Tagged: ShakeAlert: Earthquake Early Warning Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:04 am on January 12, 2018 Permalink | Reply
    Tags: , , , Series of earthquakes strikes Iran-Iraq border, ShakeAlert: Earthquake Early Warning,   

    From temblor: “Series of earthquakes strikes Iran-Iraq border” 

    1

    temblor

    January 11, 2018
    David Jacobson
    Manuel Berberian

    1
    The city of Baghdad felt shaking from today’s series of earthquakes along the Iran-Iraq border.

    This morning, ten M=4.0+ earthquakes struck the Iran-Iraq border. The largest of these, a M=5.5 near the Iraqi city of Mandali, was also widely felt in Baghdad. Because the area around the epicenter is sparsely-populated, there are no reports of major damage, though five people were injured. However, some more minor damage has been seen close to the epicenter (see below). These earthquakes come less than two months after a M=7.3 quake struck less than 150 km to the north. That earthquake killed over 500 and destroyed numerous buildings.

    2
    This Google Earth image shows USGS locations of the series of earthquakes to strike the Iran-Iraq border this morning.

    Based on the USGS focal mechanism, this morning’s earthquakes were compressional in nature. This compression is due to the collision of the Arabian and Eurasian plates at a rate of approximately 24 mm/yr. This collision is also responsible for the formation of the Zagros Mountains, which extend through both Iran and Iraq. Today’s quake struck along the southern edge of the Zagros Mountains.

    3
    Damage caused by thing morning’s earthquakes along the Iran-Iraq border.

    At this stage, it is not clear whether these earthquakes are remote aftershocks of the M=7.3 in November, or isolated events. Nonetheless, that have brought further shaking to the border region. This area was last strongly shaking when a M=6.1 earthquake in 1967 hit the area.

    From the Global Earthquake Activity Rate (GEAR) model, which is available in Temblor, we can see if these earthquakes should be considered surprising or not. This model uses global strain rates and the last 40 years of seismicity to forecast what the likely earthquake magnitude is in your lifetime anywhere on earth. In the figure below, one can see that around this morning’s earthquake, a M=5.5+ is likely in your lifetime. Therefore, these quakes, while a reminder of the region’s seismic hazard, should not be considered surprising.

    4
    This Temblor map shows the Global Earthquake Activity Rate (GEAR) model for much of Iran and Iraq. This shows how today’s earthquakes should not be considered surprising, as M=5.5+ quakes are likely in your lifetime.

    Reference
    USGS

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    You can help many citizen scientists in detecting earthquakes and getting the data to emergency services people in affected area.
    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    BOINCLarge

    BOINC WallPaper

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    Earthquake country is beautiful and enticing

    Almost everything we love about areas like the San Francisco bay area, the California Southland, Salt Lake City against the Wasatch range, Seattle on Puget Sound, and Portland, is brought to us by the faults. The faults have sculpted the ridges and valleys, and down-dropped the bays, and lifted the mountains which draw us to these western U.S. cities. So, we enjoy the fruits of the faults every day. That means we must learn to live with their occasional spoils: large but infrequent earthquakes. Becoming quake resilient is a small price to pay for living in such a great part of the world, and it is achievable at modest cost.

    A personal solution to a global problem

    Half of the world’s population lives near active faults, but most of us are unaware of this. You can learn if you are at risk and protect your home, land, and family.

    Temblor enables everyone in the continental United States, and many parts of the world, to learn their seismic, landslide, tsunami, and flood hazard. We help you determine the best way to reduce the risk to your home with proactive solutions.

    Earthquake maps, soil liquefaction, landslide zones, cost of earthquake damage

    In our iPhone and Android and web app, Temblor estimates the likelihood of seismic shaking and home damage. We show how the damage and its costs can be decreased by buying or renting a seismically safe home or retrofitting an older home.

    Please share Temblor with your friends and family to help them, and everyone, live well in earthquake country.

    Temblor is free and ad-free, and is a 2017 recipient of a highly competitive Small Business Innovation Research (‘SBIR’) grant from the U.S. National Science Foundation.

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 5:25 pm on January 4, 2018 Permalink | Reply
    Tags: , Largest Hayward Fault earthquake since 1981 raises questions about what could happen next, , ShakeAlert: Earthquake Early Warning,   

    From temblor: “Largest Hayward Fault earthquake since 1981 raises questions about what could happen next” 

    1

    temblor

    January 4, 2018
    David Jacobson
    Ross Stein

    1
    Last night’s M=4.4 earthquake beneath Berkeley was felt by approximately 10 million people across the entire Bay Area. The quake struck along the Hayward Fault, which has a 29% of rupturing in a large magnitude earthquake in the next 30 years.

    The entire Bay Area was awakened

    Last night, at 2:39 a.m. local time, a M=4.4 earthquake struck along the Hayward Fault underneath the city of Berkeley. The quake was felt throughout the entire Bay Area, and by noon today, over 35,000 people had filled out felt reports on the USGS website. Based on the distribution of shaking, nearly 10 million people would have been exposed to some level of shaking. Close to the epicenter shaking was moderate, and no damage is expected. Based on its magnitude, the quake was felt across a much greater area than expected.

    The last M=4.4 shock on or close to the Hayward Fault struck near Fremont in 1981, some 36 years ago. A M=4.5 shock struck on the Rodgers Creek Fault in 2006 near Santa Rosa. The Rodgers Creek Fault is effectively the same Fault with a different name.

    2
    This Temblor map shows the location of last night’s M=4.4 earthquake beneath Berkeley. Despite its moderate magnitude, shaking was felt over the entire Bay Area.

    The Hayward Fault—149 years and counting since the last large event

    Based on the location, depth (13 km or 8 mi), and mechanism (right-lateral strike-slip), this earthquake very likely occurred on the Hayward Fault itself, and not a secondary strand. The Hayward Fault extends from San Pablo Bay where it joins up with the Rodgers Creek Fault, to south of San Jose, where it merges with the Calaveras Fault, a length of 140 mi (230 km). It makes up one of the larger faults within the San Andreas Fault System, and has a history of large, damaging earthquakes. In 1868, a M~6.8 earthquake destroyed downtown Hayward, and did significant damage in San Francisco. In fact, the 1868 earthquake was known as the “Great Earthquake” until 1906.

    3
    This figure shows LiDAR topographic imagery of the Hayward Fault, as well as the location of this morning’s earthquake. This quake struck in an area where fault creep observed. However, at the depth at which this quake occurred (13 km or 8 mi), the fault is believed to be locked.

    The Hayward Fault creeps, as does a 100-mi (170-km) long section of the San Andreas, and only a handful of other California faults. This means that the Hayward Fault is not frictionally locked and can slip without large earthquakes. While some creeping faults are completely unlocked and do not build up the significant stress needed to generate large earthquakes, the Hayward Fault is only partially locked. So while there is creep at the ground surface, large (M~7) earthquakes tend to occur on average every 161±65 years. For those keeping track, it has been 149 years since the last major event.

    4
    This picture from the New Yorker shows evidence of creep along the Hayward Fault. Because the fault is not completely locked, there is movement in the absence of earthquakes. Evidence such as this is visible throughout the East Bay in sidewalks, buildings, and roads.

    Today’s quake struck on the edge of a large stuck patch of the Hayward Fault

    In the area around this morning’s earthquake, there is significant evidence of creep. The figure below, from Shirzaei and Burgmann, 2013, shows creep along the Hayward Fault, with the approximate location of today’s earthquake shown. What becomes evident from this figure is that the area in which this morning’s earthquake nucleated is a locked portion of the fault, and that locked patch extends for 20-30 km (12-20 mi) to the southeast.

    Prof. Manoochehr Shirzaei at Arizona State University told Temblor that today’s event “occurred in an area that is stressed due to creep on the surrounding segments, and so was encouraged.” USGS geologist David Schwartz added that, “the M=4.4 occurred along a ‘hotspot’ on the Hayward fault. This is an approximately 8 km (5 mi) long section of the fault that has hosted 15 M 3.0-4.0 shocks in the past 10 years. [Today’s earthquake is] the largest and deepest event in this grouping but its location not unusual.” Because of all of this, this earthquake should not be considered surprising.

    5
    This figure, courtesy of Professor Manoochehr Shirzaei at Arizona State University shows the amount of creep along the Hayward Fault in addition to the location of notable earthquakes. This highlights how the area is a “hotspot” and that this morning’s event should not be considered surprising. As Prof. Shirzaei also points out, aseismic slip surrounding the location of this morning’s quake could contribute to the activity.

    What next?

    Based on the lack of creep in the location of today’s event, as well as the large locked patch to the south toward Fremont and Hayward, if a large earthquake were to start here, we believe it would rupture to the south. This area also has a slip deficit of more than a meter (3.3 ft) since 1868, as shown in the figure below, suggesting it could be more susceptible to a large earthquake.

    6
    This Figure from Shirzaei and Burgmann, 2013 shows the slip deficit along the Hayward Fault since the last major earthquake in 1868. This highlights how the area in which today’s earthquake occurred is within a section of fault where there is a significant slip deficit, suggesting that if a major quake were to occur it would likely rupture to the south (to the right in the figure).

    Nevertheless, the statistical likelihood of this morning’s earthquake being a foreshock to a M=6+ event in the next week is low, about 1 chance in 250, according to the USGS. However, the USGS does also estimate that there is a 10% chance that this could be a foreshock to an earthquake of equal or greater magnitude. Therefore, people should renew and reconsider their seismic readiness.

    One of the reasons why the Hayward Fault is of great importance is because James Lienkaemper and Patrick Williams, 2010 calculated from the record they unearthed of prehistoric earthquakes that there is a 29% chance of a large quake along this portion of the Hayward Fault. The USGS has multiple earthquake scenarios for this section of fault, some of which reach M=7.4. Such an event would have a significant impact on the entire Bay Area, stressing the importance of preparation. The USGS is developing a scenario of such an event (HayWired)

    We are behaving like cigarette smokers

    David Oppenheimer, the former director of the USGS Northern California Seismic Network, had this to say to Temblor: “The scientific and engineering communities have led us to the solution to seismic resilience, but the public behaves like a cigarette smoker. They know that quakes are bad for them, but they are not willing to do what they should.”

    He continues, “The solution is to follow the leads of San Francisco, Santa Monica and Los Angeles that require substandard residential structures to be identified and seismically retrofit in a timely fashion. Unfortunately, none of these programs apply to homes; they only address apartment and larger buildings. Mortgage lenders should require property owners to carry earthquake insurance. Elected officials must do their part to implement ordinances and laws that require the public to upgrade at-risk private property. A small investment in mitigation will have large payoffs to property owners, inhabitants, and resiliency of our metropolitan area.”

    References

    Manoochehr Shirzaei, Roland Bürgmann, Taka’aki Taira (2013), Implications of recent asperity failures and aseismic creep for time-dependent earthquake hazard on the Hayward fault, Earth and Planetary Science Letters 371–372 (2013) 59–66, doi.org/10.1016/j.epsl.2013.04.024

    Shirzaei, M., and R. Burgmann (2013), Time-dependent model of creep on the Hayward fault from joint
    inversion of 18 years of InSAR and surface creep data, J. Geophys. Res. Solid Earth, 118, doi:10.1002/jgrb.50149.

    James J. Lienkaemper, Patrick L. Williams, and Thomas P. Guilderson, Evidence for a Twelfth Large Earthquake on the Southern Hayward Fault in the Past 1900 Years, Bulletin of the Seismological Society of America, Vol. 100, No. 5A, pp. 2024–2034, October 2010, doi: 10.1785/0120090129

    Detweiler, S.T., and Wein, A.M., eds., 2017, The HayWired earthquake scenario—Earthquake hazards: U.S. GeologicalSurvey Scientific Investigations Report 2017–5013–A–H, 126 p., https://doi.org/10.3133/sir20175013v1.

    USGS

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    You can help many citizen scientists in detecting earthquakes and getting the data to emergency services people in affected area.
    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    BOINCLarge

    BOINC WallPaper

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    Earthquake country is beautiful and enticing

    Almost everything we love about areas like the San Francisco bay area, the California Southland, Salt Lake City against the Wasatch range, Seattle on Puget Sound, and Portland, is brought to us by the faults. The faults have sculpted the ridges and valleys, and down-dropped the bays, and lifted the mountains which draw us to these western U.S. cities. So, we enjoy the fruits of the faults every day. That means we must learn to live with their occasional spoils: large but infrequent earthquakes. Becoming quake resilient is a small price to pay for living in such a great part of the world, and it is achievable at modest cost.

    A personal solution to a global problem

    Half of the world’s population lives near active faults, but most of us are unaware of this. You can learn if you are at risk and protect your home, land, and family.

    Temblor enables everyone in the continental United States, and many parts of the world, to learn their seismic, landslide, tsunami, and flood hazard. We help you determine the best way to reduce the risk to your home with proactive solutions.

    Earthquake maps, soil liquefaction, landslide zones, cost of earthquake damage

    In our iPhone and Android and web app, Temblor estimates the likelihood of seismic shaking and home damage. We show how the damage and its costs can be decreased by buying or renting a seismically safe home or retrofitting an older home.

    Please share Temblor with your friends and family to help them, and everyone, live well in earthquake country.

    Temblor is free and ad-free, and is a 2017 recipient of a highly competitive Small Business Innovation Research (‘SBIR’) grant from the U.S. National Science Foundation.

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 2:07 pm on December 28, 2017 Permalink | Reply
    Tags: , , , , , , ShakeAlert: Earthquake Early Warning, The Curious Case of the Ultradeep 2015 Ogasawara Earthquake   

    From Eos: “The Curious Case of the Ultradeep 2015 Ogasawara Earthquake” 

    AGU bloc

    AGU
    Eos news bloc

    Eos

    12.28.17
    Terri Cook

    1
    The intensity distribution across Japan on the Japanese seven-point scale from the 680-kilometer-deep earthquake near the Ogasawara Islands. Credit: Japan Meteorological Agency

    On 30 May 2015, a powerful earthquake struck west of Japan’s remote Ogasawara (Bonin) island chain, which lies more than 800 kilometers south of Tokyo. Although it caused little damage, the magnitude 7.9 quake was noteworthy for being the deepest major earthquake ever recorded—it occurred more than 100 kilometers below any previously observed seismicity along the subducting Pacific Plate—and the first earthquake felt in every Japanese prefecture since observations began in 1884.

    The 680-kilometer-deep earthquake was also notable for its unusual ground motion. Instead of producing a band of high-frequency (>1 hertz) seismic waves concentrated along northern Japan’s east coast, as is typical for deep subduction-related earthquakes in this region, this event generated strong, low-frequency waves that jolted a broad area up to 2,000 kilometers from the epicenter. To explain this uncharacteristic wavefield, Furumura and Kennett [Journal of Geophysical Research] analyzed ground motion records from across the country and compared the results to observations from a much shallower, magnitude 6.8 earthquake that occurred within the Pacific slab in the same area in 2010.

    The results indicated that the peculiar ground motion associated with the 2015 earthquake was due to its great source depth as well as its location outside of the subducting slab. The team found that the ultradeep event was missing high-frequency components and generated milder ground motions at regional distances, whereas the 2010 earthquake included the high-frequency components but was narrowly focused.

    After contrasting three-dimensional numerical simulations of seismic wave propagation from both events, the researchers concluded that waves originating from a deep source outside of the slab can develop a distinctive, low-frequency wavefield as they interact with continental crust and the region’s subducting slabs. Because this wavefield is usually concealed by higher-frequency, slab-guided waves, the few existing examples of this phenomenon will likely provide valuable information on local crustal structure and, in the case of the 2015 Ogasawara event, the morphology of the Pacific Plate.

    See the full article here .

    IF YOU LIVE IN AN EARTHQUAKE PRONE AREA, ESPECIALLY IN CALIFORNIA, YOU CAN EASILY JOIN THE QUAKE-CATCHER NETWORK

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    BOINCLarge

    BOINC WallPaper

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

     
  • richardmitnick 11:38 pm on November 12, 2017 Permalink | Reply
    Tags: , , , , , ShakeAlert: Earthquake Early Warning,   

    From temblor: “Damaging Magnitude 7.3 earthquake along the Iran-Iraq border was preceded by Magnitude 4.3 foreshock” 

    1

    temblor

    November 12, 2017
    Ross S. Stein, Ph.D., Temblor

    A powerful, shallow earthquake struck along the Iraq-Iran border today. Damage is currently largely unknown, but is likely heavy because of the poor capacity of rural housing in this region to resist seismic shaking. This was tragically demonstrated when the 2003 M=6.3 Bam, Iran, earthquake took 26,000 lives due to the almost complete collapse of ancient adobe dwellings. Also, a M=5.3 aftershock hit 10 minutes after the mainshock, which is large enough to bring down a building damaged by the first event.

    The quake struck in a region of very low background seismicity

    Although both Iraq and Iran are seismically active, and even though the quake lies only 100 km (60 mi) from the compressional boundary between the Arabian and Eurasian plates, there were no M≥4.5 quakes within about 60 km (35 mi) of today’s epicenter during the past 20 years.

    1
    The completeness magnitude for this region is likely about M=4.5 since 1997, and so we use those to assess the background, or preceding seismicity, and find it to be very sparse.

    M=4.3 foreshock an hour before the mainshock

    Nevertheless, unless the EMSC catalog suffers from timing errors, there was a M=4.3 ‘foreshock’ one hour before the mainshock, located about 60 km (35 mi) to the southwest of the future mainshock. Given how low the background rate is, this occurrence might indicate that the gently-dipping thrust fault on which the mainshock struck was undergoing precursory creep. The occurrence of foreshocks is rare, and as indicators of future mainshocks or even creep, unreliable.

    2
    The foreshock struck rather far from the mainshock, but could indicate deep precursory creep.

    Is this a very rare event?

    According to the ISC-GEM seismic catalog, the closest large events since 1900 were a pair of M=6.7 and M=6.8 events in 1957-1958, some 200 km (120 mi) to the southeast of today’s mainshock.

    Broadly, the Arabia tectonic plate is being shoved against Eurasia plate along the Bitlis Suture and Zagros fold belt at a speed of 26 mm/yr (1 in/yr). This is the same slip rate as the San Andreas Fault. But because the almost no M≥5.8 quakes struck in this region for the past 40 years, and the because local strain rate is not adequately measured by GPS, the Global Earthquake Activity Rate (GEAR) model shown in Temblor expects only a M=5.5-5.8 in a typical lifetime in this area. But the political and military conflicts in the region have prevented adequate GPS monitoring.

    3
    Today’s earthquake sequence struck along two borders: political and tectonic.

    So, either this event is indeed quite rare, or the absence of GPS data has created artificial quake ‘hole’ in the GEAR model.

    References: USGS ANSS catalog, ESMC catalog, ISC-GEM catalog
    Sorry, no links.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    You can help many citizen scientists in detecting earthquakes and getting the data to emergency services people in affected area.
    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    BOINCLarge

    BOINC WallPaper

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    Earthquake country is beautiful and enticing

    Almost everything we love about areas like the San Francisco bay area, the California Southland, Salt Lake City against the Wasatch range, Seattle on Puget Sound, and Portland, is brought to us by the faults. The faults have sculpted the ridges and valleys, and down-dropped the bays, and lifted the mountains which draw us to these western U.S. cities. So, we enjoy the fruits of the faults every day. That means we must learn to live with their occasional spoils: large but infrequent earthquakes. Becoming quake resilient is a small price to pay for living in such a great part of the world, and it is achievable at modest cost.

    A personal solution to a global problem

    Half of the world’s population lives near active faults, but most of us are unaware of this. You can learn if you are at risk and protect your home, land, and family.

    Temblor enables everyone in the continental United States, and many parts of the world, to learn their seismic, landslide, tsunami, and flood hazard. We help you determine the best way to reduce the risk to your home with proactive solutions.

    Earthquake maps, soil liquefaction, landslide zones, cost of earthquake damage

    In our iPhone and Android and web app, Temblor estimates the likelihood of seismic shaking and home damage. We show how the damage and its costs can be decreased by buying or renting a seismically safe home or retrofitting an older home.

    Please share Temblor with your friends and family to help them, and everyone, live well in earthquake country.

    Temblor is free and ad-free, and is a 2017 recipient of a highly competitive Small Business Innovation Research (‘SBIR’) grant from the U.S. National Science Foundation.

    ShakeAlert: Earthquake Early Warning

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications by 2018.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds, depending on the distance to the epicenter of the earthquake. For very large events like those expected on the San Andreas fault zone or the Cascadia subduction zone the warning time could be much longer because the affected area is much larger. ShakeAlert can give enough time to slow and stop trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications by 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” test users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California. This “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities
    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: