Tagged: Sanford Underground Laboratory Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:55 pm on December 8, 2015 Permalink | Reply
    Tags: , , , Sanford Underground Laboratory   

    From SURF: “4850 Feet Below: The Hunt for Dark Matter” 

    SURF logo

    Sanford Underground levels

    Sanford Underground Research facility

    Oct 5, 2015
    Deep in an abandoned gold mine in rural South Dakota, a team of physicists are hunting for astrophysical treasure. Their rare and elusive quarry is dark matter, a theoretical particle which has never been seen or directly detected. Yet its gravitational effect on distant galaxies hints at its existence and provides ample evidence to fuel the experiments and aspirations of scientists at the Sanford Underground Research Facility. Insulated by 4,850 feet of rock, the researchers have constructed the world’s most sensitive particle detector, known as the Large Underground Xenon Experiment, or “LUX.

    LUX Dark matter
    Lux Dark Matter 2
    LUX

    Their goal is to use this complex device to capture an epiphanous event: the interaction between dark matter and atoms inside a chilled tank of liquid xenon. If they’re successful, the researchers may not only solve some of the biggest mysteries in astrophysics but affirm their faith in the nature of dark matter.

    “4850 Feet Below” was produced with generous support from the John Templeton Foundation.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s. In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE) [being replaced by DUNE]—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE [DUNE] will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 11:32 am on November 26, 2015 Permalink | Reply
    Tags: , , Sanford Underground Laboratory,   

    From SPACE.com: ” To See Deep into Space, Start Deep Underground” 

    space-dot-com logo

    SPACE.com

    November 25, 2015
    Constance Walter, Sanford Underground Research Facility

    1
    The Davis Cavern on the 4850 Level of the Sanford Underground Research Facility was once home to Ray Davis’s Nobel Prize-winning solar neutrino experiment. The cavern has been enlarged, the walls coated in a spray-on concrete (shotcrete) and outfitted for the Large Underground Xenon (LUX) experiment. Credit: Matthew Kapust, Sanford Underground Research Facility, © South Dakota Science and Technology Authority

    In 1969, Neil Armstrong fired my imagination when he took “a giant leap” onto the moon. I was 11 years old as I watched him take that first step, and like millions around the world, I was riveted to the screen. Today I wonder how I would have reacted if the news anchor had simply described this incredible moment. Would I have been so excited? So inspired? So eager to learn more? I don’t think so. It was seeing the story unfold that made it magical, that pulled me into the story.

    How we see the world impacts how we view it: That first glimpse of outer space sparked an interest in science. And although I didn’t become a scientist, I found a career in science, working with researchers at Sanford Underground Research Facility in Lead, South Dakota, explaining the abstract and highly complex physics experiments in ways the rest of us can appreciate. It isn’t always easy. Ever heard of neutrinoless double-beta decay? Probably not. If I told you this rare form of nuclear decay could go a long way in helping us understand some of the mysteries of the universe, would you get the picture? Maybe. The words are important, but an illustration or animation might give you a better idea.

    Kathryn Jepsen, editor-in-chief of the physics magazine Symmetry, captured this need for the visual in this way: In trying to create images for her readers, she is never sure if her intent is what readers “see” in their mind’s eye — so she works with illustrators, videographers and photographers to create the images she wants them to see. “Videos and animations show them exactly what we want to get across,” Jepsen said.

    And such visualizations can be profound. Take a look at this operatic animation from Oak Ridge National Laboratory. Created using simulations run on the supercomputers at the National Center of Computational Sciences, it shows the expected operation of the ITER fusion reactor. The video clearly outlines the objectives of the experiment, but the animation allows greater understanding as to how the fusion reactor could be used to create energy.


    download the mp4 video here.

    Digging deep into science bedrock

    The Sanford Lab has many stories to tell: complex research experiments, a Nobel Prize, and a 126-year history as a mine, to name a few. We write stories for a newsletter called Deep Thoughts, the Sanford Lab website and other publications. But we don’t rely solely on words. Photographs and video play a big role in how we present the lab to the world.

    Researchers at Sanford Lab go deep underground to try to answer some of the most challenging physics questions about the universe. What is the origin of matter? What is dark matter and how do we know it exists? What are the properties of neutrinos? Going deep underground may help them answer these fundamental questions about the universe.

    Here’s how: Hold out your hand. On the Earth’s surface, thousands of cosmic rays pass through it every day. But nearly a mile underground, where these big physics experiments operate, it’s more than a million times quieter. The rock acts as a natural shield, blocking most of the radiation that can interfere with sensitive physics experiments. It turns out Sanford Lab is particularly suited to large physics experiments for another reason — the hard rock of the former Homestake Gold Mine is perfect for excavating the large caverns needed for big experiments.

    From 1876 to 2001, miners pulled more than 40 million ounces of gold and 9 million ounces of silver from the mine. In the beginning they mined with pickaxes, hammers and shovels — often in the dark with only candles for light. As they dug deeper, they brought wagons and mules underground to haul ore. Some animals were born, raised and died without ever seeing the sunshine. By the early 1900s, Homestake was using locomotives, drills and lights. By the early 1980s, the mine reached 8,000 feet, becoming the deepest gold mine in North America, with tunnels and drifts pocketing 370 miles of underground. At its heyday, Homestake employed nearly 2,000 people, but as gold prices plummeted and operation costs soared, the company began decreasing operations and reducing staff.

    Finally, in 2001, the Barrick Gold Corp., which owned the mine, closed the facility. Five years later, the company donated the property to South Dakota for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. Since then, the state has committed more than $45 million in funds to the project. Early on, South Dakota received a $10 million Community Development Block Grant to help rehabilitate the aging facility.

    Part of the glamor of using Homestake to build a deep underground science laboratory was its history as a physics landmark. Starting in the mid-1960s, nuclear chemist Ray Davis operated his solar neutrino experiment 4,850 feet underground (designated the 4850 Level) of Homestake mine. Using a 100,000-gallon tank full of perchloroethylene (fluid used in dry cleaning), Davis looked for interactions between neutrinos and the chlorine atoms, believing they would change into argon atoms.

    Far from the mining activity, Davis worked for nearly three decades to prove the theory developed with his collaborator John Bahcall, professor of astrophysics in the School of Natural Sciences at the Institute for Advanced Study at Princeton. The two proposed that the mysteries of the sun could be examined by measuring the number of neutrinos arriving on Earth from the sun. By the 1970s, Davis proved the theory worked; however, there was a slight problem: Davis found only one-third of the neutrinos predicted based on the standard solar and particle physics model. This led to the solar neutrino problem.

    “The solar neutrino problem caused great consternation among physicists and astrophysicists,” Davis said years later. “My opinion in the early years was that something was wrong with the standard solar model; many physicists thought there was something wrong with my experiment.”

    Scientists at underground laboratories around the world wanted an answer to this riddle. Eventually, the mystery was solved by researchers in two separate experiments: one at SNOLab in Canada, the other at the Super-Kamiokande Collaboration in Japan.

    SNOLAB
    SNOLab

    Super-Kamiokande experiment Japan
    Super-Kamiokande

    As it turns out, neutrinos are pretty tricky characters, changing flavors as they travel through space, oscillating between electron, muon and tau neutrinos. Davis’s detector was only able to see the electron neutrino.

    In 2002, Davis’s groundbreaking research earned him the Nobel Prize in Physics — energizing physicists to lobby for a laboratory on the hallowed ground at the abandoned Homestake Mine. (This year, Takaaki Kajita of Super-Kamiokande and Arthur McDonald of SNOLab shared the Nobel Prize in Physics for their discoveries of neutrino oscillation.)

    A one-of-a-kind (incredibly deep) hole

    Because of the site’s rich physics history and unique structure, South Dakota and many scientists lobbied to have a billion-dollar deep underground laboratory at the mine, as deep as 7,400 feet — and in 2007 the U.S. National Science Foundation (NSF) selected it as the preferred site for a proposed Deep Underground Science and Engineering Laboratory (DUSEL).

    But in 2010, the National Science Board decided not to fund further design of DUSEL. Physicists, citizens and politicians immediately began seeking other funding sources, and in 2011, the U.S. Department of Energy (DOE), through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments.

    Today, Sanford Lab hosts three large physics experiments nearly a mile underground on the 4850 Level.

    The Large Underground Xenon (LUX) experiment, is looking for dark matter, which makes up most of the matter in the universe, but has yet to be detected.

    We can’t see or touch dark matter, but we know it exists because of its gravitational effects on galaxies and clusters of galaxies. Scientists with LUX use a vessel filled with one-third of a ton of liquid xenon, hoping that when a weakly interacting massive particle, or WIMP, strikes a xenon atom, detectors will recognize the signature. In October 2013, after an initial run of 80 days, LUX was named the most sensitive dark-matter detector in the world.

    3
    LUX watertank just before it was filled with 70,000 gallons of deionized water. Credit: Matthew Kapust, Sanford Underground Research Facility, © South Dakota Science and Technology Authority

    The Majorana experiment brings us back to that obscure-sounding neutrinoless double-beta decay. Neutrinos, among the most abundant particles in the universe, are often called “ghost” particles because they pass through matter like it isn’t there. Scientists with the Majorana experiment hope to spot the rare neutrinoless double-beta decay phenomenon, which could reveal if neutrinos are their own antiparticles.

    4
    The inner copper shielding for the Majorana Demonstrator experiment is actually made of two layers of copper. The outermost layer is the purest copper that can be purchased commercially. The inner layer of copper is the purest in the world. It was “grown” by electroforming in a lab underground at Sanford Lab. Credit: Matthew Kapust, Sanford Underground Research Facility, © South Dakota Science and Technology Authority

    The answer to this question could help us understand why humans — and, indeed, the universe — exist. Majorana needs an environment so clean it was built almost entirely out of copper, electroformed deep underground, and it uses dozens of detectors made of enriched germanium crystals (76Ge) in its quest. The detectors are built in an ultraclean “glove box,” which is purged periodically with nitrogen gas, to ensure not even a single speck of dust will touch the highly sensitive detectors. When completed, the strings of detectors are placed inside a copper vessel that goes into a layered shield for extra protection against the environment.

    CASPAR (Compact Accelerator System for Performing Astrophysical Research) researchers are studying the nuclear processes in stars. Essentially, the goal is to create the same reactions that happen in stars a bit “older” than our sun. If researchers can do that, it could help complete the picture of how the elements in our universe are built. The experiment is undergoing calibration tests and will go online in early 2016.

    CASPAR project
    CASPAR

    But can you see the science?

    Do you have a picture in your mind of each of these experiments? Is it the right picture? It’s not easy. Writers want the public to clearly understand why the science is important. And so we look for images that will complement our stories.

    5
    Delicate work assembling the Majorana cryostat is done inside a glovebox. The cryostat contains strings of hockey puck shaped germainium detectors. Credit: Matthew Kapust, Sanford Underground Research Facility, © South Dakota Science and Technology Authority

    Matt Kapust is the creative services developer at Sanford Lab (the two of us make up the entire communications team). Since 2009, Kapust has been documenting the conversion of the mine into a world-leading research laboratory, using photography and video to record each stage of construction and outfitting.

    “Video is one of the most important tools we have in our tool belt,” Kapust said. “As content developers, we need to find creative ways to explain esoteric science concepts to mainstream audiences in ways that get them excited about science.”

    Film is important for other reasons, as well. “Massive science projects like the ones we have at Sanford Lab are not privately funded, they are not corporate run,” Kapust said. “They are funded by the public and need public support. Film’s mass appeal allows us to tell the stories in new ways and generate that widespread support.”

    Sanford Lab receives $15 million year for operations each year from the DOE. In addition to the $40 million given to support the lab in 2007, South Dakota recently gave the lab nearly $4 million for upgrades to one of the shafts. The individual experiments receive millions of dollars in funding from NSF and DOE, and a proposed future experiment, the Long Baseline Neutrino Facility and associated Deep Underground Neutrino Experiment (LBNF/DUNE) is expected to cost $1 billion. All of this comes from taxpayers. And they want to know where their money is going — and why.

    Our stories, if we do them right, create excitement and spur the public’s collective imagination — I mean, we’re talking about possibly discovering the origins of the universe! When you think about it in those terms, a picture — or video — could be worth a million words, or a billion dollars.

    Nailing down neutrinos

    Kapust points to that billion-dollar experiment as an example. LBNF/DUNE, currently in the planning stages, will be an internationally designed, coordinated and funded collaboration that will attempt to unlock the mysteries of the neutrino.

    Billions of neutrinos pass through our bodies every second. Billions. They are formed in nuclear reactors, the sun (a huge nuclear reactor) and other stars, supernovae and cosmic rays as they strike the Earth’s atmosphere.

    In particular, researchers with LBNF/DUNE want to more fully understand neutrino oscillations, determine the mass of these ghostly particles, and solve the mystery of the matter/antimatter imbalance in the universe. To do this, they will follow the world’s highest-intensity neutrino beam as it travels 800 miles through the Earth, from Fermilab in Batavia, Illinois, to four massive detectors on the 4850 Level of Sanford Lab. And should a star go supernova while the experiment is running, the researchers could learn a lot more.

    6
    Depiction of the Long Baseline Neutrino Facility/Deep Underground Neutrino Experiment. Credit: Fermilab

    LBNF/DUNE will be one of the largest international megascience experiments to ever occur on U.S. soil. The sheer scale of the experiment is mind-boggling.

    For example, the detectors are filled with 13 million gallons of liquid argon, an element used in the SNOLab experiment that discovered neutrino oscillation. And more than 800,000 tons of rock will be excavated to create three caverns — two for the detectors and one for utilities. Each cavern will be nearly the length of two football fields.

    That will require a lot of blasting, and engineers at Sanford Lab want to document the test blasts for a couple of reasons: They want a graphic representation of what the blast will look like and they hope to catch any visual appearance of dust going down the drift. The huge experiment is being built near existing experiments and dust could have a negative impact. Capturing the event on video could help them determine better ways to blast the rock to route the dust away from other sensitive physics experiments. As the experiment moves forward, our team will document each stage. We can’t bring visitors underground, but we can show them our progress.

    Katie Yurkewicz, head of communications at Fermi National Accelerator Laboratory (Fermilab), said, “If words are our only tools, it can be extremely difficult (if not impossible) to get people to that ‘Aha!’ moment of understanding. Video and animations are invaluable in communicating those complex construction and physics topics.”

    In our field, it’s important to seek the expertise and interest of other communicators and the media. “We often rely on documentary filmmakers, news organizations and public broadcasting to help us tell our stories,” Kapust said, citing RAW Science, the BBC and South Dakota Public Broadcasting among those entities. “It’s important for us to be able to work with these groups because we have limited resources. We need the assistance and networking opportunities they offer.”


    download mp4 video here.

    In May 2015, a team from PRI’s Science Friday arrived at Sanford Lab to do a story about LUX and the search for dark matter. The team spent three days filming underground and on the surface. They interviewed scientists, students and administrators. The story was told on radio, of course, but the program also included a 17-minute video on Science Friday’s website. The radio program used sound, tone and words to great effect. But the video takes viewers onto the cage and down the shaft, into a modern, well-lit laboratory, and on a locomotive ride through the dark caverns of the underground. (Science Friday submitted the video for competition in the RAW Science Film Festival, which takes place Dec. 4-5 in Los Angeles.)

    Setting the scenes

    Producing film at Sanford Lab isn’t easy. Trips underground require careful planning, and even a trip action plan, part of a log that keeps track of everyone working underground. Should an emergency arise, the underground will be evacuated; the log ensures everyone gets to the surface safely. Because we are required to spend a lot of time underground, we undergo regular safety training that adds up to several hours a year.

    For every trip, we don restrictive clothing — hardhats as a safety measure and coveralls to keep dust from our clothing — then take an 11-minute ride in a dark cage, or elevator, to laboratories nearly a mile down. We lug our heavy lighting, sound and camera equipment with us, and shoot video in tight spaces. If we forget something, we can’t turn around and go back — the cage only runs at certain times of the day. Bringing our lunch is a definite must. Once underground, we enter the cart wash area, where we remove our coveralls, don clean hardhats, and clean all of the equipment with alcohol wipes — we don’t want to bring any dirt into the lab. Finally, we put booties over our shoes, then enter the laboratory area. One big perk? There’s an espresso machine and a panini press.

    Recently, we did a story about the innermost portion of the six-layered shield around the Majorana Demonstrator project. The shield gives the experiment extra protection from the radiation that permeates through the surrounding rock, especially radon, which can create noise in the experiment. The inner shield is special — it was made with ultrapure electroformed copper grown on the 4850 Level of Sanford Lab. We interviewed physicist Vincent Guiseppe, the mastermind behind the shield, inside the deeply buried class-100 clean room where all the work is done. Despite our precautions, we couldn’t go into the clean room without putting on a “bunny suit”: Tyvek clothing that includes a hood, booties, two pairs of gloves and a face mask, and we had to maneuver carefully as the research continued around us. It was a challenge, but it was worth it to get the story and a stunning image of the shield.

    6
    Randy Hughes works in a cleanroom machine shop nearly one mile underground. He machines all the copper parts for the Majorana Demonstrator experiment. Credit: Matthew Kapust, Sanford Underground Research Facility, © South Dakota Science and Technology Authority

    While the lunar landing inspired my generation to look to the cosmos — and inspired me to want to fly to distant planets, see the Milky Way from a distant galaxy, and learn the secrets of the universe — none of us expected to be looking up from nearly a mile underground. But with the right mix of sights and stories, science is inspiring a new generation, while searching for answers to universal questions using tools that are only now reaching for the stars.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 2:09 pm on September 27, 2015 Permalink | Reply
    Tags: , Sanford Underground Laboratory,   

    From Symmetry: “Scientists below the surface” 

    Symmetry

    September 03, 2015

    2
    Photo by Steve Babbitt, Black Hills State University

    Lauren Biron

    Getting into the Majorana Demonstrator clean room is an adventure. Unless you have to do it every day for work, in which case, it’s probably a chore.

    Majorano Demonstrator Experiment
    U Washington Majorana Demonstrator

    It all starts in Lead, South Dakota, a town once built around and seemingly forever linked to the underground. It’s 10 miles from Sturgis, which celebrated its 75th annual motorcycle rally in August by welcoming almost 1 million bikers. It’s three miles from Deadwood, the 1870s, Wild West version of which is the setting for the eponymous HBO show (though it’s filmed in California).

    Lead, pronounced so that it rhymes with reed and not red, is home to a former goldmine turned science lab. A mile below the surface, it hosts an immaculate clean room where scientists are assembling a detector to find what could be one of the rarest processes in nature, if it occurs at all. Their laboratory is 3230 square feet of scrubbed floor and filtered air, filled with glove boxes, a chemistry lab, hand-machined parts and a big shield made of lead bricks that looked like a pizza oven before it was wrapped in a few additional layers of insulation.

    It’s a unique environment with a bizarre commute. The road to Sanford Lab winds past old brick and timber buildings and the modern Sanford Lab Visitors Center before climbing a steep hill to Summit Avenue. An abrupt left takes scientists through the gate to the set of brick administration buildings and the gateway to the Yates shaft, a tall, white beacon in the Black Hills.

    Sanford Underground levels
    Sanford Underground Research Facility

    After descending a few creaky flights of stairs with bright yellow handrails, scientists gear up. Those who didn’t arrive in dark coveralls with reflective yellow bands slide them on, along with a hard hat, lamp, wraparound safety glasses, a belt or backpack with a rescue breather, and (often) steel-toe boots. Backpacks, lunches, laptops and other gear are placed in thick plastic bags to protect them on the trip down the shaft. Scientists take one of their metal tags from the “Out” board and place it in their pocket, while the twin tag goes on the “In” board, a record of those living the mole lifestyle for the day.

    Then it’s through a series of heavy sliding doors to the staging area where everyone boards the cage—tall people toward the back, shorties in the front. The cage operator talks to the hoist operator, who frees the box and sends it smoothly down through the rock and timber supports.

    It’s a damp yet delightful ride, strangely reminiscent of the Haunted Mansion at Disneyland. For 10 minutes, slabs of wet wood stream past, many with colorful numbers or letters marking repair work or the level of descent. The dizzying streaks are punctuated by black holes, drifts once mined for gold that now disappear into the earth. And for the entire ride, water splatters in, kissing faces and climbing up any coverall leg long and foolish enough to touch the floor.

    One can only imagine how it was for miners descending at three times the speed.

    1
    Photo by: Matt Kapust, Sanford Lab

    A mile below, the cage slows and gently settles near a spot called The Big X, where pathways split and run deep into the darkness or toward the well-lit lab areas. Researchers—and engineers, construction workers, guides and other myriad folk who pass through—run their feet through a boot wash before heading toward the scientific portion of the underground. Then it’s a quick stripping of the coveralls, a helmet exchange, a slip of two pairs of booties around the shoes, and the debagging process—complete with a brief alcohol swipe for object exteriors.

    Another set of doors reveals the shiny brown hallway leading to the experiments. Thin tables run along their exterior in the hallway, the home for researchers working on laptops when not completing the day’s other tasks. A morning meeting to discuss the day’s plan, and then it’s on to the next costume change.

    The machinist and his assistant often head in first. Randy Hughes is the sole machinist underground at Majorana (and perhaps the only machinist working a mile underground anywhere in the world, let alone at a scientific experiment), and he has a tight schedule for creating parts out of special copper electroformed underground, away from radiation.

    Then the scientists get changed. The clean room is not so different from those on the surface—it has special air filtration and is kept free of particulate matter through special procedures and handy yet unexpected items like clean room paper and clean room pens.

    The Majorana lab is a class 100-400 clean room, meaning there can be only 100 to 400 particles larger than half a micron per cubic foot (by comparison, a human hair is 100 microns). Typically, the room has only 100 to 200 particles. Humans are by far the dirtiest things that enter, causing the particle count to spike even with all the precautions.

    First, scientists step through plastic sheeting into a space barely large enough to fit a full-size bed. Sticky blue sheets on the ground pull any dirt off the booties, but scientists still pull off the outer pair and replace them with a fresh set. Helmets come off and are swabbed with alcohol, and hairnets go on.

    Facemasks slide over the nose and mouth. Because the wraparound safety glasses are still required in the lab, many people opt to tape the upper portion of the facemask down around their nose and cheeks, preventing hot air from rising up the channel and fogging their glasses. Over that goes a full head hood, leaving an oval of space for the glasses to pop out. The hood tucks into a clean pair of white coveralls that zip up. White booties slide up over the legs, the elastic holding them around mid calf, a wrap-around string at the ankles making them vaguely shoe-like.

    Then it’s two pairs of white gloves on each hand. The coverall sleeves have button snaps and are taped to the inner pair of gloves. Scientists replace the outer ones fairly often throughout the day.

    Finally, the helmet goes back on, and everything that will enter the clean room is attacked with alcohol-soaked pads. Fabrics aren’t friends of the clean room, so most of what goes in is plastic or metal—cameras and what must be the cleanest laptops in South Dakota seem the most common.

    And then that’s it. Through the doors onto more blue sticky tape, and the scientists are finally ready for work. That might mean cleaning copper components, assembling detectors in a glove box, calibrating modules, testing cryostats, working on wiring or vacuum systems, or a hundred other things. It’s not the easiest outfit to work in. It’s a little warm, a little hard to breathe, a little like working through a fog. Most agree that the best part of the day is the sweet freedom when they remove their layers, ripping off the face mask and tape like a scientific Bioré pore strip.

    Some—like Randy—aren’t real fans of the cumbersome procedures, while others don’t mind all that much. But everyone agrees that there is one cardinal rule to working in a clean room: Go to the bathroom before you head in.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 5:30 pm on August 3, 2015 Permalink | Reply
    Tags: , , , Sanford Underground Laboratory   

    From LBL: “Notes from the Particle Physics Underground” 

    Berkeley Logo

    Berkeley Lab

    August 3, 2015
    Kate Greene 913-634-1611

    1
    Temp 0

    2
    Temp 0

    3
    Temp 0

    The Black Hills region in western South Dakota is known for its rich stores of gold and silver. In fact, 41 million ounces of gold and 9 million ounces of silver were pulled from Homestake Mine in Lead, SD between the 1870s and early 2000s. During that time, 370 miles of mine tunnels were created, reaching depths of 8,000 feet. But in 2006 science took over: Sanford Underground Research Facility (Sanford Lab) is an underground particle physics research complex housed in the former mine, using the earth and rock to shield experiments from cosmic rays. The better the shielding, the more likely the scientists will detect neutrinos and suspected dark matter particles called WIMPs. Earlier this summer, Lead celebrated the ribbon-cutting of a new visitor center that highlights the history of the old mine and the current and future science at Sanford Lab.

    The U.S. Department of Energy’s Lawrence Berkeley National Lab (Berkeley Lab) is a key player in the creation of Sanford Lab and in the operation of some of its current and future experiments, including the dark matter experiment called LUX and a neutrino experiment called the MAJORANA DEMONSTRATOR. Berkeley Lab is also managing the Berkeley Low Background Facility and the forthcoming LUX-ZEPLIN (LZ) dark matter project, which builds on the accomplishments of LUX.

    LUX Dark matter
    LUX

    Majorano Demonstrator Experiment
    MAJORANA DEMONSTRATOR

    Lux Zeplin project
    LUX-ZEPLIN (LZ)

    As a science writer for Berkeley Lab, I was able to catch a ride on one of the mine’s elevators, called a cage, and descend 4,850 feet down to learn more about the science and the scientists who work on these projects.

    The above slideshow illustrates what it’s like to go underground. The short video below shows the last few seconds of the cage ride and our exit into the space called the Davis Campus, completed in 2012 and home to the MAJORANA DEMONSTRATOR, the LUX experiment, and other facilities.

    The cage operator communicates with an operator on the surface at the start and end of the ride. There are no lights in the cage or shaft other than headlamps.

    The Black Hills region in western South Dakota is known for its rich stores of gold and silver. In fact, 41 million ounces of gold and 9 million ounces of silver were pulled from Homestake Mine in Lead, SD between the 1870s and early 2000s. During that time, 370 miles of mine tunnels were created, reaching depths of 8,000 feet. But in 2006 science took over: Sanford Underground Research Facility (Sanford Lab) is an underground particle physics research complex housed in the former mine, using the earth and rock to shield experiments from cosmic rays. The better the shielding, the more likely the scientists will detect neutrinos and suspected dark matter particles called WIMPs. Earlier this summer, Lead celebrated the ribbon-cutting of a new visitor center that highlights the history of the old mine and the current and future science at Sanford Lab.

    The U.S. Department of Energy’s Lawrence Berkeley National Lab (Berkeley Lab) is a key player in the creation of Sanford Lab and in the operation of some of its current and future experiments, including the dark matter experiment called LUX and a neutrino experiment called the MAJORANA DEMONSTRATOR. Berkeley Lab is also managing the Berkeley Low Background Facility and the forthcoming LUX-ZEPLIN (LZ) dark matter project, which builds on the accomplishments of LUX.

    As a science writer for Berkeley Lab, I was able to catch a ride on one of the mine’s elevators, called a cage, and descend 4,850 feet down to learn more about the science and the scientists who work on these projects.

    The above slideshow illustrates what it’s like to go underground. The short video below shows the last few seconds of the cage ride and our exit into the space called the Davis Campus, completed in 2012 and home to the MAJORANA DEMONSTRATOR, the LUX experiment, and other facilities.

    It takes about ten minutes to ride the cage down to the 4,850 level where LUX and the MAJORANA DEMONSTRATOR are located. This video captures the last few seconds of the cage ride and the entry into the Davis Campus.

    In addition to checking out the MAJORANA DEMONSTRATOR and LUX projects, I joined a tour given to a group of esteemed scientists (including Berkeley Lab’s Eric Linder) who were in the nearby town of Deadwood, SD for a conference on particle physics and cosmology. As part of the tour, we traveled through unlit tunnels, visited construction sites of a future experiment, and walked through the refuge chamber, a shelter equipped with water, meal bars, and canisters of breathable air in case a fire or other disaster strikes.

    I went underground at 7:30 a.m. and came back up at noon. My four and a half hours of being shielded from daylight and cosmic rays was pleasant enough, but when I stepped outside, above ground, I was glad to see a bright sun and feel the breeze on my skin.

    All photo and video credits: Kate Greene.

    On the full article is a slideshow that details the underground experiments. The short video that follows gives a sense of what it’s like to travel through the tunnels.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal

     
  • richardmitnick 4:08 pm on May 26, 2015 Permalink | Reply
    Tags: , , , , Sanford Underground Laboratory,   

    From Symmetry: “A goldmine of scientific research” 

    Symmetry

    May 26, 2015
    Amelia Williamson Smith

    1
    Photo by Anna Davis

    The underground home of the LUX dark matter experiment has a rich scientific history.

    There’s more than gold in the Black Hills of South Dakota. For longer than five decades, the Homestake mine has hosted scientists searching for particles impossible to detect on Earth’s surface.

    It all began with the Davis Cavern.

    In the early 1960s, Ray Davis, a nuclear chemist at Brookhaven National Laboratory designed an experiment to detect particles produced in fusion reactions in the sun. The experiment would earn him a share of the Nobel Prize in Physics in 2002.

    Davis was searching for neutrinos, fundamental particles that had been discovered only a few years before. Neutrinos are very difficult to detect; they can pass through the entire Earth without bumping into another particle. But they are constantly streaming through us. So, with a big enough detector, Davis knew he could catch at least a few.

    Davis’ experiment had to be done deep underground; without the shielding of layers of rock and earth it would be flooded by the shower of cosmic rays also constantly raining from space.

    Davis put his first small prototype detector in a limestone mine near Akron, Ohio. But it was only about half a mile underground, not deep enough.

    “The only reason for mining deep into the earth was for something valuable like gold,” says Kenneth Lande, professor of physics at the University of Pennsylvania, who worked on the experiment with Davis. “And so a gold mine became the obvious place to look.”

    But there was no precedent for hosting a particle physics experiment in such a place. “There was no case where a physics group would appear at a working mine and say, ‘Can we move in please?’”

    Davis approached the Homestake Mining Company anyway, and the company agreed to excavate a cavern for the experiment.

    BNL funded the experiment. In 1965, it was installed in a cavern 4850 feet below the surface.

    The detector consisted of a 100,000-gallon tank of chlorine atoms. Davis had predicted that as solar neutrinos passed through the tank, one would occasionally collide with a chlorine atom, changing it to an argon atom. After letting the detector run for a couple of months at a time, Davis’ team would flush out the tank and count the argon atoms to determine how many neutrino interactions had occurred.

    “The detector had approximately 1031 atoms in it. One argon atom was produced every two days,” Lande says. “To design something that could do that kind of extraction was mind-boggling.”

    2
    Ray Davis. Courtesy of: Brookhaven National Laboratory

    A different kind of laboratory

    During the early years of the Davis experiment, around 2000 miners worked at the mine, along with engineers and geologists. The small group of scientists working on the Davis experiment would travel down into the mine with them.

    To go down the shaft to the 4850-foot level, they would get into what was called the “cage,” a 4.4-foot by 12.5-foot metal conveyance that held 36 people. The ride down, lit only by the glow of a couple of headlamps, took about five minutes, says Tom Regan, former operations safety manager and now safety consultant, who worked as a student laborer in the mine during the early years of the Davis experiment.

    Once they reached the 4850-foot level, the scientists walked across a rock dump. “It was guarded so a person couldn’t fall down the hole,” Regan says. “But you had to sometimes wait for a production train of rock or even loads of supplies or men or materials.”

    The Davis Cavern was 24 feet long, 24 feet wide, and 30 feet high. A small room off to the side held the group’s control system. “We were basically out of touch with the rest of the world when we were underground,” Lande says. “There was no difference between day and night, heat and cold, and snow and sunshine.”

    The miners and locals from Lead, South Dakota—the community surrounding the mine—were welcoming of the scientists and interested in their work, Lande says. “We’d go out to dinner at the local restaurant and we’d hear this hot conversation in the next booth, and they would be discussing black holes and neutron stars. So science became the talk of the small town.”

    4
    Davis Cavern, during the solar neutrino experiment. Photo by: Anna Davis

    The solar neutrino problem

    As the experiment began taking data, Davis’ group found they were detecting only about one-third the number of neutrinos predicted—a discrepancy that became known as the “solar neutrino problem.”

    Davis described the situation in his Nobel Prize biographical sketch: “My opinion in the early years was that something was wrong with the standard solar model; many physicists thought there was something wrong with my experiment.”

    However, every test of the experiment confirmed the results, and no problems were found with the model of the sun. Davis’ group began to suspect it was instead a problem with the neutrinos.

    This suspicion was confirmed in 2001, when the Sudbury Neutrino Observatory experiment [SNO] in Canada determined that as solar neutrinos travel through space, they oscillate, or change, between three flavors—electron, muon and tau. By the time neutrinos from the sun reach the Earth, they are an equal mixture of the three types.

    Sudbury Neutrino Observatory
    SNO

    The Davis experiment was sensitive only to electron neutrinos, so it was able to detect only one-third of the neutrinos from the sun. The solar neutrino problem was solved.

    5
    Davis Cavern, during a more recent expansion. Photo by: Matthew Kapust, Sanford Underground Research Facility

    A different kind of gold

    The Davis experiment ran for almost 40 years, until the mine closed in 2003.

    But the days of science in the Davis Cavern weren’t over. In 2006, the mining company donated Homestake to the state of South Dakota. It was renamed the Sanford Underground Research Facility.

    In 2009, many former Homestake miners became technicians on a $15.2 million project to renovate the experimental area. They completed the new 30,000-square-foot Davis Campus in 2012.

    Although scientists still ride in the cage to get down to the 4850-foot level of the mine, once they arrive it looks completely different.

    “It’s a very interesting contrast,” says Stanford University professor Thomas Shutt of SLAC National Accelerator Laboratory. “Going into the mine, it’s all mining carts, rust and rock, and then you get down to the Davis Campus, and it’s a really state-of-the-art facility.”

    The campus now contains block buildings with doors and windows. It has its own heating and air conditioning system, ventilation system, humidifiers and dust filters.

    The original Davis Cavern has been expanded and now houses the Large Underground Xenon experiment, the most sensitive detector yet searching for what many consider the most promising candidate for a type of dark matter particle.

    LUX Dark matter
    LUX

    Shielded from distracting background particles this far underground, scientists hope LUX will detect the rare interaction of dark matter particles with the nucleus of xenon atoms in the 368-kilogram tank.

    Another cavern nearby was excavated as part of the Davis Campus renovation project and now holds the Majorana Demonstrator experiment, which will soon start to examine whether neutrinos are their own antimatter partners.

    Majorano Demonstrator Experiment
    Majorano Demonstrator Experiment

    LUX began taking data in 2013. It is currently on its second run and will continue through spring 2016.

    After its current run, LUX will be replaced by the LUX-ZEPLIN, or LZ, experiment, which will be 50 times bigger in usable mass and several hundred times more sensitive than the current LUX results.

    LZ project
    LZ

    Science in the mine is still the talk of the town in Lead, says Carmen Carmona, an assistant project scientist at the University of California, Santa Barbara, who works on LUX. “When you go out on the streets and talk to people—especially the families of the miners from the gold mine days—they want to know how it is working underground now and how the experiment is going.”

    The spirit of cooperation between the mining community, the science community and the public community lives on, Regan says.

    “It’s been kind of a legacy to provide the beneficial space and be good neighbors and good hosts,” Regan says. “Our goal is for them to succeed, so we do everything we can to help and provide the best and safest place for them to do their good science.”

    6
    In 2010, Sanford Lab enlarged the Davis Cavern to support the Large Underground Xenon experiment. Matthew Kapust, Sanford Underground Research Facility

    7
    This cavern is being outfitted for the Compact Accelerator System Performing Astrophysical Research. CASPAR will use a low-powered accelerator to study what happens when stars die. Matthew Kapust, Sanford Underground Research Facility

    8
    Davis Cavern undergoes outfitting for the LUX experiment. Matthew Kapust, Sanford Underground Research Facility

    9
    Each day scientists working at the the Davis Campus pass this area, known as the Big X. The entrance to the Davis Campus is to the left; Yates Shaft is to the right. Matthew Kapust, Sanford Underground Research Facility

    10
    LUX researchers install the detector at the 4850 level. Matthew Kapust, Sanford Underground Research Facility

    11
    The Majorana Demonstrator experiment requires a very strict level of cleanliness. Researcher work in full clean room garb and assemble their detectors inside nitrogen-filled glove boxes. Matthew Kapust, Sanford Underground Research Facility

    12
    The LUX detector was built in a clean room on the surface and then brought underground. Matthew Kapust, Sanford Underground Research Facility

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 10:59 am on May 7, 2015 Permalink | Reply
    Tags: , , , Sanford Underground Laboratory   

    From Sanford via KDLT: “Unlocking Mysteries of Dark Matter & Neutrinos in South Dakota” 

    Sanford Underground Research facility

    Sanford Underground levels

    Sanford Underground Research facility

    3
    KDLT

    May 06, 2015
    Tom Hanson, KDLT News Anchor

    The former Homestake Gold Mine in Lead closed in 2002. It is now the Sanford Underground Research Facility Funded by the state of South Dakota, the U.S. Department of Energy and a donation from T. Denny Sanford the lab is drawing some of the sharpest minds in science to South Dakota.

    The search for dark matter and the study of neutrinos are at the heart of two of the underground labs biggest projects. The equipment used in this research is so sensitive it has to be shielded from cosmic rays on the earth’s surface.

    Located almost a mile underground the LUX is a dark matter detector.

    Lux Dark Matter 2
    LUX Dark matter
    LUX

    2
    The two men behind the project Simon Fiorucci (left) and Harry Nelson are hunting something so rare, no one has ever seen it, in fact no one really knows exactly what it is.

    “We are trying to detect a new form of matter which we are absolutely sure constitutes about 85 percent of the matter in the universe,” said Nelson. “And the fabulous thing is no one knows what it is. So there are a bunch of conjectures and so the gadget behind us is dedicated to the most popular conjecture of what this dark matter of the universe is.”

    The gadget is the Large Underground Xenon Detector or LUX, a phone booth sized container holding liquid xenon, cooled to -160 degrees F and surrounded by thousands of gallons of specially treated water. And according to Sanford Underground Lab officials the LUX has the reputation as the most sensitive detector ever built. Nelson has a nack for taking a very complicated process and simplifying it.

    “Our detector occasionally should see a little touch of the dark matter and it will make the atoms in our detector recoil and emit a little bit of light and also make a little bit of electric charge, that’s what we are trying to do here,” said Nelson.

    But according to Fiorucci so far that hasn’t happened.

    “We’ve seen nothing at all, which at first glance you might think well that’s not great, actually what that means is we’ve eliminated quite a number of possibilities, said Fiorucci.

    4

    Possibilities surround the other big project currently underway at the Sanford lab. The Majorana Demonstrator is looking at neutrinos.

    Majorano Demonstrator Experiment
    Majorano

    Particles so small there are billions of them passing through your body as you read this story. Professor John Wilkerson and his team are searching for a rare form of radioactive decay.

    “If we see this rare decay it would actually tell us that neutrinos can be their own anti particle and it might explain why we exist, why there’s so much matter and why there’s not anti-matter in the universe,” said Wilkerson.

    The vast majority of the observable universe from our planet seems to be made of matter and not antimatter. Why? Is one of the most interesting questions facing scientists.

    Building on the success of the LUX and Majorana Demonstrator, the next generations of projects are coming to the underground facility.
    The LZ project will continue the search for dark matter and will be 30 times larger than the LUX.

    LZ project
    LZ Project

    However the Deep Underground Neutrino Experiment or DUNE will be the biggest of all.

    FNAL DUNE
    DUNE

    The $1.5 billion project will try to find out how neutrinos change from point A to point B. It involves shooting neutrinos through the earth from Fermilab in Illinois to a huge detector at the Sanford Underground Lab.

    The man in charge of the facility, executive director Brookings native Mike Headley says they are excited to be a part of the project.

    “This will really be a big deal”, said Headley. “It’s an international collaboration that has close to 150 institutions worldwide and over 700 collaborators. The Long Base Neutrino Experiment (also called DUNE) is basically a $1.5 billion project. It is 1/3 funded international 2/3 funded in U.S. About 300 million of that $1.5 Billion will be facility construction here in South Dakota, so it’s going to be one of the biggest construction projects we’ve ever had in the state.”

    Construction on DUNE will begin next year. Scientists behind the project say neutrinos could hold clues about how the universe began and why matter greatly outnumbers antimatter, allowing us to exist.

    See the full article here.

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s. In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE) [being replaced by DUNE]—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE [DUNE] will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 4:31 pm on August 4, 2014 Permalink | Reply
    Tags: , , , Sanford Underground Laboratory   

    From Sanford Underground Research Facility: “DOE, NSF to fund LUX-ZEPLIN (LZ) experiment at Sanford Lab” 

    Sanford Underground Research facility

    Sanford Underground levels

    Sanford Underground Research facility
    August 4, 2014
    Constance Walter

    LUX-ZEPLIN (LZ), a second generation dark matter experiment, got a big boost when the Department of Energy and National Science Foundation selected it as one of three experiments that will be funded in the next-generation dark matter search. LZ will build on the Large Underground Xenon (LUX) experiment, which has been operating at the 4850 Level of the Sanford Underground Research Facility since 2012, and on the ZEPLIN dark matter program in the United Kingdom, which pioneered the use of these types of detectors underground.

    “We emerged from a very intense competition,” said Daniel McKinsey, professor of physics at Yale and a spokesperson for LUX. “We have the most sensitive detector in the world, with LUX. LZ will be hundreds of times more sensitive. It’s gratifying to see that our approach is being validated.”

    Construction on the supersized detector is scheduled to begin in 2016, with a commissioning date of 2018. Plans for LZ have been in the works for several years.

    “This is great news for the future of Dark Matter exploration and the Sanford Lab,” said Mike Headley, Executive Director of the South Dakota Science and Technology Authority. “The LZ experiment will play a key role in the future of the lab and we’re pleased that the DOE selected the experiment. It certainly will extend the state’s investment in this world-class facility.”

    Rick Gaitskell, Hazard Professor of Physics at Brown, is a founding member of LZ and also co-spokesperson for the LUX experiment.

    “The go-ahead from DOE and NSF is a major event,” Gaitskell said. “The LZ experiment will continue the liquid xenon direct dark matter search program at Sanford Lab, which we started with the operation of LUX in 2013. LUX will run until 2016 when we will replace it with LZ, which can provide a further improvement in sensitivity of two orders of magnitude due to its significant increase in size.”

    Even if LUX makes a dark matter detection before LZ is up and running, LZ will still be necessary to confirm the detection and fully characterize the nature of WIMPS, Gaitskell said.

    “This green light is a clear indication of the value the agencies see, not only in all the preparatory work that has gone into LZ, but also in the existing accomplishment of LUX and Sanford Lab these past few years,” said Simon Fiorucci, a research scientist at Brown who is the science coordinator for LUX and simulations coordinator for LZ. “LZ will be timed so that it is ready to start operations when LUX delivers its final results and reaches the limits of its technology. It will be a very natural transition.”

    Harry Nelson, professor of physics at the University of California, Santa Barbara and spokesperson for the LZ Collaboration, said, “We still have a lot of work to do. Basically, we got the green light to go the next green light, then the next green light.” Still, he continued, “Everyone is excited.”

    See the full article here.

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s. In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 10:11 am on December 15, 2011 Permalink | Reply
    Tags: , , , Sanford Underground Laboratory,   

    From The Sanford Undergorund Laboratory via Symmetry/Breaking: “First physics experiments soon to move into former Homestake mine” 

    December 15, 2011
    Bill Harlan, Sanford Underground Laboratory
    Guest author

    “Construction of a 12,000-square-foot research campus a mile underground is nearing completion in the Black Hills of South Dakota, and scientists will begin to move the first physics experiments underground this spring.

    i1
    Rick Labahn, project engineer (left) and Ben Sayler, director of education and outreach at Sanford Lab, check out the almost-finished Davis Cavern, located about a mile underground in the former Homestake mine. Photo by Matt Kapust, Sanford Underground Laboratory

    ‘We’re on schedule for occupancy in March 2012, but it’s quite a little process,’ said Project Engineer Rick Labahn, understating the complexity of his job. Labahn is directing the outfitting of the Davis Campus, which comprises two large underground halls at the 4,850-foot level of the Sanford Underground Laboratory in the former Homestake gold mine. Early next spring researchers will begin installing two experiments there—both of them at the leading edge of 21st-century physics. The Large Underground Xenon experiment, which already is taking test run data in a building on the surface, aims to become the world’s most sensitive detector to look for a mysterious substance called dark matter. Thought to comprise 80 percent of all the matter in the universe, dark matter remains undetected so far. The second experiment, the Majorana Demonstrator, will search for one of the rarest forms of radioactive decays—neutrinoless double-beta decay. Majorana could help determine whether subatomic particles called neutrinos can act as their own anti-particles, a discovery that could help physicists better explain how the universe evolved.”

    See the full article here.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 553 other followers

%d bloggers like this: