Tagged: ScienceNews Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:14 pm on April 20, 2017 Permalink | Reply
    Tags: ScienceNews, There’s still a lot we don’t know about the proton   

    From ScienceNews: “There’s still a lot we don’t know about the proton” 

    ScienceNews bloc


    April 18, 2017
    Emily Conover

    Questions loom about the iconic particle’s size, spin and decay.

    PROTON PUZZLES Hidden secrets of the humble particle could have physicists rethinking some standard notions about matter and the universe. ARSCIMED/SCIENCE SOURCE

    Nuclear physicist Evangeline Downie hadn’t planned to study one of the thorniest puzzles of the proton.

    But when opportunity knocked, Downie couldn’t say no. “It’s the proton,” she exclaims. The mysteries that still swirl around this jewel of the subatomic realm were too tantalizing to resist. The plentiful particles make up much of the visible matter in the universe. “We’re made of them, and we don’t understand them fully,” she says.

    Many physicists delving deep into the heart of matter in recent decades have been lured to the more exotic and unfamiliar subatomic particles: mesons, neutrinos and the famous Higgs boson — not the humble proton.


    Protons have issues

    Three proton conundrums have scientists designing new experiments. Agreement eludes researchers on proton size, spin and stability.

    Current status: Two kinds of measurements of the proton’s radius disagree.

    Why do we care? Testing theories of how particles interact requires a precise radius measurement. If the discrepancy persists, it may mean that new, undiscovered particles exist.

    Current status: Scientists can’t account for the sources of the proton’s known spin.

    Why do we care? Understanding the spin would satisfy fundamental scientific curiosity about how the proton works.
    Life span

    Current status: Despite decades of searching, no one has ever seen a proton decay

    Why do we care? Proton decay would be a sign that three of nature’s forces — weak, strong and electromagnetic — were united early in the universe.


    But rather than chasing the rarest of the rare, scientists like Downie are painstakingly scrutinizing the proton itself with ever-higher precision. In the process, some of these proton enthusiasts have stumbled upon problems in areas of physics that scientists thought they had figured out.

    Surprisingly, some of the particle’s most basic characteristics are not fully pinned down. The latest measurements of its radius disagree with one another by a wide margin, for example, a fact that captivated Downie. Likewise, scientists can’t yet explain the source of the proton’s spin, a basic quantum property. And some physicists have a deep but unconfirmed suspicion that the seemingly eternal particles don’t live forever — protons may decay. Such a decay is predicted by theories that unite disparate forces of nature under one grand umbrella. But decay has not yet been witnessed.

    Like the base of a pyramid, the physics of the proton serves as a foundation for much of what scientists know about the behavior of matter. To understand the intricacies of the universe, says Downie, of George Washington University in Washington, D.C., “we have to start with, in a sense, the simplest system.”

    Sizing things up

    For most of the universe’s history, protons have been VIPs — very important particles. They formed just millionths of a second after the Big Bang, once the cosmos cooled enough for the positively charged particles to take shape. But protons didn’t step into the spotlight until about 100 years ago, when Ernest Rutherford bombarded nitrogen with radioactively produced particles, breaking up the nuclei and releasing protons.

    A single proton in concert with a single electron makes up hydrogen — the most plentiful element in the universe. One or more protons are present in the nucleus of every atom. Each element has a unique number of protons, signified by an element’s atomic number. In the core of the sun, fusing protons generate heat and light needed for life to flourish. Lone protons are also found as cosmic rays, whizzing through space at breakneck speeds, colliding with Earth’s atmosphere and producing showers of other particles, such as electrons, muons and neutrinos.

    In short, protons are everywhere. Even minor tweaks to scientists’ understanding of the minuscule particle, therefore, could have far-reaching implications. So any nagging questions, however small in scale, can get proton researchers riled up.

    A disagreement of a few percent in measurements of the proton’s radius has attracted intense interest, for example. Until several years ago, scientists agreed: The proton’s radius was about 0.88 femtometers, or 0.88 millionths of a billionth of a meter — about a trillionth the width of a poppy seed.


    Ladder of matter

    Protons make up a large part of the universe’s visible matter and play an essential role in atomic nuclei. But the building block is still revealing surprises.

    Core components

    Atoms are made of protons (red) and neutrons (blue), surrounded by a cloud of electrons. The proton number determines the element.

    Going inside

    Protons have two “up” quarks and one “down” quark. Neutrons have two downs and one up.


    Deeper dive

    But protons and neutrons contain much more. Quark-antiquark pairs constantly form and annihilate around the three persistent quarks. Gluons (yellow) hold the quarks together via the strong nuclear force. Quarks have a property called “color charge” — shown here as red, green and blue — which is related to the strong force.


    All images: Deutsches Elektronen-Synchrotron,
    Adapted by T. TibbitTs

    But that neat picture was upended in the span of a few hours, in May 2010, at the Precision Physics of Simple Atomic Systems conference in Les Houches, France. Two teams of scientists presented new, more precise measurements, unveiling what they thought would be the definitive size of the proton. Instead the figures disagreed by about 4 percent (SN: 7/31/10, p. 7). “We both expected that we would get the same number, so we were both surprised,” says physicist Jan Bernauer of MIT.

    By itself, a slight revision of the proton’s radius wouldn’t upend physics. But despite extensive efforts, the groups can’t explain why they get different numbers. As researchers have eliminated simple explanations for the impasse, they’ve begun wondering if the mismatch could be the first hint of a breakdown that could shatter accepted tenets of physics.

    The two groups each used different methods to size up the proton. In an experiment at the MAMI particle accelerator in Mainz, Germany, Bernauer and colleagues estimated the proton’s girth by measuring how much electrons’ trajectories were deflected when fired at protons. That test found the expected radius of about 0.88 femtometers (SN Online: 12/17/10).

    But a team led by physicist Randolf Pohl of the Max Planck Institute of Quantum Optics in Garching, Germany, used a new, more precise method. The researchers created muonic hydrogen, a proton that is accompanied not by an electron but by a heftier cousin — a muon.

    In an experiment at the Paul Scherrer Institute in Villigen, Switzerland, Pohl and collaborators used lasers to bump the muons to higher energy levels. The amount of energy required depends on the size of the proton. Because the more massive muon hugs closer to the proton than electrons do, the energy levels of muonic hydrogen are more sensitive to the proton’s size than ordinary hydrogen, allowing for measurements 10 times as precise as electron-scattering measurements.

    Pohl’s results suggested a smaller proton radius, about 0.841 femtometers, a stark difference from the other measurement. Follow-up measurements of muonic deuterium — which has a proton and a neutron in its nucleus — also revealed a smaller than expected size, he and collaborators reported last year in Science. Physicists have racked their brains to explain why the two measurements don’t agree. Experimental error could be to blame, but no one can pinpoint its source. And the theoretical physics used to calculate the radius from the experimental data seems solid.

    Now, more outlandish possibilities are being tossed around. An unexpected new particle that interacts with muons but not electrons could explain the difference (SN: 2/23/13, p. 8). That would be revolutionary: Physicists believe that electrons and muons should behave identically in particle interactions. “It’s a very sacred principle in theoretical physics,” says John Negele, a theoretical particle physicist at MIT. “If there’s unambiguous evidence that it’s been broken, that’s really a fundamental discovery.”

    But established physics theories die hard. Shaking the foundations of physics, Pohl says, is “what I dream of, but I think that’s not going to happen.” Instead, he suspects, the discrepancy is more likely to be explained through minor tweaks to the experiments or the theory.

    The alluring mystery of the proton radius reeled Downie in. During conversations in the lab with some fellow physicists, she learned of an upcoming experiment that could help settle the issue. The experiment’s founders were looking for collaborators, and Downie leaped on the bandwagon. The Muon Proton Scattering Experiment, or MUSE, to take place at the Paul Scherrer Institute beginning in 2018, will scatter both electrons and muons off of protons and compare the results. It offers a way to test whether the two particles behave differently, says Downie, who is now a spokesperson for MUSE.

    A host of other experiments are in progress or planning stages. Scientists with the Proton Radius Experiment, or PRad, located at Jefferson Lab in Newport News, Va., hope to improve on Bernauer and colleagues’ electron-scattering measurements. PRad researchers are analyzing their data and should have a new number for the proton radius soon.

    But for now, the proton’s identity crisis, at least regarding its size, remains. That poses problems for ultrasensitive tests of one of physicists’ most essential theories. Quantum electrodynamics, or QED, the theory that unites quantum mechanics and Albert Einstein’s special theory of relativity, describes the physics of electromagnetism on small scales. Using this theory, scientists can calculate the properties of quantum systems, such as hydrogen atoms, in exquisite detail — and so far the predictions match reality. But such calculations require some input — including the proton’s radius. Therefore, to subject the theory to even more stringent tests, gauging the proton’s size is a must-do task.

    At the Max Planck Institute of Quantum Optics, researchers use lasers to study proton size. A. ANTOGNINI AND F. REISER/PSI

    Spin doctors

    Even if scientists eventually sort out the proton’s size snags, there’s much left to understand. Dig deep into the proton’s guts, and the seemingly simple particle becomes a kaleidoscope of complexity. Rattling around inside each proton is a trio of particles called quarks: one negatively charged “down” quark and two positively charged “up” quarks. Neutrons, on the flip side, comprise two down quarks and one up quark.

    Yet even the quark-trio picture is too simplistic. In addition to the three quarks that are always present, a chaotic swarm of transient particles churns within the proton. Evanescent throngs of additional quarks and their antimatter partners, antiquarks, continually swirl into existence, then annihilate each other. Gluons, the particle “glue” that holds the proton together, careen between particles. Gluons are the messengers of the strong nuclear force, an interaction that causes quarks to fervently attract one another.


    A new spin

    Scientists thought that a proton’s spin was due to the three main quarks (left, arrows indicate direction of a quark’s spin). Instead, gluons (yellow) and ephemeral pairs of quarks and antiquarks contribute through their spin and motion (gray arrows at right).


    As a result of this chaos, the properties of protons — and neutrons as well — are difficult to get a handle on. One property, spin, has taken decades of careful investigation, and it’s still not sorted out. Quantum particles almost seem to be whirling at blistering speed, like the Earth rotating about its axis. This spin produces angular momentum — a quality of a rotating object that, for example, keeps a top revolving until friction slows it. The spin also makes protons behave like tiny magnets, because a rotating electric charge produces a magnetic field. This property is the key to the medical imaging procedure called magnetic resonance imaging, or MRI.

    But, like nearly everything quantum, there’s some weirdness mixed in: There’s no actual spinning going on. Because fundamental particles like quarks don’t have a finite physical size — as far as scientists know — they can’t twirl. Despite the lack of spinning, the particles still behave like they have a spin, which can take on only certain values: integer multiples of ½.

    Quarks have a spin of ½, and gluons a spin of 1. These spins combine to help yield the proton’s total spin. In addition, just as the Earth is both spinning about its own axis and orbiting the sun, quarks and gluons may also circle about the proton’s center, producing additional angular momentum that can contribute to the proton’s total spin.

    Somehow, the spin and orbital motion of quarks and gluons within the proton combine to produce its spin of ½. Originally, physicists expected that the explanation would be simple. The only particles that mattered, they thought, were the proton’s three main quarks, each with a spin of ½. If two of those spins were oriented in opposite directions, they could cancel one another out to produce a total spin of ½. But experiments beginning in the 1980s showed that “this picture was very far from true,” says theoretical high-energy physicist Juan Rojo of Vrije University Amsterdam. Surprisingly, only a small fraction of the spin seemed to be coming from the quarks, befuddling scientists with what became known as the “spin crisis” (SN: 9/6/97, p. 158). Neutron spin was likewise enigmatic.

    Scientists’ next hunch was that gluons contribute to the proton’s spin. “Verifying this hypothesis was very difficult,” Rojo says. It required experimental studies at the Relativistic Heavy Ion Collider, RHIC, a particle accelerator at Brookhaven National Laboratory in Upton, N.Y.

    BNL RHIC Campus

    In these experiments, scientists collided protons that were polarized: The two protons’ spins were either aligned or pointed in opposite directions. Researchers counted the products of those collisions and compared the results for aligned and opposing spins. The results revealed how much of the spin comes from gluons. According to an analysis by Rojo and colleagues, published in Nuclear Physics B in 2014, gluons make up about 35 percent of the proton’s spin. Since the quarks make up about 25 percent, that leaves another 40 percent still unaccounted for.

    “We have absolutely no idea how the entire spin is made up,” says nuclear physicist Elke-Caroline Aschenauer of Brookhaven. “We maybe have understood a small fraction of it.” That’s because each quark or gluon carries a certain fraction of the proton’s energy, and the lowest energy quarks and gluons cannot be spotted at RHIC. A proposed collider, called the Electron-Ion Collider (location to be determined), could help scientists investigate the neglected territory.

    The Electron-Ion Collider could also allow scientists to map the still-unmeasured orbital motion of quarks and gluons, which may contribute to the proton’s spin as well.

    The PHENIX experiment at Brookhaven National Laboratory uses a giant detector to investigate spin. BROOKHAVEN NATIONAL LAB

    An unruly force

    Experimental physicists get little help from theoretical physics when attempting to unravel the proton’s spin and its other perplexities. “The proton is not something you can calculate from first principles,” Aschenauer says. Quantum chromo-dynamics, or QCD — the theory of the quark-corralling strong force transmitted by gluons — is an unruly beast. It is so complex that scientists can’t directly solve the theory’s equations.

    The difficulty lies with the behavior of the strong force. As long as quarks and their companions stick relatively close, they are happy and can mill about the proton at will. But absence makes the heart grow fonder: The farther apart the quarks get, the more insistently the strong force pulls them back together, containing them within the proton. This behavior explains why no one has found a single quark in isolation. It also makes the proton’s properties especially difficult to calculate. Without accurate theoretical calculations, scientists can’t predict what the proton’s radius should be, or how the spin should be divvied up.


    Cosmic time

    Protons have been around since the early moments of the universe. If certain theories are correct, the universe may eventually be devoid of protons.

    t = 0
    Big Bang
    t < 10-6 seconds
    Quarks and gluons roam freely
    t = 10-6 s
    Protons and neutrons form
    t = 10 s
    Protons and neutrons begin to form atomic nuclei
    t = 13.8 billion years
    In today’s universe, atoms have formed into stars, planets and intelligent life.
    t = 1034 years or later
    A substantial portion of protons may have decayed.


    To simplify the math of the proton, physicists use a technique called lattice QCD, in which they imagine that the world is made of a grid of points in space and time (SN: 8/7/04, p. 90). A quark can sit at one point or another in the grid, but not in the spaces in between. Time, likewise, proceeds in jumps. In such a situation, QCD becomes more manageable, though calculations still require powerful supercomputers.

    Lattice QCD calculations of the proton’s spin are making progress, but there’s still plenty of uncertainty. In 2015, theoretical particle and nuclear physicist Keh-Fei Liu and colleagues calculated the spin contributions from the gluons, the quarks and the quarks’ angular momentum, reporting the results in Physical Review D. By their calculation, about half of the spin comes from the quarks’ motion within the proton, about a quarter from the quarks’ spin, with the last quarter or so from the gluons. The numbers don’t exactly match the experimental measurements, but that’s understandable — the lattice QCD numbers are still fuzzy. The calculation relies on various approximations, so it “is not cast in stone,” says Liu, of the University of Kentucky in Lexington.

    Death of a proton

    Although protons seem to live forever, scientists have long questioned that immortality. Some popular theories predict that protons decay, disintegrating into other particles over long timescales. Yet despite extensive searches, no hint of this demise has materialized.

    A class of ideas known as grand unified theories predict that protons eventually succumb. These theories unite three of the forces of nature, creating a single framework that could explain electromagnetism, the strong nuclear force and the weak nuclear force, which is responsible for certain types of radioactive decay. (Nature’s fourth force, gravity, is not yet incorporated into these models.) Under such unified theories, the three forces reach equal strengths at extremely high energies. Such energetic conditions were present in the early universe — well before protons formed — just a trillionth of a trillionth of a trillionth of a second after the Big Bang. As the cosmos cooled, those forces would have separated into three different facets that scientists now observe.


    A proton’s last moments

    If theories that unite fundamental forces are correct, protons should decay, with average lifetimes longer than the age of the universe. Scientists watch giant tanks of water for the telltale signatures of proton death. One possible type of decay is described below.

    A proton, made of three quarks, awaits its fate.

    In an extremely rare event, two quarks unite, producing a new particle.


    The new particle, an X boson, persists for a brief instant.


    The X boson releases a positron and an antiquark. No longer a proton, the two remaining particles are a pion.


    Finally, the pion decays into two photons, which can be detected, along with the positron.


    “We have a lot of circumstantial evidence that something like unification must be happening,” says theoretical high-energy physicist Kaladi Babu of Oklahoma State University in Stillwater. Beyond the appeal of uniting the forces, grand unified theories could explain some curious coincidences of physics, such as the fact that the proton’s electric charge precisely balances the electron’s charge. Another bonus is that the particles in grand unified theories fill out a family tree, with quarks becoming the kin of electrons, for example.

    Under these theories, a decaying proton would disintegrate into other particles, such as a positron (the antimatter version of an electron) and a particle called a pion, composed of a quark and an antiquark, which itself eventually decays. If such a grand unified theory is correct and protons do decay, the process must be extremely rare — protons must live a very long time, on average, before they break down. If most protons decayed rapidly, atoms wouldn’t stick around long either, and the matter that makes up stars, planets — even human bodies — would be falling apart left and right.

    Protons have existed for 13.8 billion years, since just after the Big Bang. So they must live exceedingly long lives, on average. But the particles could perish at even longer timescales. If they do, scientists should be able to monitor many particles at once to see a few protons bite the dust ahead of the curve (SN: 12/15/79, p. 405). But searches for decaying protons have so far come up empty.

    Still, the search continues. To hunt for decaying protons, scientists go deep underground, for example, to a mine in Hida, Japan. There, at the Super-Kamiokande experiment (SN: 2/18/17, p. 24), they monitor a giant tank of water — 50,000 metric tons’ worth — waiting for a single proton to wink out of existence. After watching that water tank for nearly two decades, the scientists reported in the Jan. 1 Physical Review D that protons must live longer than 1.6 × 1034 years on average, assuming they decay predominantly into a positron and a pion.

    Super-Kamiokande Detector, Japan

    After watching that water tank for nearly two decades, the scientists reported in the Jan. 1 Physical Review D that protons must live longer than 1.6 × 1034 years on average, assuming they decay predominantly into a positron and a pion.

    Experimental limits on the proton lifetime “are sort of painting the theorists into a corner,” says Ed Kearns of Boston University, who searches for proton decay with Super-K. If a new theory predicts a proton lifetime shorter than what Super-K has measured, it’s wrong. Physicists must go back to the drawing board until they come up with a theory that agrees with Super-K’s proton-decay drought.

    Many grand unified theories that remain standing in the wake of Super-K’s measurements incorporate supersymmetry, the idea that each known particle has another, more massive partner. In such theories, those new particles are additional pieces in the puzzle, fitting into an even larger family tree of interconnected particles. But theories that rely on supersymmetry may be in trouble. “We would have preferred to see supersymmetry at the Large Hadron Collider by now,” Babu says, referring to the particle accelerator located at the European particle physics lab, CERN, in Geneva, which has consistently come up empty in supersymmetry searches since it turned on in 2009 (SN: 10/1/16, p. 12).

    CERN/LHC Map

    CERN LHC Tube

    LHC at CERN

    Persnickety protons

    Scientists might solve some of their proton dilemmas with new data — for example, by spotting a proton decaying into a positron and two photons, as in the simulated data from the Super-Kamiokande detector below. But plenty more questions await exploration.


    Why are quarks confined within the proton? Scientists observe that quarks don’t live on their own, but no one has been able to mathematically demonstrate that they can’t.

    How are the quarks and gluons arranged inside the proton? Gluons might be more common on the proton’s outskirts than in its center, for example.

    Each quark and gluon carries a certain amount of the proton’s energy. How is that energy divvied up?

    Aside from their electric charges, protons and antiprotons appear the same. Do they differ on some level not yet measured?

    But supersymmetric particles could simply be too massive for the LHC to find. And some grand unified theories that don’t require supersymmetry still remain viable. Versions of these theories predict proton lifetimes within reach of an upcoming generation of experiments. Scientists plan to follow up Super-K with Hyper-K, with an even bigger tank of water. And DUNE, the Deep Underground Neutrino Experiment, planned for installation in a former gold mine in Lead, S.D., will use liquid argon to detect protons decaying into particles that the water detectors might miss.

    FNAL Dune & LBNF

    Surf-Dune/LBNF Caverns at Sanford

    FNAL DUNE Argon tank at SURF

    If protons do decay, the universe will become frail in its old age. According to Super-K, sometime well after its 1034 birthday, the cosmos will become a barren sea of light. Stars, planets and life will disappear. If seemingly dependable protons give in, it could spell the death of the universe as we know it.

    Although protons may eventually become extinct, proton research isn’t going out of style anytime soon. Even if scientists resolve the dilemmas of radius, spin and lifetime, more questions will pile up — it’s part of the labyrinthine task of studying quantum particles that multiply in complexity the closer scientists look. These deeper studies are worthwhile, says Downie. The inscrutable proton is “the most fundamental building block of everything, and until we understand that, we can’t say we understand anything else.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

  • richardmitnick 12:39 pm on April 4, 2015 Permalink | Reply
    Tags: , , ScienceNews   

    From Science News: “Primordial stars left their imprint on dwarf galaxy” 

    ScienceNews bloc


    April 3, 2015
    Christopher Crockett

    Explosions of very massive stars in the early universe (illustrated) seeded a handful of stars in a nearby galaxy with unusual amounts of various elements. NASA, CXC, M.Weiss

    NASA Chandra Telescope

    A handful of ancient stars outside the Milky Way witnessed the explosive deaths of the first generation of stars, researchers report in the April 1 Astrophysical Journal. The eyewitnesses harbor unusual amounts of heavy elements, such as magnesium and silicon, which means they were probably bystanders to a few supernovas from primordial stars up to about 20 times as massive as the sun.

    The stars live about 290,000 light-years away in the puny Sculptor galaxy.

    The Sculptor Galaxy taken with the ESO VISTA telescope at the Paranal Observatory in Chile.

    ESO Vista Telescope

    Astronomers think that dwarf galaxies like Sculptor are relics from the early universe, which makes these galaxies useful laboratories for studying conditions from not too long after the Big Bang.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

  • richardmitnick 7:12 pm on March 28, 2015 Permalink | Reply
    Tags: , , ScienceNews   

    From SN: “Clean-up gene gone awry can cause Lou Gehrig’s disease” 

    ScienceNews bloc


    March 24, 2015
    Kate Baggaley

    Mutations on a gene necessary for keeping cells clean can cause Lou Gehrig’s disease, scientists report online March 24 in Nature Neuroscience. The gene is one of many that have been connected to the condition.

    In amyotrophic lateral sclerosis, also known as Lou Gehrig’s disease, nerve cells that control voluntary movement die, leading to paralysis. Scientists have previously identified mutations in 29 genes that are linked with ALS, but these genes account for less than one-third of all cases.

    To track down more genes, a team of European researchers looked at the protein-coding DNA of 252 ALS patients with a family history of the disease, as well as of 827 healthy people. The team discovered eight mutations on a gene called TBK1 that were associated with ALS.

    TBK1 normally codes for a protein that controls inflammation and cleans out damaged proteins from cells. “We do not know which of these two principle functions of TBK1 is the more relevant one” to ALS, says coauthor Jochen Weishaupt, a neurologist at Ulm University in Germany. In cells with one of the eight TBK1 mutations, the protein either is missing or lacks components that it needs to interact with other proteins, the researchers found.

    TBK1 mutations may explain 2 percent of ALS cases that run in families, which make up about 10 percent of all incidences of the disease, Weishaupt says.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

  • richardmitnick 6:46 am on March 7, 2015 Permalink | Reply
    Tags: , , , , ScienceNews   

    From ScienceNews: “Sam Ting tries to expose dark matter’s mysteries” 

    ScienceNews bloc


    March 6, 2015
    Andrew Grant

    Physics Nobel laureate’s space-based detector is analyzing billions of cosmic rays

    EYES ON THE INVISIBLE PRIZE Designed to detect cosmic rays, the Alpha Magnetic Spectrometer cruises above Earth on the International Space Station.


    In the near vacuum of outer space, each rare morsel of matter tells a story. A speedy proton may have been propelled by the shock wave of an exploding star. A stray electron may have teetered on the precipice of a black hole, only to be flung away in a powerful jet of searing gas.

    Since 2011, the International Space Station has housed an experiment that aims to decipher those origin stories. The Alpha Magnetic Spectrometer has already cataloged more than 60 billion protons, electrons and other spaceborne subatomic particles, known as cosmic rays, as they zip by.

    Other experiments sample the shower of particles produced when cosmic rays strike atoms and molecules in Earth’s atmosphere. But the spectrometer scrutinizes pristine cosmic rays — some of which have traveled undisturbed over millions of light-years — from its perch some 400 kilometers above Earth. The Alpha Magnetic Spectrometer is by far the most sensitive cosmic ray detector ever to fly in space, and with a price tag of about $2 billion, it’s also the most expensive.

    The detector’s unprecedented particle census could unmask the identity of dark matter, the mysterious, invisible substance that is five times as abundant in the universe as ordinary matter. Some of the cosmic rays snatched by the instrument may have been produced by particles of dark matter colliding and annihilating each other in the center of the galaxy.

    The spectrometer could also help scientists determine why planets, stars and other structures in the universe are made of matter rather than antimatter. Particles of antimatter have the opposite charge as their matter counterparts but are identical in nearly every other way. It’s uncertain why most of the antimatter particles disappeared just after the Big Bang 13.8 billion years ago. Physicists would love to discover primordial antimatter to test their theories on what hastened its demise.

    Sam Ting

    Nearly four years into the mission, the Alpha Magnetic Spectrometer is delivering precise data and arguably providing a few hints about the nature of dark matter. But it’s unclear whether the mission will ever deliver on its ambitious goals. Cosmic rays are charged particles that get whipped around by magnetic fields, so they don’t travel in straight lines and cannot be traced back to their source. To pin the origin of particular cosmic rays to dark matter, scientists will have to rule out every other possible explanation. Critics say the chances of identifying dark matter are very slim. And finding primordial antimatter, they say, is nearly impossible.

    Such criticism barely registers with the mission’s leader, particle physicist Samuel Ting. The 79-year-old Nobel laureate has made a career of designing elegant experiments and, despite frequent opposition, successfully lobbying to get them built. Then he has patiently collected and analyzed data, meticulous to the extreme, before revealing the often-impressive findings. Though results may come later than most scientists would prefer, Ting is confident that conducting a powerful particle physics experiment in space will expand scientists’ understanding of the cosmos.

    Full focus

    Ting’s home base these days is at CERN, the European physics laboratory outside Geneva that partially funds the Alpha Magnetic Spectrometer and is home to the mission’s command center. But on one afternoon in December, Ting is at MIT, where he still runs a lab. His office is housed in a building marked with a capital J that honors his Nobel Prize–winning discovery, the J particle. The alleged reason for Ting’s U.S. visit was to meet with a contractor to discuss renovating his Cambridge, Mass., home. But the contractor confab was brief. For Ting, matters outside of physics take a backseat.

    “You really can’t get into this field without thinking this is the most important thing in your life,” Ting says.

    Two high-definition monitors on his office wall reinforce his obsession. One shows a live feed from the space station, a grainy black-and-white image capturing the spectrometer and our imperceptibly spinning planet below. The other screen plays a computer reconstruction of the instrument in action. In nearly real time, cosmic rays pass through its magnet, triggering a slate of sensors that determine the particles’ identity, energy and trajectory.

    Ting doesn’t have a background in astrophysics, but he has plenty of experience sorting through a glut of particles to find really cool stuff.

    He pulls up a 1965 New York Times article on his computer. The article describes Ting’s first major discovery, when he, Leon Lederman (who won the 1988 Nobel Prize in physics) and colleagues produced and detected antimatter nuclei for the first time. (A team at CERN made a similar discovery soon after.) It’s difficult enough to observe single particles of antimatter because they disappear in a burst of energy when they encounter ordinary matter. Ting and Lederman managed to observe bound pairs of antimatter particles, called antideuterons, in a particle accelerator at Brookhaven National Laboratory in Upton, N.Y.

    Ting’s childlike curiosity quickly comes across as he describes the possibility that antideuterons and other large chunks of antimatter, relics of the first moments after the Big Bang, could be drifting in the cosmos, waiting to be found. But beneath the inquisitiveness is also an extreme confidence, even an arrogance, that he alone knows the way to probe the big questions.

    Those qualities were on display in the early 1970s when Ting became interested in quarks, tiny parcels that compose such particles as protons and neutrons. Physicists had proposed and discovered evidence for three kinds of quarks. But Ting, eager to unravel every detail about matter’s makeup, joined a group of physicists who wondered whether there were other quark varieties. He proposed colliding particles at high energies, which would create short-lived matter that ultimately decayed into electrons and their antimatter counterparts, positrons. By analyzing the electrons and positrons, he could determine the composition of the intermediate particles.

    Ting says many physicists scoffed at his proposal; they believed that the three quarks could explain all the more complex particles in physics. Multiple labs turned him down before Brookhaven let him give it a try.

    In the summer of 1974, Ting and his team saw convincing signs of a new subatomic particle with an unusual composition. But Ting refused to release the data until he was sure everything was correct. He split his team into two groups that independently analyzed the data again and again. Only in November of that year, when a colleague at a meeting told Ting that particle physicist Burton Richter had seen the same signal at the Stanford Linear Accelerator Center, did Ting share his finding. The confirmation of a fourth quark, the charm, embedded in a particle that Ting called J and Richter called Psi earned Ting a share (with Richter) of the 1976 Nobel Prize in physics. Ting’s experimental design skill, combined with large doses of meticulousness, smarts and stubbornness, had netted him the ultimate physics honor. He was 40 years old.

    From there, Ting kept pursuing big projects. In the late 1980s, he organized a team to design a detector for the multibillion-dollar Superconducting  Super Collider, an 87-kilometer-around particle accelerator slated for construction near Waxahachie, Texas. Ting wanted to build a $750 million instrument; the U.S. Department of Energy said the detector should not cost more than $500 million. So Ting quit. “He was very determined to do it his way,” says Gary Sanders, a high-energy physicist and former Ting graduate student who was part of that team.

    In 1993, Congress dealt American physicists a devastating blow by canceling the Super Collider. Ting, however, had moved on. In 1994, he pitched perhaps the most ambitious project of his career.

    Like his first major experiment, it would hunt for antideuterons and other antimatter nuclei. And similar to his Nobel-winning research, it would use electrons and positrons as probes to identify undiscovered parent particles. Except instead of sorting through shrapnel created in carefully orchestrated particle collisions, he wanted to go after particles produced naturally in the universe. The Alpha Magnetic Spectrometer experiment would collect and analyze particles in space.

    Both NASA and the Department of Energy, the same agency that rejected Ting’s plan for the detector in Texas, pledged their support.

    From lab to liftoff

    Scientists have studied cosmic rays for a century in hope of learning about the objects that produce them. But Ting’s proposal offered the rare chance to create a robust census of cosmic rays from well above Earth’s meddlesome atmosphere. Most previous experiments took place on balloons, which fly only briefly and don’t leave the atmosphere, or on the ground, forcing scientists to analyze cascading showers of particles triggered by cosmic rays striking atoms in the atmosphere.

    Those past experiments still delivered some tantalizing results. In 1997, the High-Energy Antimatter Telescope, or HEAT, a cosmic ray detector tethered to a high-altitude balloon, revealed an unexpectedly high concentration of positrons in space. At the time, physicists didn’t know of many processes in the universe that could produce positrons, so theorists quickly came up with some ideas. The most intriguing possibility was that the positrons were created by particles of dark matter in the galaxy. Though the dark matter particles would be invisible, they would occasionally collide and annihilate each other to produce gamma radiation and detectable particles, including electrons and positrons. If these dark matter theories were correct, then a precise measurement of cosmic ray positrons would enable physicists to pin down the nature and mass of dark matter particles.

    But dark matter wasn’t the only explanation. Other theorists proposed positron-forming mechanisms that have far less relevance for deciphering the universe. Atop the list were pulsars — dense, rapidly spinning cores left over after massive stars explode. A pulsar’s rapid rotational speed generates an intense electromagnetic field strong enough to rip electrons from its surface. Those electrons interact with photons and create pairs of electrons and positrons. Calculations suggested that just one or two pulsars, which are difficult to detect, within hundreds of light-years of the solar system would be enough to litter Earth with positrons.

    Despite the intriguing quandary exposed by HEAT, some scientists doubted that the Alpha Magnetic Spectrometer could add much to the positron origin debate or resolve any big physics mysteries. But Ting was determined to see his project fly. He assembled a 16-country collaboration to divide the work and the ballooning costs. When the 2003 explosion of the space shuttle Columbia led NASA to rescind its offer of a ride to the space station, Ting lobbied members of Congress, teasing at the wonders that could be hidden in cosmic rays and stressing the International Space Station’s not-so-stellar reputation for housing serious science.

    “If you told Sam that to get what he wanted he had to win the Indy 500, he’d become the world’s best race car driver,” says Richard Milner, the director of MIT’s Laboratory for Nuclear Science, who oversees Ting’s group. Ting wouldn’t let up on government officials in Washington, even as many of his collaborators focused on other projects.

    He was very persuasive, says Kay Bailey Hutchison, at the time a U.S. Senator from Texas. She says Ting convinced her and others that the mission was worth the cost and safety concerns of extending the beleaguered shuttle program. “He’s such a visionary,” she says. She was inspired enough to switch appropriations subcommittees to find funding for the project. In October 2008, President George W. Bush signed a bill adding shuttle flights so that the Alpha Magnetic Spectrometer would hitch a ride on one of them. “Without [Ting’s] absolute unwillingness to give up, we would not have gotten it,” Hutchison says.

    By the time Ting’s brainchild reached the space station in May 2011, a couple of space-based cosmic ray experiments had beaten his spectrometer to the punch. In 2008, PAMELA, a cosmic ray detector attached to a Russian reconnaissance satellite, revealed the same positron excess hinted at by HEAT. NASA’s Fermi Gamma-ray Space Telescope, which also carries a cosmic ray detector, came up with similar results in 2011. Neither probe discerned the source of the positrons, however.

    PAMELA Cosmic Ray Detector

    NASA Fermi Telescope
    NASA’s Fermi Gamma-ray Space Telescope

    POSITRON PUZZLE The positron measurements (as a fraction of the total number of positrons and electrons) made by the Alpha Magnetic Spectrometer (AMS) are shown with solid red circles in this graph. Measurements made by previous instruments (see legend) had much larger margins of error, as indicated by the lines above and below each data point. [Source: L. Accardo et al/Phys. Rev. Lett. 2014]

    Ting’s instrument began its cosmic ray survey almost immediately after installation, collecting as much data in one day as PAMELA did in 50. It sifted through positively charged particles, most of which are protons, and picked out the more valuable positrons. Ting, true to form, took his time before releasing the first results. “I doubt in the next 20 years anyone will be able to repeat the experiment,” he says. “There’s nobody to check us. It’s of the utmost importance to get it correct.”

    Ting broke his silence with a news conference at CERN in April 2013. After again employing two separate teams to comb through the data, he confirmed the positron excess detected by HEAT, PAMELA and Fermi (SN: 5/4/13, p. 14). Analyzing the properties of 6.8 million positrons and electrons, Ting’s team found that the number of positrons keeps rising as the particle energies increase. The clear excess of positrons, Ting said, reinforces that something relatively nearby must be producing them. He pushed the dark matter explanation but admitted it was not the only possibility.

    Ting returned for another news conference in September. This time, after poring over 10.9 million positrons and electrons, Ting’s team pinpointed the energy, about 275 billion electron volts, at which the concentration of positrons stops increasing (see graph above). That’s an interesting number, says Peter McIntyre, a high-energy physicist at Texas A&M University in College Station, because it indicates that the mass of hypothetical dark matter particles limits the energy of the positrons they can produce. Theorists could use the peak positron energy to estimate dark matter’s mass. But again, the experiment did not come close to proving that dark matter actually produced the positrons.


    X-ray: NASA/CXC/Univ. of Toronto/M. Durant et al; Optical: DSS/Davide De Martin

    Pulsars, like the Vela pulsar located about 1,000 light-years away, are rapidly spinning dense cores of former stars. Nearby pulsars may produce the unexplained excess of positrons detected by the Alpha Magnetic Spectrometer and other experiments.
    What is it?

    Dark matter A form of matter that accounts for most of the mass in a galaxy but does not consist of the ordinary kind of matter found on Earth.

    Pulsar A dense, rapidly spinning remnant of a star that was initially much more massive than the sun.
    How would it produce positrons?

    Dark matter In theory, two dark matter particles can collide and annihilate each other to produce electrons and positrons.

    Pulsar The collision of photons with speedy electrons ripped from a pulsar’s surface by intense electromagnetic fields produces electrons and positrons.

    What are the implications?

    Dark matter Finding positrons from dark matter would help scientists to determine the type and mass of dark matter particles, resolving a decades-long mystery.

    Pulsar Positrons from pulsars would reveal something about particles that pulsars create. But it would not lead to big-picture understanding of the universe.

    In fact, some physicists argue that the Alpha Magnetic Spectrometer, despite its unmatched particle-detecting prowess, can never definitively distinguish between dark matter annihilation, pulsars or a yet-to-be-discovered process that might be producing those surplus shards of antimatter.

    “A pulsar could explain any observation that AMS could ever make,” says Gregory Tarlé, a particle astrophysicist at the University of Michigan in Ann Arbor. No matter what the positron data, physicists will not be able to definitively isolate the alleged signal of dark matter, he argues.

    Katherine Freese, a theoretical astrophysicist at the Nordic Institute for Theoretical Physics in Stockholm, agrees that conclusively proving dark matter from positrons will be very difficult. “My bet is on pulsars,” she says.

    Other experiments also suggest that AMS has a slim chance of making a compelling case for dark matter. In a study posted online in January at arXiv.org, physicists pored over Fermi telescope measurements to look for gamma radiation, which should also be produced when dark matter particles annihilate each other. The data ruled out most dark matter collision mechanisms proposed by theorists. And in December, scientists with the Planck satellite announced that their survey of the universe’s most ancient light revealed no signs of detritus from colliding dark matter, which if self-annihilating now also should have been when the cosmos was young (SN: 12/27/14, p. 11).

    ESA Planck

    Ting says he pays about as much attention to other experiments as he does to his critics. He monitors the scientific literature, but doesn’t put much stock in blanket conclusions based on one set of data. “I learned a long time ago: Only look at your own experiment,” he says.

    He expects to learn more by studying positrons at higher energies. If the mass of a dark matter particle is, say, one trillion electron volts, then it probably wouldn’t produce positrons with more than a quarter of that energy. So if the positron concentration falls off a cliff after the newly identified peak, Ting says, that would suggest a dark matter origin. Pulsars, on the other hand, should produce positrons with a spectrum of energies that wouldn’t drop so precipitously.

    Within the next year or two, the AMS team will release its first analysis of antiprotons, antimatter particles that Ting says are too heavy to be manufactured by pulsars but should be produced in dark matter collisions. Ting calls the preliminary results “intriguing.” But of course, he won’t offer more until all the cross-checks are complete.

    He’s confident that future measurements will allow him to definitively pin down the origin of positrons, whether from dark matter or something else.

    Even if the dark matter picture remains muddled, there is a possibility that AMS will detect primordial antimatter. One of the biggest mysteries in physics is why matter won out in a universe that presumably began with equal parts of matter and antimatter. Ting hopes to find complex antimatter — perhaps antihelium (two antiprotons and two antineutrons) or antideuterons — that was forged just after the Big Bang. Tarlé and other scientists say the chances of detecting these antinuclei are extremely low because the antimatter would have to navigate through the matter-rich galaxy and solar system without being destroyed.

    Ting is undeterred. Gathering insights about the cosmos takes time. Anticipating that funding will run as long as the space station operates, Ting simply wants to see what nature throws at him. “If you don’t look,” he says, “you do not know.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: