Tagged: Rochester Institute of Technology (US) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:35 am on August 18, 2021 Permalink | Reply
    Tags: "Mapping the Universe's Earliest Structures with COSMOS-Webb", , , , , , , Revolutionizing Our Understanding of the Reionization Era., Rochester Institute of Technology (US), University of Texas-Austin (US)   

    From NASA/ESA/CSA James Webb Space Telescope: “Mapping the Universe’s Earliest Structures with COSMOS-Webb” 

    NASA Webb Header

    From NASA/ESA/CSA James Webb Space Telescope

    August 18, 2021

    MEDIA CONTACTS:
    Ann Jenkins
    Space Telescope Science Institute, Baltimore, Maryland

    Christine Pulliam
    Space Telescope Science Institute, Baltimore, Maryland

    1
    About This Image
    The COSMOS-Webb survey will map 0.6 square degrees of the sky—about the area of three full Moons—using the James Webb Space Telescope’s Near Infrared Camera (NIRCam) instrument, while simultaneously mapping a smaller 0.2 square degrees with the Mid Infrared Instrument (MIRI). The jagged edges of the Hubble field’s outline are due to the separate images that make up the survey field. Credits: SCIENCE: National Aeronautics Space Agency (US), European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU), Jeyhan Kartaltepe (Rochester Institute of Technology (US))[below], Caitlin Casey (The University of Texas-Austin (US))[below], Anton M. Koekemoer (Space Telescope Science Institute (US))

    Summary

    This ambitious program will study half a million galaxies in a field the size of three full Moons.

    Peering deeply into a huge patch of sky the size of three full Moons, NASA’s James Webb Space Telescope will undertake an ambitious program to study half a million galaxies. Called COSMOS-Webb, this survey is the largest project Webb will undertake during its first year. With more than 200 hours of observing time, it will build upon previous discoveries to make advances in three particular areas of study. These include revolutionizing our understanding of the Reionization Era; looking for early, fully evolved galaxies; and learning how dark matter evolved with galaxies’ stellar content. With its rapid public release of the data, this survey will be a primary legacy dataset from Webb for scientists worldwide studying galaxies beyond the Milky Way.
    ______________________________________________________________________________________________________________

    When NASA’s James Webb Space Telescope begins science operations in 2022, one of its first tasks will be an ambitious program to map the earliest structures in the universe. Called COSMOS-Webb, this wide and deep survey of half-a-million galaxies is the largest project Webb will undertake during its first year.

    With more than 200 hours of observing time, COSMOS-Webb will survey a large patch of the sky—0.6 square degrees—with the Near-Infrared Camera (NIRCam). That’s the size of three full moons. It will simultaneously map a smaller area with the Mid-Infrared Instrument (MIRI).

    “It’s a large chunk of sky, which is pretty unique to the COSMOS-Webb program. Most Webb programs are drilling very deep, like pencil-beam surveys that are studying tiny patches of sky,” explained Caitlin Casey, an assistant professor at the University of Texas at Austin and co-leader of the COSMOS-Webb program. “Because we’re covering such a large area, we can look at large-scale structures at the dawn of galaxy formation. We will also look for some of the rarest galaxies that existed early on, as well as map the large-scale dark matter distribution of galaxies out to very early times.”

    (Dark matter does not absorb, reflect, or emit light, so it cannot be seen directly. We know that dark matter exists because of the effect it has on objects that we can observe.)

    COSMOS-Webb will study half-a-million galaxies with multi-band, high-resolution, near-infrared imaging, and an unprecedented 32,000 galaxies in the mid-infrared. With its rapid public release of the data, this survey will be a primary legacy dataset from Webb for scientists worldwide studying galaxies beyond the Milky Way.

    Building on Hubble’s Achievements

    The COSMOS survey began in 2002 as a Hubble program to image a much larger patch of sky, about the area of 10 full moons. From there, the collaboration snowballed to include most of the world’s major telescopes on Earth and in space. Now COSMOS is a multi-wavelength survey that covers the entire spectrum from the X-ray through the radio.

    Because of its location on the sky, the COSMOS field is accessible to observatories around the world. Located on the celestial equator, it can be studied from both the northern and southern hemispheres, resulting in a rich and diverse treasury of data.

    “COSMOS has become the survey that a lot of extragalactic scientists go to in order to conduct their analyses because the data products are so widely available, and because it covers such a wide area of the sky,” said Rochester Institute of Technology’s Jeyhan Kartaltepe, assistant professor of physics and co-leader of the COSMOS-Webb program. “COSMOS-Webb is the next installment of that, where we’re using Webb to extend our coverage in the near- and mid-infrared part of the spectrum, and therefore pushing out our horizon, how far away we’re able to see.”

    The ambitious COSMOS-Webb program will build upon previous discoveries to make advances in three particular areas of study, including: revolutionizing our understanding of the Reionization Era; looking for early, fully evolved galaxies; and learning how dark matter evolved with galaxies’ stellar content.

    Goal 1: Revolutionizing Our Understanding of the Reionization Era.

    Epoch of Reionization and first stars. Credit: California Institute of Technology (US).

    Soon after the big bang, the universe was completely dark. Stars and galaxies, which bathe the cosmos in light, had not yet formed. Instead, the universe consisted of a primordial soup of neutral hydrogen and helium atoms and invisible dark matter. This is called the cosmic dark ages.

    After several hundred million years, the first stars and galaxies emerged and provided energy to reionize the early universe. This energy ripped apart the hydrogen atoms that filled the universe, giving them an electric charge and ending the cosmic dark ages. This new era where the universe was flooded with light is called the Reionization Era.

    The first goal of COSMOS-Webb focuses on this epoch of reionization, which took place from 400,000 to 1 billion years after the big bang. Reionization likely happened in little pockets, not all at once. COSMOS-Webb will look for bubbles showing where the first pockets of the early universe were reionized. The team aims to map the scale of these reionization bubbles.

    “Hubble has done a great job of finding handfuls of these galaxies out to early times, but we need thousands more galaxies to understand the reionization process,” explained Casey.

    Scientists don’t even know what kind of galaxies ushered in the Reionization Era, whether they’re very massive or relatively low-mass systems. COSMOS-Webb will have a unique ability to find very massive, rare galaxies and see what their distribution is like in large-scale structures. So, are the galaxies responsible for reionization living in the equivalent of a cosmic metropolis, or are they mostly evenly distributed across space? Only a survey the size of COSMOS-Webb can help scientists to answer this.

    Goal 2: Looking for Early, Fully Evolved Galaxies.

    COSMOS-Webb will search for very early, fully evolved galaxies that shut down star birth in the first 2 billion years after the big bang. Hubble has found a handful of these galaxies, which challenge existing models about how the universe formed. Scientists struggle to explain how these galaxies could have old stars and not be forming any new stars so early in the history of the universe.

    With a large survey like COSMOS-Webb, the team will find many of these rare galaxies. They plan detailed studies of these galaxies to understand how they could have evolved so rapidly and turned off star formation so early.

    Goal 3: Learning How Dark Matter Evolved with Galaxies’ Stellar Content.

    COSMOS-Webb will give scientists insight into how dark matter in galaxies has evolved with the galaxies’ stellar content over the universe’s lifetime.

    Galaxies are made of two types of matter: normal, luminous matter that we see in stars and other objects, and invisible dark matter, which is often more massive than the galaxy and can surround it in an extended halo. Those two kinds of matter are intertwined in galaxy formation and evolution. However, presently there’s not much knowledge about how the dark matter mass in the halos of galaxies formed, and how that dark matter impacts the formation of the galaxies.

    COSMOS-Webb will shed light on this process by allowing scientists to directly measure these dark matter halos through “weak lensing.”

    [caption id="attachment_41428" align="alignnone" width="632"] Caterpillar Project A Milky-Way-size dark-matter halo and its subhalos circled, an enormous suite of simulations . Griffen et al. 2016.

    The gravity from any type of mass—whether it’s dark or luminous—can serve as a lens to “bend” the light we see from more distant galaxies. Weak lensing distorts the apparent shape of background galaxies, so when a halo is located in front of other galaxies, scientists can directly measure the mass of the halo’s dark matter.

    “For the first time, we’ll be able to measure the relationship between the dark matter mass and the luminous mass of galaxies back to the first 2 billion years of cosmic time,” said team member Anton Koekemoer, a research astronomer at the Space Telescope Science Institute in Baltimore, who helped design the program’s observing strategy and is in charge of constructing all the images from the program. “That’s a crucial epoch for us to try to understand how the galaxies’ mass was first put in place, and how that’s driven by the dark matter halos. And that can then feed indirectly into our understanding of galaxy formation.”

    Quickly Sharing Data with the Community

    COSMOS-Webb is a Treasury program, which by definition is designed to create datasets of lasting scientific value. Treasury Programs strive to solve multiple scientific problems with a single, coherent dataset. Data taken under a Treasury Program usually has no exclusive access period, enabling immediate analysis by other researchers.

    “As a Treasury Program, you are committing to quickly releasing your data and your data products to the community,” explained Kartaltepe. “We’re going to produce this community resource and make it publicly available so that the rest of the community can use it in their scientific analyses.”

    Koekemoer added, “A Treasury Program commits to making publicly available all these science products so that anyone in the community, even at very small institutions, can have the same, equal access to the data products and then just do the science.”

    COSMOS-Webb is a Cycle 1 General Observers program. General Observers programs were competitively selected using a dual-anonymous review system, the same system that is used to allocate time on Hubble.

    From Rochester Institute of Technology (US)

    James Webb Space Telescope program aims to map the earliest structures of the universe
    COSMOS-Webb is slated to be the largest program in JWST’s first year of operation.

    April 19, 2021
    Luke Auburn
    luke.auburn@rit.edu

    3
    RIT Assistant Professor Jeyhan Kartaltepe is the principal investigator of COSMOS-Webb, the largest General Observer program selected for James Webb Space Telescope’s first year. Credit: A. Sue Weisler.

    When the James Webb Space Telescope (JWST)—the long-awaited successor to the Hubble Space Telescope—becomes operational in 2022, one of its first orders of business will be mapping the earliest structures of the universe. A team of nearly 50 researchers led by scientists at Rochester Institute of Technology and University of Texas at Austin will attempt to do so through the COSMOS-Webb program, the largest General Observer program selected for JWST’s first year.

    Over the course of 208.6 observing hours, the COSMOS-Webb program will conduct an ambitious survey of half a million galaxies with multi-band, high-resolution near infrared imaging and an unprecedented 32,000 galaxies in mid infrared. The scientists involved said that because COSMOS-Webb is a treasury program, they will rapidly release data to the public so it can lead to countless other studies by other researchers.

    “The sheer scope of our program is so exciting,” said principal investigator Jeyhan Kartaltepe, an assistant professor in RIT’s School of Physics and Astronomy. “The first year of Webb observations will result in a lot of new discoveries that people will want explore more in-depth in future cycles. I think the public legacy of COSMOS-Webb will be that COSMOS will be the field where the community conducts this type of follow-up research.”

    Caitlin Casey, an assistant professor and principal investigator at UT Austin, said “COSMOS-Webb has the potential to be ground-breaking in ways we haven’t even dreamt yet. You don’t know what treasures are there to find until you use an incredible telescope like Webb to stare at the sky for a long time.”

    The survey will map 0.6 square degrees of the sky—about the area of three full moons—using JWST’s Near Infrared Camera (NIRCam) instrument while simultaneously mapping a smaller area of 0.2 square degrees with the Mid Infrared Instrument (MIRI). Through this approach, the scientists hope to achieve three main goals [above].

    “A key result from the original HST-COSMOS effort over a decade ago was showing that dark matter is the cosmic scaffolding upon which the structures in the universe we see today are formed,” said Rhodes. “COSMOS-Webb will make use of the JWST’s larger mirror to push that dark matter mapping farther in time and to higher resolution maps, allowing us to study how dark matter has influenced the evolution of individual galaxies from the early universe to now.”

    COSMOS-Webb is one of just 286 General Scientific Observer programs selected out of more than 1,000 proposals for the telescope’s first year of science, known as Cycle 1. These specific programs will provide the worldwide astronomical community with one of the first extensive opportunities to investigate scientific targets with Webb. NASA is currently targeting Oct. 31, 2021, for JWST’s launch.

    For more information about COSMOS-Webb, go to the Space Telescope Science Institute website.

    From University of Texas-Austin (US)

    20 April 2021
    Rebecca A Johnson

    Texas Astronomers Lead Major Projects in James Webb Space Telescope’s First Year

    4
    Caitlin Casey

    Astronomers at The University of Texas at Austin are set to lead some of the largest programs in the first year of NASA’s James Webb Space Telescope (JWST), including the largest project overall. Set to launch this Halloween, the telescope will become operational by mid-2022. Altogether, UT astronomers received about 500 hours of telescope time in JWST’s first year.

    COSMOS-Webb, a project to map the earliest structures of the universe, is the largest project JWST will undertake in 2022. UT’s Caitlin Casey, assistant professor of astronomy, leads an international team of nearly 50 researchers, along with co-leader Jeyhan Kartaltepe of the Rochester Institute of Technology.

    With more than 200 hours of observing time, COSMOS-Webb will conduct an ambitious survey of half a million galaxies. As a “treasury program,” the team will rapidly release their data to the public for use by other researchers.

    Casey explained that their project will “stare deeply over a large patch of sky, about three times the size of the Moon. Instead of just finding the most distant galaxies, we hope to find them and figure out where they live in the universe, whether it be an ancient cosmic metropolis or a distant cosmic outpost.”

    In probing the galaxies’ habitats, they are looking for bubbles showing where the first pockets of the early universe were reionized — that is, when light from the first stars and galaxies ripped apart hydrogen atoms that filled the cosmos, giving them an electric charge. This ended the cosmic dark ages, and began a new era where the universe was flooded with light, called the epoch of reionization. COSMOS-Webb hopes to map the scale of these reionization bubbles.

    “COSMOS-Webb has the potential to be ground-breaking in ways we haven’t even dreamt yet,” Casey said. “You don’t know what treasures are there to find until you use an incredible telescope like Webb to stare at the sky for a long time.”

    Another major first-year JWST project is led by UT associate professor Steven Finkelstein. The fourth-largest project the telescope will undertake in 2022, it’s called the Webb Deep Extragalactic Exploratory Public (WDEEP) Survey. Finkelstein co-leads a large team along with Casey Papovich of Texas A&M University and Nor Pirzkal of the Space Telescope Science Institute.

    In some ways, WDEEP is similar to COSMOS-Webb, Finkelstein said. Both are studying early galaxies, but at different early epochs in the history of the universe.

    “Together, the projects COSMOS-Webb and WDEEP are bracketing the epoch of reionization,” Finkelstein said. “So with WDEEP, we’re trying to push to the very beginning of reionization when the earliest galaxies really started to form stars, and begin to ionize the intergalactic medium. Whereas Professor Casey’s program is targeting the end of reionization, looking at the descendants of our galaxies and the bubbles they have created around them.”

    In terms of how the projects will be carried out, though, “WDEEP is almost the exact opposite,” Finkelstein said. “While COSMOS-Webb is going very wide to look for the brightest and most massive galaxies, WDEEP is going deep. We are going to pick one place in the sky and stare at it for over 100 hours, following in the footsteps of the original Hubble Deep Field,” he said.

    He explained that the goal of WDEEP is to push the frontier in terms of the most distant galaxies detected. The team expects to find 50 or more galaxies at a time less than 500 million years after the Big Bang, which is “a completely unexplored epoch” in the universe’s history, he said. And if they’re lucky, they might find a galaxy at just 270 million years after the Big Bang, or 2% of the universe’s present age of 13.8 billion years.

    The goal in finding these most-distant galaxies is to help understand the early universe. “There are a wide range of theoretical predictions for what the universe should look like at these times,” Finkelstein said. “Without observations, these predictions are completely unconstrained. Our goal is to try and pin down those models telling us what the earliest galaxies were like.”

    Other UT astronomers lead or co-lead JWST first-year projects on a variety of topics. These include faculty members Brendan Bowler, John Chisholm, Harriet Dinerstein, Neal Evans, and Caroline Morley; postdoctoral researchers Micaela Bagley, Will Best, and Justin Spilker; and graduate student Samuel Factor. The projects include studies of planet formation, the failed stars called brown dwarfs, the chemistry of pre-biotic molecules in newly forming stars, early stages of star formation, the dead stars called planetary nebulae, the formation of massive galaxies in the early universe, and more. Together, they will use about 100 hours of telescope time in the telescope’s first year.

    From California Institute of Technology (US)

    April 19, 2021
    COSMOS-Webb selected as JWST’s largest Cycle 1 program

    When the James Webb Space Telescope (JWST)—the long-awaited successor to the Hubble Space Telescope—becomes operational in 2022, one of its first orders of business will be mapping the earliest structures of the universe. A team of nearly 50 researchers led by scientists at Rochester Institute of Technology [above] and University of Texas at Austin [above] will attempt to do so through the COSMOS-Webb program, the largest General Observer program selected for JWST’s first year.

    Over the course of 208.6 observing hours, the COSMOS-Webb program will conduct an ambitious survey of half a million galaxies with multi-band, high-resolution near infrared imaging and an unprecedented 32,000 galaxies in mid infrared. The scientists involved said that because COSMOS-Webb is a treasury program, they will rapidly release data to the public so it can lead to countless other studies by other researchers.

    “The sheer scope of our program is so exciting,” said principal investigator Jeyhan Kartaltepe, an assistant professor at RIT. “The first year of Webb observations will result in a lot of new discoveries that people will want explore more in-depth in future cycles. I think the public legacy of COSMOS-Webb will be that COSMOS will be the field where the community conducts this type of follow-up research.”

    Caitlin Casey, an assistant professor and principal investigator at UT Austin, said “COSMOS-Webb has the potential to be ground-breaking in ways we haven’t even dreamt yet. You don’t know what treasures are there to find until you use an incredible telescope like Webb to stare at the sky for a long time.”

    The survey will map 0.6 square degrees of the sky—about the area of three full moons—using JWST’s Near Infrared Camera (NIRCam) [above] instrument while simultaneously mapping a smaller area of 0.2 square degrees with the Mid Infrared Instrument (MIRI) [above]. Through this approach, the scientists hope to achieve three main goals.

    The first goal focuses on the epoch of reionization [above], which took place from 400,000 to 1 billion years after the big bang. When the first stars and galaxies formed, they provided energy to re-ionize the early universe and it likely happened in little pockets, not all at once. COSMOS-Webb aims to map out the scale of these reionization bubbles.

    “At these early epochs, COSMOS-Webb will reveal thousands of galaxies, fainter, more distant and more numerous than those previously discovered with Hubble”, said Anton Koekemoer, a research astronomer in the Webb team at the Space Telescope Science Institute, who helped design the observing strategy for the program.

    A second goal is to use the MIRI instrument to look for fully evolved galaxies at high redshifts that seemingly matured soon after the universe formed. Hubble Space Telescope (HST) has found examples of these galaxies, which challenge existing models about how the universe formed, so the hope is to find more examples of these high redshift galaxies and study them in more detail to understand how they could have evolved so rapidly.

    The third primary objective makes use of a technique called weak lensing [above]. Because gravity is sensitive to all kinds of matter including that we cannot see, scientists can use the distortions of light around galaxies to estimate of the amount of dark matter. Jason Rhodes, a senior research scientist at NASA’s Jet Propulsion Laboratory, said COSMOS-Webb will provide important insight about how dark matter in galaxies has evolved with the stellar content of galaxies over the age of the universe.

    “A key result from the original HST-COSMOS effort over a decade ago was showing that dark matter is the cosmic scaffolding upon which the structures in the universe we see today are formed,” said Rhodes. “COSMOS-Webb will make use of the JWST’s larger mirror to push that dark matter mapping farther in time and to higher resolution maps, allowing us to study how dark matter has influenced the evolution of individual galaxies from the early universe to now.”

    COSMOS-Webb is one of just 286 General Scientific Observer programs selected out of more than 1,000 proposals for the telescope’s first year of science, known as Cycle 1. These specific programs will provide the worldwide astronomical community with one of the first extensive opportunities to investigate scientific targets with Webb. NASA is currently targeting Oct. 31, 2021, for JWST’s launch.

    The COSMOS-Webb team is made up of 49 astronomers worldwide, including 31 based at US-institutes, 18 at international institutes, and 13 students and postdocs. See the coordinated press release at several institutes, including RIT [above], UT Austin [above], University of California-Santa Cruz (US), University of Durham, University of Bologna [Alma mater studiorum – Università di Bologna](IT), MPG Institute for Astronomy [MPG Institut für Astronomie](DE), Kavli Institute for the Physics and Mathematics of the Universe (JP)-University of Tokyo[(東京大] (JP), and DAWN – University of Copenhagen [Københavns Universitet](DK).

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The NASA/ESA/CSA James Webb Space Telescope will be a large infrared telescope with a 6.5-meter primary mirror. Launch is planned for October 2021.

    Webb telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    Webb telescope was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between National Aeronautics and Space Administration (US), the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center (US) is managing the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute (US) will operate Webb after launch.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There will be four science instruments on Webb: the Near InfraRed Camera (NIRCam), the Near InfraRed Spectrograph (NIRspec), the Mid-InfraRed Instrument (MIRI), and the Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS). Webb’s instruments will be designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Launch is scheduled for later in the decade on an Ariane 5 rocket. The launch will be from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb will be located at the second Lagrange point, about a million miles from the Earth.

    ESA50 Logo large

    Canadian Space Agency

     
  • richardmitnick 1:02 pm on August 6, 2021 Permalink | Reply
    Tags: "RIT scientists conduct coordinated remote sensing experiments with drones planes and satellites", Flare (US), Researchers flew two drones; a plane; and three satellites simultaneously over the 177-acre Tait Preserve to test the capabilities of state-of-the-art cameras., RIT’s Digital Imaging and Remote Sensing (DIRS) team, Rochester Institute of Technology (US), The Tait Preserve of RIT is an ideal location for the experiments because of its expansive location and mix of different natural terrains., Transforming RIT: The Campaign for Greatness   

    From Rochester Institute of Technology (US) : “RIT scientists conduct coordinated remote sensing experiments with drones planes and satellites” 

    From Rochester Institute of Technology (US)

    August 5, 2021
    Luke Auburn
    luke.auburn@rit.edu

    The Chester F. Carlson Center for Imaging Science held experiments at the Tait Preserve of RIT.

    1
    Assistant Professor Emmett Ientilucci, left, led an intricate set of experiments that will help improve remote sensing technology used by drones, airplanes, and satellites at the Tait Preserve of RIT in July.

    Rochester Institute of Technology scientists and a team of international collaborators recently completed an intricate set of experiments that will help improve remote sensing technology used by drones, airplanes, and satellites. By flying multiple imaging systems from a range of 400 feet to 400 miles above the ground simultaneously, the researchers tested the capabilities of state-of-the-art cameras and explored new calibration techniques.

    2
    RIT Research Scientist Nina Raqueno, left, and Imergen Rosario, a third-year imaging science student, right, prepare RIT’s custom-built drones with specialized cameras and equipment for flight. Credit: A. Sue Weisler/RIT.

    The coordinated flyovers took place over the Tait Preserve of RIT in late July and was a group effort by RIT’s faculty, staff, and students from Chester F. Carlson Center for Imaging Science, as well as the National Research Council of Canada [Conseil national de recherches Canada] (CA), Labsphere, and Maxar. Assistant Professor Emmett Ientilucci, who led RIT’s part in the field campaign, said an effort of this scale is uncharted territory.

    “As far as I know, not many people, if any, have performed remote sensing from a space-based platform, aerial platform, and multiple drone imaging systems while measuring ground truth all at the same time,” said Ientilucci. “That’s because we haven’t had drones capable of this until recently. Our drones are special with custom-built payloads and each one has specialized cameras and equipment for this kind of purpose. Some of our drone imaging systems fly in tandem and cover the full optical spectrum from 0.4 to 2.5 micrometers. That piece of the puzzle is what makes this particular collaboration possible.”

    3
    Researchers flew two drones; a plane; and three satellites simultaneously over the 177-acre Tait Preserve to test the capabilities of state-of-the-art cameras and explore new calibration techniques. Credit: A. Sue Weisler/RIT.

    One of the experiments during the collaborative event involved using a new technology called Flare (US), which uses a series of mirrors to create multiple points of light directed at the satellites, aircraft, and drones that could help characterize and calibrate the imaging systems while they are already deployed in space or on an aerial or drone imaging system.

    Another experiment involved deploying a series of ground-based objects for the imaging systems on the drones, planes, and satellites to try to detect through a process called sub-pixel target detection. When an object is smaller than the area a pixel covers, scientists can use algorithms to analyze the data for signatures of the targets. Ientilucci said one example where this could be helpful is during search and rescue missions where aircraft search for small objects such as a life preserver or life raft in a large body of water.

    Ientilucci called the Tait Preserve of RIT an ideal location for the experiments because of its expansive location and mix of different natural terrains. RIT acquired the 177-acre property, which includes a 60-acre lake and a private mile of Irondequoit Creek adjacent, in 2019. RIT’s Digital Imaging and Remote Sensing (DIRS) team has been conducting research at the Tait Preserve since last summer.

    The gift from the Tait family is part of Transforming RIT: The Campaign for Greatness, which is RIT’s $1 billion fundraising effort, the largest in university history. This blended campaign seeks support from a variety of investors, including alumni and friends, government and corporate partners, and research foundations and agencies. The campaign has raised $805 million to date.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Rochester Institute of Technology (US) is a private doctoral university within the town of Henrietta in the Rochester, New York metropolitan area.

    RIT is composed of nine academic colleges, including National Technical Institute for the Deaf(RIT)(US). The Institute is one of only a small number of engineering institutes in the State of New York, including New York Institute of Technology, SUNY Polytechnic Institute, and Rensselaer Polytechnic Institute(US). It is most widely known for its fine arts, computing, engineering, and imaging science programs; several fine arts programs routinely rank in the national “Top 10” according to US News & World Report.

    The university offers undergraduate and graduate degrees, including doctoral and professional degrees and online masters as well.

    The university was founded in 1829 and is the tenth largest private university in the country in terms of full-time students. It is internationally known for its science; computer; engineering; and art programs as well as for the National Technical Institute for the Deaf- a leading deaf-education institution that provides educational opportunities to more than 1000 deaf and hard-of-hearing students. RIT is known for its Co-op program that gives students professional and industrial experience. It has the fourth oldest and one of the largest Co-op programs in the world. It is classified among “R2: Doctoral Universities – High research activity”.

    RIT’s student population is approximately 19,000 students, about 16,000 undergraduate and 3000 graduate. Demographically, students attend from all 50 states in the United States and from more than 100 countries around the world. The university has more than 4000 active faculty and staff members who engage with the students in a wide range of academic activities and research projects. It also has branches abroad, its global campuses, located in China, Croatia and United Arab Emirates (Dubai).

    Fourteen RIT alumni and faculty members have been recipients of the Pulitzer Prize.

    History

    The university began as a result of an 1891 merger between Rochester Athenæum, a literary society founded in 1829 by Colonel Nathaniel Rochester and associates and The Mechanics Institute- a Rochester school of practical technical training for local residents founded in 1885 by a consortium of local businessmen including Captain Henry Lomb- co-founder of Bausch & Lomb. The name of the merged institution at the time was called Rochester Athenæum and Mechanics Institute (RAMI). The Mechanics Institute however, was considered as the surviving school by taking over The Rochester Athenaeum’s charter. From the time of the merger until 1944 RAMI celebrated The former Mechanics Institute’s 1885 founding charter. In 1944 the school changed its name to Rochester Institute of Technology and re-established The Athenaeum’s 1829 founding charter and became a full-fledged research university.

    The university originally resided within the city of Rochester, New York, proper, on a block bounded by the Erie Canal; South Plymouth Avenue; Spring Street; and South Washington Street (approximately 43.152632°N 77.615157°W). Its art department was originally located in the Bevier Memorial Building. By the middle of the twentieth century, RIT began to outgrow its facilities, and surrounding land was scarce and expensive. Additionally in 1959 the New York Department of Public Works announced a new freeway- the Inner Loop- was to be built through the city along a path that bisected the university’s campus and required demolition of key university buildings. In 1961 an unanticipated donation of $3.27 million ($27,977,071 today) from local Grace Watson (for whom RIT’s dining hall was later named) allowed the university to purchase land for a new 1,300-acre (5.3 km^2) campus several miles south along the east bank of the Genesee River in suburban Henrietta. Upon completion in 1968 the university moved to the new suburban campus, where it resides today.

    In 1966 RIT was selected by the Federal government to be the site of the newly founded National Technical Institute for the Deaf (NTID). NTID admitted its first students in 1968 concurrent with RIT’s transition to the Henrietta campus.

    In 1979 RIT took over Eisenhower College- a liberal arts college located in Seneca Falls, New York. Despite making a 5-year commitment to keep Eisenhower open RIT announced in July 1982 that the college would close immediately. One final year of operation by Eisenhower’s academic program took place in the 1982–83 school year on the Henrietta campus. The final Eisenhower graduation took place in May 1983 back in Seneca Falls.

    In 1990 RIT started its first PhD program in Imaging Science – the first PhD program of its kind in the U.S. RIT subsequently established PhD programs in six other fields: Astrophysical Sciences and Technology; Computing and Information Sciences; Color Science; Microsystems Engineering; Sustainability; and Engineering. In 1996 RIT became the first college in the U.S to offer a Software Engineering degree at the undergraduate level.

    Colleges

    RIT has nine colleges:

    RIT College of Engineering Technology
    Saunders College of Business
    B. Thomas Golisano College of Computing and Information Sciences
    Kate Gleason College of Engineering
    RIT College of Health Sciences and Technology
    College of Art and Design
    RIT College of Liberal Arts
    RIT College of Science
    National Technical Institute for the Deaf

    There are also three smaller academic units that grant degrees but do not have full college faculties:

    RIT Center for Multidisciplinary Studies
    Golisano Institute for Sustainability
    University Studies

    In addition to these colleges, RIT operates three branch campuses in Europe, one in the Middle East and one in East Asia:

    RIT Croatia (formerly the American College of Management and Technology) in Dubrovnik and Zagreb, Croatia
    RIT Kosovo (formerly the American University in Kosovo) in Pristina, Kosovo
    RIT Dubai in Dubai, United Arab Emirates
    RIT China-Weihai Campus

    RIT also has international partnerships with the following schools:

    Yeditepe University İstanbul Eğitim ve Kültür Vakfı] (TR) in Istanbul, Turkey
    Birla Institute of Technology and Science [बिरला इंस्टिट्यूट ऑफ़ टेक्नोलॉजी एंड साइंस] (IN) in India
    Mother and Teacher Pontifical Catholic University[Pontificia Universidad Católica Madre y Maestra] (DO)
    Santo Domingo Institute of Technology[Instituto Tecnológico de Santo Domingo – INTEC] (DO) in Dominican Republic
    Central American Technological University [La universidad global de Honduras] (HN)
    University of the North [Universidad del Norte] (COL)in Colombia
    Peruvian University of Applied Sciences [Universidad Peruana de Ciencias Aplicadas] (PE) (UPC) in Peru
    Research

    RIT’s research programs are rapidly expanding. The total value of research grants to university faculty for fiscal year 2007–2008 totaled $48.5 million- an increase of more than twenty-two percent over the grants from the previous year. The university currently offers eight PhD programs: Imaging science; Microsystems Engineering; Computing and Information Sciences; Color science; Astrophysical Sciences and Technology; Sustainability; Engineering; and Mathematical modeling.

    In 1986 RIT founded the Chester F. Carlson Center for Imaging Science and started its first doctoral program in Imaging Science in 1989. The Imaging Science department also offers the only Bachelors (BS) and Masters (MS) degree programs in imaging science in the country. The Carlson Center features a diverse research portfolio; its major research areas include Digital Image Restoration; Remote Sensing; Magnetic Resonance Imaging; Printing Systems Research; Color Science; Nanoimaging; Imaging Detectors; Astronomical Imaging; Visual Perception; and Ultrasonic Imaging.

    The Center for Microelectronic and Computer Engineering was founded by RIT in 1986. The university was the first university to offer a bachelor’s degree in Microelectronic Engineering. The Center’s facilities include 50,000 square feet (4,600 m^2) of building space with 10,000 square feet (930 m^2) of clean room space. The building will undergo an expansion later this year. Its research programs include nano-imaging; nano-lithography; nano-power; micro-optical devices; photonics subsystems integration; high-fidelity modeling and heterogeneous simulation; microelectronic manufacturing; microsystems integration; and micro-optical networks for computational applications.

    The Center for Advancing the Study of CyberInfrastructure (CASCI) is a multidisciplinary center housed in the College of Computing and Information Sciences. The Departments of Computer science; Software Engineering; Information technology; Computer engineering; Imaging Science; and Bioinformatics collaborate in a variety of research programs at this center. RIT was the first university to launch a Bachelor’s program in Information technology in 1991; the first university to launch a Bachelor’s program in Software Engineering in 1996 and was also among the first universities to launch a Computer science Bachelor’s program in 1972. RIT helped standardize the Forth programming language and developed the CLAWS software package.

    The Center for Computational Relativity and Gravitation was founded in 2007. The CCRG comprises faculty and postdoctoral research associates working in the areas of general relativity; gravitational waves; and galactic dynamics. Computing facilities in the CCRG include gravitySimulator, a novel 32-node supercomputer that uses special-purpose hardware to achieve speeds of 4TFlops in gravitational N-body calculations, and newHorizons [image N/A], a state-of-the art 85-node Linux cluster for numerical relativity simulations.

    2
    Gravity Simulator at the Center for Computational Relativity and Gravitation, RIT, Rochester, New York, USA.

    The Center for Detectors was founded in 2010. The CfD designs; develops; and implements new advanced sensor technologies through collaboration with academic researchers; industry engineers; government scientists; and university/college students. The CfD operates four laboratories and has approximately a dozen funded projects to advance detectors in a broad array of applications, e.g. astrophysics; biomedical imaging; Earth system science; and inter-planetary travel. Center members span eight departments and four colleges.

    RIT has collaborated with many industry players in the field of research as well, including IBM; Xerox; Rochester’s Democrat and Chronicle; Siemens; National Aeronautics Space Agency(US); and the Defense Advanced Research Projects Agency (US) (DARPA). In 2005, it was announced by Russell W. Bessette- Executive Director New York State Office of Science Technology & Academic Research (NYSTAR), that RIT will lead the SUNY University at Buffalo (US) and Alfred University (US) in an initiative to create key technologies in microsystems; photonics; nanomaterials; and remote sensing systems and to integrate next generation IT systems. In addition, the collaboratory is tasked with helping to facilitate economic development and tech transfer in New York State. More than 35 other notable organizations have joined the collaboratory, including Boeing, Eastman Kodak, IBM, Intel, SEMATECH, ITT, Motorola, Xerox, and several Federal agencies, including as NASA.

    RIT has emerged as a national leader in manufacturing research. In 2017, the U.S. Department of Energy selected RIT to lead its Reducing Embodied-Energy and Decreasing Emissions (REMADE) Institute aimed at forging new clean energy measures through the Manufacturing USA initiative. RIT also participates in five other Manufacturing USA research institutes.

     
  • richardmitnick 11:20 am on July 16, 2021 Permalink | Reply
    Tags: "NGA funds RIT researchers to explore the limits of spectral remote sensing imaging systems", , , , Rochester Institute of Technology (US), Spectral remote sensing imaging systems   

    From Rochester Institute of Technology (US) : “NGA funds RIT researchers to explore the limits of spectral remote sensing imaging systems” 

    From Rochester Institute of Technology (US)

    July 13, 2021
    Luke Auburn
    luke.auburn@rit.edu

    1
    John Kerekes, a professor in the Chester F. Carlson Center for Imaging Science, is the principal investigator of a grant of up to $1 million to conduct fundamental research on spectral remote-sensing imaging systems over the next two to five years. Credit: A. Sue Weisler.

    The National Geospatial-Intelligence Agency (US) is funding a team of Rochester Institute of Technology imaging scientists to study the limits of spectral remote sensing imaging systems. Led by principal investigator John Kerekes, a professor in the Chester F. Carlson Center for Imaging Science, the team received a grant of up to $1 million to conduct fundamental research on imaging systems over the next two to five years.

    Spectral remote sensing imaging systems use instruments capable of detecting bands of light far beyond what the human eye can see mounted on aircraft or satellites to study the Earth below. These systems have been around since the 1960s and have a variety of uses, including helping farmers assess crop productivity, aiding environmentalists to map deforestation, identifying military targets, and more. The researchers hope to develop a tool that can quantitatively predict how well a spectral remote system can accomplish a given task.

    “RIT’s imaging science program is uniquely qualified to do this because we teach everything from the source of energy to how it propagates through a system,” said Kerekes. “We study how a signal is collected by a sensor, how it’s analyzed, and even how it’s visualized by a human. I think the NGA recognized that we were in a distinctive position to study this very difficult and challenging problem.”

    Kerekes believes the tool they are developing for this project will provide a complement to the RIT-developed Digital Imaging and Remote Sensing Image Generation (DIRSIG) model. DIRSIG is a popular physics-driven synthetic image simulation capability for government agencies and contractors to conduct system engineering research. He said the new tool will provide a compatible analytical model to help NASA, the defense and intelligence communities, and other users design new systems to better understand under what conditions a given data collection system can accomplish a specific task. The haziness of the atmosphere and the angle of the sun are just a few examples of factors he expects the new tool can account for.

    For more information about RIT’s remote sensing research, go to the Digital Imaging and Remote Sensing Laboratory website.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Rochester Institute of Technology (US) is a private doctoral university within the town of Henrietta in the Rochester, New York metropolitan area.

    RIT is composed of nine academic colleges, including National Technical Institute for the Deaf(RIT)(US). The Institute is one of only a small number of engineering institutes in the State of New York, including New York Institute of Technology, SUNY Polytechnic Institute, and Rensselaer Polytechnic Institute(US). It is most widely known for its fine arts, computing, engineering, and imaging science programs; several fine arts programs routinely rank in the national “Top 10” according to US News & World Report.

    The university offers undergraduate and graduate degrees, including doctoral and professional degrees and online masters as well.

    The university was founded in 1829 and is the tenth largest private university in the country in terms of full-time students. It is internationally known for its science; computer; engineering; and art programs as well as for the National Technical Institute for the Deaf- a leading deaf-education institution that provides educational opportunities to more than 1000 deaf and hard-of-hearing students. RIT is known for its Co-op program that gives students professional and industrial experience. It has the fourth oldest and one of the largest Co-op programs in the world. It is classified among “R2: Doctoral Universities – High research activity”.

    RIT’s student population is approximately 19,000 students, about 16,000 undergraduate and 3000 graduate. Demographically, students attend from all 50 states in the United States and from more than 100 countries around the world. The university has more than 4000 active faculty and staff members who engage with the students in a wide range of academic activities and research projects. It also has branches abroad, its global campuses, located in China, Croatia and United Arab Emirates (Dubai).

    Fourteen RIT alumni and faculty members have been recipients of the Pulitzer Prize.

    History

    The university began as a result of an 1891 merger between Rochester Athenæum, a literary society founded in 1829 by Colonel Nathaniel Rochester and associates and The Mechanics Institute- a Rochester school of practical technical training for local residents founded in 1885 by a consortium of local businessmen including Captain Henry Lomb- co-founder of Bausch & Lomb. The name of the merged institution at the time was called Rochester Athenæum and Mechanics Institute (RAMI). The Mechanics Institute however, was considered as the surviving school by taking over The Rochester Athenaeum’s charter. From the time of the merger until 1944 RAMI celebrated The former Mechanics Institute’s 1885 founding charter. In 1944 the school changed its name to Rochester Institute of Technology and re-established The Athenaeum’s 1829 founding charter and became a full-fledged research university.

    The university originally resided within the city of Rochester, New York, proper, on a block bounded by the Erie Canal; South Plymouth Avenue; Spring Street; and South Washington Street (approximately 43.152632°N 77.615157°W). Its art department was originally located in the Bevier Memorial Building. By the middle of the twentieth century, RIT began to outgrow its facilities, and surrounding land was scarce and expensive. Additionally in 1959 the New York Department of Public Works announced a new freeway- the Inner Loop- was to be built through the city along a path that bisected the university’s campus and required demolition of key university buildings. In 1961 an unanticipated donation of $3.27 million ($27,977,071 today) from local Grace Watson (for whom RIT’s dining hall was later named) allowed the university to purchase land for a new 1,300-acre (5.3 km^2) campus several miles south along the east bank of the Genesee River in suburban Henrietta. Upon completion in 1968 the university moved to the new suburban campus, where it resides today.

    In 1966 RIT was selected by the Federal government to be the site of the newly founded National Technical Institute for the Deaf (NTID). NTID admitted its first students in 1968 concurrent with RIT’s transition to the Henrietta campus.

    In 1979 RIT took over Eisenhower College- a liberal arts college located in Seneca Falls, New York. Despite making a 5-year commitment to keep Eisenhower open RIT announced in July 1982 that the college would close immediately. One final year of operation by Eisenhower’s academic program took place in the 1982–83 school year on the Henrietta campus. The final Eisenhower graduation took place in May 1983 back in Seneca Falls.

    In 1990 RIT started its first PhD program in Imaging Science – the first PhD program of its kind in the U.S. RIT subsequently established PhD programs in six other fields: Astrophysical Sciences and Technology; Computing and Information Sciences; Color Science; Microsystems Engineering; Sustainability; and Engineering. In 1996 RIT became the first college in the U.S to offer a Software Engineering degree at the undergraduate level.

    Colleges

    RIT has nine colleges:

    RIT College of Engineering Technology
    Saunders College of Business
    B. Thomas Golisano College of Computing and Information Sciences
    Kate Gleason College of Engineering
    RIT College of Health Sciences and Technology
    College of Art and Design
    RIT College of Liberal Arts
    RIT College of Science
    National Technical Institute for the Deaf

    There are also three smaller academic units that grant degrees but do not have full college faculties:

    RIT Center for Multidisciplinary Studies
    Golisano Institute for Sustainability
    University Studies

    In addition to these colleges, RIT operates three branch campuses in Europe, one in the Middle East and one in East Asia:

    RIT Croatia (formerly the American College of Management and Technology) in Dubrovnik and Zagreb, Croatia
    RIT Kosovo (formerly the American University in Kosovo) in Pristina, Kosovo
    RIT Dubai in Dubai, United Arab Emirates
    RIT China-Weihai Campus

    RIT also has international partnerships with the following schools:

    Yeditepe University İstanbul Eğitim ve Kültür Vakfı] (TR) in Istanbul, Turkey
    Birla Institute of Technology and Science [बिरला इंस्टिट्यूट ऑफ़ टेक्नोलॉजी एंड साइंस] (IN) in India
    Mother and Teacher Pontifical Catholic University[Pontificia Universidad Católica Madre y Maestra] (DO)
    Santo Domingo Institute of Technology[Instituto Tecnológico de Santo Domingo – INTEC] (DO) in Dominican Republic
    Central American Technological University [La universidad global de Honduras] (HN)
    University of the North [Universidad del Norte] (COL)in Colombia
    Peruvian University of Applied Sciences [Universidad Peruana de Ciencias Aplicadas] (PE) (UPC) in Peru

    Research

    RIT’s research programs are rapidly expanding. The total value of research grants to university faculty for fiscal year 2007–2008 totaled $48.5 million- an increase of more than twenty-two percent over the grants from the previous year. The university currently offers eight PhD programs: Imaging science; Microsystems Engineering; Computing and Information Sciences; Color science; Astrophysical Sciences and Technology; Sustainability; Engineering; and Mathematical modeling.

    In 1986 RIT founded the Chester F. Carlson Center for Imaging Science and started its first doctoral program in Imaging Science in 1989. The Imaging Science department also offers the only Bachelors (BS) and Masters (MS) degree programs in imaging science in the country. The Carlson Center features a diverse research portfolio; its major research areas include Digital Image Restoration; Remote Sensing; Magnetic Resonance Imaging; Printing Systems Research; Color Science; Nanoimaging; Imaging Detectors; Astronomical Imaging; Visual Perception; and Ultrasonic Imaging.

    The Center for Microelectronic and Computer Engineering was founded by RIT in 1986. The university was the first university to offer a bachelor’s degree in Microelectronic Engineering. The Center’s facilities include 50,000 square feet (4,600 m^2) of building space with 10,000 square feet (930 m^2) of clean room space. The building will undergo an expansion later this year. Its research programs include nano-imaging; nano-lithography; nano-power; micro-optical devices; photonics subsystems integration; high-fidelity modeling and heterogeneous simulation; microelectronic manufacturing; microsystems integration; and micro-optical networks for computational applications.

    The Center for Advancing the Study of CyberInfrastructure (CASCI) is a multidisciplinary center housed in the College of Computing and Information Sciences. The Departments of Computer science; Software Engineering; Information technology; Computer engineering; Imaging Science; and Bioinformatics collaborate in a variety of research programs at this center. RIT was the first university to launch a Bachelor’s program in Information technology in 1991; the first university to launch a Bachelor’s program in Software Engineering in 1996 and was also among the first universities to launch a Computer science Bachelor’s program in 1972. RIT helped standardize the Forth programming language and developed the CLAWS software package.

    The Center for Computational Relativity and Gravitation was founded in 2007. The CCRG comprises faculty and postdoctoral research associates working in the areas of general relativity; gravitational waves; and galactic dynamics. Computing facilities in the CCRG include gravitySimulator, a novel 32-node supercomputer that uses special-purpose hardware to achieve speeds of 4TFlops in gravitational N-body calculations, and newHorizons [image N/A], a state-of-the art 85-node Linux cluster for numerical relativity simulations.

    2
    Gravity Simulator at the Center for Computational Relativity and Gravitation, RIT, Rochester, New York, USA.

    The Center for Detectors was founded in 2010. The CfD designs; develops; and implements new advanced sensor technologies through collaboration with academic researchers; industry engineers; government scientists; and university/college students. The CfD operates four laboratories and has approximately a dozen funded projects to advance detectors in a broad array of applications, e.g. astrophysics; biomedical imaging; Earth system science; and inter-planetary travel. Center members span eight departments and four colleges.

    RIT has collaborated with many industry players in the field of research as well, including IBM; Xerox; Rochester’s Democrat and Chronicle; Siemens; National Aeronautics Space Agency(US); and the Defense Advanced Research Projects Agency (US) (DARPA). In 2005, it was announced by Russell W. Bessette- Executive Director New York State Office of Science Technology & Academic Research (NYSTAR), that RIT will lead the SUNY University at Buffalo (US) and Alfred University (US) in an initiative to create key technologies in microsystems; photonics; nanomaterials; and remote sensing systems and to integrate next generation IT systems. In addition, the collaboratory is tasked with helping to facilitate economic development and tech transfer in New York State. More than 35 other notable organizations have joined the collaboratory, including Boeing, Eastman Kodak, IBM, Intel, SEMATECH, ITT, Motorola, Xerox, and several Federal agencies, including as NASA.

    RIT has emerged as a national leader in manufacturing research. In 2017, the U.S. Department of Energy selected RIT to lead its Reducing Embodied-Energy and Decreasing Emissions (REMADE) Institute aimed at forging new clean energy measures through the Manufacturing USA initiative. RIT also participates in five other Manufacturing USA research institutes.

     
  • richardmitnick 11:37 am on June 25, 2021 Permalink | Reply
    Tags: "New math model traces the link between atmospheric CO2 and temperature over half a billion years", , , , , ESS: Earth system sensitivity, , Rochester Institute of Technology (US)   

    From Rochester Institute of Technology (US) : “New math model traces the link between atmospheric CO2 and temperature over half a billion years” 

    From Rochester Institute of Technology (US)

    June 23, 2021
    Luke Auburn
    luke.auburn@rit.edu

    Lead author Assistant Professor Tony Wong’s paper featured in Nature Communications.

    1
    Assistant professor Tony Wong is the lead author of an article featured in the journal Nature Communications that outlines a new modeling method to explore the relationship between the Earth’s atmospheric carbon dioxide and surface temperature over hundreds of millions of years.

    A Rochester Institute of Technology mathematician helped develop a new modeling method to explore the relationship between the Earth’s atmospheric carbon dioxide (CO2) and surface temperature over hundreds of millions of years. Assistant professor Tony Wong is the lead author of an article featured in the journal Nature Communications that outlines the method. He hopes it will help answer fundamental questions about the geophysical processes that drive the Earth’s climate.

    Scientists often use a measurement method called equilibrium climate sensitivity (ECS) to study the long-term effect on temperature of doubling atmospheric CO2 concentrations above pre-industrial conditions. ECS is helpful for assessing the effectiveness of climate change policies and understanding changes of up to a few hundred years. Wong’s method works on a much grander scale and uses a measurement called Earth system sensitivity (ESS), which allows the method to factor in processes that take millions of years to change, such as the shifting of tectonic plates or variations in solar luminosity.

    “The model gives us better insight into how the world and its geophysical processes work,” said Wong, faculty in the School of Mathematical Sciences. “It offers this nice schematic to incorporate all of the physics that encapsulates our current understanding of the Earth’s system. If it doesn’t look good or there are areas where there are biases relative to data that we have, then that highlights a gap in the understanding of the physics of our world. So we can go back and say OK, so what do we need to do to improve our understanding of the world?”

    Wong said the new work improves upon previous studies that used more limited sets of data and less sophisticated statistical methods for calibration. He also noted that the team used a unique inverse parameter calibration approach.

    “It’s taking this kind of Sherlock Holmes approach of once you rule out what’s not possible, what you’re left with must contain the truth,” said Wong. “It’s an interesting approach and it’s nice because there’s this satisfying cycle where you run the model forward, you see how it compares against data, and you rule out the parameter values that don’t represent the world we live in.”

    Wong has been working with College of Science students on ways to leverage the new technique. Recent alumnus Ken Shultes ’20 (applied mathematics) ’21 MS (applied and computational mathematics) built on the method and is developing an even more detailed statistical technique to infer the best model parameter values based on observational data.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Rochester Institute of Technology (US) is a private doctoral university within the town of Henrietta in the Rochester, New York metropolitan area.

    RIT is composed of nine academic colleges, including National Technical Institute for the Deaf(RIT)(US). The Institute is one of only a small number of engineering institutes in the State of New York, including New York Institute of Technology, SUNY Polytechnic Institute, and Rensselaer Polytechnic Institute(US). It is most widely known for its fine arts, computing, engineering, and imaging science programs; several fine arts programs routinely rank in the national “Top 10” according to US News & World Report.

    The university offers undergraduate and graduate degrees, including doctoral and professional degrees and online masters as well.

    The university was founded in 1829 and is the tenth largest private university in the country in terms of full-time students. It is internationally known for its science; computer; engineering; and art programs as well as for the National Technical Institute for the Deaf- a leading deaf-education institution that provides educational opportunities to more than 1000 deaf and hard-of-hearing students. RIT is known for its Co-op program that gives students professional and industrial experience. It has the fourth oldest and one of the largest Co-op programs in the world. It is classified among “R2: Doctoral Universities – High research activity”.

    RIT’s student population is approximately 19,000 students, about 16,000 undergraduate and 3000 graduate. Demographically, students attend from all 50 states in the United States and from more than 100 countries around the world. The university has more than 4000 active faculty and staff members who engage with the students in a wide range of academic activities and research projects. It also has branches abroad, its global campuses, located in China, Croatia and United Arab Emirates (Dubai).

    Fourteen RIT alumni and faculty members have been recipients of the Pulitzer Prize.

    History

    The university began as a result of an 1891 merger between Rochester Athenæum, a literary society founded in 1829 by Colonel Nathaniel Rochester and associates and The Mechanics Institute- a Rochester school of practical technical training for local residents founded in 1885 by a consortium of local businessmen including Captain Henry Lomb- co-founder of Bausch & Lomb. The name of the merged institution at the time was called Rochester Athenæum and Mechanics Institute (RAMI). The Mechanics Institute however, was considered as the surviving school by taking over The Rochester Athenaeum’s charter. From the time of the merger until 1944 RAMI celebrated The former Mechanics Institute’s 1885 founding charter. In 1944 the school changed its name to Rochester Institute of Technology and re-established The Athenaeum’s 1829 founding charter and became a full-fledged research university.

    The university originally resided within the city of Rochester, New York, proper, on a block bounded by the Erie Canal; South Plymouth Avenue; Spring Street; and South Washington Street (approximately 43.152632°N 77.615157°W). Its art department was originally located in the Bevier Memorial Building. By the middle of the twentieth century, RIT began to outgrow its facilities, and surrounding land was scarce and expensive. Additionally in 1959 the New York Department of Public Works announced a new freeway- the Inner Loop- was to be built through the city along a path that bisected the university’s campus and required demolition of key university buildings. In 1961 an unanticipated donation of $3.27 million ($27,977,071 today) from local Grace Watson (for whom RIT’s dining hall was later named) allowed the university to purchase land for a new 1,300-acre (5.3 km^2) campus several miles south along the east bank of the Genesee River in suburban Henrietta. Upon completion in 1968 the university moved to the new suburban campus, where it resides today.

    In 1966 RIT was selected by the Federal government to be the site of the newly founded National Technical Institute for the Deaf (NTID). NTID admitted its first students in 1968 concurrent with RIT’s transition to the Henrietta campus.

    In 1979 RIT took over Eisenhower College- a liberal arts college located in Seneca Falls, New York. Despite making a 5-year commitment to keep Eisenhower open RIT announced in July 1982 that the college would close immediately. One final year of operation by Eisenhower’s academic program took place in the 1982–83 school year on the Henrietta campus. The final Eisenhower graduation took place in May 1983 back in Seneca Falls.

    In 1990 RIT started its first PhD program in Imaging Science – the first PhD program of its kind in the U.S. RIT subsequently established PhD programs in six other fields: Astrophysical Sciences and Technology; Computing and Information Sciences; Color Science; Microsystems Engineering; Sustainability; and Engineering. In 1996 RIT became the first college in the U.S to offer a Software Engineering degree at the undergraduate level.

    Colleges

    RIT has nine colleges:

    RIT College of Engineering Technology
    Saunders College of Business
    B. Thomas Golisano College of Computing and Information Sciences
    Kate Gleason College of Engineering
    RIT College of Health Sciences and Technology
    College of Art and Design
    RIT College of Liberal Arts
    RIT College of Science
    National Technical Institute for the Deaf

    There are also three smaller academic units that grant degrees but do not have full college faculties:

    RIT Center for Multidisciplinary Studies
    Golisano Institute for Sustainability
    University Studies

    In addition to these colleges, RIT operates three branch campuses in Europe, one in the Middle East and one in East Asia:

    RIT Croatia (formerly the American College of Management and Technology) in Dubrovnik and Zagreb, Croatia
    RIT Kosovo (formerly the American University in Kosovo) in Pristina, Kosovo
    RIT Dubai in Dubai, United Arab Emirates
    RIT China-Weihai Campus

    RIT also has international partnerships with the following schools:[34]

    Yeditepe University in Istanbul, Turkey
    Birla Institute of Technology and Science in India
    Pontificia Universidad Catolica Madre y Maestra (PUCMM) in Dominican Republic
    Instituto Tecnológico de Santo Domingo (INTEC) in Dominican Republic
    Universidad Tecnologica Centro-Americana (UNITEC) in Honduras
    Universidad del Norte (UNINORTE) in Colombia
    Universidad Peruana de Ciencias Aplicadas (UPC) in Peru

    Research

    RIT’s research programs are rapidly expanding. The total value of research grants to university faculty for fiscal year 2007–2008 totaled $48.5 million- an increase of more than twenty-two percent over the grants from the previous year. The university currently offers eight PhD programs: Imaging science; Microsystems Engineering; Computing and Information Sciences; Color science; Astrophysical Sciences and Technology; Sustainability; Engineering; and Mathematical modeling.

    In 1986 RIT founded the Chester F. Carlson Center for Imaging Science and started its first doctoral program in Imaging Science in 1989. The Imaging Science department also offers the only Bachelors (BS) and Masters (MS) degree programs in imaging science in the country. The Carlson Center features a diverse research portfolio; its major research areas include Digital Image Restoration; Remote Sensing; Magnetic Resonance Imaging; Printing Systems Research; Color Science; Nanoimaging; Imaging Detectors; Astronomical Imaging; Visual Perception; and Ultrasonic Imaging.

    The Center for Microelectronic and Computer Engineering was founded by RIT in 1986. The university was the first university to offer a bachelor’s degree in Microelectronic Engineering. The Center’s facilities include 50,000 square feet (4,600 m^2) of building space with 10,000 square feet (930 m^2) of clean room space. The building will undergo an expansion later this year. Its research programs include nano-imaging; nano-lithography; nano-power; micro-optical devices; photonics subsystems integration; high-fidelity modeling and heterogeneous simulation; microelectronic manufacturing; microsystems integration; and micro-optical networks for computational applications.

    The Center for Advancing the Study of CyberInfrastructure (CASCI) is a multidisciplinary center housed in the College of Computing and Information Sciences. The Departments of Computer science; Software Engineering; Information technology; Computer engineering; Imaging Science; and Bioinformatics collaborate in a variety of research programs at this center. RIT was the first university to launch a Bachelor’s program in Information technology in 1991; the first university to launch a Bachelor’s program in Software Engineering in 1996 and was also among the first universities to launch a Computer science Bachelor’s program in 1972. RIT helped standardize the Forth programming language and developed the CLAWS software package.

    The Center for Computational Relativity and Gravitation was founded in 2007. The CCRG comprises faculty and postdoctoral research associates working in the areas of general relativity; gravitational waves; and galactic dynamics. Computing facilities in the CCRG include gravitySimulator, a novel 32-node supercomputer that uses special-purpose hardware to achieve speeds of 4TFlops in gravitational N-body calculations, and newHorizons [image N/A], a state-of-the art 85-node Linux cluster for numerical relativity simulations.

    2
    Gravity Simulator at the Center for Computational Relativity and Gravitation, RIT, Rochester, New York, USA.

    The Center for Detectors was founded in 2010. The CfD designs; develops; and implements new advanced sensor technologies through collaboration with academic researchers; industry engineers; government scientists; and university/college students. The CfD operates four laboratories and has approximately a dozen funded projects to advance detectors in a broad array of applications, e.g. astrophysics; biomedical imaging; Earth system science; and inter-planetary travel. Center members span eight departments and four colleges.

    RIT has collaborated with many industry players in the field of research as well, including IBM; Xerox; Rochester’s Democrat and Chronicle; Siemens; National Aeronautics Space Agency(US); and the Defense Advanced Research Projects Agency (US) (DARPA). In 2005, it was announced by Russell W. Bessette- Executive Director New York State Office of Science Technology & Academic Research (NYSTAR), that RIT will lead the SUNY University at Buffalo (US) and Alfred University (US) in an initiative to create key technologies in microsystems; photonics; nanomaterials; and remote sensing systems and to integrate next generation IT systems. In addition, the collaboratory is tasked with helping to facilitate economic development and tech transfer in New York State. More than 35 other notable organizations have joined the collaboratory, including Boeing, Eastman Kodak, IBM, Intel, SEMATECH, ITT, Motorola, Xerox, and several Federal agencies, including as NASA.

    RIT has emerged as a national leader in manufacturing research. In 2017, the U.S. Department of Energy selected RIT to lead its Reducing Embodied-Energy and Decreasing Emissions (REMADE) Institute aimed at forging new clean energy measures through the Manufacturing USA initiative. RIT also participates in five other Manufacturing USA research institutes.

     
  • richardmitnick 10:22 am on June 18, 2021 Permalink | Reply
    Tags: "CIBER-2 experiment successfully completes first flight", Black Brant IX rocket, Extragalactic background light: traces the history of galaxies back to the formation of the first stars in the universe., Rochester Institute of Technology (US), The rocket spends 6-7 minutes in space each flight taking measurements in six infrared wavelengths to help the researchers analyze the diffuse infrared glow in our skies., Women in STEM-Chi Nguyen   

    From Rochester Institute of Technology (US) : Women in STEM-Chi Nguyen; Serena Tramm “CIBER-2 experiment successfully completes first flight” 

    From Rochester Institute of Technology (US)

    June 17, 2021
    Luke Auburn
    luke.auburn@rit.edu

    Project led by Assistant Professor Michael Zemcov will explore extragalactic background light.

    1
    Chi Nguyen ’21 Ph.D. (astrophysical sciences and technology) makes final adjustments to the rocket payload prior to CIBER-2’s launch.

    By sending a Black Brant IX rocket on a 15-minute flight to space and back, researchers from Rochester Institute of Technology, California Institute of Technology (US), Kwansei Gakuin University [関西学院大学](JP), and Korea Astronomy and Space Science Institute[알림사항](KR) glimpsed traces of light from the earliest stages of the universe. The Cosmic Infrared Background Experiment-2 (CIBER-2) completed a successful first launch on June 7 at the White Sands Missile Range in New Mexico, the first of four planned over the next several years.

    2
    Four RIT researchers spent time this May and June at the White Sands Missile Range preparing CIBER-2 for launch. From left to right: Assistant Professor Michael Zemcov; Mike Ortiz, master’s student; Chi Nguyen ’21 Ph.D.; and Serena Tramm, Ph.D. student. Credit: NSROC III/NASA

    Led by principal investigator Michael Zemcov, an assistant professor in RIT’s School of Physics and Astronomy and Center for Detectors, the experiment aims to better understand extragalactic background light, which traces the history of galaxies back to the formation of the first stars in the universe. Zemcov said data collected by the study could help resolve discrepancies about how many stars exist in the universe.

    “Scientists do this measurement different ways and we’re having a really hard time to make the results of those different ways agree,” said Zemcov. “So there’s a mystery going on. Why aren’t all these measurements agreeing? I think that CIBER-2 will start to unravel some of that.”

    The experiment leverages an observational technique called intensity mapping used to study the structure of the universe. The rocket spends 6-7 minutes in space each flight taking measurements in six infrared wavelengths to help the researchers analyze the diffuse infrared glow in our skies.

    Recent alumna Chi Nguyen ’21 Ph.D. (astrophysical sciences and technology), whose thesis and much of her graduate career were focused on the project, called the launch exhilarating.

    “It feels amazing, a lot of weight off my shoulders,” said Nguyen. “It’s really exciting right now because we’re pulling the data and I can actually see star images. I think this is a great experiment and we’re doing a lot of interesting work in astronomy. It may take a while to get the science out of it but I think it has been a very successful first launch.”

    Nguyen will next head to Caltech for a position as a postdoctoral researcher under Professor Jamie Bock, co-principal investigator of CIBER-2 and Zemcov’s former mentor.

    Four RIT researchers spent the last several months in New Mexico helping to prepare the rocket for launch—Zemcov, Nguyen, astrophysical sciences and technology master’s student Michael Ortiz, and Serena Tramm, an astrophysical sciences and technology Ph.D. student. The experiment was nearly ready for launch in February 2020 when the coronavirus pandemic brought the project to a halt. Fortunately, after sitting idle for 15 months, the device just needed a few adjustments during testing and the launch went off without incident.

    After launch, the researchers collected the payload, recovered the data from the on-board hard disk, and shipped the CIBER-2 device back to Rochester. In the months ahead, the team will analyze the data and make modifications in preparation for the next launch, expected this time next year.

    The project is part of National Aeronautics Space Agency (US)’s Sounding Rockets Program, which uses rockets such as the Black Brant IX to carry scientific instruments for short sub-orbital flights at low vehicle speeds to carry out experiments. Zemcov called the program an ideal experiential learning opportunity for students.

    “I think part of the mission of the sounding rocket program is to be a place where we can train the next generation of space scientists in a relatively low-risk environment,” said Zemcov. “The students get hands-on experience in the details of the engineering and the science and then get to think about how they would transfer those skills to bigger missions. That’s part of why the program exists, and we should remember that.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Rochester Institute of Technology (US) is a private doctoral university within the town of Henrietta in the Rochester, New York metropolitan area.

    RIT is composed of nine academic colleges, including National Technical Institute for the Deaf(RIT)(US). The Institute is one of only a small number of engineering institutes in the State of New York, including New York Institute of Technology, SUNY Polytechnic Institute, and Rensselaer Polytechnic Institute(US). It is most widely known for its fine arts, computing, engineering, and imaging science programs; several fine arts programs routinely rank in the national “Top 10” according to US News & World Report.

    The university offers undergraduate and graduate degrees, including doctoral and professional degrees and online masters as well.

    The university was founded in 1829 and is the tenth largest private university in the country in terms of full-time students. It is internationally known for its science; computer; engineering; and art programs as well as for the National Technical Institute for the Deaf- a leading deaf-education institution that provides educational opportunities to more than 1000 deaf and hard-of-hearing students. RIT is known for its Co-op program that gives students professional and industrial experience. It has the fourth oldest and one of the largest Co-op programs in the world. It is classified among “R2: Doctoral Universities – High research activity”.

    RIT’s student population is approximately 19,000 students, about 16,000 undergraduate and 3000 graduate. Demographically, students attend from all 50 states in the United States and from more than 100 countries around the world. The university has more than 4000 active faculty and staff members who engage with the students in a wide range of academic activities and research projects. It also has branches abroad, its global campuses, located in China, Croatia and United Arab Emirates (Dubai).

    Fourteen RIT alumni and faculty members have been recipients of the Pulitzer Prize.

    History

    The university began as a result of an 1891 merger between Rochester Athenæum, a literary society founded in 1829 by Colonel Nathaniel Rochester and associates and The Mechanics Institute- a Rochester school of practical technical training for local residents founded in 1885 by a consortium of local businessmen including Captain Henry Lomb- co-founder of Bausch & Lomb. The name of the merged institution at the time was called Rochester Athenæum and Mechanics Institute (RAMI). The Mechanics Institute however, was considered as the surviving school by taking over The Rochester Athenaeum’s charter. From the time of the merger until 1944 RAMI celebrated The former Mechanics Institute’s 1885 founding charter. In 1944 the school changed its name to Rochester Institute of Technology and re-established The Athenaeum’s 1829 founding charter and became a full-fledged research university.

    The university originally resided within the city of Rochester, New York, proper, on a block bounded by the Erie Canal; South Plymouth Avenue; Spring Street; and South Washington Street (approximately 43.152632°N 77.615157°W). Its art department was originally located in the Bevier Memorial Building. By the middle of the twentieth century, RIT began to outgrow its facilities, and surrounding land was scarce and expensive. Additionally in 1959 the New York Department of Public Works announced a new freeway- the Inner Loop- was to be built through the city along a path that bisected the university’s campus and required demolition of key university buildings. In 1961 an unanticipated donation of $3.27 million ($27,977,071 today) from local Grace Watson (for whom RIT’s dining hall was later named) allowed the university to purchase land for a new 1,300-acre (5.3 km^2) campus several miles south along the east bank of the Genesee River in suburban Henrietta. Upon completion in 1968 the university moved to the new suburban campus, where it resides today.

    In 1966 RIT was selected by the Federal government to be the site of the newly founded National Technical Institute for the Deaf (NTID). NTID admitted its first students in 1968 concurrent with RIT’s transition to the Henrietta campus.

    In 1979 RIT took over Eisenhower College- a liberal arts college located in Seneca Falls, New York. Despite making a 5-year commitment to keep Eisenhower open RIT announced in July 1982 that the college would close immediately. One final year of operation by Eisenhower’s academic program took place in the 1982–83 school year on the Henrietta campus. The final Eisenhower graduation took place in May 1983 back in Seneca Falls.

    In 1990 RIT started its first PhD program in Imaging Science – the first PhD program of its kind in the U.S. RIT subsequently established PhD programs in six other fields: Astrophysical Sciences and Technology; Computing and Information Sciences; Color Science; Microsystems Engineering; Sustainability; and Engineering. In 1996 RIT became the first college in the U.S to offer a Software Engineering degree at the undergraduate level.

    Colleges

    RIT has nine colleges:

    RIT College of Engineering Technology
    Saunders College of Business
    B. Thomas Golisano College of Computing and Information Sciences
    Kate Gleason College of Engineering
    RIT College of Health Sciences and Technology
    College of Art and Design
    RIT College of Liberal Arts
    RIT College of Science
    National Technical Institute for the Deaf

    There are also three smaller academic units that grant degrees but do not have full college faculties:

    RIT Center for Multidisciplinary Studies
    Golisano Institute for Sustainability
    University Studies

    In addition to these colleges, RIT operates three branch campuses in Europe, one in the Middle East and one in East Asia:

    RIT Croatia (formerly the American College of Management and Technology) in Dubrovnik and Zagreb, Croatia
    RIT Kosovo (formerly the American University in Kosovo) in Pristina, Kosovo
    RIT Dubai in Dubai, United Arab Emirates
    RIT China-Weihai Campus

    RIT also has international partnerships with the following schools:[34]

    Yeditepe University in Istanbul, Turkey
    Birla Institute of Technology and Science in India
    Pontificia Universidad Catolica Madre y Maestra (PUCMM) in Dominican Republic
    Instituto Tecnológico de Santo Domingo (INTEC) in Dominican Republic
    Universidad Tecnologica Centro-Americana (UNITEC) in Honduras
    Universidad del Norte (UNINORTE) in Colombia
    Universidad Peruana de Ciencias Aplicadas (UPC) in Peru

    Research

    RIT’s research programs are rapidly expanding. The total value of research grants to university faculty for fiscal year 2007–2008 totaled $48.5 million- an increase of more than twenty-two percent over the grants from the previous year. The university currently offers eight PhD programs: Imaging science; Microsystems Engineering; Computing and Information Sciences; Color science; Astrophysical Sciences and Technology; Sustainability; Engineering; and Mathematical modeling.

    In 1986 RIT founded the Chester F. Carlson Center for Imaging Science and started its first doctoral program in Imaging Science in 1989. The Imaging Science department also offers the only Bachelors (BS) and Masters (MS) degree programs in imaging science in the country. The Carlson Center features a diverse research portfolio; its major research areas include Digital Image Restoration; Remote Sensing; Magnetic Resonance Imaging; Printing Systems Research; Color Science; Nanoimaging; Imaging Detectors; Astronomical Imaging; Visual Perception; and Ultrasonic Imaging.

    The Center for Microelectronic and Computer Engineering was founded by RIT in 1986. The university was the first university to offer a bachelor’s degree in Microelectronic Engineering. The Center’s facilities include 50,000 square feet (4,600 m^2) of building space with 10,000 square feet (930 m^2) of clean room space. The building will undergo an expansion later this year. Its research programs include nano-imaging; nano-lithography; nano-power; micro-optical devices; photonics subsystems integration; high-fidelity modeling and heterogeneous simulation; microelectronic manufacturing; microsystems integration; and micro-optical networks for computational applications.

    The Center for Advancing the Study of CyberInfrastructure (CASCI) is a multidisciplinary center housed in the College of Computing and Information Sciences. The Departments of Computer science; Software Engineering; Information technology; Computer engineering; Imaging Science; and Bioinformatics collaborate in a variety of research programs at this center. RIT was the first university to launch a Bachelor’s program in Information technology in 1991; the first university to launch a Bachelor’s program in Software Engineering in 1996 and was also among the first universities to launch a Computer science Bachelor’s program in 1972. RIT helped standardize the Forth programming language and developed the CLAWS software package.

    The Center for Computational Relativity and Gravitation was founded in 2007. The CCRG comprises faculty and postdoctoral research associates working in the areas of general relativity; gravitational waves; and galactic dynamics. Computing facilities in the CCRG include gravitySimulator, a novel 32-node supercomputer that uses special-purpose hardware to achieve speeds of 4TFlops in gravitational N-body calculations, and newHorizons [image N/A], a state-of-the art 85-node Linux cluster for numerical relativity simulations.

    2
    Gravity Simulator at the Center for Computational Relativity and Gravitation, RIT, Rochester, New York, USA.

    The Center for Detectors was founded in 2010. The CfD designs; develops; and implements new advanced sensor technologies through collaboration with academic researchers; industry engineers; government scientists; and university/college students. The CfD operates four laboratories and has approximately a dozen funded projects to advance detectors in a broad array of applications, e.g. astrophysics; biomedical imaging; Earth system science; and inter-planetary travel. Center members span eight departments and four colleges.

    RIT has collaborated with many industry players in the field of research as well, including IBM; Xerox; Rochester’s Democrat and Chronicle; Siemens; National Aeronautics Space Agency(US); and the Defense Advanced Research Projects Agency (US) (DARPA). In 2005, it was announced by Russell W. Bessette- Executive Director New York State Office of Science Technology & Academic Research (NYSTAR), that RIT will lead the SUNY University at Buffalo (US) and Alfred University (US) in an initiative to create key technologies in microsystems; photonics; nanomaterials; and remote sensing systems and to integrate next generation IT systems. In addition, the collaboratory is tasked with helping to facilitate economic development and tech transfer in New York State. More than 35 other notable organizations have joined the collaboratory, including Boeing, Eastman Kodak, IBM, Intel, SEMATECH, ITT, Motorola, Xerox, and several Federal agencies, including as NASA.

    RIT has emerged as a national leader in manufacturing research. In 2017, the U.S. Department of Energy selected RIT to lead its Reducing Embodied-Energy and Decreasing Emissions (REMADE) Institute aimed at forging new clean energy measures through the Manufacturing USA initiative. RIT also participates in five other Manufacturing USA research institutes.

     
  • richardmitnick 12:18 pm on June 16, 2021 Permalink | Reply
    Tags: "RIT researcher and students participate in joint project with UR’s Laboratory of Laser Energetics", , , , Rochester Institute of Technology (US)   

    From Rochester Institute of Technology (US) : “RIT researcher and students participate in joint project with UR’s Laboratory of Laser Energetics” 

    From Rochester Institute of Technology (US)

    June 15, 2021
    Michelle Cometa
    macuns@rit.edu

    Collaboration on vibration control continues to refine development of energy alternatives through fusion.

    Students in RIT’s College of Engineering Technology (CET) worked alongside faculty-researcher Brian Rice this semester on designing hardware in support of cryogenic inertial confinement fusion experiments. The work, part of a larger initiative based in the University of Rochester’s (US) U Rochester Laboratory for Laser Energetics (LLE) (US), is helping to contribute to novel thermonuclear fusion technology solutions, specifically in the area of vibration control of the spherical capsules containing solidified heavy hydrogen, the fuel source.

    3
    This image is of an 860 micro-meter diameter plastic shell supported by a 17-micro meter silicon carbide fiber. The shell is filled with a mixture of heavy hydrogen that undergoes fusion reactions. Credit: Laboratory of Laser Energetics, University of Rochester.

    “The ultimate goal is to have a fusion reaction that produces more energy out than is put in. Experiments at LLE have proven that it is physically possible. Unlike a fission reaction, a fusion reaction produces no nuclear waste,” said Rice, an assistant professor in CET’s Department of Manufacturing and Mechanical Engineering Technology. He has received research funding for specific projects as part of UR’s grant with the Department of Energy (US). Some aspects of the developmental process are taking place at RIT with Rice leading a team of undergraduate and graduate students in the process.

    “Most of our research projects have been related to two areas, fuel capsule vibration isolation systems and fuel capsule support structures,” said Rice, who is part of the growing research initiatives at CET that utilize the expertise of its faculty-researchers and ongoing collaborations with peer universities such as the University of Rochester.

    The relationship allows for students to learn more about the field of fusion reactor technology and to have hands-on design opportunities to learn about the important development process. This work is part of the evolving area of laser fusion—which shines laser light directly on a spherical fuel capsule containing heavy hydrogen. The resulting energy transfer from the laser produces intense temperatures and pressures creating a thermonuclear fusion reaction, comparable to the power emitted by the sun. Long-term research goals are to create a fusion reactor capable of producing electric power and the discovery of new materials and processes that could lead to more efficient fusion reactions.

    “From that standpoint, a lot of the work is fairly unique to the LLE’s program. Though much of our vibration isolation work is applicable to many industries. For example, minimizing vibrations is important in the manufacture of integrated circuits, and high quality optical instruments,” said Rice.

    Over the course of three years, students in Rice’s lab have completed five capstone projects, and five undergraduate research projects related to different aspects of the LLE research. Several breakthroughs in the area of Eddy current damping—the phenomena of movement of a conductor in a magenetic field which causes heat build up and energy loss.

    “While working in Dr. Rice’s lab, I completed research on controlling impacts in sports helmets and Eddy current damping. My work was very hands-on,” said Luc Booz, a fifth-year mechanical engineering technology major from Northbridge, Mass., who graduated this May. “ I met and communicated with a researcher at LLE to go over project goals and progress a couple of times. It was very exciting to see the facility and understand the machines and equipment my research was contributing to. Prior to my research, I had no knowledge of this engineering field so learning more about it and viewing the facilities were exciting experiences.”

    Pete van Camp agreed. The third-year student from Marion, N.Y., designed a test model that incorporated Eddy current dampening into a three-point ball-bearing isolator. The purpose of this was to test the effectiveness of the Eddy currents in dampening the low, natural frequencies left over from the isolator.

    “One of the greatest challenges is that there is not much previous research done on eddy currents used in this way,” van Camp said. He looks to continue work in the lab this summer and fall.

    “The RIT students, under the leadership of Brian Rice, have proven to be a valuable asset to the LLE Cryogenic program,” said Milt Shoup, head of the mechanical engineering department at LLE, and UR’s principal investigator on this research collaboration. “The students provide LLE the resource pool necessary to pursue cutting edge technologies and techniques for the Cryogenic program. Their work over the last three years is proving to be beneficial to the LLE program.”

    Shoup has received research funding for specific projects as part of UR’s grant with the Department of Energy. This work is supported by the DOE’s National Nuclear Security Administration (US).

    Rice came to RIT in 2016, after several years as part of the LLE team at UR. He was part of the UR in-house team that designed the next-generation moving cryostat that is currently used for all cryogenic fusion experiments at LLE. He retained his relationship with the group, collaborating on a series of projects in his area of expertise related to vibration control, solid mechanics, and heat transfer.

    For Rice, the continued relationship with the University of Rochester has multiple benefits—for the Laser Lab and the students at both universities.

    “I usually meet students in the classes that I teach and from talking to them, I get an idea of their interests and what they are good at,” he said, adding that even during the pandemic, the research work was modified slightly with a mix of online connections and in-person labs have continued. “It is learn-by-doing. I let them know what we need to accomplish and how to run experiments to measure vibrations and I guide them overall in how to do this.”

    The multi-year collaboration has resulted in journal articles and conference participation. CET also has a partnership with Vellore Institute of Technology [वेल्लोर इंस्टीट्यूट ऑफ टेक्नोलॉजी](IN), India, and Rice has included students from this college on several projects.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Rochester Institute of Technology (US) is a private doctoral university within the town of Henrietta in the Rochester, New York metropolitan area.

    RIT is composed of nine academic colleges, including National Technical Institute for the Deaf(RIT)(US). The Institute is one of only a small number of engineering institutes in the State of New York, including New York Institute of Technology, SUNY Polytechnic Institute, and Rensselaer Polytechnic Institute(US). It is most widely known for its fine arts, computing, engineering, and imaging science programs; several fine arts programs routinely rank in the national “Top 10” according to US News & World Report.

    The university offers undergraduate and graduate degrees, including doctoral and professional degrees and online masters as well.

    The university was founded in 1829 and is the tenth largest private university in the country in terms of full-time students. It is internationally known for its science; computer; engineering; and art programs as well as for the National Technical Institute for the Deaf- a leading deaf-education institution that provides educational opportunities to more than 1000 deaf and hard-of-hearing students. RIT is known for its Co-op program that gives students professional and industrial experience. It has the fourth oldest and one of the largest Co-op programs in the world. It is classified among “R2: Doctoral Universities – High research activity”.

    RIT’s student population is approximately 19,000 students, about 16,000 undergraduate and 3000 graduate. Demographically, students attend from all 50 states in the United States and from more than 100 countries around the world. The university has more than 4000 active faculty and staff members who engage with the students in a wide range of academic activities and research projects. It also has branches abroad, its global campuses, located in China, Croatia and United Arab Emirates (Dubai).

    Fourteen RIT alumni and faculty members have been recipients of the Pulitzer Prize.

    History

    The university began as a result of an 1891 merger between Rochester Athenæum, a literary society founded in 1829 by Colonel Nathaniel Rochester and associates and The Mechanics Institute- a Rochester school of practical technical training for local residents founded in 1885 by a consortium of local businessmen including Captain Henry Lomb- co-founder of Bausch & Lomb. The name of the merged institution at the time was called Rochester Athenæum and Mechanics Institute (RAMI). The Mechanics Institute however, was considered as the surviving school by taking over The Rochester Athenaeum’s charter. From the time of the merger until 1944 RAMI celebrated The former Mechanics Institute’s 1885 founding charter. In 1944 the school changed its name to Rochester Institute of Technology and re-established The Athenaeum’s 1829 founding charter and became a full-fledged research university.

    The university originally resided within the city of Rochester, New York, proper, on a block bounded by the Erie Canal; South Plymouth Avenue; Spring Street; and South Washington Street (approximately 43.152632°N 77.615157°W). Its art department was originally located in the Bevier Memorial Building. By the middle of the twentieth century, RIT began to outgrow its facilities, and surrounding land was scarce and expensive. Additionally in 1959 the New York Department of Public Works announced a new freeway- the Inner Loop- was to be built through the city along a path that bisected the university’s campus and required demolition of key university buildings. In 1961 an unanticipated donation of $3.27 million ($27,977,071 today) from local Grace Watson (for whom RIT’s dining hall was later named) allowed the university to purchase land for a new 1,300-acre (5.3 km^2) campus several miles south along the east bank of the Genesee River in suburban Henrietta. Upon completion in 1968 the university moved to the new suburban campus, where it resides today.

    In 1966 RIT was selected by the Federal government to be the site of the newly founded National Technical Institute for the Deaf (NTID). NTID admitted its first students in 1968 concurrent with RIT’s transition to the Henrietta campus.

    In 1979 RIT took over Eisenhower College- a liberal arts college located in Seneca Falls, New York. Despite making a 5-year commitment to keep Eisenhower open RIT announced in July 1982 that the college would close immediately. One final year of operation by Eisenhower’s academic program took place in the 1982–83 school year on the Henrietta campus. The final Eisenhower graduation took place in May 1983 back in Seneca Falls.

    In 1990 RIT started its first PhD program in Imaging Science – the first PhD program of its kind in the U.S. RIT subsequently established PhD programs in six other fields: Astrophysical Sciences and Technology; Computing and Information Sciences; Color Science; Microsystems Engineering; Sustainability; and Engineering. In 1996 RIT became the first college in the U.S to offer a Software Engineering degree at the undergraduate level.

    Colleges

    RIT has nine colleges:

    RIT College of Engineering Technology
    Saunders College of Business
    B. Thomas Golisano College of Computing and Information Sciences
    Kate Gleason College of Engineering
    RIT College of Health Sciences and Technology
    College of Art and Design
    RIT College of Liberal Arts
    RIT College of Science
    National Technical Institute for the Deaf

    There are also three smaller academic units that grant degrees but do not have full college faculties:

    RIT Center for Multidisciplinary Studies
    Golisano Institute for Sustainability
    University Studies

    In addition to these colleges, RIT operates three branch campuses in Europe, one in the Middle East and one in East Asia:

    RIT Croatia (formerly the American College of Management and Technology) in Dubrovnik and Zagreb, Croatia
    RIT Kosovo (formerly the American University in Kosovo) in Pristina, Kosovo
    RIT Dubai in Dubai, United Arab Emirates
    RIT China-Weihai Campus

    RIT also has international partnerships with the following schools:[34]

    Yeditepe University in Istanbul, Turkey
    Birla Institute of Technology and Science in India
    Pontificia Universidad Catolica Madre y Maestra (PUCMM) in Dominican Republic
    Instituto Tecnológico de Santo Domingo (INTEC) in Dominican Republic
    Universidad Tecnologica Centro-Americana (UNITEC) in Honduras
    Universidad del Norte (UNINORTE) in Colombia
    Universidad Peruana de Ciencias Aplicadas (UPC) in Peru

    Research

    RIT’s research programs are rapidly expanding. The total value of research grants to university faculty for fiscal year 2007–2008 totaled $48.5 million- an increase of more than twenty-two percent over the grants from the previous year. The university currently offers eight PhD programs: Imaging science; Microsystems Engineering; Computing and Information Sciences; Color science; Astrophysical Sciences and Technology; Sustainability; Engineering; and Mathematical modeling.

    In 1986 RIT founded the Chester F. Carlson Center for Imaging Science and started its first doctoral program in Imaging Science in 1989. The Imaging Science department also offers the only Bachelors (BS) and Masters (MS) degree programs in imaging science in the country. The Carlson Center features a diverse research portfolio; its major research areas include Digital Image Restoration; Remote Sensing; Magnetic Resonance Imaging; Printing Systems Research; Color Science; Nanoimaging; Imaging Detectors; Astronomical Imaging; Visual Perception; and Ultrasonic Imaging.

    The Center for Microelectronic and Computer Engineering was founded by RIT in 1986. The university was the first university to offer a bachelor’s degree in Microelectronic Engineering. The Center’s facilities include 50,000 square feet (4,600 m^2) of building space with 10,000 square feet (930 m^2) of clean room space. The building will undergo an expansion later this year. Its research programs include nano-imaging; nano-lithography; nano-power; micro-optical devices; photonics subsystems integration; high-fidelity modeling and heterogeneous simulation; microelectronic manufacturing; microsystems integration; and micro-optical networks for computational applications.

    The Center for Advancing the Study of CyberInfrastructure (CASCI) is a multidisciplinary center housed in the College of Computing and Information Sciences. The Departments of Computer science; Software Engineering; Information technology; Computer engineering; Imaging Science; and Bioinformatics collaborate in a variety of research programs at this center. RIT was the first university to launch a Bachelor’s program in Information technology in 1991; the first university to launch a Bachelor’s program in Software Engineering in 1996 and was also among the first universities to launch a Computer science Bachelor’s program in 1972. RIT helped standardize the Forth programming language and developed the CLAWS software package.

    The Center for Computational Relativity and Gravitation was founded in 2007. The CCRG comprises faculty and postdoctoral research associates working in the areas of general relativity; gravitational waves; and galactic dynamics. Computing facilities in the CCRG include gravitySimulator, a novel 32-node supercomputer that uses special-purpose hardware to achieve speeds of 4TFlops in gravitational N-body calculations, and newHorizons [image N/A], a state-of-the art 85-node Linux cluster for numerical relativity simulations.

    2
    Gravity Simulator at the Center for Computational Relativity and Gravitation, RIT, Rochester, New York, USA.

    The Center for Detectors was founded in 2010. The CfD designs; develops; and implements new advanced sensor technologies through collaboration with academic researchers; industry engineers; government scientists; and university/college students. The CfD operates four laboratories and has approximately a dozen funded projects to advance detectors in a broad array of applications, e.g. astrophysics; biomedical imaging; Earth system science; and inter-planetary travel. Center members span eight departments and four colleges.

    RIT has collaborated with many industry players in the field of research as well, including IBM; Xerox; Rochester’s Democrat and Chronicle; Siemens; National Aeronautics Space Agency(US); and the Defense Advanced Research Projects Agency (US) (DARPA). In 2005, it was announced by Russell W. Bessette- Executive Director New York State Office of Science Technology & Academic Research (NYSTAR), that RIT will lead the SUNY University at Buffalo (US) and Alfred University (US) in an initiative to create key technologies in microsystems; photonics; nanomaterials; and remote sensing systems and to integrate next generation IT systems. In addition, the collaboratory is tasked with helping to facilitate economic development and tech transfer in New York State. More than 35 other notable organizations have joined the collaboratory, including Boeing, Eastman Kodak, IBM, Intel, SEMATECH, ITT, Motorola, Xerox, and several Federal agencies, including as NASA.

    RIT has emerged as a national leader in manufacturing research. In 2017, the U.S. Department of Energy selected RIT to lead its Reducing Embodied-Energy and Decreasing Emissions (REMADE) Institute aimed at forging new clean energy measures through the Manufacturing USA initiative. RIT also participates in five other Manufacturing USA research institutes.

     
  • richardmitnick 12:04 pm on April 29, 2021 Permalink | Reply
    Tags: "RIT researchers use Frontera supercomputer to study eccentric binary black hole mergers", Rochester Institute of Technology (US), , University of Texas at Austin-Texas Advanced Computing Center Frontera Dell EMC supercomputer fastest at any university.   

    From Rochester Institute of Technology (US) : “RIT researchers use Frontera supercomputer to study eccentric binary black hole mergers” 

    From Rochester Institute of Technology (US)

    April 28, 2021
    Luke Auburn
    luke.auburn@rit.edu

    1
    Professor Carlos Lousto secured one of 58 new science projects for 2021-2022 that received time allocations on the Frontera supercomputer. Credit: Jorge Salazar, U Texas Texas Advanced Computing Center

    Researchers from Rochester Institute of Technology’s Center for Computational Relativity and Gravitation (CCRG) are using the world’s most powerful academic supercomputer to perform simulations that will help scientists study eccentric binary black hole mergers.

    Professor Carlos Lousto from the CCRG and School of Mathematical Sciences secured one of 58 new science projects for 2021-2022 that received time allocations on the Frontera supercomputer at the Texas Advanced Computing Center (TACC).

    Frontera is a National Science Foundation (US)-funded system designed for the most experienced academic computational scientists in the nation. Researchers are awarded time on Frontera based on their need for very large-scale computing, and the ability to efficiently use a supercomputer on the scale of Frontera.

    Lousto and his colleagues at CCRG have been simulating binary black hole mergers for years and have been working as part of the LIGO Scientific Collaboration to search for gravitational waves produced by these mergers.

    But until now, these simulations have been based off of seven parameters—three vectors of spin for each black hole and the mass ratio of the black holes. But by leveraging Frontera, Lousto hopes to add another factor to create more complex simulations: the eccentricity of the orbit as two black holes spiral together toward collision.

    “The most recent LIGO observational run found a very strange object,” said Lousto. “It was a binary black hole merger, but the models we have didn’t fit the signal we detected well. We realized we have been assuming that black holes orbit for a long time, circularize, and do a very smooth inward spiral. We never considered that there could be some eccentricity. That changes the physical scenario for the formation of these binaries. Now new events are popping up that are eccentric, something that was kind of unexpected, it was not a traditional scenario for the formation of a black hole.”

    Adding that extra dimension of calculation for these simulations takes a massive amount of computing power, which is why Lousto and his co-investigator Research Associate James Healy are leveraging Frontera for the project. By comparison, Lousto estimates the project would take the best commercially available computer today approximately 221 years to complete the calculations necessary.

    The allocations awarded this month represent the second cohort of Frontera users selected by the Large Resource Allocation Committee (LRAC) — a peer-review panel of computational science experts who convene annually to assess the readiness and appropriateness of projects for time on Frontera.

    Scientists from RIT’s CCRG have leveraged Frontera for several projects to date, including work by Professor Manuela Campanelli, director of CCRG, to study neutron mergers and Lousto and Healy’s work simulating mergers of black holes with unequal masses.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Rochester Institute of Technology (US) is a private doctoral university within the town of Henrietta in the Rochester, New York metropolitan area.

    RIT is composed of nine academic colleges, including National Technical Institute for the Deaf(RIT)(US). The Institute is one of only a small number of engineering institutes in the State of New York, including New York Institute of Technology, SUNY Polytechnic Institute, and Rensselaer Polytechnic Institute(US). It is most widely known for its fine arts, computing, engineering, and imaging science programs; several fine arts programs routinely rank in the national “Top 10” according to US News & World Report.

    The university offers undergraduate and graduate degrees, including doctoral and professional degrees and online masters as well.

    The university was founded in 1829 and is the tenth largest private university in the country in terms of full-time students. It is internationally known for its science; computer; engineering; and art programs as well as for the National Technical Institute for the Deaf- a leading deaf-education institution that provides educational opportunities to more than 1000 deaf and hard-of-hearing students. RIT is known for its Co-op program that gives students professional and industrial experience. It has the fourth oldest and one of the largest Co-op programs in the world. It is classified among “R2: Doctoral Universities – High research activity”.

    RIT’s student population is approximately 19,000 students, about 16,000 undergraduate and 3000 graduate. Demographically, students attend from all 50 states in the United States and from more than 100 countries around the world. The university has more than 4000 active faculty and staff members who engage with the students in a wide range of academic activities and research projects. It also has branches abroad, its global campuses, located in China, Croatia and United Arab Emirates (Dubai).

    Fourteen RIT alumni and faculty members have been recipients of the Pulitzer Prize.

    History

    The university began as a result of an 1891 merger between Rochester Athenæum, a literary society founded in 1829 by Colonel Nathaniel Rochester and associates and The Mechanics Institute- a Rochester school of practical technical training for local residents founded in 1885 by a consortium of local businessmen including Captain Henry Lomb- co-founder of Bausch & Lomb. The name of the merged institution at the time was called Rochester Athenæum and Mechanics Institute (RAMI). The Mechanics Institute however, was considered as the surviving school by taking over The Rochester Athenaeum’s charter. From the time of the merger until 1944 RAMI celebrated The former Mechanics Institute’s 1885 founding charter. In 1944 the school changed its name to Rochester Institute of Technology and re-established The Athenaeum’s 1829 founding charter and became a full-fledged research university.

    The university originally resided within the city of Rochester, New York, proper, on a block bounded by the Erie Canal; South Plymouth Avenue; Spring Street; and South Washington Street (approximately 43.152632°N 77.615157°W). Its art department was originally located in the Bevier Memorial Building. By the middle of the twentieth century, RIT began to outgrow its facilities, and surrounding land was scarce and expensive. Additionally in 1959 the New York Department of Public Works announced a new freeway- the Inner Loop- was to be built through the city along a path that bisected the university’s campus and required demolition of key university buildings. In 1961 an unanticipated donation of $3.27 million ($27,977,071 today) from local Grace Watson (for whom RIT’s dining hall was later named) allowed the university to purchase land for a new 1,300-acre (5.3 km^2) campus several miles south along the east bank of the Genesee River in suburban Henrietta. Upon completion in 1968 the university moved to the new suburban campus, where it resides today.

    In 1966 RIT was selected by the Federal government to be the site of the newly founded National Technical Institute for the Deaf (NTID). NTID admitted its first students in 1968 concurrent with RIT’s transition to the Henrietta campus.

    In 1979 RIT took over Eisenhower College- a liberal arts college located in Seneca Falls, New York. Despite making a 5-year commitment to keep Eisenhower open RIT announced in July 1982 that the college would close immediately. One final year of operation by Eisenhower’s academic program took place in the 1982–83 school year on the Henrietta campus. The final Eisenhower graduation took place in May 1983 back in Seneca Falls.

    In 1990 RIT started its first PhD program in Imaging Science – the first PhD program of its kind in the U.S. RIT subsequently established PhD programs in six other fields: Astrophysical Sciences and Technology; Computing and Information Sciences; Color Science; Microsystems Engineering; Sustainability; and Engineering. In 1996 RIT became the first college in the U.S to offer a Software Engineering degree at the undergraduate level.

    Colleges

    RIT has nine colleges:

    RIT College of Engineering Technology
    Saunders College of Business
    B. Thomas Golisano College of Computing and Information Sciences
    Kate Gleason College of Engineering
    RIT College of Health Sciences and Technology
    College of Art and Design
    RIT College of Liberal Arts
    RIT College of Science
    National Technical Institute for the Deaf

    There are also three smaller academic units that grant degrees but do not have full college faculties:

    RIT Center for Multidisciplinary Studies
    Golisano Institute for Sustainability
    University Studies

    In addition to these colleges, RIT operates three branch campuses in Europe, one in the Middle East and one in East Asia:

    RIT Croatia (formerly the American College of Management and Technology) in Dubrovnik and Zagreb, Croatia
    RIT Kosovo (formerly the American University in Kosovo) in Pristina, Kosovo
    RIT Dubai in Dubai, United Arab Emirates
    RIT China-Weihai Campus

    RIT also has international partnerships with the following schools:[34]

    Yeditepe University in Istanbul, Turkey
    Birla Institute of Technology and Science in India
    Pontificia Universidad Catolica Madre y Maestra (PUCMM) in Dominican Republic
    Instituto Tecnológico de Santo Domingo (INTEC) in Dominican Republic
    Universidad Tecnologica Centro-Americana (UNITEC) in Honduras
    Universidad del Norte (UNINORTE) in Colombia
    Universidad Peruana de Ciencias Aplicadas (UPC) in Peru

    Research

    RIT’s research programs are rapidly expanding. The total value of research grants to university faculty for fiscal year 2007–2008 totaled $48.5 million- an increase of more than twenty-two percent over the grants from the previous year. The university currently offers eight PhD programs: Imaging science; Microsystems Engineering; Computing and Information Sciences; Color science; Astrophysical Sciences and Technology; Sustainability; Engineering; and Mathematical modeling.

    In 1986 RIT founded the Chester F. Carlson Center for Imaging Science and started its first doctoral program in Imaging Science in 1989. The Imaging Science department also offers the only Bachelors (BS) and Masters (MS) degree programs in imaging science in the country. The Carlson Center features a diverse research portfolio; its major research areas include Digital Image Restoration; Remote Sensing; Magnetic Resonance Imaging; Printing Systems Research; Color Science; Nanoimaging; Imaging Detectors; Astronomical Imaging; Visual Perception; and Ultrasonic Imaging.

    The Center for Microelectronic and Computer Engineering was founded by RIT in 1986. The university was the first university to offer a bachelor’s degree in Microelectronic Engineering. The Center’s facilities include 50,000 square feet (4,600 m^2) of building space with 10,000 square feet (930 m^2) of clean room space. The building will undergo an expansion later this year. Its research programs include nano-imaging; nano-lithography; nano-power; micro-optical devices; photonics subsystems integration; high-fidelity modeling and heterogeneous simulation; microelectronic manufacturing; microsystems integration; and micro-optical networks for computational applications.

    The Center for Advancing the Study of CyberInfrastructure (CASCI) is a multidisciplinary center housed in the College of Computing and Information Sciences. The Departments of Computer science; Software Engineering; Information technology; Computer engineering; Imaging Science; and Bioinformatics collaborate in a variety of research programs at this center. RIT was the first university to launch a Bachelor’s program in Information technology in 1991; the first university to launch a Bachelor’s program in Software Engineering in 1996 and was also among the first universities to launch a Computer science Bachelor’s program in 1972. RIT helped standardize the Forth programming language and developed the CLAWS software package.

    The Center for Computational Relativity and Gravitation was founded in 2007. The CCRG comprises faculty and postdoctoral research associates working in the areas of general relativity; gravitational waves; and galactic dynamics. Computing facilities in the CCRG include gravitySimulator, a novel 32-node supercomputer that uses special-purpose hardware to achieve speeds of 4TFlops in gravitational N-body calculations, and newHorizons [image N/A], a state-of-the art 85-node Linux cluster for numerical relativity simulations.

    2
    Gravity Simulator at the Center for Computational Relativity and Gravitation, RIT, Rochester, New York, USA.

    The Center for Detectors was founded in 2010. The CfD designs; develops; and implements new advanced sensor technologies through collaboration with academic researchers; industry engineers; government scientists; and university/college students. The CfD operates four laboratories and has approximately a dozen funded projects to advance detectors in a broad array of applications, e.g. astrophysics; biomedical imaging; Earth system science; and inter-planetary travel. Center members span eight departments and four colleges.

    RIT has collaborated with many industry players in the field of research as well, including IBM; Xerox; Rochester’s Democrat and Chronicle; Siemens; National Aeronautics Space Agency(US); and the Defense Advanced Research Projects Agency (US) (DARPA). In 2005, it was announced by Russell W. Bessette- Executive Director New York State Office of Science Technology & Academic Research (NYSTAR), that RIT will lead the SUNY University at Buffalo (US) and Alfred University (US) in an initiative to create key technologies in microsystems; photonics; nanomaterials; and remote sensing systems and to integrate next generation IT systems. In addition, the collaboratory is tasked with helping to facilitate economic development and tech transfer in New York State. More than 35 other notable organizations have joined the collaboratory, including Boeing, Eastman Kodak, IBM, Intel, SEMATECH, ITT, Motorola, Xerox, and several Federal agencies, including as NASA.

    RIT has emerged as a national leader in manufacturing research. In 2017, the U.S. Department of Energy selected RIT to lead its Reducing Embodied-Energy and Decreasing Emissions (REMADE) Institute aimed at forging new clean energy measures through the Manufacturing USA initiative. RIT also participates in five other Manufacturing USA research institutes.

     
  • richardmitnick 11:58 am on April 2, 2021 Permalink | Reply
    Tags: "RIT researchers are making software secure by design", Faculty and students create tools to help engineers and programmers build better software., Fifty percent of vulnerabilities in today’s software systems are because of design flaws., Global Cybersecurity Institute at R.I.T., Mehdi Mirakhorli made it his long-term goal to synthesize software design into something more intuitive particularly for new learners and novice programmers., Rochester Institute of Technology (US), With more than $4 million in support programmers are developing tools and techniques to help coders take an architectural approach to software design.   

    From Rochester Institute of Technology (US) : “RIT researchers are making software secure by design” 

    From Rochester Institute of Technology (US)

    April 2, 2021
    Scott Bureau
    sbbcom@rit.edu

    Faculty and students create tools to help engineers and programmers build better software.

    1
    Joanna C. S. Santos, a computing and information sciences Ph.D. student, is developing ways to detect software design problems by analyzing a program’s source code. She is part of a team of RIT researchers working to analyze and change the way people create and maintain complex software systems. Credit: Gabrielle Plucknette-DeVito.

    In the Global Cybersecurity Institute’s new research space, RIT experts are tackling some of the most pressing computing security problems of today.

    These researchers include Mehdi Mirakhorli, associate professor of software engineering, and his student team. Together, they are working to make large-scale software systems more secure and resilient.

    “Fifty percent of vulnerabilities in today’s software systems are because of design flaws,” said Mirakhorli, who was named Kodak Endowed Scholar in the Golisano College of Computing and Information Sciences. “Today, we patch security bugs, but we don’t get to the root of the problem and identify architectural flaws in the software.”

    Software architecture goes beyond just code, explained Mirakhorli. It starts by looking at the unique set of goals that a system needs to accomplish. Whether it’s a banking system or electronic medical records, most software requires reliability, availability, security and performance. However, if the pieces don’t fit together perfectly, the whole system can crumble.

    “Not all programmers are designers that understand these important software design principles,” said Mirakhorli. “However, it takes years of experience to become a designer and they are expensive, so we have fewer of them in the industry.”

    To help fill this knowledge gap, and make it easier for programmers to put design first, Mirakhorli and his team are finding ways to make software design more intuitive. With more than $4 million in support from the National Science Foundation (US) (NSF), Defense Advanced Research Projects Agency (US) (DARPA) and other organizations, they are developing tools and techniques to help coders take an architectural approach to software design.

    Changing the culture of development

    As a teacher, Mirakhorli noticed a lack of emphasis on design thinking in the classroom. Many computing students don’t learn about software architecture until the end of college or even when they’re already in industry.

    That’s why Mirakhorli made it his long-term goal to synthesize software design into something more intuitive particularly for new learners and novice programmers.

    In 2020, he received a prestigious NSF Faculty Early Career Development (CAREER) award for his efforts in software architecture.

    His project aims to change software design and programming from a purely manual and exclusive task, to one in which a programmer and an automated design synthesis tool can collaborate to generate software design and implementation that meets its quality attributes scenarios.

    “I’m essentially creating a new programming language that makes it easier for people to express design intent,” said Mirakhorli. “This tool would walk programmers through architecture step-by-step and tell them if they’re violating any design principles. This will lead to fewer errors and security problems.”

    For example, a programmer who is excited about adding a login and password to their system, might not know exactly where to place their technology. If they locate it on the client-side, they could expose their system to an authentication bypass vulnerability.

    With Mirakhorli’s tool in-hand, a programmer would automatically be made aware of this vulnerability and learn how to mitigate it.

    As part of the CAREER award, Mirakhorli is looking at software design from a cognitive perspective. He meets with new students, novice programmers and expert designers to learn how different people approach architecture problems. He is also developing artificial intelligence that can learn best practices from good software systems out in the world today.

    “With this new tool, everyone can start using design thinking from the very beginning,” Mirakhorli said. “This will make our software secure by construction.”

    Tools to guide good architecture

    The RIT research team is also developing tools and techniques that can be used by programmers to detect more vulnerabilities and be more productive.

    To better understand current architectural vulnerabilities, Mirakhorli’s team cataloged more than 200 known architectural flaws that can lead to security vulnerabilities. The project is called the Common Architectural Weaknesses Enumeration and it’s supported by the National Cyber Security Division at the Department of Homeland Security and MITRE Corp.

    In another study, Danielle Gonzalez, a computing and information sciences Ph.D. student, and Mirakhorli examined common security architectural weaknesses in Industrial Control Systems (ICS)—the units that support manufacturing, electrical power grids and many other critical infrastructures.

    After looking at nearly 1,000 vulnerability reports, the team found that almost 63 percent of vulnerability disclosures in ICS had an architectural root cause. The most common architectural weakness was improper input validation. The human-machine interfaces in these systems happened to be the most affected components.

    “Many of these systems were not originally designed with internet connectivity in mind, but they are being adapted with new technology that allows managers to do things like monitor a station from their smartphone,” said Gonzalez, who is from Franklinville, N.Y. “We need to pay attention to these security issues and how adding technology affects the architecture.”

    Using these findings, the researchers in RIT’s Software Design and Productivity Lab are creating guidelines that can help current programmers with resilient architecture, testing validation and using application programming interfaces (API).

    In a project funded by DARPA, Mirakhorli is detecting design flaws at the model level, to ensure that systems are reliable and resilient to cyber incidents. The project, called Achilles, looks for any major architecture weaknesses that could bring a system down entirely.

    “For example, if any software module on an airplane crashes mid-flight, we still want it to be reactive to ensure that the plane is functional,” said Mirakhorli. “We want to make sure that fault detection and recovery mechanisms don’t have any design flaws that compromise safety and resiliency.”

    In another project, Gonzalez is supporting developer’s efforts to test their implementations of security-related design decisions, by creating a guide for unit testing authentication.

    “Programmers are not necessarily used to writing security-minded test cases, so these resources help by explaining exactly what to test for security-related code and how to test it,” said Gonzalez. “As we work to incorporate security into earlier phases of software development, it’s important to support programmers as they adjust to these changes.”

    Another important concern that researchers have regarding software architecture, is making sure it’s correctly implemented in a program. Ali Shokri, a computing and information sciences Ph.D. student from Iran, is developing an approach—called ArCode—that helps programmers correctly implement architectural tactics and patterns.

    ArCode aims to work as a learning process, by inferring correct ways to incorporate APIs of application frameworks in a program. It then analyzes any under development in the program to identify deviations from the correct implementation. Finally, it provides recommendations on how to fix the problem.

    With this approach, Shokri hopes to find errors that compilers are not able to identify—known as semantic errors—and help programmers fix them to avoid software crashes in the runtime, which can cause severe damage.

    RIT researchers have other answers for coding problems too. Joanna C. S. Santos, a computing and information sciences Ph.D. student, wants to help programmers who make simple mistakes in input validation. She is creating DODO, a tool that automatically analyzes a program’s source code.

    “It’s like when you forget to lock your door—mistakes happen,” said Santos, who is from Brazil. “Programmers will miss a validation or have a broken validation.”

    For the project, she looked at three large open source systems and found that input validation problems were the most common error in that software. By observing common validation problems and using artificial intelligence to collect data, Santos is working to develop a sound program analysis that allows her tool to pinpoint where errors might occur.

    Learn more about RIT’s computing security research on the Global Cybersecurity Institute website.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Rochester Institute of Technology (RIT)(US) is a private doctoral university within the town of Henrietta in the Rochester, New York metropolitan area.

    RIT is composed of nine academic colleges, including National Technical Institute for the Deaf(RIT)(US). The Institute is one of only a small number of engineering institutes in the State of New York, including New York Institute of Technology, SUNY Polytechnic Institute, and Rensselaer Polytechnic Institute(US). It is most widely known for its fine arts, computing, engineering, and imaging science programs; several fine arts programs routinely rank in the national “Top 10” according to US News & World Report.

    The university offers undergraduate and graduate degrees, including doctoral and professional degrees and online masters as well.

    The university was founded in 1829 and is the tenth largest private university in the country in terms of full-time students. It is internationally known for its science; computer; engineering; and art programs as well as for the National Technical Institute for the Deaf- a leading deaf-education institution that provides educational opportunities to more than 1000 deaf and hard-of-hearing students. RIT is known for its Co-op program that gives students professional and industrial experience. It has the fourth oldest and one of the largest Co-op programs in the world. It is classified among “R2: Doctoral Universities – High research activity”.

    RIT’s student population is approximately 19,000 students, about 16,000 undergraduate and 3000 graduate. Demographically, students attend from all 50 states in the United States and from more than 100 countries around the world. The university has more than 4000 active faculty and staff members who engage with the students in a wide range of academic activities and research projects. It also has branches abroad, its global campuses, located in China, Croatia and United Arab Emirates (Dubai).

    Fourteen RIT alumni and faculty members have been recipients of the Pulitzer Prize.

    History

    The university began as a result of an 1891 merger between Rochester Athenæum, a literary society founded in 1829 by Colonel Nathaniel Rochester and associates and The Mechanics Institute- a Rochester school of practical technical training for local residents founded in 1885 by a consortium of local businessmen including Captain Henry Lomb- co-founder of Bausch & Lomb. The name of the merged institution at the time was called Rochester Athenæum and Mechanics Institute (RAMI). The Mechanics Institute however, was considered as the surviving school by taking over The Rochester Athenaeum’s charter. From the time of the merger until 1944 RAMI celebrated The former Mechanics Institute’s 1885 founding charter. In 1944 the school changed its name to Rochester Institute of Technology and re-established The Athenaeum’s 1829 founding charter and became a full-fledged research university.

    The university originally resided within the city of Rochester, New York, proper, on a block bounded by the Erie Canal; South Plymouth Avenue; Spring Street; and South Washington Street (approximately 43.152632°N 77.615157°W). Its art department was originally located in the Bevier Memorial Building. By the middle of the twentieth century, RIT began to outgrow its facilities, and surrounding land was scarce and expensive. Additionally in 1959 the New York Department of Public Works announced a new freeway- the Inner Loop- was to be built through the city along a path that bisected the university’s campus and required demolition of key university buildings. In 1961 an unanticipated donation of $3.27 million ($27,977,071 today) from local Grace Watson (for whom RIT’s dining hall was later named) allowed the university to purchase land for a new 1,300-acre (5.3 km^2) campus several miles south along the east bank of the Genesee River in suburban Henrietta. Upon completion in 1968 the university moved to the new suburban campus, where it resides today.

    In 1966 RIT was selected by the Federal government to be the site of the newly founded National Technical Institute for the Deaf (NTID). NTID admitted its first students in 1968 concurrent with RIT’s transition to the Henrietta campus.

    In 1979 RIT took over Eisenhower College- a liberal arts college located in Seneca Falls, New York. Despite making a 5-year commitment to keep Eisenhower open RIT announced in July 1982 that the college would close immediately. One final year of operation by Eisenhower’s academic program took place in the 1982–83 school year on the Henrietta campus. The final Eisenhower graduation took place in May 1983 back in Seneca Falls.

    In 1990 RIT started its first PhD program in Imaging Science – the first PhD program of its kind in the U.S. RIT subsequently established PhD programs in six other fields: Astrophysical Sciences and Technology; Computing and Information Sciences; Color Science; Microsystems Engineering; Sustainability; and Engineering. In 1996 RIT became the first college in the U.S to offer a Software Engineering degree at the undergraduate level.

    Colleges

    RIT has nine colleges:

    RIT College of Engineering Technology
    Saunders College of Business
    B. Thomas Golisano College of Computing and Information Sciences
    Kate Gleason College of Engineering
    RIT College of Health Sciences and Technology
    College of Art and Design
    RIT College of Liberal Arts
    RIT College of Science
    National Technical Institute for the Deaf

    There are also three smaller academic units that grant degrees but do not have full college faculties:

    RIT Center for Multidisciplinary Studies
    Golisano Institute for Sustainability
    University Studies

    In addition to these colleges, RIT operates three branch campuses in Europe, one in the Middle East and one in East Asia:

    RIT Croatia (formerly the American College of Management and Technology) in Dubrovnik and Zagreb, Croatia
    RIT Kosovo (formerly the American University in Kosovo) in Pristina, Kosovo
    RIT Dubai in Dubai, United Arab Emirates
    RIT China-Weihai Campus

    RIT also has international partnerships with the following schools:[34]

    Yeditepe University in Istanbul, Turkey
    Birla Institute of Technology and Science in India
    Pontificia Universidad Catolica Madre y Maestra (PUCMM) in Dominican Republic
    Instituto Tecnológico de Santo Domingo (INTEC) in Dominican Republic
    Universidad Tecnologica Centro-Americana (UNITEC) in Honduras
    Universidad del Norte (UNINORTE) in Colombia
    Universidad Peruana de Ciencias Aplicadas (UPC) in Peru

    Research

    RIT’s research programs are rapidly expanding. The total value of research grants to university faculty for fiscal year 2007–2008 totaled $48.5 million- an increase of more than twenty-two percent over the grants from the previous year. The university currently offers eight PhD programs: Imaging science; Microsystems Engineering; Computing and Information Sciences; Color science; Astrophysical Sciences and Technology; Sustainability; Engineering; and Mathematical modeling.

    In 1986 RIT founded the Chester F. Carlson Center for Imaging Science and started its first doctoral program in Imaging Science in 1989. The Imaging Science department also offers the only Bachelors (BS) and Masters (MS) degree programs in imaging science in the country. The Carlson Center features a diverse research portfolio; its major research areas include Digital Image Restoration; Remote Sensing; Magnetic Resonance Imaging; Printing Systems Research; Color Science; Nanoimaging; Imaging Detectors; Astronomical Imaging; Visual Perception; and Ultrasonic Imaging.

    The Center for Microelectronic and Computer Engineering was founded by RIT in 1986. The university was the first university to offer a bachelor’s degree in Microelectronic Engineering. The Center’s facilities include 50,000 square feet (4,600 m^2) of building space with 10,000 square feet (930 m^2) of clean room space. The building will undergo an expansion later this year. Its research programs include nano-imaging; nano-lithography; nano-power; micro-optical devices; photonics subsystems integration; high-fidelity modeling and heterogeneous simulation; microelectronic manufacturing; microsystems integration; and micro-optical networks for computational applications.

    The Center for Advancing the Study of CyberInfrastructure (CASCI) is a multidisciplinary center housed in the College of Computing and Information Sciences. The Departments of Computer science; Software Engineering; Information technology; Computer engineering; Imaging Science; and Bioinformatics collaborate in a variety of research programs at this center. RIT was the first university to launch a Bachelor’s program in Information technology in 1991; the first university to launch a Bachelor’s program in Software Engineering in 1996 and was also among the first universities to launch a Computer science Bachelor’s program in 1972. RIT helped standardize the Forth programming language and developed the CLAWS software package.

    The Center for Computational Relativity and Gravitation was founded in 2007. The CCRG comprises faculty and postdoctoral research associates working in the areas of general relativity; gravitational waves; and galactic dynamics. Computing facilities in the CCRG include gravitySimulator, a novel 32-node supercomputer that uses special-purpose hardware to achieve speeds of 4TFlops in gravitational N-body calculations, and newHorizons [image N/A], a state-of-the art 85-node Linux cluster for numerical relativity simulations.

    2
    gravitySimulator at the Center for Computational Relativity and Gravitation, RIT, Rochester, New York, USA.

    The Center for Detectors was founded in 2010. The CfD designs; develops; and implements new advanced sensor technologies through collaboration with academic researchers; industry engineers; government scientists; and university/college students. The CfD operates four laboratories and has approximately a dozen funded projects to advance detectors in a broad array of applications, e.g. astrophysics; biomedical imaging; Earth system science; and inter-planetary travel. Center members span eight departments and four colleges.

    RIT has collaborated with many industry players in the field of research as well, including IBM; Xerox; Rochester’s Democrat and Chronicle; Siemens; National Aeronautics Space Agency(US); and the Defense Advanced Research Projects Agency (US) (DARPA). In 2005, it was announced by Russell W. Bessette- Executive Director New York State Office of Science Technology & Academic Research (NYSTAR), that RIT will lead the SUNY University at Buffalo (US) and Alfred University (US) in an initiative to create key technologies in microsystems; photonics; nanomaterials; and remote sensing systems and to integrate next generation IT systems. In addition, the collaboratory is tasked with helping to facilitate economic development and tech transfer in New York State. More than 35 other notable organizations have joined the collaboratory, including Boeing, Eastman Kodak, IBM, Intel, SEMATECH, ITT, Motorola, Xerox, and several Federal agencies, including as NASA.

    RIT has emerged as a national leader in manufacturing research. In 2017, the U.S. Department of Energy selected RIT to lead its Reducing Embodied-Energy and Decreasing Emissions (REMADE) Institute aimed at forging new clean energy measures through the Manufacturing USA initiative. RIT also participates in five other Manufacturing USA research institutes.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: