Tagged: Sandia Lab Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 5:40 am on April 29, 2016 Permalink | Reply
    Tags: , Sandia dial-a-fire test complex ignites huge blaze, Sandia Lab   

    From Sandia: “Sandia dial-a-fire test complex ignites huge blaze” 


    Sandia Lab

    April 28, 2016

    Though researchers at the Sandia National Laboratories Thermal Test Complex study a variety of fires, they focus on those that rotate rather than burn in place. Whirls generate much higher heat fluxes than non-rotational fires.

    1
    Massive flames billow from a 16-foot-high test enclosure placed within Sandia National Laboratories’ Thermal Test Complex. Researchers collect data from experiments at the complex. (Photo by Randy Montoya)

    In a recent test, a flame that appeared as slender and vulnerable as Bambi showed up in the array of video screens monitoring the fire’s progress.

    Within seconds, cameras recorded what appeared to be a forest fire of rushing flames in a 16-foot-high test enclosure. Then flames burst out the cell’s top like a creature in a monster movie, towering almost to the roof of the 50-foot-tall building that houses the cell. One video screen looked like a black-and-white movie of a large building in flames. A full-color screen imaged rich, yellow-red packets of flame whirling upward like escaping souls while outside video cams showed black smoke emerging from large stacks.

    2
    Fire whirls from a 3-meter diameter pool in the Fire Laboratory for Accreditation of Modeling by Experiment, or FLAME, facility at Sandia National Laboratories. (Photo by Richard Simpson)

    Then a safety switch, sensing a possible electrical overload, turned off a 750-horsepower fan engaged in sucking in outside air to equalize the pressure of air leaving up the stack. Operators monitoring the feedback information immediately cut the supply of fuel. The inferno became a river of fire, then a stream of fire, then a rivulet and then it was gone.

    But the data collected about its fierce, brief life remained.

    That data, collected from this and other experiments at the extensive complex, can be used to qualify nuclear weapons hardware subjected to extreme conditions and to validate fire-physics models, said test director Anay Luketa.

    “One objective of the current experiments is to create an extremely abnormal thermal environment, representative of what a weapon potentially could be exposed to,” said Luketa. “The current tests control boundary conditions and offer repeatable experiments, something difficult to achieve in outdoor flame tests where even a light wind can significantly tilt a fire plume.”

    Whirls witnessed in forest fires and in urban areas have demonstrated disastrous impacts as well, due to the generation of extremely high velocities coupled with high heat release rates, said Luketa.

    The TTC’s experimental fire research and modeling tools form the basis of an integrated capability to help solve high-consequence problems involving fire, she says.

    The flame team measures temperatures, heat flux, flame velocity and height and burn rate of these whirling fire plumes. The whirl is created in an open-top, square enclosure surrounding a pool of fuel. The enclosing walls don’t meet at the corners; instead, gaps are positioned to produce a rotational pattern of inflowing air induced by the fire. This causes the flame to spin and rise in a vortex from a pond of burning jet fuel contained in a 3-meter diameter pan.

    3
    Tom Blanchat prepares a fuel pan and calorimeter test in the Cross Flow Fire Test Facility, or XTF, at Sandia National Laboratories. (Photo by Randy Montoya)

    Members of the fire team wear burn suits where appropriate and follow 20 pages of instructions to ensure safe handling of materials and proper ignition and close-down. They methodically turn on pumps, enable valves, bleed fuel to purge unwanted air from the system, thereby minimizing false readings, and lock a succession of safety doors before powering up the ignitor. Basement cameras check for dripping fuel. A simple hammer tap creates a sound-signal that allows researchers to synchronize data collected from video cameras placed throughout the structure.

    An environmentally approved process adds ammonia within the external smokestack to precipitate soot, a potentially hazardous waste material, onto a large plate; simple banging with large pneumatic actuators drops the soot into a collection container after a test. Another safety measure: The roof of the building can lift if necessary to reduce excess pressures by allowing fire-heated gasses to escape.

    The TTC complex, completed in 2006, centralizes Sandia’s thermal test capabilities, incorporates multiple unique design features and provides advanced capabilities for thermal testing currently available nowhere else in the world.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Sandia Campus
    Sandia National Laboratory

    Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.
    i1
    i2
    i3

     
  • richardmitnick 12:14 pm on January 5, 2016 Permalink | Reply
    Tags: , , Sandia Lab, Sandia's comming Thor hammer   

    From Sandia: “Thor’s hammer to crush materials at 1 million atmospheres” 


    Sandia Lab

    January 5, 2016
    Neal Singer
    nsinger@sandia.gov
    (505) 845-7078

    Temp 1
    MAKE READY FOR THOR — Sandia National Laboratories technician Eric Breden installs a transmission cable on the silver disk that is the new pulsed-power machine’s central powerflow assembly. (Photo by Randy Montoya)

    A new Sandia National Laboratories accelerator called Thor is expected to be 40 times more efficient than Sandia’s Z machine, the world’s largest and most powerful pulsed-power accelerator, in generating pressures to study materials under extreme conditions.

    Sandia Z machine
    Sandia’s Z machine

    “Thor’s magnetic field will reach about one million atmospheres, about the pressures at Earth’s core,” said David Reisman, lead theoretical physicist of the project.

    Though unable to match Z’s 5 million atmospheres, the completed Thor will be smaller — 2,000 rather than 10,000 square feet — and will be considerably more efficient due to design improvements that use hundreds of small capacitors instead of Z’s few large ones.

    Remarkable structural transformation

    This change resembles the transformation of computer architecture in which a single extremely powerful computer chip was replaced with many relatively simple chips working in unison, or to the evolution from several high-voltage vacuum tubes to computers powered by a much larger number of low-voltage solid-state switches.

    A major benefit in efficiency is that while Z’s elephant-sized capacitors require large switches to shorten the machine’s electrical pulse from a microsecond to 100 nanoseconds, with its attendant greater impact, the small switches that service Thor’s capacitors discharge current in a 100-nanosecond pulse immediately, obviating energy losses inevitable when compressing a long pulse.

    The new architecture also allows finer control of the pulse sent to probe materials.

    Toward a more perfect pulse shape

    Said Reisman, “Individual cables from pairs of capacitors separate our signals. By combining these signals in any manner we choose, we can tailor very precise pulses of electrical current.”

    Tailored pulse shapes are needed to avoid shocks that would force materials being investigated to change state. “We want the material to stay in its solid state as we pass it through increasing pressures,” he said. “If we shock the material, it becomes a hot liquid and doesn’t give us information.”

    Another advantage for Thor in such testing is that each capacitor’s transit time can be not only controlled to the nanosecond level but isolated from the other capacitors. “In 30 seconds on a computer, we can determine the shape of the pulse that will produce a desired compression curve, whereas it takes days to determine how to create the ideal pulse shape for a Z experiment,” Reisman said.

    Furthermore, because Thor can fire so frequently — less hardware damage per shot requires fewer technicians and enables more rapid rebooting — researchers will have many more opportunities to test an idea, he said.

    But there’s more at stake than extra experiments or even new diagnostics. There’s testing the efficiency of a radically different accelerator design.

    Radical shoeboxes

    Thor’s shoebox-sized units, known as “bricks,” contain two capacitors and a switch. The assembled unit is a fourth-generation descendant of a device jointly developed by Sandia and the Institute of High-Current Electronics in Tomsk, Russia, called a linear transformer driver (LTD). The original LTD units, also called “bricks,” had no cables to separate outputs, but instead were linked together to add voltage as well as current. (Because Thor’s bricks are isolated from each other, they add current but not voltage.)

    Everything depends upon adding bricks. Sandia is building Thor in stages and already has assembled materials. Two intermediate stages are expected in 2016. These will comprise 24 bricks (Thor 24) and 48 bricks (Thor 48). “These are ‘first-light’ machines that will be used for initial experiments and validation,” Reisman said.

    Thor 144, when completed, should reach 1 million atmospheres of pressure.

    2
    Sandia National Laboratories technician Tommy Mulville installs a gas exhaust line for a switch at Thor’s brick tower racks. In the background, beyond the intermediate support towers, technician Eric Breden makes ready an electrical cable for insertion in the central power flow assembly. (Photo by Randy Montoya)

    Sandia manager Bill Stygar said more powerful LTD versions of Z ultimately could bring about thermonuclear ignition and even high-yield fusion.

    Ignition would be achieved when the fusion target driven by the machine releases more energy in fusion than the electrical energy delivered by the machine to the target. High yield would be achieved when the fusion energy released exceeds the energy initially stored by the machine’s capacitors.

    High-yield fusion

    A paper published Sept. 9, in Physical Review Special Topics – Accelerators and Beams, co-authored by Reisman, lead electrical engineer Brian Stoltzfus, Stygar, lead mechanical engineer Kevin Austin and colleagues, outlined Sandia’s plan for Thor. A Nov. 30 paper, led by Stygar in the same journal, discusses the possibility of building next-generation LTD-powered accelerators to achieve ignition and high-yield fusion.

    The academic community also is interested in Thor’s architecture. “Part of the motivation for Thor was to develop affordable and compact machines that could be operated at universities,” said Reisman. Institutions that have expressed interest include Cornell University, University of California San Diego, Imperial College London and the Carnegie Institution.

    Thor’s theoretical design was supported by Sandia’s Laboratory Directed Research and Development office; later engineering details and hardware were supported by the National Nuclear Security Administration’s Science Campaign.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Sandia Campus
    Sandia National Laboratory

    Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.
    i1
    i2
    i3

     
  • richardmitnick 10:17 am on December 21, 2015 Permalink | Reply
    Tags: , Benchmarks, Sandia Lab,   

    From Sandia: “Supercomputer benchmark gains adherents” 


    Sandia Lab

    1
    Sandia National Laboratories researcher Mike Heroux, developer of the High Performance Conjugate Gradients program that uses complex criteria to rank supercomputers. (Photo by Randy Montoya)

    More than 60 supercomputers were ranked by the emerging tool, termed the High Performance Conjugate Gradients (HPCG) benchmark, in ratings released at the annual supercomputing meeting SC15 in late November. Eighteen months earlier, only 15 supercomputers were on the list.

    “HPCG is designed to complement the traditional High Performance Linpack (HPL) benchmark used as the official metric for ranking the top 500 systems,” said Sandia National Laboratories researcher Mike Heroux, who developed the HPCG program in collaboration with Jack Dongarra and Piotr Luszczek from the University of Tennessee.

    The current list contains the same entries as many of the top 50 systems from Linpack’s TOP500 but significantly shuffles HPL rankings, indicating that HPCG puts different system characteristics through their paces.

    This is because the different measures provided by HPCG and HPL act as bookends on the performance spectrum of a given system, said Heroux. “While HPL tests supercomputer speed in solving relatively straightforward problems, HPCG’s more complex criteria test characteristics such as high-performance interconnects, memory systems and fine-grain cooperative threading that are important to a different and broader set of applications.”

    Heroux said only time will tell whether supercomputer manufacturers and users gravitate toward HPCG as a useful test. “All major vendor computing companies have invested heavily in optimizing our benchmark. All participating system owners have dedicated machine time to make runs. These investments are the strongest confirmation that we have developed something useful.

    “Many benchmarks have been proposed as complements or even replacements for Linpack,” he said. “We have had more success than previous Oefforts. But there is still a lot of work to keep the effort going.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Sandia Campus
    Sandia National Laboratory

    Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.
    i1
    i2
    i3

     
  • richardmitnick 9:03 am on December 17, 2015 Permalink | Reply
    Tags: , , , Sandia Lab   

    From Sandia: “Sandia, ASU collaborate on algae computational modeling, look for algae pond predators” 


    Sandia Lab

    December 17, 2015
    Michael Padilla
    mjpadil@sandia.gov
    (925) 294-2447

    1
    Sandia National Laboratories researcher Jerilyn Timlin serves as a principal investigator for the Algal Predator and Pathogen Signature Verification project. (Photo by Randy Montoya)

    Work part of a broader framework for funding energy-related science, technology

    Sandia National Laboratories and Arizona State University (ASU) have teamed up to further improve computational models of algae growth in raceway ponds that can predict performance, improve pond design and operation and discover ways to improve algae yield outdoors.

    Such ponds consist of an oval-shaped closed-loop channel — or raceway — in which the cultivation mixture of water and algae is propelled to flow around the raceway and undergo mixing by a paddlewheel powered by an electric motor.

    In addition, Sandia and ASU will further develop spectroradiometric techniques to optically monitor the growth and health of algae pond cultivation in real-time and detect early warnings of predators and pathogens in outdoor algal ponds.

    The work is part of a newly signed Cooperative Research and Development Agreement (CRADA) between ASU and Sandia to collaborate on algae-based biofuels, solar fuels, concentrating solar technologies, photovoltaics, electric grid modernization and the energy-water nexus. The umbrella CRADA also covers international applications of the technologies and science and engineering education. The topics were first identified in a 2013 memo of understanding between Sandia and ASU focusing on collaborations to support science, technology, engineering and mathematics, or STEM, fields.

    This is the first CRADA Sandia has executed with a university in nearly 15 years and is currently the only active umbrella CRADA with an institution of higher education. The algae cultivation modeling and monitoring projects are the first two efforts funded under this umbrella CRADA.

    Sandia researcher Ron Pate said Sandia brings distinctive capabilities for physics-based modeling of algae cultivation systems performance and for remote spectroradiometric monitoring and diagnostics of algae growth and state of health, while ASU has a variety of algae species under cultivation in outdoor ponds in a range of scales in which to take measurements.

    “Sandia is excited about the collaboration with ASU,” Pate said. “This agreement allows Sandia to continue modeling and monitoring work that we have been pursuing with ASU since 2013 under the original ATP3 (Algae Testbed Public-Private Partnership) project.” Pate serves as deputy director for ATP3, overseeing Sandia technical tasks under the project.

    The ATP3 project was established to support the algae research and development community and industry to advance the field and help accelerate progress toward more rapid and successful commercialization of algae-based technologies for fuels and products. ATP3 is funded by the DOE’s Energy Efficiency and Renewable Energy Bioenergy Technologies Office. ATP3 partners include Sandia, ASU, the National Renewable Energy Laboratory, California Polytechnic State University in San Luis Obispo, the Georgia Institute of Technology in Atlanta and the algae companies San Diego-based Cellana Inc. with algae cultivation facilities in Kona, Hawaii, Commercial Algae Management in Franklin, North Carolina and Florida Algae in Vero Beach, Florida.

    Two projects exercise new Sandia, ASU CRADA

    The first project under the agreement, Algal Cultivation Growth Dynamic Modeling and Analysis, focuses on the further development of a Sandia algae growth model based on the effect of light, temperature, nutrients, pH and salinity integrated into an open raceway pond hydrodynamic computational fluid dynamics model. The algae growth model has been partially validated utilizing multiple data sets from partners involved in ATP3. Under the CRADA, the modeling will be further refined through improvement of the paddlewheel driven pond circulation flow and mixing portion of the model based on the application of hydrodynamic measurement data taken from experimental testing with progressively larger scale outdoor ponds operated by ATP3 partners.

    The 12-month project, led by principal investigators Patricia Gharagozloo from Sandia and John McGowen from ASU, will be conducted in two phases. The first phase will study the flow dynamics of turbulence models and control parameters in open raceway ponds, which are currently the most promising outdoor cultivation system approach for cost-effectively growing algae at the large scales required for producing fuels. In this phase, ASU will measure the spatial variations in velocity of the flow of algae-water mix in the ponds at various paddlewheel speeds.

    The second phase will calibrate the model and verify the appropriate turbulence physics to be accounted for at certain scales of ponds for one paddlewheel speed. After the two phases, a study will be conducted to compare the data with model results at additional paddlewheel speeds.

    The second 12-month project, Algal Predator and Pathogen Signature Verification, looks at exploring and exploiting the various detailed optical signatures that arise when the algae cultivation pond surface is monitored using Sandia’s optical spectroradiometric techniques. These techniques can differentiate algae growth and state of health and provide an early warning of the active presence of predators and pathogens in outdoor algal ponds. Sandia researcher Jerilyn Timlin and McGowen are the principal investigators for this project. Sandia researcher Tom Reichardt, who pioneered the original technology as part of a bioscience Laboratory Directed Research & Development project, also serves as technical contributor to the project.

    During the first phase of this project, controlled experiments will be conducted in the laboratory with a host-pathogen-predator pair that the team has seen cause problems in the field in order to understand the parameters that control culture collapse and identify spectral markers that indicate the presence of the pathogen or predator. The second phase will consist of experiments in the field to determine how well the identified spectral markers predict the presence of the pathogen or predator in the challenges of an outdoor environment.

    “The continuation of the technical work related to algae biofuels, which began under the ATP3 project, is a great opportunity to exercise this new Sandia-ASU CRADA,” Pate said. “However, collaborative work on the other STEM topic areas could also be pursued in the future as funding becomes available and the mutual interest exists at ASU and Sandia.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Sandia Campus
    Sandia National Laboratory

    Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.
    i1
    i2
    i3

     
  • richardmitnick 3:37 pm on October 9, 2015 Permalink | Reply
    Tags: , Hydrogen storage, Sandia Lab   

    From Sandia Lab: “Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge” 


    Sandia Lab

    October 8, 2015
    Patti Koning, pkoning@sandia.gov, (925) 294-4911

    1
    Sandia National Laboratories chemist Mark Allendorf, shown here at Berkeley Lab’s Advanced Light Source facility, is leading the Hydrogen Materials – Advanced Research Consortium (HyMARC) to advance solid-state materials for onboard hydrogen storage. (Photo by Dino Vournas)

    Sandia National Laboratories will lead a new tri-lab consortium to address unsolved scientific challenges in the development of viable solid-state materials for storage of hydrogen onboard vehicles. Better onboard hydrogen storage could lead to more reliable and economic hydrogen fuel cell vehicles.

    “Storing hydrogen on board vehicles is a critical enabling technology for creating hydrogen-fueled transportation systems that can reduce oil dependency and mitigate the long-term effects of burning fossil fuels on climate change,” said Sandia chemist Mark Allendorf, the consortium’s director.

    Called the Hydrogen Materials – Advanced Research Consortium (HyMARC), the program is funded by the U.S. Department of Energy’s (DOE) Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy at $3 million per year for three years, with the possibility of renewal. In addition to Sandia, the core team includes Lawrence Livermore and Lawrence Berkeley national laboratories.

    The consortium will address the gaps in solid-state hydrogen storage by leveraging recent advances in predictive multiscale modeling, high-resolution in situ characterization and material synthesis. Past efforts, which synthesized and characterized hundreds of materials for solid-state hydrogen storage, laid a solid foundation for current work including the understanding of the kinetics and thermodynamics governing the physical properties of these types of storage methods.

    “By focusing on the underlying properties and phenomena that limit the performance of storage materials, we will generate much-needed understanding that will accelerate the development of all types of advanced storage materials, including sorbents, metal hydrides and liquid carriers,” said Brandon Wood, who is leading the Lawrence Livermore team.

    Sandia is an international leader in hydrogen materials science, exemplified by its role as the lead lab in DOE’s Metal Hydride Center of Excellence, which ran from 2005-2010. The consortium will leverage the core capabilities of the three partners, primarily synthetic chemistry at Sandia, theory and modeling at Lawrence Livermore and characterization at Berkeley Lab.

    The world-class supercomputing facilities at Lawrence Livermore and Sandia are key elements of the team’s strategy to develop the enabling science for hydrogen solid storage technologies, along with advanced experimental tools available at Berkeley Lab’s Advanced Light Source [ALS] and Molecular Foundry facilities.

    LBL Advanced Light Source
    ALS

    Current hydrogen storage misses capacity, cost targets

    In the past five years, fuel cell electric vehicles (FCEVs) have gone from a concept to reality. Automakers are starting to roll out commercial FCEVs and investments are being made to deploy hydrogen refueling infrastructure, especially in early markets, such as California and the Northeast.

    However, the commercial FCEV light-duty vehicles are designed for 700-bar compressed hydrogen storage on board the vehicle and hydrogen-refueling infrastructure is being deployed for compressed hydrogen refueling. Although compressed hydrogen provides a near-term pathway to commercialization, this storage method falls short of DOE targets for onboard hydrogen storage, particularly for volumetric hydrogen energy density and cost.

    “Hydrogen, as a transportation fuel, has great potential to provide highly efficient power with nearly zero emissions,” said Allendorf. “Storage materials are the limiting factor right now.”

    Thermodynamics, kinetics challenges

    Although HyMARC will consider all types of hydrogen storage materials, two categories of solid-state materials, novel sorbents and high-density metal hydrides, are of particular interest. These materials have the potential to meet DOE targets to deliver hydrogen at the right pressure and energy density to power a hydrogen fuel cell vehicle.

    A key challenge is the thermodynamics — the energy and conditions necessary to release hydrogen during vehicle operation. Sorbents, which soak up hydrogen in nanometer-scale pores, bind hydrogen too weakly. In contrast, metal hydrides, which store hydrogen in chemical bonds, have the opposite problem — they bind the hydrogen too strongly.

    The kinetics, the rate at which a chemical process occurs, is also an issue for high-density metal hydrides. These materials undergo complicated reactions during hydrogen release and uptake that can involve transitions between liquid, solid and gaseous phases. In some cases, the chemical reactions can form intermediates that trap hydrogen.

    The consortium will explore several innovative ideas for solving these problems. The overall concept is to synthesize well-controlled materials to serve as model systems and develop experimental platforms for systematically probing key processes that limit performance.

    “Using these tools, we can study the hydrogen reactions with these materials using state-of-the-art techniques, such as those at Berkeley Lab’s Advanced Light Source and Molecular Foundry, which can provide unprecedented spatial resolution of material composition and character in real time,” said Jeff Urban, Berkeley Lab team lead.

    The HyMARC strategy embodies the approach highlighted within the recent Materials Genome Initiative (MGI) Strategic Plan for accelerated materials development. The focus is on developing a set of ready-to-use resources accessible to the entire hydrogen storage community.

    “With our extensive knowledge base of hydrogen storage materials and new tools for characterization, modeling and synthesizing materials, many of which were not available even five years ago, our goal is to develop codes, databases, synthetic protocols and characterization tools,” said Allendorf. “These resources will create an entirely new capability that will enable accelerated materials development to achieve thermodynamics and kinetics required to meet DOE targets.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Sandia Campus
    Sandia National Laboratory

    Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.
    i1
    i2
    i3

     
  • richardmitnick 11:07 am on September 9, 2015 Permalink | Reply
    Tags: , , HERMES III, Sandia Lab   

    From Sandia: “Workhorse gamma ray generator HERMES III fires its 10,000th shot at Sandia Labs” 


    Sandia Lab

    September 9, 2015
    Neal Singer, nsinger@sandia.gov, (505) 845-7078

    1
    Chris Kirtley, top, and JJ Montoya adjust gamma ray generator HERMES III (High-Energy Radiation Megavolt Electron Source) for its next shot at Sandia National Laboratories. (Photo by Randy Montoya)

    The High-Energy Radiation Megavolt Electron Source, better known as HERMES III, has fired its 10,000th shot at Sandia National Laboratories.

    HERMES III, the world’s most powerful gamma ray generator, produces a highly energetic beam that tests how well electronics can survive a burst of radiation that approximates the output of a nuclear weapon. The machine can accommodate targets that range in size from a single transistor to a military tank.

    The machine generates an intense electron beam at energies approaching 20 mega-electron volts. The electron beam is then guided into a very dense target called a converter. That interaction produces copious amounts of gamma rays. The thinness of the converter permits most of the beam’s energy to pass through it rapidly; thus, the passage causes minimum damage. This enables HERMES III to fire multiple shots at a time without having to re-establish the vacuum in which the experiments take place.

    “HERMES III has gone hundreds of shots without any damage to its converter,” said Sandia manager Ray Thomas.

    To achieve its high voltage, HERMES III uses 20 inductively isolated modules arranged in series. In size and shape, the machine resembles a short subway train 17 feet wide, 50 feet long and 16.5 feet high. Each “car,” or unit, adds 1 million volts in series, reaching a total of 20 million volts. Its linear, voltage-adding geometry is distinct from the wagon-wheel-shaped architecture favored by other Sandia accelerators, arrangements more useful for adding current.

    Also helpful for rapid firing is that HERMES III test targets are placed at one end of the machine rather than at its center.

    “Our customers bring their own targets, place them at the front of the machine as we request and then remove them after the shot,” said technician Gary Tilley, who’s worked on HERMES III for 20 years. Other Sandia facilities, like its more famous Z machine, have to clean up the remnants of exploded targets placed at the center of their energy flows.

    2
    Technician Gary Tilley at Sandia Labs repairs a cavity at HERMES III. (Photo by Randy Montoya)

    Juan Diego Salazar is part of the team that watches to make sure each module receives the proper dose of power, at the right moment in time, to accelerate the beam.

    “Every firing is different,” he said. “The test targets always change.”

    Continual re-evaluation of the electrical power feeding the beam as it flows through its modules, and continual recalibration of the beam’s line of sight to the target, are necessary because an unobserved power or alignment failure somewhere within the system could mistakenly show a target more radiation-resistant than it actually is.

    Real-time adjustments would be too late: The achieved beam flashes for 20 billionths of a second, about the time it takes light to travel 20 feet.

    “Accurate results are important,” said Thomas. “That’s what we’re about.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Sandia Campus
    Sandia National Laboratory

    Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.
    i1
    i2
    i3

     
  • richardmitnick 8:44 am on May 13, 2015 Permalink | Reply
    Tags: , , Sandia Lab   

    From Sandia: “Starving cancer instead of feeding it poison” 


    Sandia Lab

    May 13, 2015
    Neal Singer
    nsinger@sandia.gov
    (505) 845-7078

    1
    Sandia National Laboratories researcher Susan Rempe says a new approach to treating cancer is being tested on laboratory mice. If successful, human testing will follow. (Photo by Randy Montoya)

    A patent application for a drug that could destroy the deadly childhood disease known as acute lymphoblastic leukemia — and potentially other cancers as well — has been submitted by researchers at Sandia National Laboratories, the University of Maryland and the MD Anderson Cancer Center in Houston.

    “Most drugs have to go inside a cell to kill it,” said Sandia researcher Susan Rempe. “Instead, our method withholds an essential nutrient from the cell, essentially starving it until it self-destructs.”

    The removed nutrient is called asparagine, which cancer cells can’t produce on their own. But there’s more to the story.

    It’s well-known that chemical attempts using drugs to kill cancers often sicken the patient. In the case of the cancer drug L-asparaginase type 2 (L-ASN2), whose primary effect is depleting asparagine, side effects are generally attributed to the corresponding depletion of a chemically similar molecule called glutamine. All human cells need asparagine and glutamine to survive because each is essential to key biological processes. While most normal cells can synthesize their own asparagine, certain cancer cells cannot. So the ideal nutrient-deprivation strategy for cancers requires a difficult balancing act: Remove enough asparagine from the blood to cripple the cancer, but leave enough glutamine that the patient can tolerate chemotherapy.

    The researchers at Sandia and the university did molecular computer simulations to predict what mutations would produce that desirable result when introduced into the enzyme-drug L-ASN2, commonly used to treat certain types of leukemia. The scientists’ simulations succeeded in identifying a point in that enzyme’s chain of amino acids where a mutation theoretically would eliminate the drug’s unwanted attack on glutamine.

    “Technically,” said Rempe, “we simulated which parts of the two molecules came in contact with the enzyme. Then we realized that by substituting a single amino acid in the enzyme’s chain, we might avoid glutamine degradation by removing it from contact with the enzyme.”

    In computer simulations, the change looked promising because the most notable difference between asparagine and glutamine was the way they interacted with that specific amino acid.

    “That made us feel that a chemical change at that single location was the key,” said Rempe.

    It required a mutation to change the amino acid’s chemistry. The mutation was achieved by collaborators at MD Anderson who used DNA substitutions to effect the change.

    “Most researchers agree that removing glutamine from a patient’s blood was the problem in previous use of this enzyme-drug,” said Rempe. “Our simulations, as it turned out, showed how to avoid that.”

    In test tube experiments, the new drug left glutamine untouched. Follow-up tests in petri dishes showed that the mutated enzyme killed a variety of cancers.

    Tests underway on laboratory mice at MD Anderson should be completed by early 2016, and if they are successful, Rempe said, human testing will follow.

    2
    A simulation by researchers at Sandia National Laboratories and the University of Maryland demonstrates that a mutated enzyme will degrade asparagine – food for some cancers — but leave glutamine, necessary for all proteins, untouched. (Graphic by Juan Vanegas)

    “If we’re wrong, and keeping glutamine intact is not the answer to the cancer problem, we’ll continue investigating because we think we’re onto something,” she said.

    That’s because, she said, “we used high-resolution computational methods to redesign the cancer drug to act differently, in this case to act only on asparagine. Laboratory tests showed that the predictions worked and that the new drug kills a variety of leukemias. We hope our method can do that in a patient, and for many more cancers. But if it doesn’t, then we’ll test the opposite strategy: redesign the enzyme to destroy glutamine and keep asparagine intact. Or fine-tune the enzyme to degrade the two molecules in a chosen ratio. We’re learning to control this enzyme.”

    The joint work among Sandia, the University of Maryland and MD Anderson began in 2009. Sandia managers Wahid Hermina and Steve Casalnuovo spearheaded the collaboration to use Sandia’s computational and biochemical expertise developed in national defense to help cure cancer.

    Sandia’s cancer-fighting research also can be applied to building enzymes that can assist with bio defense.

    Said Rempe, “If we could redesign an enzyme to break down specific small molecules, and not get diverted by interactions with non-toxic molecules, then we could apply our technique to develop safer and more effective enzymes.”

    Classical modeling was performed at the University of Maryland by Andriy Anishkin and Sergei Sukharev; at Sandia, post-doctoral researcher David Rogers (now at the University of South Florida) also carried out modeling studies. Sandia post-doctoral researcher Juan Vanegas is performing quantum modeling to map out the chemical degradation process to better understand how to optimize the enzyme, said Rempe. The experiments at MD Anderson were carried out by Wai Kin Chan, Phil Lorenzi, and colleagues in John Weinstein’s group. Earlier results have been published in the journal Blood.

    The work is supported by Sandia’s Laboratory Directed Research and Development office.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Sandia Campus
    Sandia National Laboratory

    Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.
    i1
    i2
    i3

     
  • richardmitnick 7:58 am on April 22, 2015 Permalink | Reply
    Tags: , , Sandia Lab   

    From Sandia: “Phonons, arise!” 


    Sandia Lab

    April 22, 2015
    Neal Singer, nsinger@sandia.gov, (505) 845-7078

    Small electric voltage alters conductivity in key materials

    1
    Sandia National Laboratories researchers Jon Ihlefeld, left, and David Scrymgeour use an atomic-force microscope to examine changes in a material’s phonon-scattering internal walls, before and after applying a voltage. The material scrutinized, PZT, has wide commercial uses.

    Modern research has found no simple, inexpensive way to alter a material’s thermal conductivity at room temperature.

    That lack of control has made it hard to create new classes of devices that use phonons — the agents of thermal conductivity — rather than electrons or photons to harvest energy or transmit information. Phonons — atomic vibrations that transport heat energy in solids at speeds up to the speed of sound — have proved hard to harness.

    Now, using only a 9-volt battery at room temperature, a team led by Sandia National Laboratories researcher Jon Ihlefeld has altered the thermal conductivity of the widely used material PZT (lead zirconate titanate) by as much as 11 percent at subsecond time scales. They did it without resorting to expensive surgeries like changing the material’s composition or forcing phase transitions to other states of matter.

    PZT, either as a ceramic or a thin film, is used in a wide range of devices ranging from computer hard drives, push-button sparkers for barbecue grills, speed-pass transponders at highway toll booths and many microelectromechanical designs.

    “We can alter PZT’s thermal conductivity over a broad temperature range, rather than only at the cryogenic temperatures achieved by other research groups,” said Ihlefeld. “And we can do it reversibly: When we release our voltage, the thermal conductivity returns to its original value.”

    The work was performed on materials with closely spaced internal interfaces — so-called domain walls — unavailable in earlier decades. The close spacing allows better control of phonon passage.

    “We showed that we can prepare crystalline materials with interfaces that can be altered with an electric field. Because these interfaces scatter phonons,” said Ihlefeld, “we can actively change a material’s thermal conductivity by simply changing their concentration. We feel this groundbreaking work will advance the field of phononics.”

    The researchers, supported by Sandia’s Laboratory Directed Research and Development office, the Air Force Office of Scientific Research, and the National Science Foundation, used a scanning electron microscope and an atomic force microscope. to observe how the domain walls of subsections of the material changed in length and shape under the influence of an electrical voltage. It is this change that controllably altered the transport of phonons within the material.

    “The real achievement in our work,” said Ihlefeld, “is that we’ve demonstrated a means to control the amount of heat passing through a material at room temperature by simply applying a voltage across it. We’ve shown that we can actively regulate how well heat — phonons — conducts through the material.”

    Ihlefeld points out that active control of electron and photon transport has led to technologies that are taken for granted today in computing, global communications and other fields.

    “Before the ability to control these particles and waves existed, it was probably difficult even to dream of technologies involving electronic computers and lasers. And prior to our demonstration of a solid-state, fast, room-temperature means to alter thermal conductivity, analogous means to control the transport of phonons have not existed. We believe that our result will enable new technologies where controlling phonons is necessary,” he said.

    The work, published last month in Nano Letters, was co-authored by Sandia researchers David A. Scrymgeour, Joseph R. Michael, Bonnie B. McKenzie and Douglas L. Medlin; Brian M. Foley and Patrick E. Hopkins from the University of Virginia; and Margeaux Wallace and Susan Trolier-McKinstry from Penn State University.

    The goal of future work is to reach a better understanding of “what caused this effect to happen so efficiently,” Ihlefeld said.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Sandia Campus
    Sandia National Laboratory

    Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.
    i1
    i2
    i3

     
  • richardmitnick 1:27 pm on March 18, 2015 Permalink | Reply
    Tags: , , , Sandia Lab   

    From Sandia: “Iron rain fell on early Earth, new Z machine data supports” 


    Sandia Lab

    March 18, 2015
    Neal Singer, nsinger@sandia.gov, (505) 845-7078

    Sandia Z machine
    Sandia National Laboratories Z machine is the most powerful producer of pulses of electrical energy on Earth. Thomas J. Gardner, Sandia Lab

    Researchers at Sandia National Laboratories’ Z machine have helped untangle a long-standing mystery of astrophysics: why iron is found spattered throughout Earth’s mantle, the roughly 2,000-mile thick region between Earth’s core and its crust.

    At first blush, it seemed more reasonable that iron arriving from collisions between Earth and planetesimals — ranging from several meters to hundreds of kilometers in diameter — during Earth’s late formative stages should have powered bullet-like directly to Earth’s core, where so much iron already exists.

    A second, correlative mystery is why the moon proportionately has much less iron in its mantle than does Earth. Since the moon would have undergone the same extraterrestrial bombardment as its larger neighbor, what could explain the relative absence of that element in the moon’s own mantle?

    To answer these questions, scientists led by Professor Stein Jacobsen at Harvard University and Professor Sarah Stewart at the University of California at Davis (UC Davis) wondered whether the accepted theoretical value of the vaporization point of iron under high pressures was correct. If vaporization occurred at lower pressures than assumed, a solid piece of iron after impact might disperse into an iron vapor that would blanket the forming Earth instead of punching through it. A resultant iron-rich rain would create the pockets of the element currently found in the mantle.

    As for the moon, the same dissolution of iron into vapor could occur, but the satellite’s weaker gravity would be unable to capture the bulk of the free-floating iron atoms, explaining the dearth of iron deposits on Earth’s nearest neighbor.

    Looking for experimental rather than theoretical values, researchers turned to Sandia’s Z machine and its Fundamental Science Program, coordinated by Sandia manager Thomas Mattsson. This led to a collaboration among Sandia, Harvard University, UC Davis, and Lawrence Livermore National Laboratory (LLNL) to determine an experimental value for the vaporization threshold of iron that would replace the theoretical value used for decades.

    Rick Kraus at LLNL (formerly at Harvard) and Sandia researchers Ray Lemke and Seth Root used Z to accelerate metals to extreme speeds using high magnetic fields. The researchers created a target that consisted of an iron plate 5 millimeters square and 200 microns thick, against which they launched aluminum flyer plates travelling up to 25 kilometers per second. At this impact pressure, the powerful shock waves created in the iron cause it to compress, heat up and — in the zero pressure resulting from waves reflecting from the iron’s far surface — vaporize.

    The result, published March 2 in Nature Geosciences under the title Impact vaporization of planetesimal cores in the late stages of planet formation, shows the shock pressure experimentally required to vaporize iron is approximately 507 gigapascals (GPa), undercutting by more than 40 percent the previous theoretical estimate of 887 GPa. Astrophysicists say that this lower pressure is readily achieved during the end stages of planetary growth through accretion.

    Principal investigator Kraus said, “Because planetary scientists always thought it was difficult to vaporize iron, they never thought of vaporization as an important process during the formation of the Earth and its core. But with our experiments, we showed that it’s very easy to impact-vaporize iron.”

    He continued, “This changes the way we think of planet formation, in that instead of core formation occurring by iron sinking down to the growing Earth’s core in large blobs (technically called diapirs), that iron was vaporized, spread out in a plume over the surface of the Earth and rained out as small droplets. The small iron droplets mixed easily with the mantle, which changes our interpretation of the geochemical data we use to date the timing of Earth’s core formation.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Sandia Campus
    Sandia National Laboratory

    Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.
    i1
    i2
    i3

     
  • richardmitnick 6:51 pm on January 20, 2015 Permalink | Reply
    Tags: , , , Sandia Lab   

    From isgtw and Sandia Lab: “8 Mind-Blowing Scientific Research Machines” 

    ISGTW

    Sandia Lab

    Scientific innovation and discovery are defining characteristics of humanity’s innate curiosity. Mankind has developed advanced scientific research machines to help us better understand the universe. They constitute some of the greatest human endeavors for the sake of technological and scientific progress. These projects also connect people of many nations and cultures, and inspire future generations of engineers and scientists.

    Apart from the last two experiments that are under construction, the images in this article are not fake or altered; they are real and showcase machines on the frontier of scientific innovation and discovery. Read on to learn more about the machines, what the images show, and how NI technology helps make them possible.

    1
    Borexino, a solar neutrino experiment, recently confirmed the energy output of the sun has not changed in 100,000 years. Its large underground spherical detector contains 2,000 soccer-ball-sized photomultiplier tubes.

    Borexino and DarkSide

    Gran Sasso National Laboratory, Assergi, Italy

    2
    PMTs are contained inside the Liquid Scintillator Veto spherical tank, a component of the DarkSide Experiment used to actively suppress background events from radiogenic and cosmogenic neutrons.

    Borexino and DarkSide are located 1.4 km (0.87 miles) below the earth’s surface in the word’s largest underground laboratory for experiments in particle astrophysics. Only a tiny fraction of the contents of the universe is visible matter, the rest is thought to be composed of dark matter and dark energy. A leading hypothesis for dark matter is that it comprises Weakly Interacting Massive Particles (WIMPs). The DarkSide experiment attempts to detect these particles to better understand the nature of dark matter and its interactions.

    These experiments use NI oscilloscopes to acquire electrical signals resulting from scintillation light captured by the photomultiplier tubes (PMTs). In DarkSide, 200 high-speed, high-resolution channels need to be tightly synchronized to make time-of-flight measurements of photons. Watch the NIWeek 2013 keynote or view a technical presentation for more information.

    Joint European Torus (JET)

    Culham Centre for Fusion Energy (CCFE), Oxfordshire, United Kingdom

    5
    Plasma is contained and heated in a torus within the interior of the JET tokamak.

    Currently the largest experimental tokamak fusion reactor in the world, JET uses magnetic confinement to contain plasma at around 100 million degrees Celsius, nearly seven times the temperature of the sun’s core (15 million degrees Celsius). Nuclear fusion is the process that powers the sun. Harnessing this type of energy can help solve the world’s growing energy demand. This facility is crucial to the research and development for future larger fusion reactors.

    Large Hadron Collider (LHC)
    CERN, Geneva, Switzerland

    a

    The A Toroidal LHC ApparatuS (ATLAS) is LHC’s largest particle detector involved in the recent discovery of the Higgs boson.

    The LHC is the largest and most powerful particle accelerator in the world, located in a 27 km (16.78 mile) ring tunnel underneath Switzerland and France. The experiment recently discovered the Higgs boson, deemed the “God Particle” that gives everything its mass. CERN is set to reopen the upgraded LHC in early 2015 at much higher energies to help physicists probe deeper into the nature of the universe and address the questions of supersymmetry and dark matter.

    National Ignition Facility (NIF)
    Lawrence Livermore National Laboratory (LLNL), California, USA

    7

    The image looks up into NIF’s 10 m (33 ft) diameter spherical target chamber with the target held on the protruding pencil-shaped arm.

    NIF is the largest inertial confinement fusion device in the world. The experiment converges the beams of 192 high-energy lasers on a single fuel-filled target, producing a 500 TW flash of light to trigger nuclear fusion. The aim of this experiment is to produce a condition known as ignition, in which the fusion reaction becomes self-sustaining. The machine was also used as the set for the warp drive in the latest Star Trek movie.

    Z Machine
    Sandia National Laboratories, Albuquerque, New Mexico, USA

    8

    The Z Machine creates residual lightning as it releases 350 TW of stored energy.

    The world’s largest X-ray generator is used for various high-pulsed power experiments requiring extreme temperatures and pressures. This includes inertial confinement fusion research. The extremely high voltages are achieved by rapidly discharging huge capacitors in a large insulated bath of oil and water onto a central target.

    European Extremely Large Telescope (E-ELT)

    European Southern Observatory (ESO), Cerro Armazones, Chile

    8

    This artist’s rendition of the E-ELT shows it at its high-altitude Atacama Desert site.

    The E-ELT is the largest optical/near-infrared ground-based telescope being built by ESO in northern Chile. It will allow astronomers to probe deep into space and investigate many unanswered questions about the universe. Images from E-ELT will be 16 times sharper than those from the Hubble Space Telescope, allowing astronomers to study the creation and atmospheres of extrasolar planets. The primary M1 mirror (shown in the image) is nearly 40 m (131 ft) in diameter, consisting of about 800 hexagonal segments.

    NASA Hubble Telescope
    Hubble

    International Thermonuclear Experimental Reactor (ITER)
    ITER Organization, Cadarache, France

    9

    This cutaway computer model shows ITER with plasma at its core. A technician is shown to demonstrate the machine’s size.

    ITER is an international effort to build the largest experimental fusion tokamak in the world, a critical step toward future fusion power plants. The European Union, India, Japan, China, Russia, South Korea, and United States are collaborating on the project, which is currently under construction in southern France.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 559 other followers

%d bloggers like this: