Tagged: Rutgers University (US) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 6:00 pm on September 20, 2021 Permalink | Reply
    Tags: "Rutgers Leads Effort to Tackle Coastal Climate Crisis Through $20M NSF Grant", , , , Rutgers University (US)   

    From Rutgers University (US) : “Rutgers Leads Effort to Tackle Coastal Climate Crisis Through $20M NSF Grant” 

    Rutgers smaller
    Our Great Seal.

    From Rutgers University (US)

    September 18, 2021

    Marisol Seda
    848-932-4411
    marisol.seda@rutgers.edu

    1
    Local residents view flooded downtown streets in New Brunswick on Sept. 2 in the aftermath of Tropical Storm Ida. Credit: Benjamin Clapp/Shutterstock.

    Universities join together to provide the research to work towards more resilient, sustainable coastlines.

    Rutgers will take the lead – with a $20 million grant from The National Science Foundation (US) – to develop a plan with universities throughout the country to protect coastal areas increasingly threatened by extreme weather caused by climate change.

    The university will be joined by sea level and climate scientists, civil engineers, urban planners, economists, emergency management specialists, environmental anthropologists, social scientists, humanists and others from The Pennsylvania State University (US), The University of Pennsylvania (US), Princeton University (US), Columbia University (US), The University at Albany – SUNY (US), Tulane University (US), Clark University (US), The Montclair State University (US), The University of Central Florida (US) and Carleton College (US).

    Rutgers announced the partnership on the heels of historic flooding from the remnants of Hurricane Ida, which researchers say serves as a stark reminder that all communities are vulnerable to the increasing frequency and severity of extreme weather events.

    “As extreme weather events continue to highlight our region’s and world’s vulnerability to the effects of climate change, Rutgers has taken a leadership role in addressing the climate crisis through research, scholarly activities, and meaningful action locally and globally,” said Rutgers President Jonathan Holloway. “In addition to developing a plan for our own university to reduce our carbon footprint, our experts are leading collaborations such as this one to create mutual understanding within our diverse communities, gather insights to guide decisions, and develop adaptation plans that could benefit coastal megalopolises in our region and beyond. It is a proud moment for Rutgers and for our partners to collectively impact change for future generations.”

    These climate risk teams will create a Megalopolitan Coastal Transformation Hub (MACH) in an effort to provide fundamental research that will enable society to work towards more resilient, sustainable coastlines that are vital to the national economy.

    Led by Rutgers climate scientist and principal investigator Robert Kopp, the multi-university group will partner with communities in the region, using real-world problems to shape its research activities. The project will investigate the hazards the region faces, as well as the way people understand and respond to them. It will also investigate the behavior of the housing markets, mortgages, and insurance companies, and the effects on municipal budgets.

    Kopp says the goal is to manage the transformation of the coast by linking scientists and communities in order to manage risk.

    “We are dealing with complex and rapidly changing coastal environments and hazards. Rutgers and most of the team working on this project sit within the dense urban mega-region that stretches from New York City, through New Jersey, to Philadelphia,’’ said Kopp, who is also director of the Rutgers Institute of Earth, Ocean and Atmospheric Sciences and professor in the Department of Earth and Planetary Sciences.

    “We have to understand the dynamics of how humans and the coastline interact in such complex, urbanized regions so that we can thrive despite rising sea levels and intensifying heat and rainfall and take advantage of new opportunities like offshore wind. The lessons we learn here should have application to urban megalopolises around the world,” Kopp said.

    The project will initially be funded by the NSF with a $7.9 million grant for the first two years, with the remaining $12 million in funds awarded following annual progress reports.

    “These projects are unique, community-built and embody the goals of broadening participation in science and fostering societally relevant coastal research,” says NSF Coastal and People Program director Amanda Adams. “The awards address coastal hazards from the Pacific Northwest to the Gulf of Mexico to the mid-Atlantic and engage communities from the densely populated Eastern Seaboard to tribal and rural coastal communities.”

    The coastal project will conduct research that supports the development of climate-resilient decision-making frameworks to equitably support coastal communities. In addition to facilitating interdisciplinary science, MACH will link researchers with coastal stakeholders and decision-makers to facilitate the co-development of dynamic adaptation policy pathways for equitably navigating a deeply uncertain future.

    At Rutgers, researchers will engage students from the university and community colleges, junior faculty, and faculty through research symposia while training and providing the necessary concepts, tools and skills to a new generation of leaders to advance managing climate risks. Rutgers Mason Gross School of the Arts will also develop a documentary of the whole five-year process.

    “This important project builds on and expands Rutgers-New Brunswick’s leadership in climate science and our commitment to address one of the most pressing crises facing the human race,” said Rutgers-New Brunswick Chancellor-Provost Francine Conway. “This effort requires the full focus of our prowess in academic excellence, world-changing research, and impactful public service.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    rutgers-campus

    Rutgers, The State University of New Jersey (US), is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    Rutgers University (US) is a public land-grant research university based in New Brunswick, New Jersey. Chartered in 1766, Rutgers was originally called Queen’s College, and today it is the eighth-oldest college in the United States, the second-oldest in New Jersey (after Princeton University (US)), and one of the nine U.S. colonial colleges that were chartered before the American War of Independence. In 1825, Queen’s College was renamed Rutgers College in honor of Colonel Henry Rutgers, whose substantial gift to the school had stabilized its finances during a period of uncertainty. For most of its existence, Rutgers was a private liberal arts college but it has evolved into a coeducational public research university after being designated The State University of New Jersey by the New Jersey Legislature via laws enacted in 1945 and 1956.

    Rutgers today has three distinct campuses, located in New Brunswick (including grounds in adjacent Piscataway), Newark, and Camden. The university has additional facilities elsewhere in the state, including oceanographic research facilities at the New Jersey shore. Rutgers is also a land-grant university, a sea-grant university, and the largest university in the state. Instruction is offered by 9,000 faculty members in 175 academic departments to over 45,000 undergraduate students and more than 20,000 graduate and professional students. The university is accredited by the Middle States Association of Colleges and Schools and is a member of the Big Ten Academic Alliance, the Association of American Universities (US) and the Universities Research Association (US). Over the years, Rutgers has been considered a Public Ivy.

    Research

    Rutgers is home to the Rutgers University Center for Cognitive Science, also known as RUCCS. This research center hosts researchers in psychology, linguistics, computer science, philosophy, electrical engineering, and anthropology.

    It was at Rutgers that Selman Waksman (1888–1973) discovered several antibiotics, including actinomycin, clavacin, streptothricin, grisein, neomycin, fradicin, candicidin, candidin, and others. Waksman, along with graduate student Albert Schatz (1920–2005), discovered streptomycin—a versatile antibiotic that was to be the first applied to cure tuberculosis. For this discovery, Waksman received the Nobel Prize for Medicine in 1952.

    Rutgers developed water-soluble sustained release polymers, tetraploids, robotic hands, artificial bovine insemination, and the ceramic tiles for the heat shield on the Space Shuttle. In health related field, Rutgers has the Environmental & Occupational Health Science Institute (EOHSI).

    Rutgers is also home to the RCSB Protein Data bank, “…an information portal to Biological Macromolecular Structures’ cohosted with the San Diego Supercomputer Center (US). This database is the authoritative research tool for bioinformaticists using protein primary, secondary and tertiary structures worldwide….”

    Rutgers is home to the Rutgers Cooperative Research & Extension office, which is run by the Agricultural and Experiment Station with the support of local government. The institution provides research & education to the local farming and agro industrial community in 19 of the 21 counties of the state and educational outreach programs offered through the New Jersey Agricultural Experiment Station Office of Continuing Professional Education.

    Rutgers University Cell and DNA Repository (RUCDR) is the largest university based repository in the world and has received awards worth more than $57.8 million from the National Institutes of Health (US). One will fund genetic studies of mental disorders and the other will support investigations into the causes of digestive, liver and kidney diseases, and diabetes. RUCDR activities will enable gene discovery leading to diagnoses, treatments and, eventually, cures for these diseases. RUCDR assists researchers throughout the world by providing the highest quality biomaterials, technical consultation, and logistical support.

    Rutgers–Camden is home to the nation’s PhD granting Department of Childhood Studies. This department, in conjunction with the Center for Children and Childhood Studies, also on the Camden campus, conducts interdisciplinary research which combines methodologies and research practices of sociology, psychology, literature, anthropology and other disciplines into the study of childhoods internationally.

    Rutgers is home to several National Science Foundation (US) IGERT fellowships that support interdisciplinary scientific research at the graduate-level. Highly selective fellowships are available in the following areas: Perceptual Science, Stem Cell Science and Engineering, Nanotechnology for Clean Energy, Renewable and Sustainable Fuels Solutions, and Nanopharmaceutical Engineering.

    Rutgers also maintains the Office of Research Alliances that focuses on working with companies to increase engagement with the university’s faculty members, staff and extensive resources on the four campuses.

    As a ’67 graduate of University College, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society of non-tradional students.

     
  • richardmitnick 10:46 am on August 26, 2021 Permalink | Reply
    Tags: "New regional Princeton-led innovation hub to accelerate tech and enhance diversity in entrepreneurship", Delaware State University (US), , New Jersey Institute of Technology (NJIT) (US), , Rowan University (US), Rutgers University (US), Temple University (US), The hub will expand by adding new affiliates each year.,   

    From Princeton University (US) : “New regional Princeton-led innovation hub to accelerate tech and enhance diversity in entrepreneurship” 

    Princeton University

    From Princeton University (US)

    Aug. 25, 2021
    Catherine Zandonella, Office of the Dean for Research

    1
    Princeton University is the lead institution in the new Innovation-Corps (I-Corps) Northeast Hub funded by the National Science Foundation to foster startups based on university research. Pictured: Graduate student Marissa Lavagnino sets up chemical reactions that are powered by blue light and enable the rapid synthesis of new pharmaceutical drugs. Photo by C. Todd Reichart, Department of Chemistry.

    Aiming to accelerate the transformation of scientific discoveries into technologies that improve everyday lives, a Princeton University-led consortium of regional universities will form a new innovation network with a $15 million grant from the National Science Foundation (US).

    The NSF Innovation Corps (I-Corps) Northeast Hub is one of five new hubs announced this week in a nationwide NSF-funded network of universities formed to accelerate the economic impact of federally funded research — delivering benefits in health care, energy and the environment, computing, artificial intelligence, robotics, advanced materials and other areas — while building skills and opportunities among researchers from all backgrounds, including those historically underrepresented in entrepreneurship.

    Princeton will be the principal institution in the new hub, with the University of Delaware (US) and Rutgers University (US) as partner institutions. The hub will include five initial affiliates: New Jersey Institute of Technology (NJIT) (US) and Rowan University (US) in New Jersey; Lehigh University (US) and Temple University (US) in Pennsylvania; and Delaware State University (US), an Historically Black College or University (HBCU). The hub will expand by adding new affiliates each year.

    “Princeton is excited to lead this initiative to develop the talent and dynamism of our region’s researchers,” said Princeton University President Christopher L. Eisgruber. “I am especially pleased that the hub will assist those who historically have faced barriers to opportunity and expand the societal impact of new discoveries and innovations.”

    “Rutgers is excited to partner in forming this hub, which speaks both to our region’s excellence in scientific research focused on our nation’s most urgent challenges and to its incredible diversity,” said Rutgers University President Jonathan Holloway. “This will help us provide opportunity to a new generation of researchers and spur growth in our innovation ecosystem.”

    “The University of Delaware has a deep commitment to groundbreaking research and a successful history of moving those discoveries out of our labs to fuel the creation of businesses and other ventures, so we are thrilled to be a partner in the NSF I-Corps Northeast Hub,” said University of Delaware President Dennis Assanis. “This initiative will open doors of opportunity for underrepresented populations and connect our diverse community of innovators with others throughout the region to benefit our entire economy and society.”

    1
    The Innovation Corps (I-Corps) Northeast Hub will include five initial affiliates: New Jersey Institute of Technology (NJIT) and Rowan University in New Jersey, Lehigh University and Temple University in Pennsylvania, and Delaware State University, a Historically Black College or University (HBCU). The hub will expand by adding new affiliates each year. Image by Mapbox Studios and Princeton University.

    Entrepreneurial focus

    With funding from NSF over five years, the hub will provide entrepreneurial training, mentoring and resources to enable researchers to form startup companies that translate laboratory discoveries into breakthrough products and services.

    The hub will employ the NSF I-Corps entrepreneurship training approach, which focuses on understanding the needs of potential customers, first-hand exploration of industrial processes and practices, and confronting the challenges of creating successful ventures based on scientific discoveries.

    The I-Corps program is based on the “lean startup” methodology in which innovators rapidly iterate on their products and business plans based on customer feedback and market needs. The new hubs will extend the capability of the NSF I-Corps program, which started a decade ago, to grow the societal and economic benefits arising from federally funded research in science and engineering.

    Regional and global impact

    Located in the heart of the U.S. Northeast, the new hub will make use of its proximity to “deep-tech industries” that revolve around fundamental discoveries in areas such as health care and pharmaceuticals, energy, the environment, earth- and water-friendly “green and blue” technologies, financial technologies, agriculture, communications and digital information.

    The hub will build on the robust industrial and government relationships of its academic institutions to develop a network of cross-sector partnerships that will leverage the investment of federal research dollars in the region’s universities.

    “Federal support for innovation provides a dynamic infusion of resources to energize economic growth, grow employment opportunities, and inspire new generations of entrepreneurial researchers to find solutions to societal challenges,” said U.S. Representative Bonnie Watson Coleman, who represents New Jersey’s 12th district, which includes Princeton University. “New Jersey’s institutes of higher learning have always been on the cutting edge. The National Science Foundation I-Corps Northeast Hub will invigorate the capacity for federally funded research to improve people’s everyday lives.”

    Princeton and the partner and affiliate universities are home to numerous industry-funded research centers and entrepreneurial business accelerators and incubators. Three of the hub universities (Rutgers, University of Delaware and NJIT) were funded previously by NSF as I-Corps sites providing training to hundreds of teams of entrepreneurs.

    “Universities working together — Princeton, University of Delaware, Delaware State University, and others — to share resources and to support our next generation of entrepreneurs is exactly why Innovation Corps was founded, and why I was an early supporter of I-Corps,” said U.S. Senator Chris Coons of Delaware. “I’m thrilled that two of Delaware’s universities are part of the Northeast I-Corps hub. The first 10 years of the I-Corps program have already helped a number of promising entrepreneurs translate ideas from the laboratory to the marketplace, and with the announcement of these new hubs, I look forward to seeing the gains our universities and students, especially those traditionally underrepresented in entrepreneurship, make toward commercializing new breakthrough technologies as a result of this important partnership.”

    Diverse participation in entrepreneurship

    Through a demonstrated commitment to inclusivity and diversity, the hub will contribute to America’s future prosperity and global competitiveness by training the next generation of innovators from all backgrounds.

    Activities that promote diversity include building a mentor network of successful and diverse individuals throughout the startup lifecycle, ensuring that hub instructors and mentors reflect the diversity of the region, and enhancing efforts to recruit participants belonging to groups historically underrepresented in entrepreneurship.

    Affiliate institution and HBCU Delaware State University will co-lead the hub’s efforts to establish new partnerships with minority-serving institutions.

    Hub leadership

    Rodney Priestley, Princeton University’s vice dean for innovation and the Pomeroy and Betty Perry Smith Professor of Chemical and Biological Engineering, will be the co-director of the hub. Priestley is the co-founder of several startups based on research developed in his laboratory at Princeton, and leads Princeton Innovation, an initiative to broaden entrepreneurial activities based on University discoveries.

    “The convergence of different disciplines combined with the diversity of participants will lead to unbound possibilities in U.S. innovation and entrepreneurship,” said Priestley, co-founder of several startups based on research developed in his laboratory at Princeton. “Furthermore, the U.S. will only maintain its global competitiveness by harnessing contributions from all members of society.”

    Julius Korley, director of entrepreneurship and strategic partnerships in the College of Engineering at the University of Delaware, will co-direct the hub. Korley is an experienced entrepreneur and nationally certified National Institutes of Health I-Corps program instructor.

    “Our commitment to diversity is evidenced in the composition of our leadership team,” Korley said. “We’re going to leverage our network to draw in more diverse candidates for all of these roles important to entrepreneurship — whether to become an I-Corps instructor, which can be a meaningful career, or a mentor who serves as that critical sounding board, or as a trainee who goes on to launch a successful company. We’re very excited to get started.”

    Christina Pellicane, the hub’s lead instructor, has been a nationally certified NSF I-Corps instructor for eight years, previously managed the University of Delaware I-Corps Site as the founding director of commercialization, and earlier managed the NYC Regional I-Corps Node. She is the chief operating officer of a chemical tech startup spun out of the University of Delaware.

    Princeton and the two partner institutions, Rutgers University and the University of Delaware, will assemble entrepreneurial instructors for training programs, recruit mentors and offer entrepreneurial programming for teams of scientists who apply to participate with the goal of transitioning a technology into the marketplace.

    Faculty leadership at the principal and partner institutes will include:

    -Jannette Carey, associate professor of chemistry at Princeton
    -Dunbar Birnie, professor and the Corning/Saint Gobain/Malcolm G. McLaren Chair of Materials Science and Engineering at Rutgers
    -Daniel Freeman, associate professor of marketing and director of the Horn Program in Entrepreneurship at the University of Delaware
    -Jeffrey Robinson, an associate professor at Rutgers Business School and academic director of The Center for Urban Entrepreneurship & Economic Development, will serve as the research lead for the hub.

    As the lead institution, Princeton will provide overall governance of the hub under the guidance of Dean for Research Pablo Debenedetti, the Class of 1950 Professor in Engineering and Applied Science and a professor of chemical and biological engineering.

    A network of affiliates

    The affiliate universities, including inaugural members NJIT, Rowan University, Temple University, Lehigh University and Delaware State University will advertise opportunities for their researchers to form teams and attend trainings located at the lead and partner institutions.

    Affiliate faculty leads:

    -Michael Ehrlich, associate professor of finance at the MT School of Management and director of the Leir Institute for Business, Technology and Society at the New Jersey Institute of Technology
    -Nidhal Bouaynaya, associate dean for research and graduate studies at Rowan University
    -John Coulter, professor of mechanical engineering, senior associate dean for research for the P.C. Rossin College of Engineering and Applied Science, and faculty lead for the I-Corps hub at Lehigh University
    -Michael Casson, dean of the College of Business, director of the University Center for Economic Development and International Trade, and director of the Economic Development and Leadership Institute at Delaware State University
    -Temple University’s faculty lead is to be determined.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    <

    About Princeton: Overview

    Princeton University (US) is a private Ivy League research university in Princeton, New Jersey (US). Founded in 1746 in Elizabeth as the College of New Jersey, Princeton is the fourth-oldest institution of higher education in the United States and one of the nine colonial colleges chartered before the American Revolution. The institution moved to Newark in 1747, then to the current site nine years later. It was renamed Princeton University in 1896.

    Princeton provides undergraduate and graduate instruction in the humanities, social sciences, natural sciences, and engineering. It offers professional degrees through the Princeton School of Public and International Affairs, the School of Engineering and Applied Science, the School of Architecture and the Bendheim Center for Finance. The university also manages the DOE’s Princeton Plasma Physics Laboratory. Princeton has the largest endowment per student in the United States.

    As of October 2020, 69 Nobel laureates, 15 Fields Medalists and 14 Turing Award laureates have been affiliated with Princeton University as alumni, faculty members or researchers. In addition, Princeton has been associated with 21 National Medal of Science winners, 5 Abel Prize winners, 5 National Humanities Medal recipients, 215 Rhodes Scholars, 139 Gates Cambridge Scholars and 137 Marshall Scholars. Two U.S. Presidents, twelve U.S. Supreme Court Justices (three of whom currently serve on the court) and numerous living billionaires and foreign heads of state are all counted among Princeton’s alumni body. Princeton has also graduated many prominent members of the U.S. Congress and the U.S. Cabinet, including eight Secretaries of State, three Secretaries of Defense and the current Chairman of the Joint Chiefs of Staff.

    Princeton University, founded as the College of New Jersey, was considered the successor of the “Log College” founded by the Reverend William Tennent at Neshaminy, PA in about 1726. New Light Presbyterians founded the College of New Jersey in 1746 in Elizabeth, New Jersey. Its purpose was to train ministers. The college was the educational and religious capital of Scottish Presbyterian America. Unlike Harvard University (US), which was originally “intensely English” with graduates taking the side of the crown during the American Revolution, Princeton was founded to meet the religious needs of the period and many of its graduates took the American side in the war. In 1754, trustees of the College of New Jersey suggested that, in recognition of Governor Jonathan Belcher’s interest, Princeton should be named as Belcher College. Belcher replied: “What a name that would be!” In 1756, the college moved its campus to Princeton, New Jersey. Its home in Princeton was Nassau Hall, named for the royal House of Orange-Nassau of William III of England.

    Following the untimely deaths of Princeton’s first five presidents, John Witherspoon became president in 1768 and remained in that post until his death in 1794. During his presidency, Witherspoon shifted the college’s focus from training ministers to preparing a new generation for secular leadership in the new American nation. To this end, he tightened academic standards and solicited investment in the college. Witherspoon’s presidency constituted a long period of stability for the college, interrupted by the American Revolution and particularly the Battle of Princeton, during which British soldiers briefly occupied Nassau Hall; American forces, led by George Washington, fired cannon on the building to rout them from it.

    In 1812, the eighth president of the College of New Jersey, Ashbel Green (1812–23), helped establish the Princeton Theological Seminary next door. The plan to extend the theological curriculum met with “enthusiastic approval on the part of the authorities at the College of New Jersey.” Today, Princeton University and Princeton Theological Seminary maintain separate institutions with ties that include services such as cross-registration and mutual library access.

    Before the construction of Stanhope Hall in 1803, Nassau Hall was the college’s sole building. The cornerstone of the building was laid on September 17, 1754. During the summer of 1783, the Continental Congress met in Nassau Hall, making Princeton the country’s capital for four months. Over the centuries and through two redesigns following major fires (1802 and 1855), Nassau Hall’s role shifted from an all-purpose building, comprising office, dormitory, library, and classroom space; to classroom space exclusively; to its present role as the administrative center of the University. The class of 1879 donated twin lion sculptures that flanked the entrance until 1911, when that same class replaced them with tigers. Nassau Hall’s bell rang after the hall’s construction; however, the fire of 1802 melted it. The bell was then recast and melted again in the fire of 1855.

    James McCosh became the college’s president in 1868 and lifted the institution out of a low period that had been brought about by the American Civil War. During his two decades of service, he overhauled the curriculum, oversaw an expansion of inquiry into the sciences, and supervised the addition of a number of buildings in the High Victorian Gothic style to the campus. McCosh Hall is named in his honor.

    In 1879, the first thesis for a Doctor of Philosophy (Ph.D.) was submitted by James F. Williamson, Class of 1877.

    In 1896, the college officially changed its name from the College of New Jersey to Princeton University to honor the town in which it resides. During this year, the college also underwent large expansion and officially became a university. In 1900, the Graduate School was established.

    In 1902, Woodrow Wilson, graduate of the Class of 1879, was elected the 13th president of the university. Under Wilson, Princeton introduced the preceptorial system in 1905, a then-unique concept in the United States that augmented the standard lecture method of teaching with a more personal form in which small groups of students, or precepts, could interact with a single instructor, or preceptor, in their field of interest.

    In 1906, the reservoir Carnegie Lake was created by Andrew Carnegie. A collection of historical photographs of the building of the lake is housed at the Seeley G. Mudd Manuscript Library on Princeton’s campus. On October 2, 1913, the Princeton University Graduate College was dedicated. In 1919 the School of Architecture was established. In 1933, Albert Einstein became a lifetime member of the Institute for Advanced Study with an office on the Princeton campus. While always independent of the university, the Institute for Advanced Study occupied offices in Jones Hall for 6 years, from its opening in 1933, until its own campus was finished and opened in 1939.

    Coeducation

    In 1969, Princeton University first admitted women as undergraduates. In 1887, the university actually maintained and staffed a sister college, Evelyn College for Women, in the town of Princeton on Evelyn and Nassau streets. It was closed after roughly a decade of operation. After abortive discussions with Sarah Lawrence College to relocate the women’s college to Princeton and merge it with the University in 1967, the administration decided to admit women and turned to the issue of transforming the school’s operations and facilities into a female-friendly campus. The administration had barely finished these plans in April 1969 when the admissions office began mailing out its acceptance letters. Its five-year coeducation plan provided $7.8 million for the development of new facilities that would eventually house and educate 650 women students at Princeton by 1974. Ultimately, 148 women, consisting of 100 freshmen and transfer students of other years, entered Princeton on September 6, 1969 amidst much media attention. Princeton enrolled its first female graduate student, Sabra Follett Meservey, as a PhD candidate in Turkish history in 1961. A handful of undergraduate women had studied at Princeton from 1963 on, spending their junior year there to study “critical languages” in which Princeton’s offerings surpassed those of their home institutions. They were considered regular students for their year on campus, but were not candidates for a Princeton degree.

    As a result of a 1979 lawsuit by Sally Frank, Princeton’s eating clubs were required to go coeducational in 1991, after Tiger Inn’s appeal to the U.S. Supreme Court was denied. In 1987, the university changed the gendered lyrics of “Old Nassau” to reflect the school’s co-educational student body. From 2009 to 2011, Princeton professor Nannerl O. Keohane chaired a committee on undergraduate women’s leadership at the university, appointed by President Shirley M. Tilghman.

    The main campus sits on about 500 acres (2.0 km^2) in Princeton. In 2011, the main campus was named by Travel+Leisure as one of the most beautiful in the United States. The James Forrestal Campus is split between nearby Plainsboro and South Brunswick. The University also owns some property in West Windsor Township. The campuses are situated about one hour from both New York City and Philadelphia.

    The first building on campus was Nassau Hall, completed in 1756 and situated on the northern edge of campus facing Nassau Street. The campus expanded steadily around Nassau Hall during the early and middle 19th century. The McCosh presidency (1868–88) saw the construction of a number of buildings in the High Victorian Gothic and Romanesque Revival styles; many of them are now gone, leaving the remaining few to appear out of place. At the end of the 19th century much of Princeton’s architecture was designed by the Cope and Stewardson firm (same architects who designed a large part of Washington University in St Louis (US) and University of Pennsylvania(US)) resulting in the Collegiate Gothic style for which it is known today. Implemented initially by William Appleton Potter and later enforced by the University’s supervising architect, Ralph Adams Cram, the Collegiate Gothic style remained the standard for all new building on the Princeton campus through 1960. A flurry of construction in the 1960s produced a number of new buildings on the south side of the main campus, many of which have been poorly received. Several prominent architects have contributed some more recent additions, including Frank Gehry (Lewis Library), I. M. Pei (Spelman Halls), Demetri Porphyrios (Whitman College, a Collegiate Gothic project), Robert Venturi and Denise Scott Brown (Frist Campus Center, among several others), and Rafael Viñoly (Carl Icahn Laboratory).

    A group of 20th-century sculptures scattered throughout the campus forms the Putnam Collection of Sculpture. It includes works by Alexander Calder (Five Disks: One Empty), Jacob Epstein (Albert Einstein), Henry Moore (Oval with Points), Isamu Noguchi (White Sun), and Pablo Picasso (Head of a Woman). Richard Serra’s The Hedgehog and The Fox is located between Peyton and Fine halls next to Princeton Stadium and the Lewis Library.

    At the southern edge of the campus is Carnegie Lake, an artificial lake named for Andrew Carnegie. Carnegie financed the lake’s construction in 1906 at the behest of a friend who was a Princeton alumnus. Carnegie hoped the opportunity to take up rowing would inspire Princeton students to forsake football, which he considered “not gentlemanly.” The Shea Rowing Center on the lake’s shore continues to serve as the headquarters for Princeton rowing.

    Cannon Green

    Buried in the ground at the center of the lawn south of Nassau Hall is the “Big Cannon,” which was left in Princeton by British troops as they fled following the Battle of Princeton. It remained in Princeton until the War of 1812, when it was taken to New Brunswick. In 1836 the cannon was returned to Princeton and placed at the eastern end of town. It was removed to the campus under cover of night by Princeton students in 1838 and buried in its current location in 1840.

    A second “Little Cannon” is buried in the lawn in front of nearby Whig Hall. This cannon, which may also have been captured in the Battle of Princeton, was stolen by students of Rutgers University in 1875. The theft ignited the Rutgers-Princeton Cannon War. A compromise between the presidents of Princeton and Rutgers ended the war and forced the return of the Little Cannon to Princeton. The protruding cannons are occasionally painted scarlet by Rutgers students who continue the traditional dispute.

    In years when the Princeton football team beats the teams of both Harvard University and Yale University in the same season, Princeton celebrates with a bonfire on Cannon Green. This occurred in 2012, ending a five-year drought. The next bonfire happened on November 24, 2013, and was broadcast live over the Internet.

    Landscape

    Princeton’s grounds were designed by Beatrix Farrand between 1912 and 1943. Her contributions were most recently recognized with the naming of a courtyard for her. Subsequent changes to the landscape were introduced by Quennell Rothschild & Partners in 2000. In 2005, Michael Van Valkenburgh was hired as the new consulting landscape architect for the campus. Lynden B. Miller was invited to work with him as Princeton’s consulting gardening architect, focusing on the 17 gardens that are distributed throughout the campus.

    Buildings

    Nassau Hall

    Nassau Hall is the oldest building on campus. Begun in 1754 and completed in 1756, it was the first seat of the New Jersey Legislature in 1776, was involved in the battle of Princeton in 1777, and was the seat of the Congress of the Confederation (and thus capitol of the United States) from June 30, 1783, to November 4, 1783. It now houses the office of the university president and other administrative offices, and remains the symbolic center of the campus. The front entrance is flanked by two bronze tigers, a gift of the Princeton Class of 1879. Commencement is held on the front lawn of Nassau Hall in good weather. In 1966, Nassau Hall was added to the National Register of Historic Places.

    Residential colleges

    Princeton has six undergraduate residential colleges, each housing approximately 500 freshmen, sophomores, some juniors and seniors, and a handful of junior and senior resident advisers. Each college consists of a set of dormitories, a dining hall, a variety of other amenities—such as study spaces, libraries, performance spaces, and darkrooms—and a collection of administrators and associated faculty. Two colleges, First College and Forbes College (formerly Woodrow Wilson College and Princeton Inn College, respectively), date to the 1970s; three others, Rockefeller, Mathey, and Butler Colleges, were created in 1983 following the Committee on Undergraduate Residential Life (CURL) report, which suggested the institution of residential colleges as a solution to an allegedly fragmented campus social life. The construction of Whitman College, the university’s sixth residential college, was completed in 2007.

    Rockefeller and Mathey are located in the northwest corner of the campus; Princeton brochures often feature their Collegiate Gothic architecture. Like most of Princeton’s Gothic buildings, they predate the residential college system and were fashioned into colleges from individual dormitories.

    First and Butler, located south of the center of the campus, were built in the 1960s. First served as an early experiment in the establishment of the residential college system. Butler, like Rockefeller and Mathey, consisted of a collection of ordinary dorms (called the “New New Quad”) before the addition of a dining hall made it a residential college. Widely disliked for their edgy modernist design, including “waffle ceilings,” the dormitories on the Butler Quad were demolished in 2007. Butler is now reopened as a four-year residential college, housing both under- and upperclassmen.

    Forbes is located on the site of the historic Princeton Inn, a gracious hotel overlooking the Princeton golf course. The Princeton Inn, originally constructed in 1924, played regular host to important symposia and gatherings of renowned scholars from both the university and the nearby Institute for Advanced Study for many years. Forbes currently houses nearly 500 undergraduates in its residential halls.

    In 2003, Princeton broke ground for a sixth college named Whitman College after its principal sponsor, Meg Whitman, who graduated from Princeton in 1977. The new dormitories were constructed in the Collegiate Gothic architectural style and were designed by architect Demetri Porphyrios. Construction finished in 2007, and Whitman College was inaugurated as Princeton’s sixth residential college that same year.

    The precursor of the present college system in America was originally proposed by university president Woodrow Wilson in the early 20th century. For over 800 years, however, the collegiate system had already existed in Britain at Cambridge and Oxford Universities. Wilson’s model was much closer to Yale University (US)’s present system, which features four-year colleges. Lacking the support of the trustees, the plan languished until 1968. That year, Wilson College was established to cap a series of alternatives to the eating clubs. Fierce debates raged before the present residential college system emerged. The plan was first attempted at Yale, but the administration was initially uninterested; an exasperated alumnus, Edward Harkness, finally paid to have the college system implemented at Harvard in the 1920s, leading to the oft-quoted aphorism that the college system is a Princeton idea that was executed at Harvard with funding from Yale.

    Princeton has one graduate residential college, known simply as the Graduate College, located beyond Forbes College at the outskirts of campus. The far-flung location of the GC was the spoil of a squabble between Woodrow Wilson and then-Graduate School Dean Andrew Fleming West. Wilson preferred a central location for the college; West wanted the graduate students as far as possible from the campus. Ultimately, West prevailed. The Graduate College is composed of a large Collegiate Gothic section crowned by Cleveland Tower, a local landmark that also houses a world-class carillon. The attached New Graduate College provides a modern contrast in architectural style.

    McCarter Theatre

    The Tony-award-winning McCarter Theatre was built by the Princeton Triangle Club, a student performance group, using club profits and a gift from Princeton University alumnus Thomas McCarter. Today, the Triangle Club performs its annual freshmen revue, fall show, and Reunions performances in McCarter. McCarter is also recognized as one of the leading regional theaters in the United States.

    Art Museum

    The Princeton University Art Museum was established in 1882 to give students direct, intimate, and sustained access to original works of art that complement and enrich instruction and research at the university. This continues to be a primary function, along with serving as a community resource and a destination for national and international visitors.

    Numbering over 92,000 objects, the collections range from ancient to contemporary art and concentrate geographically on the Mediterranean regions, Western Europe, China, the United States, and Latin America. There is a collection of Greek and Roman antiquities, including ceramics, marbles, bronzes, and Roman mosaics from faculty excavations in Antioch. Medieval Europe is represented by sculpture, metalwork, and stained glass. The collection of Western European paintings includes examples from the early Renaissance through the 19th century, with masterpieces by Monet, Cézanne, and Van Gogh, and features a growing collection of 20th-century and contemporary art, including iconic paintings such as Andy Warhol’s Blue Marilyn.

    One of the best features of the museums is its collection of Chinese art, with important holdings in bronzes, tomb figurines, painting, and calligraphy. Its collection of pre-Columbian art includes examples of Mayan art, and is commonly considered to be the most important collection of pre-Columbian art outside of Latin America. The museum has collections of old master prints and drawings and a comprehensive collection of over 27,000 original photographs. African art and Northwest Coast Indian art are also represented. The Museum also oversees the outdoor Putnam Collection of Sculpture.

    University Chapel

    The Princeton University Chapel is located on the north side of campus, near Nassau Street. It was built between 1924 and 1928, at a cost of $2.3 million [approximately $34.2 million in 2020 dollars]. Ralph Adams Cram, the University’s supervising architect, designed the chapel, which he viewed as the crown jewel for the Collegiate Gothic motif he had championed for the campus. At the time of its construction, it was the second largest university chapel in the world, after King’s College Chapel, Cambridge. It underwent a two-year, $10 million restoration campaign between 2000 and 2002.

    Measured on the exterior, the chapel is 277 feet (84 m) long, 76 feet (23 m) wide at its transepts, and 121 feet (37 m) high. The exterior is Pennsylvania sandstone, with Indiana limestone used for the trim. The interior is mostly limestone and Aquia Creek sandstone. The design evokes an English church of the Middle Ages. The extensive iconography, in stained glass, stonework, and wood carvings, has the common theme of connecting religion and scholarship.

    The Chapel seats almost 2,000. It hosts weekly ecumenical Christian services, daily Roman Catholic mass, and several annual special events.

    Murray-Dodge Hall

    Murray-Dodge Hall houses the Office of Religious Life (ORL), the Murray Dodge Theater, the Murray-Dodge Café, the Muslim Prayer Room and the Interfaith Prayer Room. The ORL houses the office of the Dean of Religious Life, Alison Boden, and a number of university chaplains, including the country’s first Hindu chaplain, Vineet Chander; and one of the country’s first Muslim chaplains, Sohaib Sultan.

    Sustainability

    Published in 2008, Princeton’s Sustainability Plan highlights three priority areas for the University’s Office of Sustainability: reduction of greenhouse gas emissions; conservation of resources; and research, education, and civic engagement. Princeton has committed to reducing its carbon dioxide emissions to 1990 levels by 2020: Energy without the purchase of offsets. The University published its first Sustainability Progress Report in November 2009. The University has adopted a green purchasing policy and recycling program that focuses on paper products, construction materials, lightbulbs, furniture, and electronics. Its dining halls have set a goal to purchase 75% sustainable food products by 2015. The student organization “Greening Princeton” seeks to encourage the University administration to adopt environmentally friendly policies on campus.

    Organization

    The Trustees of Princeton University, a 40-member board, is responsible for the overall direction of the University. It approves the operating and capital budgets, supervises the investment of the University’s endowment and oversees campus real estate and long-range physical planning. The trustees also exercise prior review and approval concerning changes in major policies, such as those in instructional programs and admission, as well as tuition and fees and the hiring of faculty members.

    With an endowment of $26.1 billion, Princeton University is among the wealthiest universities in the world. Ranked in 2010 as the third largest endowment in the United States, the university had the greatest per-student endowment in the world (over $2 million for undergraduates) in 2011. Such a significant endowment is sustained through the continued donations of its alumni and is maintained by investment advisers. Some of Princeton’s wealth is invested in its art museum, which features works by Claude Monet, Vincent van Gogh, Jackson Pollock, and Andy Warhol among other prominent artists.

    Academics

    Undergraduates fulfill general education requirements, choose among a wide variety of elective courses, and pursue departmental concentrations and interdisciplinary certificate programs. Required independent work is a hallmark of undergraduate education at Princeton. Students graduate with either the Bachelor of Arts (A.B.) or the Bachelor of Science in Engineering (B.S.E.).

    The graduate school offers advanced degrees spanning the humanities, social sciences, natural sciences, and engineering. Doctoral education is available in most disciplines. It emphasizes original and independent scholarship whereas master’s degree programs in architecture, engineering, finance, and public affairs and public policy prepare candidates for careers in public life and professional practice.

    The university has ties with the Institute for Advanced Study, Princeton Theological Seminary and the Westminster Choir College of Rider University (US).

    Undergraduate

    Undergraduate courses in the humanities are traditionally either seminars or lectures held 2 or 3 times a week with an additional discussion seminar that is called a “precept.” To graduate, all A.B. candidates must complete a senior thesis and, in most departments, one or two extensive pieces of independent research that are known as “junior papers.” Juniors in some departments, including architecture and the creative arts, complete independent projects that differ from written research papers. A.B. candidates must also fulfill a three or four semester foreign language requirement and distribution requirements (which include, for example, classes in ethics, literature and the arts, and historical analysis) with a total of 31 classes. B.S.E. candidates follow a parallel track with an emphasis on a rigorous science and math curriculum, a computer science requirement, and at least two semesters of independent research including an optional senior thesis. All B.S.E. students must complete at least 36 classes. A.B. candidates typically have more freedom in course selection than B.S.E. candidates because of the fewer number of required classes. Nonetheless, in the spirit of a liberal arts education, both enjoy a comparatively high degree of latitude in creating a self-structured curriculum.

    Undergraduates agree to adhere to an academic integrity policy called the Honor Code, established in 1893. Under the Honor Code, faculty do not proctor examinations; instead, the students proctor one another and must report any suspected violation to an Honor Committee made up of undergraduates. The Committee investigates reported violations and holds a hearing if it is warranted. An acquittal at such a hearing results in the destruction of all records of the hearing; a conviction results in the student’s suspension or expulsion. The signed pledge required by the Honor Code is so integral to students’ academic experience that the Princeton Triangle Club performs a song about it each fall. Out-of-class exercises fall under the jurisdiction of the Faculty-Student Committee on Discipline. Undergraduates are expected to sign a pledge on their written work affirming that they have not plagiarized the work.

    Graduate

    The Graduate School has about 2,600 students in 42 academic departments and programs in social sciences; engineering; natural sciences; and humanities. These departments include the Department of Psychology; Department of History; and Department of Economics.

    In 2017–2018, it received nearly 11,000 applications for admission and accepted around 1,000 applicants. The University also awarded 319 Ph.D. degrees and 170 final master’s degrees. Princeton has no medical school, law school, business school, or school of education. (A short-lived Princeton Law School folded in 1852.) It offers professional graduate degrees in architecture; engineering; finance and public policy- the last through the Princeton School of Public and International Affairs founded in 1930 as the School of Public and International Affairs and renamed in 1948 after university president (and U.S. president) Woodrow Wilson, and most recently renamed in 2020.

    Libraries

    The Princeton University Library system houses over eleven million holdings including seven million bound volumes. The main university library, Firestone Library, which houses almost four million volumes, is one of the largest university libraries in the world. Additionally, it is among the largest “open stack” libraries in existence. Its collections include the autographed manuscript of F. Scott Fitzgerald’s The Great Gatsby and George F. Kennan’s Long Telegram. In addition to Firestone library, specialized libraries exist for architecture, art and archaeology, East Asian studies, engineering, music, public and international affairs, public policy and university archives, and the sciences. In an effort to expand access, these libraries also subscribe to thousands of electronic resources.

    Institutes

    High Meadows Environmental Institute

    The High Meadows Environmental Institute is an “interdisciplinary center of environmental research, education, and outreach” at the university. The institute was started in 1994. About 90 faculty members at Princeton University are affiliated with it.

    The High Meadows Environmental Institute has the following research centers:

    Carbon Mitigation Initiative (CMI): This is a 15-year-long partnership between PEI and British Petroleum with the goal of finding solutions to problems related to climate change. The Stabilization Wedge Game has been created as part of this initiative.
    Center for BioComplexity (CBC)
    Cooperative Institute for Climate Science (CICS): This is a collaboration with the National Oceanographic and Atmospheric Administration’s Geophysical Fluid Dynamics Laboratory.
    Energy Systems Analysis Group
    Grand Challenges

    Princeton Plasma Physics Laboratory

    The Princeton Plasma Physics Laboratory, PPPL, was founded in 1951 as Project Matterhorn, a top secret cold war project aimed at achieving controlled nuclear fusion. Princeton astrophysics professor Lyman Spitzer became the first director of the project and remained director until the lab’s declassification in 1961 when it received its current name.

    PPPL currently houses approximately half of the graduate astrophysics department, the Princeton Program in Plasma Physics. The lab is also home to the Harold P. Furth Plasma Physics Library. The library contains all declassified Project Matterhorn documents, included the first design sketch of a stellarator by Lyman Spitzer.

    Princeton is one of five US universities to have and to operate a Department of Energy(US) national laboratory.

    Student life and culture

    University housing is guaranteed to all undergraduates for all four years. More than 98% of students live on campus in dormitories. Freshmen and sophomores must live in residential colleges, while juniors and seniors typically live in designated upperclassman dormitories. The actual dormitories are comparable, but only residential colleges have dining halls. Nonetheless, any undergraduate may purchase a meal plan and eat in a residential college dining hall. Recently, upperclassmen have been given the option of remaining in their college for all four years. Juniors and seniors also have the option of living off-campus, but high rent in the Princeton area encourages almost all students to live in university housing. Undergraduate social life revolves around the residential colleges and a number of coeducational eating clubs, which students may choose to join in the spring of their sophomore year. Eating clubs, which are not officially affiliated with the university, serve as dining halls and communal spaces for their members and also host social events throughout the academic year.

    Princeton’s six residential colleges host a variety of social events and activities, guest speakers, and trips. The residential colleges also sponsor trips to New York for undergraduates to see ballets, operas, Broadway shows, sports events, and other activities. The eating clubs, located on Prospect Avenue, are co-ed organizations for upperclassmen. Most upperclassmen eat their meals at one of the eleven eating clubs. Additionally, the clubs serve as evening and weekend social venues for members and guests. The eleven clubs are Cannon; Cap and Gown; Charter; Cloister; Colonial; Cottage; Ivy; Quadrangle; Terrace; Tiger; and Tower.

    Princeton hosts two Model United Nations conferences, PMUNC in the fall for high school students and PDI in the spring for college students. It also hosts the Princeton Invitational Speech and Debate tournament each year at the end of November. Princeton also runs Princeton Model Congress, an event that is held once a year in mid-November. The four-day conference has high school students from around the country as participants.

    Although the school’s admissions policy is need-blind, Princeton, based on the proportion of students who receive Pell Grants, was ranked as a school with little economic diversity among all national universities ranked by U.S. News & World Report. While Pell figures are widely used as a gauge of the number of low-income undergraduates on a given campus, the rankings article cautions “the proportion of students on Pell Grants isn’t a perfect measure of an institution’s efforts to achieve economic diversity,” but goes on to say that “still, many experts say that Pell figures are the best available gauge of how many low-income undergrads there are on a given campus.”

    TigerTrends is a university-based student run fashion, arts, and lifestyle magazine.

    Demographics

    Princeton has made significant progress in expanding the diversity of its student body in recent years. The 2019 freshman class was one of the most diverse in the school’s history, with 61% of students identifying as students of color. Undergraduate and master’s students were 51% male and 49% female for the 2018–19 academic year.

    The median family income of Princeton students is $186,100, with 57% of students coming from the top 10% highest-earning families and 14% from the bottom 60%.

    In 1999, 10% of the student body was Jewish, a percentage lower than those at other Ivy League schools. Sixteen percent of the student body was Jewish in 1985; the number decreased by 40% from 1985 to 1999. This decline prompted The Daily Princetonian to write a series of articles on the decline and its reasons. Caroline C. Pam of The New York Observer wrote that Princeton was “long dogged by a reputation for anti-Semitism” and that this history as well as Princeton’s elite status caused the university and its community to feel sensitivity towards the decrease of Jewish students. At the time many Jewish students at Princeton dated Jewish students at the University of Pennsylvania in Philadelphia because they perceived Princeton as an environment where it was difficult to find romantic prospects; Pam stated that there was a theory that the dating issues were a cause of the decline in Jewish students.

    In 1981, the population of African Americans at Princeton University made up less than 10%. Bruce M. Wright was admitted into the university in 1936 as the first African American, however, his admission was a mistake and when he got to campus he was asked to leave. Three years later Wright asked the dean for an explanation on his dismissal and the dean suggested to him that “a member of your race might feel very much alone” at Princeton University.

    Traditions

    Princeton enjoys a wide variety of campus traditions, some of which, like the Clapper Theft and Nude Olympics, have faded into history:

    Arch Sings – Late-night concerts that feature one or several of Princeton’s undergraduate a cappella groups, such as the Princeton Nassoons; Princeton Tigertones; Princeton Footnotes; Princeton Roaring 20; and The Princeton Wildcats. The free concerts take place in one of the larger arches on campus. Most are held in Blair Arch or Class of 1879 Arch.

    Bonfire – Ceremonial bonfire that takes place in Cannon Green behind Nassau Hall. It is held only if Princeton beats both Harvard University and Yale University at football in the same season. The most recent bonfire was lighted on November 18, 2018.

    Bicker – Selection process for new members that is employed by selective eating clubs. Prospective members, or bickerees, are required to perform a variety of activities at the request of current members.

    Cane Spree – An athletic competition between freshmen and sophomores that is held in the fall. The event centers on cane wrestling, where a freshman and a sophomore will grapple for control of a cane. This commemorates a time in the 1870s when sophomores, angry with the freshmen who strutted around with fancy canes, stole all of the canes from the freshmen, hitting them with their own canes in the process.

    The Clapper or Clapper Theft – The act of climbing to the top of Nassau Hall to steal the bell clapper, which rings to signal the start of classes on the first day of the school year. For safety reasons, the clapper has been removed permanently.

    Class Jackets (Beer Jackets) – Each graduating class designs a Class Jacket that features its class year. The artwork is almost invariably dominated by the school colors and tiger motifs.

    Communiversity – An annual street fair with performances, arts and crafts, and other activities that attempts to foster interaction between the university community and the residents of Princeton.

    Dean’s Date – The Tuesday at the end of each semester when all written work is due. This day signals the end of reading period and the beginning of final examinations. Traditionally, undergraduates gather outside McCosh Hall before the 5:00 PM deadline to cheer on fellow students who have left their work to the very last minute.

    FitzRandolph Gates – At the end of Princeton’s graduation ceremony, the new graduates process out through the main gate of the university as a symbol of the fact that they are leaving college. According to tradition, anyone who exits campus through the FitzRandolph Gates before his or her own graduation date will not graduate.

    Holder Howl – The midnight before Dean’s Date, students from Holder Hall and elsewhere gather in the Holder courtyard and take part in a minute-long, communal primal scream to vent frustration from studying with impromptu, late night noise making.

    Houseparties – Formal parties that are held simultaneously by all of the eating clubs at the end of the spring term.

    Ivy stones – Class memorial stones placed on the exterior walls of academic buildings around the campus.

    Lawnparties – Parties that feature live bands that are held simultaneously by all of the eating clubs at the start of classes and at the conclusion of the academic year.

    Princeton Locomotive – Traditional cheer in use since the 1890s. It is commonly heard at Opening Exercises in the fall as alumni and current students welcome the freshman class, as well as the P-rade in the spring at Princeton Reunions. The cheer starts slowly and picks up speed, and includes the sounds heard at a fireworks show.

    Hip! Hip!
    Rah, Rah, Rah,
    Tiger, Tiger, Tiger,
    Sis, Sis, Sis,
    Boom, Boom, Boom, Ah!
    Princeton! Princeton! Princeton!

    Or if a class is being celebrated, the last line consists of the class year repeated three times, e.g. “Eighty-eight! Eighty-eight! Eighty-eight!”

    Newman’s Day – Students attempt to drink 24 beers in the 24 hours of April 24. According to The New York Times, “the day got its name from an apocryphal quote attributed to Paul Newman: ’24 beers in a case, 24 hours in a day. Coincidence? I think not.'” Newman had spoken out against the tradition, however.

    Nude Olympics – Annual nude and partially nude frolic in Holder Courtyard that takes place during the first snow of the winter. Started in the early 1970s, the Nude Olympics went co-educational in 1979 and gained much notoriety with the American press. For safety reasons, the administration banned the Olympics in 2000 to the chagrin of students.

    Prospect 11 – The act of drinking a beer at all 11 eating clubs in a single night.

    P-rade – Traditional parade of alumni and their families. They process through campus by class year during Reunions.

    Reunions – Massive annual gathering of alumni held the weekend before graduation.

    Athletics

    Princeton supports organized athletics at three levels: varsity intercollegiate, club intercollegiate, and intramural. It also provides “a variety of physical education and recreational programs” for members of the Princeton community. According to the athletics program’s mission statement, Princeton aims for its students who participate in athletics to be “‘student athletes’ in the fullest sense of the phrase. Most undergraduates participate in athletics at some level.

    Princeton’s colors are orange and black. The school’s athletes are known as Tigers, and the mascot is a tiger. The Princeton administration considered naming the mascot in 2007, but the effort was dropped in the face of alumni opposition.

    Varsity

    Princeton is an NCAA Division I school. Its athletic conference is the Ivy League. Princeton hosts 38 men’s and women’s varsity sports. The largest varsity sport is rowing, with almost 150 athletes.

    Princeton’s football team has a long and storied history. Princeton played against Rutgers University in the first intercollegiate football game in the U.S. on Nov 6, 1869. By a score of 6–4, Rutgers won the game, which was played by rules similar to modern rugby. Today Princeton is a member of the Football Championship Subdivision of NCAA Division I. As of the end of the 2010 season, Princeton had won 26 national football championships, more than any other school.

    Club and intramural

    In addition to varsity sports, Princeton hosts about 35 club sports teams. Princeton’s rugby team is organized as a club sport. Princeton’s sailing team is also a club sport, though it competes at the varsity level in the MAISA conference of the Inter-Collegiate Sailing Association.

    Each year, nearly 300 teams participate in intramural sports at Princeton. Intramurals are open to members of Princeton’s faculty, staff, and students, though a team representing a residential college or eating club must consist only of members of that college or club. Several leagues with differing levels of competitiveness are available.

    Songs

    Notable among a number of songs commonly played and sung at various events such as commencement, convocation, and athletic games is Princeton Cannon Song, the Princeton University fight song.

    Bob Dylan wrote Day of The Locusts (for his 1970 album New Morning) about his experience of receiving an honorary doctorate from the University. It is a reference to the negative experience he had and it mentions the Brood X cicada infestation Princeton experienced that June 1970.

    “Old Nassau”

    Old Nassau has been Princeton University’s anthem since 1859. Its words were written that year by a freshman, Harlan Page Peck, and published in the March issue of the Nassau Literary Review (the oldest student publication at Princeton and also the second oldest undergraduate literary magazine in the country). The words and music appeared together for the first time in Songs of Old Nassau, published in April 1859. Before the Langlotz tune was written, the song was sung to Auld Lang Syne’s melody, which also fits.

    However, Old Nassau does not only refer to the university’s anthem. It can also refer to Nassau Hall, the building that was built in 1756 and named after William III of the House of Orange-Nassau. When built, it was the largest college building in North America. It served briefly as the capitol of the United States when the Continental Congress convened there in the summer of 1783. By metonymy, the term can refer to the university as a whole. Finally, it can also refer to a chemical reaction that is dubbed “Old Nassau reaction” because the solution turns orange and then black.
    Princeton Shield

     
  • richardmitnick 11:31 am on July 11, 2021 Permalink | Reply
    Tags: "Huge Volcanic Eruption Disrupted Climate but Not Human Evolution", , , , , , , Rutgers University (US), The Toba volcano was the largest volcanic eruption in the past two million years.   

    From Rutgers University (US) : “Huge Volcanic Eruption Disrupted Climate but Not Human Evolution” 

    Rutgers smaller
    Our Great Seal.

    From Rutgers University (US)

    July 9, 2021
    John Cramer
    jdc268@echo.rutgers.edu

    1
    A modern volcanic eruption pales in comparison to the Toba eruption, which was the largest volcanic eruption of the past 2 million years, dispersing ash as far as southern Africa 9,000 km away. The total volume of erupted deposits may exceed 5,000 cubic kilometers. Credit: Steve Self, University of California-Berkeley (US).

    A massive volcanic eruption in Indonesia about 74,000 years ago likely caused severe climate disruption in many areas of the globe, but early human populations were sheltered from the worst effects, according to a Rutgers-led study.

    The findings appear in the journal PNAS.

    The eruption of the Toba volcano was the largest volcanic eruption in the past two million years, but its impacts on climate and human evolution have been unclear. Resolving this debate is important for understanding environmental changes during a key interval in human evolution.

    “We were able to use a large number of climate model simulations to resolve what seemed like a paradox,” said lead author Benjamin Black, an assistant professor in the Department of Earth and Planetary Sciences at Rutgers University-New Brunswick. “We know this eruption happened and that past climate modeling has suggested the climate consequences could have been severe, but archaeological and paleoclimate records from Africa don’t show such a dramatic response.

    “Our results suggest that we might not have been looking in the right place to see the climate response. Africa and India are relatively sheltered, whereas North America, Europe and Asia bear the brunt of the cooling,” Black said. “One intriguing aspect of this is that Neanderthals and Denisovans were living in Europe and Asia at this time, so our paper suggests evaluating the effects of the Toba eruption on those populations could merit future investigation.”

    2
    The researchers examined explosive ash deposits that are tens of meters thick about 35 km north of the Toba caldera in Indonesia. Credit Steve Self, University of California-Berkeley.

    The researchers analyzed 42 global climate model simulations in which they varied magnitude of sulfur emissions, time of year of the eruption, background climate state and sulfur injection altitude to make a probabilistic assessment of the range of climate disruptions the Toba eruption may have caused. This approach let the team account for some of the unknowns related to the eruption.

    “By using a probabilistic approach, we aim at understanding the likelihood that some regions were less impacted by Toba, considering the wide range of estimates of its size and timing, in addition to our lack of knowledge of the underlying climate state,” said Black.

    The results suggest there was likely significant regional variation in climate impacts. The simulations predict cooling in the Northern Hemisphere of at least 4°C, with regional cooling as high as 10°C depending on the model parameters. In contrast, even under the most severe eruption conditions, cooling in the Southern Hemisphere — including regions populated by early humans — was unlikely to exceed 4°C, although regions in southern Africa and India may have seen decreases in precipitation at the highest sulfur emission level.

    The results explain independent archaeological evidence suggesting the Toba eruption had modest effects on the development of hominid species in Africa. According to the authors, their ensemble simulation approach could be used to better understand other past and future explosive eruptions.

    “Our results reconcile the simulated distribution of climate impacts from the eruption with paleoclimate and archaeological records,” according to the study. “This probabilistic view of climate disruption from Earth’s most recent super-eruption underscores the uneven expected distribution of societal and environmental impacts from future very large explosive eruptions.”

    The study included researchers from the National Center for Atmospheric Research, University of Leeds and University of Cambridge, and was supported by the NSF National Center for Atmospheric Research (US) and the National Science Foundation (US).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    rutgers-campus

    Rutgers, The State University of New Jersey (US), is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    Rutgers University (US) is a public land-grant research university based in New Brunswick, New Jersey. Chartered in 1766, Rutgers was originally called Queen’s College, and today it is the eighth-oldest college in the United States, the second-oldest in New Jersey (after Princeton University (US)), and one of the nine U.S. colonial colleges that were chartered before the American War of Independence. In 1825, Queen’s College was renamed Rutgers College in honor of Colonel Henry Rutgers, whose substantial gift to the school had stabilized its finances during a period of uncertainty. For most of its existence, Rutgers was a private liberal arts college but it has evolved into a coeducational public research university after being designated The State University of New Jersey by the New Jersey Legislature via laws enacted in 1945 and 1956.

    Rutgers today has three distinct campuses, located in New Brunswick (including grounds in adjacent Piscataway), Newark, and Camden. The university has additional facilities elsewhere in the state, including oceanographic research facilities at the New Jersey shore. Rutgers is also a land-grant university, a sea-grant university, and the largest university in the state. Instruction is offered by 9,000 faculty members in 175 academic departments to over 45,000 undergraduate students and more than 20,000 graduate and professional students. The university is accredited by the Middle States Association of Colleges and Schools and is a member of the Big Ten Academic Alliance, the Association of American Universities (US) and the Universities Research Association (US). Over the years, Rutgers has been considered a Public Ivy.

    Research

    Rutgers is home to the Rutgers University Center for Cognitive Science, also known as RUCCS. This research center hosts researchers in psychology, linguistics, computer science, philosophy, electrical engineering, and anthropology.

    It was at Rutgers that Selman Waksman (1888–1973) discovered several antibiotics, including actinomycin, clavacin, streptothricin, grisein, neomycin, fradicin, candicidin, candidin, and others. Waksman, along with graduate student Albert Schatz (1920–2005), discovered streptomycin—a versatile antibiotic that was to be the first applied to cure tuberculosis. For this discovery, Waksman received the Nobel Prize for Medicine in 1952.

    Rutgers developed water-soluble sustained release polymers, tetraploids, robotic hands, artificial bovine insemination, and the ceramic tiles for the heat shield on the Space Shuttle. In health related field, Rutgers has the Environmental & Occupational Health Science Institute (EOHSI).

    Rutgers is also home to the RCSB Protein Data bank, “…an information portal to Biological Macromolecular Structures’ cohosted with the San Diego Supercomputer Center (US). This database is the authoritative research tool for bioinformaticists using protein primary, secondary and tertiary structures worldwide….”

    Rutgers is home to the Rutgers Cooperative Research & Extension office, which is run by the Agricultural and Experiment Station with the support of local government. The institution provides research & education to the local farming and agro industrial community in 19 of the 21 counties of the state and educational outreach programs offered through the New Jersey Agricultural Experiment Station Office of Continuing Professional Education.

    Rutgers University Cell and DNA Repository (RUCDR) is the largest university based repository in the world and has received awards worth more than $57.8 million from the National Institutes of Health (US). One will fund genetic studies of mental disorders and the other will support investigations into the causes of digestive, liver and kidney diseases, and diabetes. RUCDR activities will enable gene discovery leading to diagnoses, treatments and, eventually, cures for these diseases. RUCDR assists researchers throughout the world by providing the highest quality biomaterials, technical consultation, and logistical support.

    Rutgers–Camden is home to the nation’s PhD granting Department of Childhood Studies. This department, in conjunction with the Center for Children and Childhood Studies, also on the Camden campus, conducts interdisciplinary research which combines methodologies and research practices of sociology, psychology, literature, anthropology and other disciplines into the study of childhoods internationally.

    Rutgers is home to several National Science Foundation (US) IGERT fellowships that support interdisciplinary scientific research at the graduate-level. Highly selective fellowships are available in the following areas: Perceptual Science, Stem Cell Science and Engineering, Nanotechnology for Clean Energy, Renewable and Sustainable Fuels Solutions, and Nanopharmaceutical Engineering.

    Rutgers also maintains the Office of Research Alliances that focuses on working with companies to increase engagement with the university’s faculty members, staff and extensive resources on the four campuses.

    As a ’67 graduate of University College, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society of non-tradional students.

     
  • richardmitnick 11:43 am on May 24, 2021 Permalink | Reply
    Tags: "Thirty-six dwarf galaxies had simultaneous 'baby boom' of new stars", , , , , , Rutgers University (US)   

    From Rutgers University (US) via phys.org : “Thirty-six dwarf galaxies had simultaneous ‘baby boom’ of new stars” 

    Rutgers smaller
    Our Great Seal.

    From Rutgers University (US)

    via

    phys.org

    May 24, 2021

    1
    Three dozen dwarf galaxies far from each other had a simultaneous ‘baby boom’ of new stars. Credit: Rutgers University-New Brunswick.

    Three dozen dwarf galaxies far from each other had a simultaneous ‘baby boom’ of new stars, an unexpected discovery that challenges current theories on how galaxies grow and may enhance our understanding of the universe.

    Galaxies more than 1 million light-years apart should have completely independent lives in terms of when they give birth to new stars. But galaxies separated by up to 13 million light-years slowed down and then simultaneously accelerated their birth rate of stars, according to a Rutgers-led study published in The Astrophysical Journal.

    “It appears that these galaxies are responding to a large-scale change in their environment in the same way a good economy can spur a baby boom,” said lead author Charlotte Olsen, a doctoral student in the Department of Physics and Astronomy in the School of Arts and Sciences at Rutgers University-New Brunswick.

    “We found that regardless of whether these galaxies were next-door neighbors or not, they stopped and then started forming new stars at the same time, as if they’d all influenced each other through some extra-galactic social network,” said co-author Eric Gawiser, a professor in the Department of Physics and Astronomy.

    The simultaneous decrease in the stellar birth rate in the 36 dwarf galaxies began 6 billion years ago, and the increase began 3 billion years ago. Understanding how galaxies evolve requires untangling the many processes that affect them over their lifetimes (billions of years). Star formation is one of the most fundamental processes. The stellar birth rate can increase when galaxies collide or interact, and galaxies can stop making new stars if the gas (mostly hydrogen) that makes stars is lost.

    2
    Rutgers’ unexpected discovery challenges current theories on how galaxies grow and may enhance our understanding of the universe. Credit: Rutgers University-New Brunswick.

    Star formation histories can paint a rich record of environmental conditions as a galaxy ‘grew up.’ Dwarf galaxies are the most common but least massive type of galaxies in the universe, and they are especially sensitive to the effects of their surrounding environment.

    The 36 dwarf galaxies included a diverse array of environments at distances as far as 13 million light-years from the Milky Way. The environmental change the galaxies apparently responded to must be something that distributes fuel for galaxies very far apart. That could mean encountering a huge cloud of gas, for example, or a phenomenon in the universe we don’t yet know about, according to Olsen.

    The scientists used two methods to compare star formation histories. One uses light from individual stars within galaxies; the other uses the light of a whole galaxy, including a broad range of colors.

    “The full impact of the discovery is not yet known as it remains to be seen how much our current models of galaxy growth need to be modified to understand this surprise,” Gawiser said. “If the result cannot be explained within our current understanding of cosmology, that would be a huge implication, but we have to give the theorists a chance to read our paper and respond with their own research advances.”

    “The James Webb Space Telescope, scheduled to be launched by NASA this October, will be the ideal way to add that new data to find out just how far outwards from the Milky Way this ‘baby boom’ extended,” Olsen added.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    rutgers-campus

    Rutgers, The State University of New Jersey (US), is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    Rutgers University (US) is a public land-grant research university based in New Brunswick, New Jersey. Chartered in 1766, Rutgers was originally called Queen’s College, and today it is the eighth-oldest college in the United States, the second-oldest in New Jersey (after Princeton University (US)), and one of the nine U.S. colonial colleges that were chartered before the American War of Independence. In 1825, Queen’s College was renamed Rutgers College in honor of Colonel Henry Rutgers, whose substantial gift to the school had stabilized its finances during a period of uncertainty. For most of its existence, Rutgers was a private liberal arts college but it has evolved into a coeducational public research university after being designated The State University of New Jersey by the New Jersey Legislature via laws enacted in 1945 and 1956.

    Rutgers today has three distinct campuses, located in New Brunswick (including grounds in adjacent Piscataway), Newark, and Camden. The university has additional facilities elsewhere in the state, including oceanographic research facilities at the New Jersey shore. Rutgers is also a land-grant university, a sea-grant university, and the largest university in the state. Instruction is offered by 9,000 faculty members in 175 academic departments to over 45,000 undergraduate students and more than 20,000 graduate and professional students. The university is accredited by the Middle States Association of Colleges and Schools and is a member of the Big Ten Academic Alliance, the Association of American Universities (US) and the Universities Research Association (US). Over the years, Rutgers has been considered a Public Ivy.

    Research

    Rutgers is home to the Rutgers University Center for Cognitive Science, also known as RUCCS. This research center hosts researchers in psychology, linguistics, computer science, philosophy, electrical engineering, and anthropology.

    It was at Rutgers that Selman Waksman (1888–1973) discovered several antibiotics, including actinomycin, clavacin, streptothricin, grisein, neomycin, fradicin, candicidin, candidin, and others. Waksman, along with graduate student Albert Schatz (1920–2005), discovered streptomycin—a versatile antibiotic that was to be the first applied to cure tuberculosis. For this discovery, Waksman received the Nobel Prize for Medicine in 1952.

    Rutgers developed water-soluble sustained release polymers, tetraploids, robotic hands, artificial bovine insemination, and the ceramic tiles for the heat shield on the Space Shuttle. In health related field, Rutgers has the Environmental & Occupational Health Science Institute (EOHSI).

    Rutgers is also home to the RCSB Protein Data bank, “…an information portal to Biological Macromolecular Structures’ cohosted with the San Diego Supercomputer Center (US). This database is the authoritative research tool for bioinformaticists using protein primary, secondary and tertiary structures worldwide….”

    Rutgers is home to the Rutgers Cooperative Research & Extension office, which is run by the Agricultural and Experiment Station with the support of local government. The institution provides research & education to the local farming and agro industrial community in 19 of the 21 counties of the state and educational outreach programs offered through the New Jersey Agricultural Experiment Station Office of Continuing Professional Education.

    Rutgers University Cell and DNA Repository (RUCDR) is the largest university based repository in the world and has received awards worth more than $57.8 million from the National Institutes of Health (US). One will fund genetic studies of mental disorders and the other will support investigations into the causes of digestive, liver and kidney diseases, and diabetes. RUCDR activities will enable gene discovery leading to diagnoses, treatments and, eventually, cures for these diseases. RUCDR assists researchers throughout the world by providing the highest quality biomaterials, technical consultation, and logistical support.

    Rutgers–Camden is home to the nation’s PhD granting Department of Childhood Studies. This department, in conjunction with the Center for Children and Childhood Studies, also on the Camden campus, conducts interdisciplinary research which combines methodologies and research practices of sociology, psychology, literature, anthropology and other disciplines into the study of childhoods internationally.

    Rutgers is home to several National Science Foundation (US) IGERT fellowships that support interdisciplinary scientific research at the graduate-level. Highly selective fellowships are available in the following areas: Perceptual Science, Stem Cell Science and Engineering, Nanotechnology for Clean Energy, Renewable and Sustainable Fuels Solutions, and Nanopharmaceutical Engineering.

    Rutgers also maintains the Office of Research Alliances that focuses on working with companies to increase engagement with the university’s faculty members, staff and extensive resources on the four campuses.

    As a ’67 graduate of University College, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society of non-tradional students.

     
  • richardmitnick 8:33 pm on May 10, 2021 Permalink | Reply
    Tags: "Catastrophic Sea-Level Rise From Antarctic Melting Is Possible With Severe Global Warming", , Climate change from human activities is causing sea levels to rise., , Global warming of 3 degrees Celsius (5.4 degrees Fahrenheit) could lead to catastrophic sea-level rise from Antarctic melting., Ice-sheet collapse is irreversible over thousands of years., Rutgers University (US), The Antarctic ice sheet is much less likely to become unstable and cause dramatic sea-level rise if the world follows policies that keep global warming below a key 2015 Paris climate agreement target.   

    From Rutgers University (US) : “Catastrophic Sea-Level Rise From Antarctic Melting Is Possible With Severe Global Warming” 

    Rutgers smaller
    Our Great Seal.

    From Rutgers University (US)

    May 5, 2021

    Todd Bates
    todd.bates@rutgers.edu

    Antarctic ice sheet is more likely to remain stable if Paris climate agreement is met.

    1
    If Paris Agreement targets are not met, the collapse of melting Antarctic ice shelves – like the Wilkins Ice Shelf in 2009 – could cause catastrophic global sea level rise in the second half of the century. National Aeronautics Space Agency (US).

    The Antarctic ice sheet is much less likely to become unstable and cause dramatic sea-level rise in upcoming centuries if the world follows policies that keep global warming below a key 2015 Paris climate agreement target, according to a Rutgers coauthored study.

    But if global warming exceeds the target – 2 degrees Celsius (3.6 degrees Fahrenheit) – the risk of ice shelves around the ice-sheet’s perimeter melting would increase significantly, and their collapse would trigger rapid Antarctic melting. That would result in at least 0.07 inches of global average sea-level rise a year in 2060 and beyond, according to the study in the journal Nature.

    That’s faster than the average rate of sea-level rise over the past 120 years and, in vulnerable coastal places like downtown Annapolis, Maryland, has led to a dramatic increase in days of extreme flooding.

    Global warming of 3 degrees Celsius (5.4 degrees Fahrenheit) could lead to catastrophic sea-level rise from Antarctic melting – an increase of at least 0.2 inches per year globally after 2060, on average.

    “Ice-sheet collapse is irreversible over thousands of years, and if the Antarctic ice sheet becomes unstable it could continue to retreat for centuries,” said coauthor Daniel M. Gilford, a postdoctoral associate in the Rutgers Earth System Science & Policy Lab led by coauthor Robert E. Kopp, a professor in the Department of Earth and Planetary Sciences within the School of Arts and Sciences at Rutgers University–New Brunswick. “That’s regardless of whether emissions mitigation strategies such as removing carbon dioxide from the atmosphere are employed.”

    The Paris Agreement, achieved at a United Nations climate change conference, seeks to limit the negative impacts of global warming. Its goal is to keep the increase in global average temperature well below 2 degrees Celsius above pre-industrial levels, along with pursuing efforts to limit the increase to 1.5 degrees Celsius (2.7 degrees Fahrenheit). The signatories committed to eliminating global net carbon dioxide emissions in the second half of the 21st century.

    Climate change from human activities is causing sea levels to rise, and projecting how Antarctica will contribute to this rise in a warmer climate is a difficult but critical challenge. How ice sheets might respond to warming is not well understood, and we don’t know what the ultimate global policy response to climate change will be. Greenland is losing ice at a faster rate than Antarctica, but Antarctica contains nearly eight times more ice above the ocean level, equivalent to 190 feet of global average sea-level rise, the study notes.

    The study explored how Antarctica might change over the next century and beyond, depending on whether the temperature targets in the Paris Agreement are met or exceeded. To better understand how the ice sheet might respond, scientists trained a state-of-the-art ice-sheet model with modern satellite observations, paleoclimate data and a machine learning technique. They used the model to explore the likelihood of rapid ice-sheet retreat and the western Antarctic ice-sheet’s collapse under different global greenhouse gas emissions policies.

    Current international policies are likely to lead to about 3 degrees Celsius of warming, which could thin Antarctica’s protective ice shelves and trigger rapid ice-sheet retreat between 2050 and 2100. Under this scenario, geoengineering strategies such as removing carbon dioxide from the atmosphere and sequestering (or storing) it would fail to prevent the worst of Antarctica’s contributions to global sea-level rise.

    “These results demonstrate the possibility that unstoppable, catastrophic sea-level rise from Antarctica will be triggered if Paris Agreement temperature targets are exceeded,” the study says.

    Gilford said “it’s critical to be proactive in mitigating climate change now through active international participation in reducing greenhouse gas emissions and by continuing to ratchet down proposed policies to meet the ambitious Paris Agreement targets.”

    Rutgers coauthors include Erica Ashe, a postdoctoral scientist in the Rutgers Earth System Science & Policy Lab. Scientists at the University of Massachusetts Amherst (US), Pennsylvania State University (US), University of California Irvine (US), University of Bristol (UK), McGill University (CA), Woods Hole Oceanographic Institution (US) and University of Wisconsin-Madison (US) contributed to the study.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    rutgers-campus

    Rutgers, The State University of New Jersey (US), is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    Rutgers University (US) is a public land-grant research university based in New Brunswick, New Jersey. Chartered in 1766, Rutgers was originally called Queen’s College, and today it is the eighth-oldest college in the United States, the second-oldest in New Jersey (after Princeton University (US)), and one of the nine U.S. colonial colleges that were chartered before the American War of Independence. In 1825, Queen’s College was renamed Rutgers College in honor of Colonel Henry Rutgers, whose substantial gift to the school had stabilized its finances during a period of uncertainty. For most of its existence, Rutgers was a private liberal arts college but it has evolved into a coeducational public research university after being designated The State University of New Jersey by the New Jersey Legislature via laws enacted in 1945 and 1956.

    Rutgers today has three distinct campuses, located in New Brunswick (including grounds in adjacent Piscataway), Newark, and Camden. The university has additional facilities elsewhere in the state, including oceanographic research facilities at the New Jersey shore. Rutgers is also a land-grant university, a sea-grant university, and the largest university in the state. Instruction is offered by 9,000 faculty members in 175 academic departments to over 45,000 undergraduate students and more than 20,000 graduate and professional students. The university is accredited by the Middle States Association of Colleges and Schools and is a member of the Big Ten Academic Alliance, the Association of American Universities (US) and the Universities Research Association (US). Over the years, Rutgers has been considered a Public Ivy.

    Research

    Rutgers is home to the Rutgers University Center for Cognitive Science, also known as RUCCS. This research center hosts researchers in psychology, linguistics, computer science, philosophy, electrical engineering, and anthropology.

    It was at Rutgers that Selman Waksman (1888–1973) discovered several antibiotics, including actinomycin, clavacin, streptothricin, grisein, neomycin, fradicin, candicidin, candidin, and others. Waksman, along with graduate student Albert Schatz (1920–2005), discovered streptomycin—a versatile antibiotic that was to be the first applied to cure tuberculosis. For this discovery, Waksman received the Nobel Prize for Medicine in 1952.

    Rutgers developed water-soluble sustained release polymers, tetraploids, robotic hands, artificial bovine insemination, and the ceramic tiles for the heat shield on the Space Shuttle. In health related field, Rutgers has the Environmental & Occupational Health Science Institute (EOHSI).

    Rutgers is also home to the RCSB Protein Data bank, “…an information portal to Biological Macromolecular Structures’ cohosted with the San Diego Supercomputer Center (US). This database is the authoritative research tool for bioinformaticists using protein primary, secondary and tertiary structures worldwide….”

    Rutgers is home to the Rutgers Cooperative Research & Extension office, which is run by the Agricultural and Experiment Station with the support of local government. The institution provides research & education to the local farming and agro industrial community in 19 of the 21 counties of the state and educational outreach programs offered through the New Jersey Agricultural Experiment Station Office of Continuing Professional Education.

    Rutgers University Cell and DNA Repository (RUCDR) is the largest university based repository in the world and has received awards worth more than $57.8 million from the National Institutes of Health (US). One will fund genetic studies of mental disorders and the other will support investigations into the causes of digestive, liver and kidney diseases, and diabetes. RUCDR activities will enable gene discovery leading to diagnoses, treatments and, eventually, cures for these diseases. RUCDR assists researchers throughout the world by providing the highest quality biomaterials, technical consultation, and logistical support.

    Rutgers–Camden is home to the nation’s PhD granting Department of Childhood Studies. This department, in conjunction with the Center for Children and Childhood Studies, also on the Camden campus, conducts interdisciplinary research which combines methodologies and research practices of sociology, psychology, literature, anthropology and other disciplines into the study of childhoods internationally.

    Rutgers is home to several National Science Foundation (US) IGERT fellowships that support interdisciplinary scientific research at the graduate-level. Highly selective fellowships are available in the following areas: Perceptual Science, Stem Cell Science and Engineering, Nanotechnology for Clean Energy, Renewable and Sustainable Fuels Solutions, and Nanopharmaceutical Engineering.

    Rutgers also maintains the Office of Research Alliances that focuses on working with companies to increase engagement with the university’s faculty members, staff and extensive resources on the four campuses.

    As a ’67 graduate of University College, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society of non-tradional students.

     
  • richardmitnick 9:48 pm on February 11, 2021 Permalink | Reply
    Tags: "Earth's mountains disappeared for a billion years and then life stopped evolving", , , , , , , , , Peking University [北京大学] (CN), Rutgers University (US), Studying ancient Earth's crustal thickness can be the best way to gauge how actively mountains formed in the past., The study authors analyzed the changing composition of zircon minerals that crystallized in the crust billions of years ago., The University of Science and Technology [中国科学技术大学] (CN),   

    From Peking University [北京大学] (CN), The University of Toronto (CA), Rutgers University (US) and The University of Science and Technology [中国科学技术大学] (CN) via Live Science: “Earth’s mountains disappeared for a billion years and then life stopped evolving” 

    From Live Science

    2.11.21
    Brandon Specktor

    A dead supercontinent may be to blame.

    1
    The supercontinent of Nuna-Rodinia broke up at the end of the Proterozoic era, ending a billion years of no new mountain formation, a new study says. © Fama Clamosa/ CC 4.0.

    A tetrad of researchers from Peking University [北京大学] (CN), the University of Toronto (CA), Rutgers University (US) and the University of Science and Technology [中国科学技术大学] (CN) has found evidence that suggests the Earth was mostly flat during its middle ages.

    2

    In their paper published in the journal Science, the group describes their study of europium embedded in zircon crystals and what it revealed about Earth’s ancient past.

    Earth, like so many of its human inhabitants, may have experienced a mid-life crisis that culminated in baldness. But it wasn’t a receding hairline our planet had to worry about; it was a receding skyline.

    For nearly a billion years during our planet’s “middle age” (1.8 billion to 0.8 billion years ago), Earth’s mountains literally stopped growing, while erosion wore down existing peaks to stumps, according to a study published Feb. 11 in the journal Science.

    This extreme mountain-forming hiatus — which resulted from a persistent thinning of Earth’s continental crust — coincided with a particularly bleak eon that geologist’s call the “boring billion,” the researchers wrote. Just as Earth’s mountains failed to grow, the simple life-forms in Earth’s oceans also failed to evolve (or at least, they evolved incredibly slowly) for a billion years.

    According to lead study author Ming Tang, the mountain of trouble on Earth’s continents may have been partially responsible for the slow going in Earth’s seas.

    “Continents were mountainless in the middle age,” Tang, an assistant professor at Peking University [北京大学] (CN) in Beijing, told Live Science in an email. “Flatter continents may have reduced nutrient supply [to the ocean] and hindered the emergence of complex life.”

    When mountains vanish

    At the convergent boundaries where Earth’s continental plates clash, mountains soar upward in a process called orogenesis.

    The tectonic plates of the world were mapped in 1996, USGS.

    The continental crust at these boundaries is thicker on average and buoyed by magma, lifting surface rocks up to dizzying heights. Meanwhile, erosion and gravity push back against the peaks; when the tectonic and magmatic processes below the surface stop, erosion wins out, whittling mountains away.

    Because even the mightiest mountains disappear over time, studying ancient Earth’s crustal thickness can be the best way to gauge how actively mountains formed in the past. To do that, the study authors analyzed the changing composition of zircon minerals that crystallized in the crust billions of years ago.

    Today, tiny grains of zircon are easily found in sedimentary rocks all over the planet’s surface. The precise elemental composition of each grain can reveal the conditions in the crust where those minerals first crystallized, eons ago.

    “Thicker crust forms higher mountains,” Tang said. Crustal thickness controls the pressure at which magma changes composition, which then gets recorded by anomalies in zircons crystallizing from that magma, he added.

    In a previous study published in January in the journal Geology, Tang and colleagues found that the amount of europium embedded in zircon crystals could reveal crust thickness at the time those crystals formed. More europium signifies higher pressure placed on the crystal, which signifies thicker crust above it, the researchers found.

    Now, in their new study in Science, the researchers analyzed zircon crystals from every content, and then used those europium anomalies to construct a history of continental thickness going back billions of years. They found that “the average thickness of active continental crust varied on billion-year timescales,” the researchers wrote, with the thickest crust forming in the Archaean eon (4 billion to 2.5 billion years ago) and the Phanerozoic (540 million years ago to the present).

    Right between those active mountain-forming eras, crustal thickness plummeted through the Proterozoic eon (2.5 billion to 0.5 billion years ago), reaching a low during Earth’s “middle age.”

    The eon of nothing

    It may not be a coincidence that Earth’s flattest eon on land was also its most “boring” eon at sea, Tang said.

    “It is widely recognized by our community that life evolution was extremely slow between 1.8-0.8 billion years ago,” Tang told Live Science. “Although eukaryotes emerged 1.7 billion years ago, they only rose to dominance some 0.8 billion years ago.”

    By contrast, Tang said, the Cambrian explosion, which occurred just 300 million years later, introduced almost all major animal groups that we see today. For whatever reason, life evolved achingly slowly during the “boring billion,” then jump-started just as the crust began thickening.

    What’s the correlation? If no new mountains formed during this period, then no new nutrients were introduced to Earth’s surface from the mantle below, the researchers wrote — and a dearth of nutrients on land also meant a dearth of nutrients making their way into the ocean through the water cycle. As mountain forming stalled for a billion years, a “famine” of phosphorus and other essential elements could have starved Earth’s simple sea critters, limited their productivity and stalled their evolution, the team suggests.

    Life, and mountains, eventually flourished again when the supercontinent Nuna-Rodinia broke apart at the end of the Proterozoic eon. But before then, this gargantuan continent may have been so massive that it effectively altered the structure of the mantle below, stalling plate tectonics during the “boring billion” and resulting in an eon of crustal thinning, the researchers wrote. But further research is needed to fully solve the mystery of Earth’s vanishing mountains.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: