Tagged: Scanning tunneling microscopy Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:37 pm on October 5, 2018 Permalink | Reply
    Tags: 'Choosy' Electronic Correlations Dominate Metallic State of Iron Superconductor, , , , , HTS-high-temperature superconductors, , , Scanning tunneling microscopy   

    From Brookhaven National Lab: “‘Choosy’ Electronic Correlations Dominate Metallic State of Iron Superconductor” 

    From Brookhaven National Lab

    October 3, 2018
    Ariana Tantillo
    atantillo@bnl.gov

    Finding could lead to a universal explanation of how two radically different types of materials—an insulator and a metal—can perfectly carry electrical current at relatively high temperatures.

    1
    Scientists discovered strong electronic correlations in certain orbitals, or energy shells, in the metallic state of the high-temperature superconductor iron selenide (FeSe). A schematic of the arrangement of the Se and Fe atoms is shown on the left; on the right is an image of the Se atoms in the termination layer of an FeSe crystal. Only the electron orbitals from the Fe atoms contribute to the orbital selectivity in the metallic state.

    Two families of high-temperature superconductors (HTS)—materials that can conduct electricity without energy loss at unusually high (but still quite cold) temperatures—may be more closely related than scientists originally thought.

    Beyond their layered crystal structures and the fact that they become superconducting when “doped” with atoms of other elements and cooled to a critical temperature, copper-based and iron-based HTS seemingly have little in common. After all, one material is normally an insulator (copper-based), and the other is a metal (iron-based). But a multi-institutional team of scientists has now presented new evidence suggesting that these radically different materials secretly share an important feature: strong electronic correlations. Such correlations occur when electrons move together in a highly coordinated way.

    “Theory has long predicted that strong electronic correlations can remain hidden in plain sight in a Hund’s metal,” said team member J.C. Seamus Davis, a physicist in the Condensed Matter Physics and Materials Science at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and the James Gilbert White Distinguished Professor in the Physical Sciences at Cornell University. “A Hund’s metal is a unique new type of electronic fluid in which the electrons from different orbitals, or energy shells, maintain very different degrees of correlation as they move through the material. By visualizing the orbital identity and correlation strength for different electrons in the metal iron selenide (FeSe), we discovered that orbital-selective strong correlations are present in this iron-based HTS.”

    It is yet to be determined if such correlations are characteristic of iron-based HTS in general. If proven to exist across both families of materials, they would provide the universal key ingredient in the recipe for high-temperature superconductivity. Finding this recipe has been a holy grail of condensed matter physics for decades, as it is key to developing more energy-efficient materials for medicine, electronics, transportation, and other applications.

    Experiment meets theory

    Since the discovery of iron-based HTS in 2008 (more than 20 years after that of copper-based HTS), scientists have been trying to understand the behavior of these unique materials. Confusion arose immediately because high-temperature superconductivity in copper-based materials emerges from a strongly correlated insulating state, but in iron-based HTS, it always emerges from a metallic state that lacks direct signatures of correlations. This distinction suggested that strong correlations were not essential—or perhaps even relevant—to high-temperature superconductivity. However, advanced theory soon provided another explanation. Because Fe-based materials have multiple active Fe orbitals, intense electronic correlations could exist but remain hidden due to orbital selectivity in the Hund’s metal state, yet still generate high-temperature superconductivity.

    In this study, recently described in Nature Materials, the team—including Brian Andersen of Copenhagen University, Peter Hirschfeld of the University of Florida, and Paul Canfield of DOE’s Ames National Laboratory—used a scanning tunneling microscope to image the quasiparticle interference of electrons in FeSe samples synthesized and characterized at Ames National Lab. Quasiparticle interference refers to the wave patterns that result when electrons are scattered due to atomic-scale defects—such as impurity atoms or vacancies—in the crystal lattice.

    2
    The spectroscopic imaging scanning tunneling microscope used for this study, in three different views.

    Spectroscopic imaging scanning tunneling microcopy can be used to visualize these interference patterns, which are characteristic of the microscopic behavior of electrons. In this technique, a single-atom probe moves back and forth very close to the sample’s surface in extremely tiny steps (as small as two trillionths of a meter) while measuring the amount of electrical current that is flowing between the single atom on the probe tip and the material, under an applied voltage.

    Their analysis of the interference patterns in FeSe revealed that the electronic correlations are orbitally selective—they depend on which orbital each electron comes from. By measuring the strength of the electronic correlations (i.e., amplitude of the quasiparticle interference patterns), they determined that some orbitals show very weak correlation, whereas others show very strong correlation.

    The next question to investigate is whether the orbital-selective electronic correlations are related to superconductivity. If the correlations act as a “glue” that binds electrons together into the pairs required to carry superconducting current—as is thought to happen in the copper-oxide HTS—a single picture of high-temperature superconductivity may emerge.

    Experimental studies were carried out by the former Center for Emergent Superconductivity, a DOE Energy Frontier Research Center at Brookhaven, and the research was supported by DOE’s Office of Science, the Moore Foundation’s Emergent Phenomena in Quantum Physics (EPiQS) Initiative, and a Lundbeckfond Fellowship.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    BNL Campus

    BNL NSLS-II


    BNL NSLS II

    BNL RHIC Campus

    BNL/RHIC Star Detector

    BNL RHIC PHENIX

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.
    i1

     
  • richardmitnick 11:58 am on February 12, 2018 Permalink | Reply
    Tags: , Scanning tunneling microscopy,   

    From U Texas Dallas: “UT Dallas Team’s Microscopic Solution May Save Researchers Big Time” 

    U Texas Dallas

    Feb. 12, 2018

    A University of Texas at Dallas graduate student, his advisor and industry collaborators believe they have addressed a long-standing problem troubling scientists and engineers for more than 35 years: How to prevent the tip of a scanning tunneling microscope from crashing into the surface of a material during imaging or lithography.

    2
    IBM Scanning tunneling microscope

    Details of the group’s solution appeared in the January issue of the journal Review of Scientific Instruments, which is published by the American Institute of Physics.

    Scanning tunneling microscopes (STMs) operate in an ultra-high vacuum, bringing a fine-tipped probe with a single atom at its apex very close to the surface of a sample. When voltage is applied to the surface, electrons can jump or tunnel across the gap between the tip and sample.

    1
    Farid Tajaddodianfar

    “Think of it as a needle that is very sharp, atomically sharp,” said Farid Tajaddodianfar, a mechanical engineering graduate student in the Erik Jonsson School of Engineering and Computer Science. “The microscope is like a robotic arm, able to reach atoms on the sample surface and manipulate them.”

    The problem is, sometimes the tungsten tip crashes into the sample. If it physically touches the sample surface, it may inadvertently rearrange the atoms or create a “crater,” which could damage the sample. Such a “tip crash” often forces operators to replace the tip many times, forfeiting valuable time.

    Dr. John Randall is an adjunct professor at UT Dallas and president of Zyvex Labs, a Richardson, Texas-based nanotechnology company specializing in developing tools and products that fabricate structures atom by atom. Zyvex reached out to Dr. Reza Moheimani, a professor of mechanical engineering, to help address STMs’ tip crash problem. Moheimani’s endowed chair was a gift from Zyvex founder James Von Ehr MS’81, who was honored as a distinguished UTD alumnus in 2004.

    “What they’re trying to do is help bring atomically precise manufacturing into reality,” said Randall, who co-authored the article with Tajaddodianfar, Moheimani and Zyvex Labs’ James Owen. “This is considered the future of nanotechnology, and it is extremely important work.”

    Randall said such precise manufacturing will lead to a host of innovations.

    “By building structures atom by atom, you’re able to create new, extraordinary materials,” said Randall, who is co-chair of the Jonsson School’s Industry Engagement Committee. “We can remove impurities and make materials stronger and more heat resistant. We can build quantum computers. It could radically lower costs and expand capabilities in medicine and other areas. For example, if we can better understand DNA at an atomic and molecular level, that will help us fine-tune and tailor health care according to patients’ needs. The possibilities are endless.”

    In addition, Moheimani, a control engineer and expert in nanotechnology, said scientists are attempting to build transistors and quantum computers from a single atom using this technology.

    “There’s an international race to build machines, devices and 3-D equipment from the atom up,” said Moheimani, the James Von Ehr Distinguished Chair in Science and Technology.

    ‘It’s a Big, Big Problem’

    Randall said Zyvex Labs has spent a lot of time and money trying to understand what happens to the tips when they crash.

    “It’s a big, big problem,” Randall said. “If you can’t protect the tip, you’re not going to build anything. You’re wasting your time.”

    Tajaddodianfar and Moheimani said the issue is the controller.

    “There’s a feedback controller in the STM that measures the current and moves the needle up and down,” Moheimani said. “You’re moving from one atom to another, across an uneven surface. It is not flat. Because of that, the distance between the sample and tip changes, as does the current between them. While the controller tries to move the tip up and down to maintain the current, it does not always respond well, nor does it regulate the tip correctly. The resulting movement of the tip is often unstable.”

    It’s the feedback controller that fails to protect the tip from crashing into the surface, Tajaddodianfar said.

    “When the electronic properties are variable across the sample surface, the tip is more prone to crash under conventional control systems,” he said. “It’s meant to be really, really sharp. But when the tip crashes into the sample, it breaks, curls backward and flattens.

    “Once the tip crashes into the surface, forget it. Everything changes.”

    The Solution

    According to Randall, Tajaddodianfar took logical steps for creating the solution.

    “The brilliance of Tajaddodianfar is that he looked at the problem and understood the physics of the tunneling between the tip and the surface, that there is a small electronic barrier that controls the rate of tunneling,” Randall said. “He figured out a way of measuring that local barrier height and adjusting the gain on the control system that demonstrably keeps the tip out of trouble. Without it, the tip just bumps along, crashing into the surface. Now, it adjusts to the control parameters on the fly.”

    Moheimani said the group hopes to change their trajectory when it comes to building new devices.

    “That’s the next thing for us. We set out to find the source of this problem, and we did that. And, we’ve come up with a solution. It’s like everything else in science: Time will tell how impactful our work will be,” Moheimani said. “But I think we have solved the big problem.”

    Randall said Tajaddodianfar’s algorithm has been integrated with its system’s software but is not yet available to customers. The research was made possible by funding from the Army Research Office and the Defense Advanced Research Projects Agency.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The University of Texas at Dallas is a Carnegie R1 classification (Doctoral Universities – Highest research activity) institution, located in a suburban setting 20 miles north of downtown Dallas. The University enrolls more than 27,600 students — 18,380 undergraduate and 9,250 graduate —and offers a broad array of bachelor’s, master’s, and doctoral degree programs.

    Established by Eugene McDermott, J. Erik Jonsson and Cecil Green, the founders of Texas Instruments, UT Dallas is a young institution driven by the entrepreneurial spirit of its founders and their commitment to academic excellence. In 1969, the public research institution joined The University of Texas System and became The University of Texas at Dallas.

    A high-energy, nimble, innovative institution, UT Dallas offers top-ranked science, engineering and business programs and has gained prominence for a breadth of educational paths from audiology to arts and technology. UT Dallas’ faculty includes a Nobel laureate, six members of the National Academies and more than 560 tenured and tenure-track professors.

     
  • richardmitnick 8:58 pm on October 12, 2017 Permalink | Reply
    Tags: "The spin property of Majoranas distinguishes them from other types of quasi-particles that emerge in materials", An elusive particle notable for behaving simultaneously like matter and antimatter, , , , , Scanning tunneling microscopy   

    From Research at Princeton Blog: “Spotting the spin of the Majorana fermion under the microscope” 

    Princeton University
    Research at Princeton Blog

    October 12, 2017
    Catherine Zandonella, Office of the Dean for Research

    1
    The figure shows a schematic of the experiment. A magnetized scanning tunneling microscope tip was used to probe the spin property of the quantum wave function of the Majorana fermion at the end of a chain of iron atoms on the surface of a superconductor made of lead. Image courtesy of Yazdani Lab, Princeton University.

    Researchers at Princeton University have detected a unique quantum property of an elusive particle notable for behaving simultaneously like matter and antimatter. The particle, known as the Majorana fermion, is prized by researchers for its potential to open the doors to new quantum computing possibilities.

    In the study published this week in the journal Science, the research team described how they enhanced an existing imaging technique, called scanning tunneling microscopy, to capture signals from the Majorana particle at both ends of an atomically thin iron wire stretched on the surface of a crystal of lead. Their method involved detecting a distinctive quantum property known as spin, which has been proposed for transmitting quantum information in circuits that contain the Majorana particle.

    “The spin property of Majoranas distinguishes them from other types of quasi-particles that emerge in materials,” said Ali Yazdani, Princeton’s Class of 1909 Professor of Physics. “The experimental detection of this property provides a unique signature of this exotic particle.”

    The finding builds on the team’s 2014 discovery, also published in Science, of the Majorana fermion in a single atom-wide chain of iron atoms atop a lead substrate. In that study, the scanning tunneling microscope was used to visualize Majoranas for the first time, but provided no other measurements of their properties.

    “Our aim has been to probe some of the specific quantum properties of Majoranas. Such experiments provide not only further confirmation of their existence in our chains, but open up possible ways of using them.” Yazdani said.

    First theorized in the late 1930s by the Italian physicist Ettore Majorana, the particle is fascinating because it acts as its own antiparticle. In the last few years, scientists have realized that they can engineer one-dimensional wires, such as the chains of atoms on the superconducting surface in the current study, to make Majorana fermions emerge in solids. In these wires, Majoranas occur as pairs at either end of the chains, provided the chains are long enough for the Majoranas to stay far enough apart that they do not annihilate each other. In a quantum computing system, information could be simultaneously stored at both ends of the wire, providing a robustness against outside disruptions to the inherently fragile quantum states.

    Previous experimental efforts to detect Majoranas have used the fact that it is both a particle and an antiparticle. The telltale signature is called a zero-bias peak in a quantum tunneling measurement. But studies have shown that such signals could also occur due to a pair of ordinary quasiparticles that can emerge in superconductors. Professor of Physics Andrei Bernevig and his team, who with Yazdani’s group proposed the atomic chain platform, developed the theory that showed that spin-polarized measurements made using a scanning tunneling microscope can distinguish between the presence of a pair of ordinary quasi-particles and a Majorana.

    Typically, scanning tunneling microscopy (STM) involves dragging a fine-tipped electrode over a structure, in this case the chain of iron atoms, and detecting its electronic properties, from which an image can be constructed. To perform spin-sensitive measurements, the researchers create electrodes that are magnetized in different orientations. These “spin-polarized” STM measurements revealed signatures that agree with the theoretical calculations by Bernevig and his team.

    “It turns out that, unlike in the case of a conventional quasi-particle, the spin of the Majorana cannot be screened out by the background. In this sense it is a litmus test for the presence of the Majorana state,” Bernevig said.

    The quantum spin property of Majorana may also make them more useful for applications in quantum information. For example, wires with Majoranas at either end can be used to transfer information between far away quantum bits that rely on the spin of electrons. Entanglement of the spins of electrons and Majoranas may be the next step in harnessing their properties for quantum information transfer.

    The STM studies were conducted by three co-first authors in the Yazdani group: scientist Sangjun Jeon, graduate student Yonglong Xie, and former postdoctoral research associate Jian Li (now a professor at Westlake University in Hangzhou, China). The research also included contributions from postdoctoral research associate Zhijun Wang in Bernevig’s group.

    This work has been supported by the Gordon and Betty Moore Foundation as part of the EPiQS initiative (grant GBMF4530), U.S. Office of Naval Research (grants ONR-N00014-14-1-0330, ONR-N00014-11-1-0635, and ONR- N00014-13-1-0661) , the National Science Foundation through the NSF-MRSEC program (grants DMR-142054 and DMR-1608848) and an EAGER Award (grant NOA -AWD1004957), the U.S. Army Research Office MURI program (grant W911NF-12-1-046), the U.S. Department of Energy Office of Basic Energy Sciences, the Simons Foundation, the David and Lucile Packard Foundation, and the Eric and Wendy Schmidt Transformative Technology Fund at Princeton.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    Princeton University Campus

    About Princeton: Overview

    Princeton University is a vibrant community of scholarship and learning that stands in the nation’s service and in the service of all nations. Chartered in 1746, Princeton is the fourth-oldest college in the United States. Princeton is an independent, coeducational, nondenominational institution that provides undergraduate and graduate instruction in the humanities, social sciences, natural sciences and engineering.

    As a world-renowned research university, Princeton seeks to achieve the highest levels of distinction in the discovery and transmission of knowledge and understanding. At the same time, Princeton is distinctive among research universities in its commitment to undergraduate teaching.

    Today, more than 1,100 faculty members instruct approximately 5,200 undergraduate students and 2,600 graduate students. The University’s generous financial aid program ensures that talented students from all economic backgrounds can afford a Princeton education.

    Princeton Shield

     
  • richardmitnick 12:55 pm on June 26, 2017 Permalink | Reply
    Tags: 1T’-WTe2, , , , , , , Scanning tunneling microscopy, ,   

    From LBNL: “2-D Material’s Traits Could Send Electronics R&D Spinning in New Directions” 

    Berkeley Logo

    Berkeley Lab

    June 26, 2017
    Glenn Roberts Jr
    geroberts@lbl.gov
    (510) 486-5582

    1
    This animated rendering shows the atomic structure of a 2-D material known as 1T’-WTe2 that was created and studied at Berkeley Lab’s Advanced Light Source. (Credit: Berkeley Lab.)

    An international team of researchers, working at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley, fabricated an atomically thin material and measured its exotic and durable properties that make it a promising candidate for a budding branch of electronics known as “spintronics.”

    The material – known as 1T’-WTe2 – bridges two flourishing fields of research: that of so-called 2-D materials, which include monolayer materials such as graphene that behave in different ways than their thicker forms; and topological materials, in which electrons can zip around in predictable ways with next to no resistance and regardless of defects that would ordinarily impede their movement.

    At the edges of this material, the spin of electrons – a particle property that functions a bit like a compass needle pointing either north or south – and their momentum are closely tied and predictable.

    2
    A scanning tunneling microscopy image of a 2-D material created and studied at Berkeley Lab’s Advanced Light Source (orange, background). In the upper right corner, the blue dots represent the layout of tungsten atoms and the red dots represent tellurium atoms. (Credit: Berkeley Lab.)

    This latest experimental evidence could elevate the material’s use as a test subject for next-gen applications, such as a new breed of electronic devices that manipulate its spin property to carry and store data more efficiently than present-day devices. These traits are fundamental to spintronics.

    The material is called a topological insulator because its interior surface does not conduct electricity, and its electrical conductivity (the flow of electrons) is restricted to its edges.

    “This material should be very useful for spintronics studies,” said Sung-Kwan Mo, a physicist and staff scientist at Berkeley Lab’s Advanced Light Source (ALS) who co-led the study, published today in Nature Physics.

    LBNL/ALS

    “We’re excited about the fact that we have found another family of materials where we can both explore the physics of 2-D topological insulators and do experiments that may lead to future applications,” said Zhi-Xun Shen, a professor in Physical Sciences at Stanford University and the Advisor for Science and Technology at SLAC National Accelerator Laboratory who also co-led the research effort.

    “This general class of materials is known to be robust and to hold up well under various experimental conditions, and these qualities should allow the field to develop faster,” he added.

    The material was fabricated and studied at the ALS, an X-ray research facility known as a synchrotron. Shujie Tang, a visiting postdoctoral researcher at Berkeley Lab and Stanford University, and a co-lead author in the study, was instrumental in growing 3-atom-thick crystalline samples of the material in a highly purified, vacuum-sealed compartment at the ALS, using a process known as molecular beam epitaxy.

    The high-purity samples were then studied at the ALS using a technique known as ARPES (or angle-resolved photoemission spectroscopy), which provides a powerful probe of materials’ electron properties.

    3
    Beamline 10.0.1 at Berkeley Lab’s Advanced Light Source enables researchers to both create and study atomically thin materials. (Credit: Roy Kaltschmidt/Berkeley Lab.)

    “After we refined the growth recipe, we measured it with ARPES. We immediately recognized the characteristic electronic structure of a 2-D topological insulator,” Tang said, based on theory and predictions. “We were the first ones to perform this type of measurement on this material.”

    But because the conducting part of this material, at its outermost edge, measured only a few nanometers thin – thousands of times thinner than the X-ray beam’s focus – it was difficult to positively identify all of the material’s electronic properties.

    So collaborators at UC Berkeley performed additional measurements at the atomic scale using a technique known as STM, or scanning tunneling microscopy. “STM measured its edge state directly, so that was a really key contribution,” Tang said.

    The research effort, which began in 2015, involved more than two dozen researchers in a variety of disciplines. The research team also benefited from computational work at Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC).

    NERSC Cray Cori II supercomputer

    LBL NERSC Cray XC30 Edison supercomputer

    Two-dimensional materials have unique electronic properties that are considered key to adapting them for spintronics applications, and there is a very active worldwide R&D effort focused on tailoring these materials for specific uses by selectively stacking different types.

    “Researchers are trying to sandwich them on top of each other to tweak the material as they wish – like Lego blocks,” Mo said. “Now that we have experimental proof of this material’s properties, we want to stack it up with other materials to see how these properties change.”

    A typical problem in creating such designer materials from atomically thin layers is that materials typically have nanoscale defects that can be difficult to eliminate and that can affect their performance. But because 1T’-WTe2 is a topological insulator, its electronic properties are by nature resilient.

    “At the nanoscale it may not be a perfect crystal,” Mo said, “but the beauty of topological materials is that even when you have less than perfect crystals, the edge states survive. The imperfections don’t break the key properties.”

    Going forward, researchers aim to develop larger samples of the material and to discover how to selectively tune and accentuate specific properties. Besides its topological properties, its “sister materials,” which have similar properties and were also studied by the research team, are known to be light-sensitive and have useful properties for solar cells and for optoelectronics, which control light for use in electronic devices.

    The ALS and NERSC are DOE Office of Science User Facilities. Researchers from Stanford University, the Chinese Academy of Sciences, Shanghai Tech University, POSTECH in Korea, and Pusan National University in Korea also participated in this study. This work was supported by the Department of Energy’s Office of Science, the National Science Foundation, the National Science Foundation of China, the National Research Foundation (NRF) of Korea, and the Basic Science Research Program in Korea.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: