shaking

    Despite this quake’s moderate magnitude, it produced significant ground shaking, which resulted in the few fatalities and obvious damage. Based on the nearest seismic station, shaking levels reached 0.8 g, 6 km from the epicenter. This translates to violent shaking and potential heavy damage. Such levels of ground shaking are typically not seen in earthquakes of this magnitude. However, in April, a M=5.6 earthquake in western Japan also registered high (0.5-0.7 g) shaking typically associated with much larger quakes. This illustrates that Japan’s dense network of sensors capture high levels of ground shaking even for small quakes, raising the possibility that such strong shaking in small shocks is far more common worldwide than we now realize.

    4
    This map shows ground accelerations recorded from today’s M=5.9 earthquake just outside of Osaka. (Data and map from the National Research Institute for Earthquake Science and Disaster Resilience (NIED))

    6
    This map shows a comparison of the network of earthquake sensors in California and Japan. California is clearly not prepared.(Figure from: http://www.Shakealert.org [see below for shakealert)

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: