Tagged: Robotics Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:03 am on June 16, 2021 Permalink | Reply
    Tags: "A Simpler but Dexterous Robot Hand", , , , Robotics,   

    From From Yale School of Engineering and Applied Science: “A Simpler but Dexterous Robot Hand” 

    From Yale School of Engineering and Applied Science

    05/12/2021 [Just now in social media.]

    Yale School of Engineering and Applied Science Daniel L Malone Engineering Center.

    1

    Humans use all surfaces of the hand for contact-rich manipulation. Robot hands, in contrast, typically use only the fingertips, which can limit dexterity. In a new study from the lab of Aaron Dollar, professor of mechanical engineering & materials science & computer science, researchers took a non-traditional approach to creating a new design for robotic hands.

    The research team – graduate students Walter Bircher and Andrew Morgan, and Dollar – designed a two-fingered dexterous hand. Known as “Model W,” it was inspired by the high levels of dexterity seen in humans’ hand movements and robotic caging grasps – a strategy used to loosely trap objects between the fingers of a hand, preventing object ejection while allowing some free motion to occur. With the goal of making the design a useful tool for others in the robotic manipulation community, the researchers made the design a relatively simple one, with inexpensive components. They have also released the design through Yale OpenHand (an open-source robot hand hardware initiative).

    Here, lead author Bircher explains the work and its significance:

    Tell us about the background of the project, and how you got involved in this field.

    “People have been designing dexterous robotic hands for nearly 50 years, but have not achieved the same level of dexterity seen in human hands. This is in part because human hands regularly make and break contacts with an object and utilize all surfaces of the hand, skills that are difficult for robotic hands to emulate. Even decades ago, the advantages of using rolling and sliding contacts between the fingers and the object for increased dexterity were noted, while prominent manipulation models only took fixed contacts into account. In this work, we describe a model that allows for rolling, sliding, and fixed contacts, enabling the design of highly dexterous robotic hands.

    I became interested in robotic hand manipulation during college, after doing an internship in the robotic manipulation group at the NASA Jet Propulsion Laboratory. I followed this interest to Yale to pursue a PhD in the Dollar group. Our group is generally interested in optimizing the utility of underactuated and mechanically simple robotic hands. Using this mentality, I became interested in studying how design can improve the manipulation capabilities of simple hands, especially while leveraging non-persistent contacts (rolling and sliding) between the hand and the object.”

    2

    What’s the significance of this work?

    3

    “In general, robotic hands have limited ability to roll or slide an object without dropping it, which constrains their utility in a dynamic, human environment. This work provides a new way to extend the dexterity of simple hands, without requiring the complicated math of traditional models, which could enable robotic hands to be used in household environments, the workplace, and other situations where dextrous, human-like manipulation is needed. Our hand, the Model W, presents an example of the kind of freeform manipulation that would be useful in a changing, everyday environment and presents a step towards robotic interaction with tools, objects, and even people.”

    Who might disagree with this?

    “Some researchers model manipulation in a way that keeps track of all contact forces, friction, object locations, etc. while manipulating which enables the stability of the grasp to be calculated, avoiding object ejection. However, this approach can be challenging because object contact locations and force magnitudes and directions are difficult to measure accurately, and friction coefficients can change over time. In our approach, we only consider caging and the overall energy of the system. Some might consider this method “messier” because it provides less precise information about the nature of hand-object contacts. However, by leveraging freeform contacts and ensuring object caging, we achieve high dexterity and low risk of object ejection which makes this an advantageous method.”

    What’s the most exciting part of these findings?

    “In the past, we’ve used energy maps with existing robotic hands to assess their capabilities and control their manipulation of objects, but have never used energy maps to design a totally new hand. So after lots of theoretical modeling and engineering to build the Model W, it was so exciting to see it manipulate objects for the first time and confirm that it could perform as well as the theory predicted. It was especially exciting that the Model W showed a very high success rate when performing a wide range of tasks, indicating that the caging strategy reliably prevented object ejection and produced a depedenably dexterous hand.”

    What are the next steps with this, for you or other researchers?

    “The Model W was designed for planar (2D) manipulation but many tasks require spatial (3D) manipulation. So, one goal of our future work is to extend this model to three dimensions and produce a more general-purpose dexterous hand. We are also working to extend the energy map model to create a closed-loop controller for real-time control, which will require optimizing the computational efficiency of the model. We hope that using energy maps will improve on the basic control strategies shown in this work by more precisely directing the motors in a hand to achieve the desired motions of an object. Also, we hope that other research groups will utilize our theory in their own work and also use the Model W as a platform for testing manipulation strategies.”


    Robotic Hand

    The Yale School of Engineering & Applied Science is the engineering school of Yale University. When the first professor of civil engineering was hired in 1852, a Yale School of Engineering was established within the Yale Scientific School, and in 1932 the engineering faculty organized as a separate, constituent school of the university. The school currently offers undergraduate and graduate classes and degrees in electrical engineering, chemical engineering, computer science, applied physics, environmental engineering, biomedical engineering, and mechanical engineering and materials science.

    Yale University comprises three major academic components: Yale College (the undergraduate program); the Graduate School of Arts and Sciences; and the professional schools. In addition, Yale encompasses a wide array of centers and programs, libraries, museums, and administrative support offices. Approximately 11,250 students attend Yale.

    Yale University (US) is a private Ivy League research university in New Haven, Connecticut. Founded in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and one of the nine Colonial Colleges chartered before the American Revolution. Collegiate School was renamed Yale College in 1718 to honor the school’s largest benefactor, Elihu Yale.

    Chartered by Connecticut Colony, the Collegiate School was established in 1701 by clergy to educate Congregational ministers. It moved to New Haven in 1716 and shortly after was renamed Yale College in recognition of a gift from East India Company governor Elihu Yale. Originally restricted to theology and sacred languages, the curriculum began to incorporate humanities and sciences by the time of the American Revolution. In the 19th century, the college expanded into graduate and professional instruction, awarding the first PhD in the United States in 1861 and organizing as a university in 1887. Yale’s faculty and student populations grew after 1890 with rapid expansion of the physical campus and scientific research.

    Yale is organized into fourteen constituent schools: the original undergraduate college; the Yale Graduate School of Arts and Sciences; and twelve professional schools. While the university is governed by the Yale Corporation, each school’s faculty oversees its curriculum and degree programs. In addition to a central campus in downtown New Haven, the university owns athletic facilities in western New Haven, a campus in West Haven, Connecticut, and forests and nature preserves throughout New England. As of September 2019, the university’s assets include an endowment valued at $30.3 billion, the second largest endowment of any educational institution in North America. The Yale University Library, serving all constituent schools, holds more than 15 million volumes and is the third-largest academic library in the United States. Students compete in intercollegiate sports as the Yale Bulldogs in the NCAA Division I – Ivy League.

    As of October 2020, 65 Nobel laureates, five Fields Medalists and three Turing award winners have been affiliated with Yale University. In addition, Yale has graduated many notable alumni, including five U.S. Presidents; 19 U.S. Supreme Court Justices; 31 living billionaires; and many heads of state. Hundreds of members of Congress and many U.S. diplomats; 78 MacArthur Fellows; 252 Rhodes Scholars; 123 Marshall Scholars; and nine Mitchell Scholars have been affiliated with the university.

    Yale traces its beginnings to “An Act for Liberty to Erect a Collegiate School”, a would-be charter passed during a meeting in New Haven by the General Court of the Colony of Connecticut on October 9, 1701. The Act was an effort to create an institution to train ministers and lay leadership for Connecticut. Soon after, a group of ten Congregational ministers, Samuel Andrew; Thomas Buckingham; Israel Chauncy; Samuel Mather (nephew of Increase Mather); Rev. James Noyes II (son of James Noyes); James Pierpont; Abraham Pierson; Noadiah Russell; Joseph Webb; and Timothy Woodbridge, all alumni of Harvard University(US), met in the study of Reverend Samuel Russell located in Branford, Connecticut to donate their books to form the school’s library. The group, led by James Pierpont, is now known as “The Founders”.

    Originally known as the “Collegiate School”, the institution opened in the home of its first rector, Abraham Pierson, who is today considered the first president of Yale. Pierson lived in Killingworth (now Clinton). The school moved to Saybrook and then Wethersfield. In 1716, it moved to New Haven, Connecticut.

    Meanwhile, there was a rift forming at Harvard between its sixth president, Increase Mather, and the rest of the Harvard clergy, whom Mather viewed as increasingly liberal, ecclesiastically lax, and overly broad in Church polity. The feud caused the Mathers to champion the success of the Collegiate School in the hope that it would maintain the Puritan religious orthodoxy in a way that Harvard had not.

    Naming and development

    1
    Coat of arms of the family of Elihu Yale, after whom the university was named in 1718

    In 1718, at the behest of either Rector Samuel Andrew or the colony’s Governor Gurdon Saltonstall, Cotton Mather contacted the successful Boston born businessman Elihu Yale to ask him for financial help in constructing a new building for the college. Through the persuasion of Jeremiah Dummer, Elihu “Eli” Yale, who had made a fortune in Madras while working for the East India Company overseeing its slave trading activities, donated nine bales of goods, which were sold for more than £560, a substantial sum of money at the time. Cotton Mather suggested that the school change its name to “Yale College.” The name Yale is the Anglicized spelling of the Iâl, which the family estate at Plas yn Iâl, near the village of Llandegla, was called.

    Meanwhile, a Harvard graduate working in England convinced some 180 prominent intellectuals to donate books to Yale. The 1714 shipment of 500 books represented the best of modern English literature; science; philosophy; and theology at the time. It had a profound effect on intellectuals at Yale. Undergraduate Jonathan Edwards discovered John Locke’s works and developed his original theology known as the “new divinity.” In 1722 the Rector and six of his friends, who had a study group to discuss the new ideas, announced that they had given up Calvinism, become Arminians, and joined the Church of England. They were ordained in England and returned to the colonies as missionaries for the Anglican faith. Thomas Clapp became president in 1745 and while he attempted to return the college to Calvinist orthodoxy, he did not close the library. Other students found Deist books in the library.

    Curriculum

    Yale College undergraduates follow a liberal arts curriculum with departmental majors and is organized into a social system of residential colleges.

    Yale was swept up by the great intellectual movements of the period—the Great Awakening and the Enlightenment—due to the religious and scientific interests of presidents Thomas Clap and Ezra Stiles. They were both instrumental in developing the scientific curriculum at Yale while dealing with wars, student tumults, graffiti, “irrelevance” of curricula, desperate need for endowment and disagreements with the Connecticut legislature.

    Serious American students of theology and divinity particularly in New England regarded Hebrew as a classical language along with Greek and Latin and essential for the study of the Hebrew Bible in the original words. The Reverend Ezra Stiles, president of the college from 1778 to 1795, brought with him his interest in the Hebrew language as a vehicle for studying ancient Biblical texts in their original language (as was common in other schools) requiring all freshmen to study Hebrew (in contrast to Harvard, where only upperclassmen were required to study the language) and is responsible for the Hebrew phrase אורים ותמים (Urim and Thummim) on the Yale seal. A 1746 graduate of Yale, Stiles came to the college with experience in education, having played an integral role in the founding of Brown University(US), in addition to having been a minister. Stiles’ greatest challenge occurred in July 1779 when British forces occupied New Haven and threatened to raze the college. However, Yale graduate Edmund Fanning, Secretary to the British General in command of the occupation, intervened and the college was saved. In 1803, Fanning was granted an honorary degree LL.D. for his efforts.

    Students

    As the only college in Connecticut from 1701 to 1823, Yale educated the sons of the elite. Punishable offenses for students included cardplaying; tavern-going; destruction of college property; and acts of disobedience to college authorities. During this period, Harvard was distinctive for the stability and maturity of its tutor corps, while Yale had youth and zeal on its side.

    The emphasis on classics gave rise to a number of private student societies, open only by invitation, which arose primarily as forums for discussions of modern scholarship literature and politics. The first such organizations were debating societies: Crotonia in 1738, Linonia in 1753 and Brothers in Unity in 1768. While the societies no longer exist, commemorations to them can be found with names given to campus structures, like Brothers in Unity Courtyard in Branford College.

    19th century

    The Yale Report of 1828 was a dogmatic defense of the Latin and Greek curriculum against critics who wanted more courses in modern languages, mathematics, and science. Unlike higher education in Europe, there was no national curriculum for colleges and universities in the United States. In the competition for students and financial support, college leaders strove to keep current with demands for innovation. At the same time, they realized that a significant portion of their students and prospective students demanded a classical background. The Yale report meant the classics would not be abandoned. During this period, all institutions experimented with changes in the curriculum, often resulting in a dual-track curriculum. In the decentralized environment of higher education in the United States, balancing change with tradition was a common challenge because it was difficult for an institution to be completely modern or completely classical. A group of professors at Yale and New Haven Congregationalist ministers articulated a conservative response to the changes brought about by the Victorian culture. They concentrated on developing a person possessed of religious values strong enough to sufficiently resist temptations from within yet flexible enough to adjust to the ‘isms’ (professionalism; materialism; individualism; and consumerism) tempting him from without. William Graham Sumner, professor from 1872 to 1909, taught in the emerging disciplines of economics and sociology to overflowing classrooms of students. Sumner bested President Noah Porter, who disliked the social sciences and wanted Yale to lock into its traditions of classical education. Porter objected to Sumner’s use of a textbook by Herbert Spencer that espoused agnostic materialism because it might harm students.

    Until 1887, the legal name of the university was “The President and Fellows of Yale College, in New Haven.” In 1887, under an act passed by the Connecticut General Assembly, Yale was renamed to the present “Yale University.”

    Sports and debate

    The Revolutionary War soldier Nathan Hale (Yale 1773) was the prototype of the Yale ideal in the early 19th century: a manly yet aristocratic scholar, equally well-versed in knowledge and sports, and a patriot who “regretted” that he “had but one life to lose” for his country. Western painter Frederic Remington (Yale 1900) was an artist whose heroes gloried in combat and tests of strength in the Wild West. The fictional, turn-of-the-20th-century Yale man Frank Merriwell embodied the heroic ideal without racial prejudice, and his fictional successor Frank Stover in the novel Stover at Yale (1911) questioned the business mentality that had become prevalent at the school. Increasingly the students turned to athletic stars as their heroes, especially since winning the big game became the goal of the student body, and the alumni, as well as the team itself.

    Along with Harvard and Princeton University(US), Yale students rejected British concepts about ‘amateurism’ in sports and constructed athletic programs that were uniquely American, such as football. The Harvard–Yale football rivalry began in 1875. Between 1892, when Harvard and Yale met in one of the first intercollegiate debates and 1909 (the year of the first Triangular Debate of Harvard, Yale and Princeton) the rhetoric, symbolism, and metaphors used in athletics were used to frame these early debates. Debates were covered on front pages of college newspapers and emphasized in yearbooks, and team members even received the equivalent of athletic letters for their jackets. There even were rallies sending off the debating teams to matches, but the debates never attained the broad appeal that athletics enjoyed. One reason may be that debates do not have a clear winner, as is the case in sports, and that scoring is subjective. In addition, with late 19th-century concerns about the impact of modern life on the human body, athletics offered hope that neither the individual nor the society was coming apart.

    In 1909–10, football faced a crisis resulting from the failure of the previous reforms of 1905–06 to solve the problem of serious injuries. There was a mood of alarm and mistrust, and, while the crisis was developing, the presidents of Harvard, Yale, and Princeton developed a project to reform the sport and forestall possible radical changes forced by government upon the sport. President Arthur Hadley of Yale, A. Lawrence Lowell of Harvard, and Woodrow Wilson of Princeton worked to develop moderate changes to reduce injuries. Their attempts, however, were reduced by rebellion against the rules committee and formation of the Intercollegiate Athletic Association. The big three had tried to operate independently of the majority, but changes did reduce injuries.

    Expansion

    Yale expanded gradually, establishing the Yale School of Medicine (1810); Yale Divinity School (1822); Yale Law School (1843); Yale Graduate School of Arts and Sciences (1847); the Sheffield Scientific School (1847); and the Yale School of Fine Arts (1869). In 1887, as the college continued to grow under the presidency of Timothy Dwight V, Yale College was renamed Yale University, with the name Yale College subsequently applied to the undergraduate college. The university would later add the Yale School of Music (1894); the Yale School of Forestry & Environmental Studies (founded by Gifford Pinchot in 1900); the Yale School of Public Health (1915); the Yale School of Nursing (1923); the Yale School of Drama (1955); the Yale Physician Associate Program (1973); the Yale School of Management (1976); and the Jackson School of Global Affairs which will open in 2022. It would also reorganize its relationship with the Sheffield Scientific School.

    Expansion caused controversy about Yale’s new roles. Noah Porter, moral philosopher, was president from 1871 to 1886. During an age of tremendous expansion in higher education, Porter resisted the rise of the new research university, claiming that an eager embrace of its ideals would corrupt undergraduate education. Many of Porter’s contemporaries criticized his administration, and historians since have disparaged his leadership. Levesque argues Porter was not a simple-minded reactionary, uncritically committed to tradition, but a principled and selective conservative. He did not endorse everything old or reject everything new; rather, he sought to apply long-established ethical and pedagogical principles to a rapidly changing culture. He may have misunderstood some of the challenges of his time, but he correctly anticipated the enduring tensions that have accompanied the emergence and growth of the modern university.

    20th century

    Behavioral sciences

    Between 1925 and 1940, philanthropic foundations, especially ones connected with the Rockefellers, contributed about $7 million to support the Yale Institute of Human Relations and the affiliated Yerkes Laboratories of Primate Biology. The money went toward behavioral science research, which was supported by foundation officers who aimed to “improve mankind” under an informal, loosely defined human engineering effort. The behavioral scientists at Yale, led by President James R. Angell and psychobiologist Robert M. Yerkes, tapped into foundation largesse by crafting research programs aimed to investigate, then suggest, ways to control sexual and social behavior. For example, Yerkes analyzed chimpanzee sexual behavior in hopes of illuminating the evolutionary underpinnings of human development and providing information that could ameliorate dysfunction. Ultimately, the behavioral-science results disappointed foundation officers, who shifted their human-engineering funds toward biological sciences.

    Biology

    Slack (2003) compares three groups that conducted biological research at Yale during overlapping periods between 1910 and 1970. Yale proved important as a site for this research. The leaders of these groups were Ross Granville Harrison; Grace E. Pickford; and G. Evelyn Hutchinson and their members included both graduate students and more experienced scientists. All produced innovative research, including the opening of new subfields in embryology; endocrinology; and ecology, respectively, over a long period of time. Harrison’s group is shown to have been a classic research school. Pickford’s and Hutchinson’s were not. Pickford’s group was successful in spite of her lack of departmental or institutional position or power. Hutchinson and his graduate and postgraduate students were extremely productive, but in diverse areas of ecology rather than one focused area of research or the use of one set of research tools. Hutchinson’s example shows that new models for research groups are needed, especially for those that include extensive field research.

    Medicine

    Milton Winternitz led the Yale School of Medicine as its dean from 1920 to 1935. Dedicated to the new scientific medicine established in Germany, he was equally fervent about “social medicine” and the study of humans in their culture and environment. He established the “Yale System” of teaching, with few lectures and fewer exams, and strengthened the full-time faculty system. He also created the graduate-level Yale School of Nursing and the Psychiatry Department and built numerous new buildings. Progress toward his plans for an Institute of Human Relations, envisioned as a refuge where social scientists would collaborate with biological scientists in a holistic study of humankind, unfortunately, lasted for only a few years before the opposition of resentful anti-Semitic colleagues drove him to resign.

    Before World War II, most elite university faculties counted among their numbers few, if any, Jews, blacks, women, or other minorities. Yale was no exception. By 1980, this condition had been altered dramatically, as numerous members of those groups held faculty positions. Almost all members of the Faculty of Arts and Sciences—and some members of other faculties—teach undergraduate courses, more than 2,000 of which are offered annually.

    History and American studies

    The American studies program reflected the worldwide anti-Communist ideological struggle. Norman Holmes Pearson, who worked for the Office of Strategic Studies in London during World War II, returned to Yale and headed the new American studies program. Popular among undergraduates, the program sought to instill a sense of nationalism and national purpose. Also during the 1940s and 1950s, Wyoming millionaire William Robertson Coe made large contributions to the American studies programs at Yale University and at the University of Wyoming. Coe was concerned to celebrate the ‘values’ of the Western United States in order to meet the “threat of communism”.

    Women

    In 1793, Lucinda Foote passed the entrance exams for Yale College, but was rejected by the President on the basis of her gender. Women studied at Yale University as early as 1892, in graduate-level programs at the Yale Graduate School of Arts and Sciences.

    In 1966, Yale began discussions with its sister school Vassar College(US) about merging to foster coeducation at the undergraduate level. Vassar, then all-female and part of the Seven Sisters—elite higher education schools that historically served as sister institutions to the Ivy League when most Ivy League institutions still only admitted men—tentatively accepted, but then declined the invitation. Both schools introduced coeducation independently in 1969. Amy Solomon was the first woman to register as a Yale undergraduate; she was also the first woman at Yale to join an undergraduate society, St. Anthony Hall. The undergraduate class of 1973 was the first class to have women starting from freshman year; at the time, all undergraduate women were housed in Vanderbilt Hall at the south end of Old Campus.

    A decade into co-education, student assault and harassment by faculty became the impetus for the trailblazing lawsuit Alexander v. Yale. In the late 1970s, a group of students and one faculty member sued Yale for its failure to curtail campus sexual harassment by especially male faculty. The case was party built from a 1977 report authored by plaintiff Ann Olivarius, now a feminist attorney known for fighting sexual harassment, A report to the Yale Corporation from the Yale Undergraduate Women’s Caucus. This case was the first to use Title IX to argue and establish that the sexual harassment of female students can be considered illegal sex discrimination. The plaintiffs in the case were Olivarius, Ronni Alexander (now a professor at Kobe University[神戸大学; Kōbe daigaku](JP)); Margery Reifler (works in the Los Angeles film industry), Pamela Price (civil rights attorney in California), and Lisa E. Stone (works at Anti-Defamation League). They were joined by Yale classics professor John “Jack” J. Winkler, who died in 1990. The lawsuit, brought partly by Catharine MacKinnon, alleged rape, fondling, and offers of higher grades for sex by several Yale faculty, including Keith Brion professor of flute and Director of Bands; Political Science professor Raymond Duvall (now at the University of Minnesota(US)); English professor Michael Cooke and coach of the field hockey team, Richard Kentwell. While unsuccessful in the courts, the legal reasoning behind the case changed the landscape of sex discrimination law and resulted in the establishment of Yale’s Grievance Board and the Yale Women’s Center. In March 2011 a Title IX complaint was filed against Yale by students and recent graduates, including editors of Yale’s feminist magazine Broad Recognition, alleging that the university had a hostile sexual climate. In response, the university formed a Title IX steering committee to address complaints of sexual misconduct. Afterwards, universities and colleges throughout the US also established sexual harassment grievance procedures.

    Class

    Yale, like other Ivy League schools, instituted policies in the early 20th century designed to maintain the proportion of white Protestants from notable families in the student body, and was one of the last of the Ivies to eliminate such preferences, beginning with the class of 1970.

    Town–gown relations

    Yale has a complicated relationship with its home city; for example, thousands of students volunteer every year in a myriad of community organizations, but city officials, who decry Yale’s exemption from local property taxes, have long pressed the university to do more to help. Under President Levin, Yale has financially supported many of New Haven’s efforts to reinvigorate the city. Evidence suggests that the town and gown relationships are mutually beneficial. Still, the economic power of the university increased dramatically with its financial success amid a decline in the local economy.

    21st century

    In 2006, Yale and Peking University [北京大学](CN) established a Joint Undergraduate Program in Beijing, an exchange program allowing Yale students to spend a semester living and studying with PKU honor students. In July 2012, the Yale University-PKU Program ended due to weak participation.

    In 2007 outgoing Yale President Rick Levin characterized Yale’s institutional priorities: “First, among the nation’s finest research universities, Yale is distinctively committed to excellence in undergraduate education. Second, in our graduate and professional schools, as well as in Yale College, we are committed to the education of leaders.”

    In 2009, former British Prime Minister Tony Blair picked Yale as one location – the others are Britain’s Durham University(UK) and Universiti Teknologi Mara (MY) – for the Tony Blair Faith Foundation’s United States Faith and Globalization Initiative. As of 2009, former Mexican President Ernesto Zedillo is the director of the Yale Center for the Study of Globalization and teaches an undergraduate seminar, Debating Globalization. As of 2009, former presidential candidate and DNC chair Howard Dean teaches a residential college seminar, Understanding Politics and Politicians. Also in 2009, an alliance was formed among Yale, University College London(UK), and both schools’ affiliated hospital complexes to conduct research focused on the direct improvement of patient care—a growing field known as translational medicine. President Richard Levin noted that Yale has hundreds of other partnerships across the world, but “no existing collaboration matches the scale of the new partnership with UCL”.

    In August 2013, a new partnership with the National University of Singapore(SG) led to the opening of Yale-NUS College in Singapore, a joint effort to create a new liberal arts college in Asia featuring a curriculum including both Western and Asian traditions.

    In 2020, in the wake of protests around the world focused on racial relations and criminal justice reform, the #CancelYale movement demanded that Elihu Yale’s name be removed from Yale University. Yale was president of the East India Company, a trading company that traded slaves as well as goods, and his singularly large donation led to Yale relying on money from the slave-trade for its first scholarships and endowments.

    In August 2020, the US Justice Department claimed that Yale discriminated against Asian and white candidates on the basis of their race. The university, however, denied the report. In early February 2021, under the new Biden administration, the Justice Department withdrew the lawsuit. The group, Students for Fair Admissions, known for a similar lawsuit against Harvard alleging the same issue, plans to refile the lawsuit.

    Yale alumni in Politics

    The Boston Globe wrote that “if there’s one school that can lay claim to educating the nation’s top national leaders over the past three decades, it’s Yale”. Yale alumni were represented on the Democratic or Republican ticket in every U.S. presidential election between 1972 and 2004. Yale-educated Presidents since the end of the Vietnam War include Gerald Ford; George H.W. Bush; Bill Clinton; and George W. Bush. Major-party nominees during this period include Hillary Clinton (2016); John Kerry (2004); Joseph Lieberman (Vice President, 2000); and Sargent Shriver (Vice President, 1972). Other Yale alumni who have made serious bids for the Presidency during this period include Amy Klobuchar (2020); Tom Steyer (2020); Ben Carson (2016); Howard Dean (2004); Gary Hart (1984 and 1988); Paul Tsongas (1992); Pat Robertson (1988); and Jerry Brown (1976, 1980, 1992).

    Several explanations have been offered for Yale’s representation in national elections since the end of the Vietnam War. Various sources note the spirit of campus activism that has existed at Yale since the 1960s, and the intellectual influence of Reverend William Sloane Coffin on many of the future candidates. Yale President Richard Levin attributes the run to Yale’s focus on creating “a laboratory for future leaders,” an institutional priority that began during the tenure of Yale Presidents Alfred Whitney Griswold and Kingman Brewster. Richard H. Brodhead, former dean of Yale College and now president of Duke University(US), stated: “We do give very significant attention to orientation to the community in our admissions, and there is a very strong tradition of volunteerism at Yale.” Yale historian Gaddis Smith notes “an ethos of organized activity” at Yale during the 20th century that led John Kerry to lead the Yale Political Union’s Liberal Party; George Pataki the Conservative Party; and Joseph Lieberman to manage the Yale Daily News. Camille Paglia points to a history of networking and elitism: “It has to do with a web of friendships and affiliations built up in school.” CNN suggests that George W. Bush benefited from preferential admissions policies for the “son and grandson of alumni”, and for a “member of a politically influential family”. New York Times correspondent Elisabeth Bumiller and The Atlantic Monthly correspondent James Fallows credit the culture of community and cooperation that exists between students, faculty, and administration, which downplays self-interest and reinforces commitment to others.

    During the 1988 presidential election, George H. W. Bush (Yale ’48) derided Michael Dukakis for having “foreign-policy views born in Harvard Yard’s boutique”. When challenged on the distinction between Dukakis’ Harvard connection and his own Yale background, he said that, unlike Harvard, Yale’s reputation was “so diffuse, there isn’t a symbol, I don’t think, in the Yale situation, any symbolism in it” and said Yale did not share Harvard’s reputation for “liberalism and elitism”. In 2004 Howard Dean stated, “In some ways, I consider myself separate from the other three (Yale) candidates of 2004. Yale changed so much between the class of ’68 and the class of ’71. My class was the first class to have women in it; it was the first class to have a significant effort to recruit African Americans. It was an extraordinary time, and in that span of time is the change of an entire generation”.

    Leadership

    The President and Fellows of Yale College, also known as the Yale Corporation, or board of trustees, is the governing body of the university and consists of thirteen standing committees with separate responsibilities outlined in the by-laws. The corporation has 19 members: three ex officio members, ten successor trustees, and six elected alumni fellows.

    Yale’s former president Richard C. Levin was, at the time, one of the highest paid university presidents in the United States. Yale’s succeeding president Peter Salovey ranks 40th.

    The Yale Provost’s Office and similar executive positions have launched several women into prominent university executive positions. In 1977, Provost Hanna Holborn Gray was appointed interim President of Yale and later went on to become President of the University of Chicago(US), being the first woman to hold either position at each respective school. In 1994, Provost Judith Rodin became the first permanent female president of an Ivy League institution at the University of Pennsylvania(US). In 2002, Provost Alison Richard became the Vice-Chancellor of the University of Cambridge(UK). In 2003, the Dean of the Divinity School, Rebecca Chopp, was appointed president of Colgate University(US) and later went on to serve as the President of the Swarthmore College(US) in 2009, and then the first female chancellor of the University of Denver(US) in 2014. In 2004, Provost Dr. Susan Hockfield became the President of the Massachusetts Institute of Technology. In 2004, Dean of the Nursing school, Catherine Gilliss, was appointed the Dean of Duke University’s School of Nursing and Vice Chancellor for Nursing Affairs. In 2007, Deputy Provost H. Kim Bottomly was named President of Wellesley College(US).

    Similar examples for men who’ve served in Yale leadership positions can also be found. In 2004, Dean of Yale College Richard H. Brodhead was appointed as the President of Duke University(US). In 2008, Provost Andrew Hamilton was confirmed to be the Vice Chancellor of the University of Oxford(UK).

    The university has three major academic components: Yale College (the undergraduate program); the Graduate School of Arts and Sciences; and the professional schools.

    Campus

    Yale’s central campus in downtown New Haven covers 260 acres (1.1 km2) and comprises its main, historic campus and a medical campus adjacent to the Yale–New Haven Hospital. In western New Haven, the university holds 500 acres (2.0 km2) of athletic facilities, including the Yale Golf Course. In 2008, Yale purchased the 17-building, 136-acre (0.55 km2) former Bayer HealthCare complex in West Haven, Connecticut, the buildings of which are now used as laboratory and research space. Yale also owns seven forests in Connecticut, Vermont, and New Hampshire—the largest of which is the 7,840-acre (31.7 km2) Yale-Myers Forest in Connecticut’s Quiet Corner—and nature preserves including Horse Island.

    Yale is noted for its largely Collegiate Gothic campus as well as several iconic modern buildings commonly discussed in architectural history survey courses: Louis Kahn’s Yale Art Gallery and Center for British Art; Eero Saarinen’s Ingalls Rink and Ezra Stiles and Morse Colleges; and Paul Rudolph’s Art & Architecture Building. Yale also owns and has restored many noteworthy 19th-century mansions along Hillhouse Avenue, which was considered the most beautiful street in America by Charles Dickens when he visited the United States in the 1840s. In 2011, Travel+Leisure listed the Yale campus as one of the most beautiful in the United States.

    Many of Yale’s buildings were constructed in the Collegiate Gothic architecture style from 1917 to 1931, financed largely by Edward S. Harkness, including the Yale Drama School. Stone sculpture built into the walls of the buildings portray contemporary college personalities, such as a writer; an athlete; a tea-drinking socialite; and a student who has fallen asleep while reading. Similarly, the decorative friezes on the buildings depict contemporary scenes, like a policemen chasing a robber and arresting a prostitute (on the wall of the Law School) or a student relaxing with a mug of beer and a cigarette. The architect, James Gamble Rogers, faux-aged these buildings by splashing the walls with acid, deliberately breaking their leaded glass windows and repairing them in the style of the Middle Ages and creating niches for decorative statuary but leaving them empty to simulate loss or theft over the ages. In fact, the buildings merely simulate Middle Ages architecture, for though they appear to be constructed of solid stone blocks in the authentic manner, most actually have steel framing as was commonly used in 1930. One exception is Harkness Tower, 216 feet (66 m) tall, which was originally a free-standing stone structure. It was reinforced in 1964 to allow the installation of the Yale Memorial Carillon.

    Other examples of the Gothic style are on the Old Campus by architects like Henry Austin; Charles C. Haight; and Russell Sturgis. Several are associated with members of the Vanderbilt family, including Vanderbilt Hall; Phelps Hall; St. Anthony Hall (a commission for member Frederick William Vanderbilt); the Mason, Sloane and Osborn laboratories; dormitories for the Sheffield Scientific School (the engineering and sciences school at Yale until 1956) and elements of Silliman College, the largest residential college.

    The oldest building on campus, Connecticut Hall (built in 1750), is in the Georgian style. Georgian-style buildings erected from 1929 to 1933 include Timothy Dwight College, Pierson College, and Davenport College, except the latter’s east, York Street façade, which was constructed in the Gothic style to coordinate with adjacent structures.

    Interior of Beinecke Library

    The Beinecke Rare Book and Manuscript Library, designed by Gordon Bunshaft of Skidmore, Owings & Merrill, is one of the largest buildings in the world reserved exclusively for the preservation of rare books and manuscripts. The library includes a six-story above-ground tower of book stacks, filled with 180,000 volumes, that is surrounded by large translucent Vermont marble panels and a steel and granite truss. The panels act as windows and subdue direct sunlight while also diffusing the light in warm hues throughout the interior. Near the library is a sunken courtyard, with sculptures by Isamu Noguchi that are said to represent time (the pyramid), the sun (the circle), and chance (the cube). The library is located near the center of the university in Hewitt Quadrangle, which is now more commonly referred to as “Beinecke Plaza.”

    Alumnus Eero Saarinen, Finnish-American architect of such notable structures as the Gateway Arch in St. Louis; Washington Dulles International Airport main terminal; Bell Labs Holmdel Complex; and the CBS Building in Manhattan, designed Ingalls Rink, dedicated in 1959, as well as the residential colleges Ezra Stiles and Morse. These latter were modeled after the medieval Italian hill town of San Gimignano – a prototype chosen for the town’s pedestrian-friendly milieu and fortress-like stone towers. These tower forms at Yale act in counterpoint to the college’s many Gothic spires and Georgian cupolas.

    Yale’s Office of Sustainability develops and implements sustainability practices at Yale. Yale is committed to reduce its greenhouse gas emissions 10% below 1990 levels by the year 2020. As part of this commitment, the university allocates renewable energy credits to offset some of the energy used by residential colleges. Eleven campus buildings are candidates for LEED design and certification. Yale Sustainable Food Project initiated the introduction of local organic vegetables fruits and beef to all residential college dining halls. Yale was listed as a Campus Sustainability Leader on the Sustainable Endowments Institute’s College Sustainability Report Card 2008, and received a “B+” grade overall.

    Notable nonresidential campus buildings

    Notable nonresidential campus buildings and landmarks include Battell Chapel; Beinecke Rare Book Library; Harkness Tower; Ingalls Rink; Kline Biology Tower; Osborne Memorial Laboratories; Payne Whitney Gymnasium; Peabody Museum of Natural History; Sterling Hall of Medicine; Sterling Law Buildings; Sterling Memorial Library; Woolsey Hall; Yale Center for British Art; Yale University Art Gallery; Yale Art & Architecture Building and the Paul Mellon Centre for Studies in British Art in London.

    Yale’s secret society buildings (some of which are called “tombs”) were built both to be private yet unmistakable. A diversity of architectural styles is represented: Berzelius; Donn Barber in an austere cube with classical detailing (erected in 1908 or 1910); Book and Snake; Louis R. Metcalfe in a Greek Ionic style (erected in 1901); Elihu, architect unknown but built in a Colonial style (constructed on an early 17th-century foundation although the building is from the 18th century); Mace and Chain, in a late colonial early Victorian style (built in 1823). (Interior moulding is said to have belonged to Benedict Arnold); Manuscript Society, King Lui-Wu with Dan Kniley responsible for landscaping and Josef Albers for the brickwork intaglio mural. Buildings constructed in a mid-century modern style: Scroll and Key; Richard Morris Hunt in a Moorish- or Islamic-inspired Beaux-Arts style (erected 1869–70); Skull and Bones; possibly Alexander Jackson Davis or Henry Austin in an Egypto-Doric style utilizing Brownstone (in 1856 the first wing was completed, in 1903 the second wing, 1911 the Neo-Gothic towers in rear garden were completed); St. Elmo, (former tomb) Kenneth M. Murchison, 1912, designs inspired by Elizabethan manor. Current location, brick colonial; and Wolf’s Head, Bertram Grosvenor Goodhue, erected 1923–1924, Collegiate Gothic.

    Relationship with New Haven

    Yale is the largest taxpayer and employer in the City of New Haven, and has often buoyed the city’s economy and communities. Yale, however has consistently opposed paying a tax on its academic property. Yale’s Art Galleries, along with many other university resources, are free and openly accessible. Yale also funds the New Haven Promise program, paying full tuition for eligible students from New Haven public schools.

     
  • richardmitnick 3:23 pm on April 8, 2021 Permalink | Reply
    Tags: "7 cool NSF-funded robots that are advancing science and helping society", "SLOBS" might help develop robots that can work with little communication to accomplish tasks in the real world., , , NSF-supported researchers are examining how California blackworms move and form collective aggregations called 'blobs"., Robotics, The scientists created a swarm of nanobots called "Smarticle" (smart active particle) blobs or "SLOBS"   

    From National Science Foundation (US) : “7 cool NSF-funded robots that are advancing science and helping society” 

    From National Science Foundation (US)

    4.8.21

    Whether microscopic or human-sized, inspired by tree-dwelling mammals or pasta, the family of U.S. National Science Foundation-funded robots captures the incredible innovation possible with cross-disciplinary collaboration across STEM fields. The critical research NSF supports enables advances in the physical aspects of robotic systems and how they “think” and understand the world around them. Scientists and engineers are training robots to support the workforce; training the workforce that will use them; and studying how the world understands and interacts with these autonomous systems. The following are seven projects featuring amazing new robots and highlighting the exciting ways in which robots could benefit individuals, industry and society.

    1
    Researchers developing the Smarticle robots also created comics in multiple languages to help engage students. Credit: Lindsey Leigh.

    1. Swarming Nanobot SLOBS

    Understanding how organisms move, eat, breathe and interact with their environments — and how those actions are affected by their genes, musculature and brains — is critical to advancing the understanding of adaptation and evolution. This can lead to advances in robotics, prosthetics and vehicles. NSF-supported researchers are examining how California blackworms move and form collective aggregations called blobs, that protect individual worms and enable actions that would be impossible for single worms alone. The scientists created a swarm of nanobots called “Smarticle” (smart active particle) blobs or “SLOBS”, to model and better understand this behavior. Eventually the SLOBS might help develop robots that can work with little communication to accomplish tasks in the real world. The researchers also created comics in multiple languages to help engage kids in the science.

    2
    Researchers aboard the R/V Thomas G. Thompson preparing to deploy a Global Ocean Biogeochemistry (GO-BGC) float. Credit: Andreas Thurnerr.

    2. Global Robotic Network

    Robotic profiling floats equipped with sensors are helping scientists measure and sense changes in the ocean, including in places humans can’t easily reach, like the deep sea. Global Ocean Biogeochemistry Array floats — the first 12 of which will be launched over the next month — will carry chemical and biological sensors to take measurements from a depth of 2,000 meters to the surface and will report every 10 days for the next several years via satellite communications systems. The measurements will transform the ability to observe and predict, at the global scale, the effects of climate change on the ocean and the many organisms that call it home. Each float was also adopted and named by a grade school class.


    Tumbling Magnetic Microrobots In Vivo.

    3. Micro Back-Flipping Robot

    Robots also can go inside — inside humans, that is! NSF funding helped develop the mechanics and computing necessary to create microbots that can travel within the human body and provide insight into the state of internal organs or help deliver drugs to hard-to-reach locations. Directly administering drugs to specific sites can help avoid harmful side effects, including hair loss or stomach bleeding. One such robot is the size of a few human hairs and can do back (and side) flips to help deliver medicines to the colon and other organs that have rough terrain. The flips are created by applying a rotating external magnetic field. The robot has been tested in experiments in animal models, and the researchers hope human use is on the horizon.

    4
    Nina Sinatra with ultra gentle soft robotic fingers and jellyfish. Photo Credit: Wyss Institute at Harvard University(US).

    4. Soft Robotic Fingers

    Robots can serve as crucial tools for conducting research on living specimens, especially undersea creatures sensitive to human contact. NSF-funded scientists developed a tool that resembles soft robotic linguine fingers for use in handling jellyfish. Specimens that were handled by the robotic grippers showed far less stress than those touched by human hands. These soft robots will also enable researchers to better study sensitive coral formations and other organisms to understand how they evolve and adapt without damaging them. On land, the robotic fingers could be used to harvest fruit without bruising it or rehabilitate the muscles of stroke patients — things rigid robots can’t do.

    5
    EMAR (center) with Elin Björling (front row, 3rd from right) and the team that developed the robot. Photo Credit: Dennis Wise/UW.

    5. WALL-E Meets Big Hero 6

    It’s not easy being a teenager. According to the Pew Research Center, anxiety and depression are rising among U.S. teens, with potentially large-scale negative consequences for their education, development and overall health. As any parent or teacher knows, getting teenagers to talk about their mental state can be a challenge. Enter EMAR, the Ecological Momentary Assessment Robot, designed by NSF-funded scientists to explore the idea of using robots to accurately measure stress levels in teenagers. An intentionally lo-fi mashup of the movie characters Wall-E and “Big Hero 6’s” Baymax, EMAR is exploring whether schools can incorporate robots aimed to help understand and address health issues common in students in the U.S. The research team also led a design challenge where teens from local high schools designed their own social robots.


    Georgia Tech deploys SlothBot in Atlanta Botanical Garden.

    6. SlothBot

    While many robots are envisioned as a means to perform tasks more quickly and efficiently than humans, some robots perform better by moving slowly. SlothBot, a slow-moving and energy-efficient robot, lingers among the trees to monitor animals, plants and the environment. Created by engineers under the Robotarium project at Georgia Tech in Atlanta, SlothBot mimics the low-energy lifestyle of its namesake, sloths. Powered by solar panels and using innovative power management technology, the robot was tested at the Atlanta Botanical Garden, where it monitored temperature, carbon dioxide levels and other information. SlothBot, which moves on a cable strung between two trees, is programmed to only move for essential reasons, such as locating the sun used to power it. By conserving its energy, the robot can perform tasks for longer periods of time. The researchers envision SlothBots having roles in climate monitoring and species protection as well as precision agriculture.


    Solo12 Reactive Stepping in New York / NYU.

    Robots that mimic the movement capabilities of four-legged animals can go where wheeled robots cannot, making them ideal for use in many applications. However, existing quadruped robot research platforms are expensive to build and maintain, putting them out of reach for many startups, small labs and educational institutions. With support from NSF, teams of engineers in the U.S. and Germany have created a relatively low-cost, easy-to-assemble platform called Solo 8 as an accessible research testbed. The robot’s torque-controlled motors and actuated joints provide the functionality of more expensive legged robots, allowing it to take multiple configurations, move with a variety of gaits, jump, make sharp changes in direction, and right itself if overturned. Additionally, all of Solo 8’s construction files are freely available online, enabling scientists to customize the configuration for their own innovative purposes and develop their own technology.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition
    The National Science Foundation (NSF) (US) is an independent federal agency created by Congress in 1950 “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…we are the funding source for approximately 24 percent of all federally supported basic research conducted by America’s colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal backing.

    We fulfill our mission chiefly by issuing limited-term grants — currently about 12,000 new awards per year, with an average duration of three years — to fund specific research proposals that have been judged the most promising by a rigorous and objective merit-review system. Most of these awards go to individuals or small groups of investigators. Others provide funding for research centers, instruments and facilities that allow scientists, engineers and students to work at the outermost frontiers of knowledge.

    NSF’s goals — discovery, learning, research infrastructure and stewardship — provide an integrated strategy to advance the frontiers of knowledge, cultivate a world-class, broadly inclusive science and engineering workforce and expand the scientific literacy of all citizens, build the nation’s research capability through investments in advanced instrumentation and facilities, and support excellence in science and engineering research and education through a capable and responsive organization. We like to say that NSF is “where discoveries begin.”

    Many of the discoveries and technological advances have been truly revolutionary. In the past few decades, NSF-funded researchers have won some 236 Nobel Prizes as well as other honors too numerous to list. These pioneers have included the scientists or teams that discovered many of the fundamental particles of matter, analyzed the cosmic microwaves left over from the earliest epoch of the universe, developed carbon-14 dating of ancient artifacts, decoded the genetics of viruses, and created an entirely new state of matter called a Bose-Einstein condensate.

    NSF also funds equipment that is needed by scientists and engineers but is often too expensive for any one group or researcher to afford. Examples of such major research equipment include giant optical and radio telescopes, Antarctic research sites, high-end computer facilities and ultra-high-speed connections, ships for ocean research, sensitive detectors of very subtle physical phenomena and gravitational wave observatories.

    Another essential element in NSF’s mission is support for science and engineering education, from pre-K through graduate school and beyond. The research we fund is thoroughly integrated with education to help ensure that there will always be plenty of skilled people available to work in new and emerging scientific, engineering and technological fields, and plenty of capable teachers to educate the next generation.

    No single factor is more important to the intellectual and economic progress of society, and to the enhanced well-being of its citizens, than the continuous acquisition of new knowledge. NSF is proud to be a major part of that process.

    Specifically, the Foundation’s organic legislation authorizes us to engage in the following activities:

    Initiate and support, through grants and contracts, scientific and engineering research and programs to strengthen scientific and engineering research potential, and education programs at all levels, and appraise the impact of research upon industrial development and the general welfare.
    Award graduate fellowships in the sciences and in engineering.
    Foster the interchange of scientific information among scientists and engineers in the United States and foreign countries.
    Foster and support the development and use of computers and other scientific methods and technologies, primarily for research and education in the sciences.
    Evaluate the status and needs of the various sciences and engineering and take into consideration the results of this evaluation in correlating our research and educational programs with other federal and non-federal programs.
    Provide a central clearinghouse for the collection, interpretation and analysis of data on scientific and technical resources in the United States, and provide a source of information for policy formulation by other federal agencies.
    Determine the total amount of federal money received by universities and appropriate organizations for the conduct of scientific and engineering research, including both basic and applied, and construction of facilities where such research is conducted, but excluding development, and report annually thereon to the President and the Congress.
    Initiate and support specific scientific and engineering activities in connection with matters relating to international cooperation, national security and the effects of scientific and technological applications upon society.
    Initiate and support scientific and engineering research, including applied research, at academic and other nonprofit institutions and, at the direction of the President, support applied research at other organizations.
    Recommend and encourage the pursuit of national policies for the promotion of basic research and education in the sciences and engineering. Strengthen research and education innovation in the sciences and engineering, including independent research by individuals, throughout the United States.
    Support activities designed to increase the participation of women and minorities and others underrepresented in science and technology.

    At present, NSF has a total workforce of about 2,100 at its Alexandria, VA, headquarters, including approximately 1,400 career employees, 200 scientists from research institutions on temporary duty, 450 contract workers and the staff of the NSB office and the Office of the Inspector General.

    NSF is divided into the following seven directorates that support science and engineering research and education: Biological Sciences, Computer and Information Science and Engineering, Engineering, Geosciences, Mathematical and Physical Sciences, Social, Behavioral and Economic Sciences, and Education and Human Resources. Each is headed by an assistant director and each is further subdivided into divisions like materials research, ocean sciences and behavioral and cognitive sciences.

    Within NSF’s Office of the Director, the Office of Integrative Activities also supports research and researchers. Other sections of NSF are devoted to financial management, award processing and monitoring, legal affairs, outreach and other functions. The Office of the Inspector General examines the foundation’s work and reports to the NSB and Congress.

    Each year, NSF supports an average of about 200,000 scientists, engineers, educators and students at universities, laboratories and field sites all over the United States and throughout the world, from Alaska to Alabama to Africa to Antarctica. You could say that NSF support goes “to the ends of the earth” to learn more about the planet and its inhabitants, and to produce fundamental discoveries that further the progress of research and lead to products and services that boost the economy and improve general health and well-being.

    As described in our strategic plan, NSF is the only federal agency whose mission includes support for all fields of fundamental science and engineering, except for medical sciences. NSF is tasked with keeping the United States at the leading edge of discovery in a wide range of scientific areas, from astronomy to geology to zoology. So, in addition to funding research in the traditional academic areas, the agency also supports “high risk, high pay off” ideas, novel collaborations and numerous projects that may seem like science fiction today, but which the public will take for granted tomorrow. And in every case, we ensure that research is fully integrated with education so that today’s revolutionary work will also be training tomorrow’s top scientists and engineers.

    Unlike many other federal agencies, NSF does not hire researchers or directly operate our own laboratories or similar facilities. Instead, we support scientists, engineers and educators directly through their own home institutions (typically universities and colleges). Similarly, we fund facilities and equipment such as telescopes, through cooperative agreements with research consortia that have competed successfully for limited-term management contracts.

    NSF’s job is to determine where the frontiers are, identify the leading U.S. pioneers in these fields and provide money and equipment to help them continue. The results can be transformative. For example, years before most people had heard of “nanotechnology,” NSF was supporting scientists and engineers who were learning how to detect, record and manipulate activity at the scale of individual atoms — the nanoscale. Today, scientists are adept at moving atoms around to create devices and materials with properties that are often more useful than those found in nature.

    Dozens of companies are gearing up to produce nanoscale products. NSF is funding the research projects, state-of-the-art facilities and educational opportunities that will teach new skills to the science and engineering students who will make up the nanotechnology workforce of tomorrow.

    At the same time, we are looking for the next frontier.

    NSF’s task of identifying and funding work at the frontiers of science and engineering is not a “top-down” process. NSF operates from the “bottom up,” keeping close track of research around the United States and the world, maintaining constant contact with the research community to identify ever-moving horizons of inquiry, monitoring which areas are most likely to result in spectacular progress and choosing the most promising people to conduct the research.

    NSF funds research and education in most fields of science and engineering. We do this through grants and cooperative agreements to more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research organizations throughout the U.S. The Foundation considers proposals submitted by organizations on behalf of individuals or groups for support in most fields of research. Interdisciplinary proposals also are eligible for consideration. Awardees are chosen from those who send us proposals asking for a specific amount of support for a specific project.

    Proposals may be submitted in response to the various funding opportunities that are announced on the NSF website. These funding opportunities fall into three categories — program descriptions, program announcements and program solicitations — and are the mechanisms NSF uses to generate funding requests. At any time, scientists and engineers are also welcome to send in unsolicited proposals for research and education projects, in any existing or emerging field. The Proposal and Award Policies and Procedures Guide (PAPPG) provides guidance on proposal preparation and submission and award management. At present, NSF receives more than 42,000 proposals per year.

    To ensure that proposals are evaluated in a fair, competitive, transparent and in-depth manner, we use a rigorous system of merit review. Nearly every proposal is evaluated by a minimum of three independent reviewers consisting of scientists, engineers and educators who do not work at NSF or for the institution that employs the proposing researchers. NSF selects the reviewers from among the national pool of experts in each field and their evaluations are confidential. On average, approximately 40,000 experts, knowledgeable about the current state of their field, give their time to serve as reviewers each year.

    The reviewer’s job is to decide which projects are of the very highest caliber. NSF’s merit review process, considered by some to be the “gold standard” of scientific review, ensures that many voices are heard and that only the best projects make it to the funding stage. An enormous amount of research, deliberation, thought and discussion goes into award decisions.

    The NSF program officer reviews the proposal and analyzes the input received from the external reviewers. After scientific, technical and programmatic review and consideration of appropriate factors, the program officer makes an “award” or “decline” recommendation to the division director. Final programmatic approval for a proposal is generally completed at NSF’s division level. A principal investigator (PI) whose proposal for NSF support has been declined will receive information and an explanation of the reason(s) for declination, along with copies of the reviews considered in making the decision. If that explanation does not satisfy the PI, he/she may request additional information from the cognizant NSF program officer or division director.

    If the program officer makes an award recommendation and the division director concurs, the recommendation is submitted to NSF’s Division of Grants and Agreements (DGA) for award processing. A DGA officer reviews the recommendation from the program division/office for business, financial and policy implications, and the processing and issuance of a grant or cooperative agreement. DGA generally makes awards to academic institutions within 30 days after the program division/office makes its recommendation.

     
  • richardmitnick 10:13 am on April 7, 2021 Permalink | Reply
    Tags: "Lessons in the deep", , Robotics, Trevor Harrison, University of Washington-College of Engineering   

    From University of Washington College of Engineering: “Lessons in the deep” Trevor Harrison 

    From University of Washington College of Engineering

    College of Engineering

    4.7.21 [Presented today in social media.]

    Last updated November 4, 2019

    Story by Andy Freeberg
    Lead photography by Mark Stone
    Other images and videos courtesy of Trevor Harrison and UW µFloat team members.

    One student’s journey to build a swarm of robotic devices for underwater mapping.

    The path to Trevor Harrison’s Ph.D. reached its climax in the rushing waters of Agate Pass, a narrow tidal strait northwest of Seattle. There the strong flowing currents provided the greatest test yet for a swarm of robotic sensor packages he’s developed to make 3D maps of dynamic underwater environments.

    He calls his inventions µFloats (pronounced “microFloat” using the scientific prefix of the Greek letter mu).

    The floats are cylinders, roughly two feet long and 11 pounds each, built to do three things: adjust their buoyancy to dive to certain depths, drift with the currents, and gather data such as water speed and temperature from the environment around them. Getting quality data of this kind is currently difficult and costly for researchers who need to understand the characteristics of a particular location, such as for estimating the potential power production and environmental impacts of a tidal energy project.

    Now, five years after his first prototype hit the water, Harrison has validated the µFloats as a new technology for surveying tidal flows and coastal environments. But the path was not always straightforward.

    1
    2
    3
    [3] ME doctoral student Trevor Harrison runs a test of his µFloat (pronounced “microFloat”) in the UW Ocean Sciences test tank with the assistance of two divers.

    From physics to marine energy

    Harrison’s undergraduate degree is in physics but while working as a research technician at the Woods Hole Oceanographic Institution (US) he decided to switch to engineering.

    “I saw scientists building cool oceanographic instrumentation and was captivated,” he recalls. “I knew I wanted to go back to school to do something that felt more tangible, so I was looking for areas with a societal and sustainability impact.”

    He decided marine renewable energy fit his aspirations and joined ME associate professor Brian Polagye’s lab as a graduate student in 2013.

    There, he learned about the need for better maps of tidal and river environments to help determine the best places to put renewable energy systems like tidal power plants or in-river turbines. Tim Mundon, Vice President of Engineering at Oscilla Power and an affiliate faculty member in ME, proposed the idea to Polagye that a swarm of low-cost, free-floating sensors could be a way to improve resource maps. These are critical because even a small difference in the estimated speed of the currents means a large difference in how much electricity a site can potentially generate.

    “I took the idea and ran simulations that indicated that if you could put 20 to 50 sensors into the water, that’d be enough to generate a reasonably good 3D map,” says Harrison.

    µFloat 1.0: The buoyancy engine

    For the initial prototype he challenged a capstone team of Formula Motorsports students to develop a “buoyancy engine” – a device that can adjust whether it sinks or floats.

    The team hand-built a hollow tube with a large piston attached to a motor and a basic computer. As the piston moved into the device, it became dense and sunk, as it moved out again, it created a hollow cavity and floated back to the surface.

    3
    The design of the µFloat developed over three versions between 2016 and 2018.


    On May 26, 2016, ME Formula Motorsports students Olivia Rogers, Adam Hill, Alex Reid, James Lindsay demonstrated the very first successful test of a custom-built buoyancy engine device, the earliest µFloat prototype.

    µFloat 2.0: A prototype down under

    In 2017, Harrison received support from the National Science Foundation’s Graduate Research Opportunities Worldwide program to do cooperative research in Australia with Matthew Dunbabin, a professor of electrical engineering and robotics at the Queensland University of Technology (AU) (QUT).

    “I flew to Australia with a half-built float,” he remembers. “I had the buoyancy engine, but I still had to put together the full package of sensors and controls and build out a communication system.”

    5
    A µFloat schematic.

    Over seven months, he prototyped the electronics, testing as he went in QUT’s swimming pool. Two days before his flight back to the U.S., Harrison and Dunbabin took a rented canoe out on the Maroochy River and tossed in the prototype µFloat. After a few tense minutes where they feared the float was lost, they located it, successfully completing the first field test.


    µFloat 2.0: A prototype down under.

    µFloat 3.0: Assembling a swarm

    Back in Seattle, the progress was enough for teammates from the Pacific Marine Energy Center (PMEC) and UW Applied Physics Laboratory (APL) to secure funding from the Office of Naval Research to build a µFloat fleet.

    “You learn a lot from building things, and even more from breaking them and re-building them,” says Harrison. “However, I found out that if you build 25 you’d better be ready to learn a ton because something different seems to go wrong on each one.”

    6
    The fleet of µFloats during the assembly process.

    Deploy, recover, debug, repeat.


    µFloat Deployment Montage

    Following each outing, the µFloat data improved, building the team’s confidence towards the key deployment at Agate Pass. There they would collect data from the µFloat swarm while Jim Thomson, an oceanographer at APL and civil and environmental engineering professor, gathered data in more traditional ways. A comparison between the two surveys would indicate how accurate and effective the uFloats are in practice.

    Over the course of two days at Agate Pass, the team repeatedly deployed and retrieved the floats, amassing 340 drifting paths of tidal flow observations. One of the 20 µFloats went missing, but Harrison got a hefty dataset for the last chapter of his dissertation. As far as he’s concerned, the trip was a success.

    7
    How the µFloats work. Credit: Trevor Harrison.

    Having defended his Ph.D., Harrison will continue to explore µFloat applications with APL and through MarineSitu, a marine instrumentation company spun out of the UW.

    He credits teamwork for every step of his journey.

    “A lot of life happens in eight years. I benefited so much from the amazing people and facilities at the UW. I never would have gotten to this point without a ton of collaboration and support.”

    8
    ME doctoral student Trevor Harrison returns to campus following a successful trip to Agate Pass to gather data for his Ph.D.

    Reference:

    Comparative evaluation of volumetric current measurements in a tidally-dominated, coastal setting: a virtual field experiment
    Journal of Atmospheric and Oceanic Technology

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the U Washington College of Engineering

    Mission, Facts, and Stats

    Our mission is to develop outstanding engineers and ideas that change the world.

    Faculty:
    275 faculty (25.2% women)
    Achievements:

    128 NSF Young Investigator/Early Career Awards since 1984
    32 Sloan Foundation Research Awards
    2 MacArthur Foundation Fellows (2007 and 2011)

    A national leader in educating engineers, each year the College turns out new discoveries, inventions and top-flight graduates, all contributing to the strength of our economy and the vitality of our community.

    Engineering innovation

    Engineers drive the innovation economy and are vital to solving society’s most challenging problems. The College of Engineering is a key part of a world-class research university in a thriving hub of aerospace, biotechnology, global health and information technology innovation. Over 50% of UW startups in FY18 came from the College of Engineering.
    Commitment to diversity and access

    The College of Engineering is committed to developing and supporting a diverse student body and faculty that reflect and elevate the populations we serve. We are a national leader in women in engineering; 25.5% of our faculty are women compared to 17.4% nationally. We offer a robust set of diversity programs for students and faculty.
    Research and commercialization

    The University of Washington is an engine of economic growth, today ranked third in the nation for the number of startups launched each year, with 65 companies having been started in the last five years alone by UW students and faculty, or with technology developed here. The College of Engineering is a key contributor to these innovations, and engineering faculty, students or technology are behind half of all UW startups. In FY19, UW received $1.58 billion in total research awards from federal and nonfederal sources.

    u-washington-campus
    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.
    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

     
  • richardmitnick 6:35 pm on March 6, 2021 Permalink | Reply
    Tags: "Army of robots pushes the limits of astrophysics", , , , , , EPFL-École Polytechnique Fédérale de Lausanne(CH), It consists of a collection of 1000 tiny robots which were recently manufactured and delivered to Ohio State University(US)., Robotics, The group had already helped build 5000 robots for the Dark Energy Spectroscopic Instrument (DESI), The Irénée du Pont telescope at the NOIRLab Carnegie Institution for Science's Las Campanas Observatory in Chile will receive the robots., The positioner robots are expected to be operational at the Sloan telescope this fall and in Chile early next year., The robots will be used to automate the positioning of hundreds of optical fibers which serve to direct the telescopes towards objects in space., The Sloan Foundation telescope at New Mexico’s Apache Point Observatory will receive the robots., These microrobots developed by EPFL scientists are expected to produce a surge in the amount and quality of astrophysics data we can gather thus expanding our knowledge., Up to now the optical fibers in the SDSS telescopes have been positioned by hand – a lengthy painstaking task that demands extreme precision.   

    From École Polytechnique Fédérale de Lausanne(CH): “Army of robots pushes the limits of astrophysics” 


    From École Polytechnique Fédérale de Lausanne(CH)

    05.03.21
    Sarah Perrin

    One thousand newly-minted microrobots created in EPFL(CH) labs will soon be deployed at two large-scale telescopes in Chile and the United States. These high-precision instruments, capable of positioning optical fibers to within a micron, will vastly increase the quantity of astrophysics data that can be gathered – and expand our understanding of the Universe.

    The Universe is expanding, but there is still a great deal that we don’t know. How fast is it spreading? Why is the process speeding up, pushing various celestial objects away from each other, when the force of gravity should instead be drawing them together? What roles do dark matter and dark energy play? Questions like these – which are central to current astrophysics research – may soon find answers, thanks to a fleet of EPFL(CH)-designed microrobots.

    These microrobots developed by EPFL(CH) scientists are expected to produce a surge in the amount and quality of astrophysics data we can gather thus expanding our knowledge. It consists of a collection of 1000 tiny robots which were recently manufactured and delivered to Ohio State University(US). In time they will be fitted to two telescopes – The Irénée du Pont telescope at the NOIRLab Carnegie Institution for Science’s Las Campanas Observatory in Chile, and the Sloan Foundation telescope at New Mexico’s Apache Point Observatory – which are part of the international Sloan Digital Sky Survey (SDSS). EPFL(CH) is playing an active role in the SDSS (see our article from July 2020).


    NOIRLab Carnegie Las Campanas 2.5 meter Irénée Dupont telescope, Atacama Desert, over 2,500 m (8,200 ft) high approximately 100 kilometres (62 mi) northeast of the city of La Serena, Chile.

    SDSS Telescope at Apache Point Observatory, near Sunspot NM, USA, Altitude2,788 meters (9,147 ft).

    Apache Point Observatory, near Sunspot, New Mexico Altitude 2,788 meters (9,147 ft).

    The robots will be used to automate the positioning of hundreds of optical fibers which serve to direct the telescopes towards objects in space. The primary targets will be stars within our own galaxy, the Milky Way. By measuring the stars’ luminosity, scientists can calculate the “redshift” (i.e., the increase in the emitted light wavelength) of nearby galaxies that harbor black holes or that are part of clusters, and determine how far away they are. These measurements will help flesh out SDSS’ 3D map of the Universe’s stars and galaxies.

    A painstaking task

    Up to now the optical fibers in the SDSS telescopes have been positioned by hand – a lengthy painstaking task that demands extreme precision. For the telescope to be able to observe celestial objects, hundreds of fibers need to be placed in holes set in a massive aluminum plate. There is no room for error: each fiber has to be positioned to the nearest micron to ensure that the image is perfectly in focus.

    Under the current method, it takes a month to select the target stars and design, manufacture and drill the plates, which are then dispatched to the observatory. Then an experienced pair of hands needs 45 minutes to correctly position the thousand fibers. What’s more, on observing nights, twenty minutes are required to switch plates, during which the telescope is offline. “The Swiss robots speed up this process by orders of magnitude opening up the possibility of large-scale spectroscopic time-domain exploration”, rejoice Juna Kollmeier, Director of the SDSS-V project.

    The positioner robots are expected to be operational at the Sloan telescope this fall and in Chile early next year.

    Doubling and tripling the number of stars observed

    “In addition to huge gains in flexibility and accuracy, we also hope to substantially increase the number of objects we can observe,” says Mohamed Bouri, head of EPFL’s(CH) Rehabilitation and Assistive Robotics group and the scientist in charge of designing the robots and getting them up and running. “This will allow us to shorten observation times and double or triple the number of stars and galaxies we can target. We will also be able to use spectroscopy to observe elements of the variable universe, such as exploding stars,” says Jean-Paul Kneib, head of EPFL’s(CH) Laboratory of Astrophysics (LASTRO).

    This initiative is being spearheaded by EPFL’s(CH) Astrobots group, which aims to promote synergies between the fields of astrophysics and robotics. Since 2013, this cross-disciplinary group has been developing robotic systems to make astronomical observations more efficient. By late 2019, working closely with the University of Michigan(US) and the University of California at Berkeley(US), the group had already helped build 5000 robots for the Dark Energy Spectroscopic Instrument (DESI), which is designed to better understand dark energy.

    There is little doubt that the DESI and SDSS will expand the horizons of both astronomers and astrophysicists alike, resulting – in the years to come – in a richer and more detailed map of the Universe. But this is just the beginning: EPFL(CH) scientists are already hard at work on a new generation of smaller, equally robust microrobots.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The EPFL-École polytechnique fédérale de Lausanne(CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is the Swiss Federal Institute of Technology in Zürich(CH) (ETH Zürich(CH)). Associated with several specialized research institutes, the two universities form the Swiss Federal Institutes of Technology Domain (ETH(CH) Domain) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris and John Gay, the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices was located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganised and acquired the status of a university in 1890, the technical faculty changed its name to École d’ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich(CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

     
  • richardmitnick 1:59 pm on March 2, 2021 Permalink | Reply
    Tags: "Designing Soft Materials that Mimic Biological Functions", , , During embryonic development for instance flat sheets of embryonic cells morph through a series of folds into intricate three-dimensional structures such as branches; tubes; and furrows., , , , Researchers led by Monica Olvera de la Cruz designed computational and experimental systems that mimic these biological interactions., Robotics, Shape-forming processes however are controlled by chemical and mechanical signaling events which are not fully understood on the microscopic level., Soft materials that demonstrate autonomous oscillating properties that mimic biological functions., The long-term goal is to create autonomous hydrogels that can perform complex functions triggered by clues as simple as a local mechanical deformation., The researchers designed a chemical-responsive polymeric shell meant to mimic living matter., The researchers’ model could be used as the basis to develop other soft materials demonstrating diverse dynamic morphological changes., The scientists coupled the mechanical response of the hydrogel to changes in the concentration of the chemical species within the gel as a feedback loop., The work could also inform the future development of soft materials with robot-like functionality that operate autonomously., Therapeutics   

    From Northwestern University(US): “Designing Soft Materials that Mimic Biological Functions” 

    Northwestern U bloc
    From Northwestern University(US)

    Mar 1, 2021
    Alex Gerage

    1
    Soft material demonstrates autonomous, heartbeat-like oscillating properties.

    Northwestern Engineering researchers have developed a theoretical model to design soft materials that demonstrate autonomous oscillating properties that mimic biological functions. The work could advance the design of responsive materials used to deliver therapeutics as well as for robot-like soft materials that operate autonomously.

    The design and synthesis of materials with biological functions require a delicate balance between structural form and physiological function. During embryonic development for instance flat sheets of embryonic cells morph through a series of folds into intricate three-dimensional structures such as branches, tubes, and furrows. These, in turn, become dynamic, three-dimensional building blocks for organs performing vital functions like heartbeat, nutrient absorption, or information processing by the nervous system.

    Such shape-forming processes however are controlled by chemical and mechanical signaling events which are not fully understood on the microscopic level. To bridge this gap, researchers led by Monica Olvera de la Cruz designed computational and experimental systems that mimic these biological interactions. Hydrogels, a class of hydrophilic polymer materials, have emerged as candidates capable of reproducing shape changes upon chemical and mechanical stimulation observed in nature.

    The researchers developed a theoretical model for a hydrogel-based shell that underwent autonomous morphological changes when induced by chemical reactions.

    “We found that the chemicals modified the local gel microenvironment, allowing swelling and deswelling of materials via chemo-mechanical stresses in an autonomous manner,” said de la Cruz, Lawyer Taylor Professor of Materials Science and Engineering at the McCormick School of Engineering. “This generated dynamic morphological change, including periodic oscillations reminiscent of heartbeats found in living systems.”

    A paper, titled “Chemically Controlled Pattern Formation in Self-oscillating Elastic Shells,” was published March 1 in the journal PNAS. Siyu Li and Daniel Matoz-Fernandez, postdoctoral fellows in Olvera de la Cruz’s lab, were the paper’s co-first authors.

    In the study, the researchers designed a chemical-responsive polymeric shell meant to mimic living matter. They applied the water-based mechanical properties of the hydrogel shell to a chemical species, a chemical substance that produces specific patterned behavior — in this case, wave-like oscillations — located within the shell. After conducting a series of reduction-oxidation reactions — a chemical reaction that transfers of electrons between two chemical species — the shell generated microcompartments capable of expanding or contracting, or inducing buckling-unbuckling behavior when mechanical instability was introduced.

    “We coupled the mechanical response of the hydrogel to changes in the concentration of the chemical species within the gel as a feedback loop,” Matoz-Fernandez said. “If the level of chemicals goes past a certain threshold, water gets absorbed, swelling the gel. When the gel swells, the chemical species gets diluted, triggering chemical processes that expel the gel’s water, therefore contracting the gel.”

    The researchers’ model could be used as the basis to develop other soft materials demonstrating diverse dynamic morphological changes. This could lead to new drug delivery strategies with materials that enhance the rate of diffusion of compartmentalized chemicals or release cargos at specific rates.

    “One could, in principle, design catalytic microcompartments that expand and contract to absorb or release components at a specific frequency. This could lead to more targeted, time-based therapeutics to treat disease,” Li said.

    The work could also inform the future development of soft materials with robot-like functionality that operate autonomously. These ‘soft robotics’ have emerged as candidates to support chemical production, tools for environmental technologies, or smart biomaterials for medicine. Yet the materials rely on external stimuli, such as light, to function.

    “Our material operates autonomously, so there’s no external control involved,” Li said. “By ‘poking’ the shell with a chemical reaction, you trigger the movement.”

    The researchers plan to build on their findings and further bridge the gap between what’s possible in nature and the science lab.

    “The long-term goal is to create autonomous hydrogels that can perform complex functions triggered by clues as simple as a local mechanical deformation,” Olvera de la Cruz said.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Northwestern South Campus
    South Campus

    Northwestern University(US) is a private research university in Evanston, Illinois. Founded in 1851 to serve the former Northwest Territory, the university is a founding member of the Big Ten Conference.

    On May 31, 1850, nine men gathered to begin planning a university that would serve the Northwest Territory.

    Given that they had little money, no land and limited higher education experience, their vision was ambitious. But through a combination of creative financing, shrewd politicking, religious inspiration and an abundance of hard work, the founders of Northwestern University were able to make that dream a reality.

    In 1853, the founders purchased a 379-acre tract of land on the shore of Lake Michigan 12 miles north of Chicago. They established a campus and developed the land near it, naming the surrounding town Evanston in honor of one of the University’s founders, John Evans. After completing its first building in 1855, Northwestern began classes that fall with two faculty members and 10 students.
    Twenty-one presidents have presided over Northwestern in the years since. The University has grown to include 12 schools and colleges, with additional campuses in Chicago and Doha, Qatar.

    Northwestern is known for its focus on interdisciplinary education, extensive research output, and student traditions. The university provides instruction in over 200 formal academic concentrations, including various dual degree programs. The university is composed of eleven undergraduate, graduate, and professional schools, which include the Kellogg School of Management, the Pritzker School of Law, the Feinberg School of Medicine, the Weinberg College of Arts and Sciences, the Bienen School of Music, the McCormick School of Engineering and Applied Science, the Medill School of Journalism, the School of Communication, the School of Professional Studies, the School of Education and Social Policy, and The Graduate School. As of fall 2019, the university had 21,946 enrolled students, including 8,327 undergraduates and 13,619 graduate students.

    Valued at $12.2 billion, Northwestern’s endowment is among the largest university endowments in the United States. Its numerous research programs bring in nearly $900 million in sponsored research each year.

    Northwestern’s main 240-acre (97 ha) campus lies along the shores of Lake Michigan in Evanston, 12 miles north of Downtown Chicago. The university’s law, medical, and professional schools, along with its nationally ranked Northwestern Memorial Hospital, are located on a 25-acre (10 ha) campus in Chicago’s Streeterville neighborhood. The university also maintains a campus in Doha, Qatar and locations in San Francisco, California, Washington, D.C. and Miami, Florida.

    As of October 2020, Northwestern’s faculty and alumni have included 1 Fields Medalist, 22 Nobel Prize laureates, 40 Pulitzer Prize winners, 6 MacArthur Fellows, 17 Rhodes Scholars, 27 Marshall Scholars, 23 National Medal of Science winners, 11 National Humanities Medal recipients, 84 members of the American Academy of Arts and Sciences, 10 living billionaires, 16 Olympic medalists, and 2 U.S. Supreme Court Justices. Northwestern alumni have founded notable companies and organizations such as the Mayo Clinic, The Blackstone Group, Kirkland & Ellis, U.S. Steel, Guggenheim Partners, Accenture, Aon Corporation, AQR Capital, Booz Allen Hamilton, and Melvin Capital.

    The foundation of Northwestern University can be traced to a meeting on May 31, 1850, of nine prominent Chicago businessmen, Methodist leaders, and attorneys who had formed the idea of establishing a university to serve what had been known from 1787 to 1803 as the Northwest Territory. On January 28, 1851, the Illinois General Assembly granted a charter to the Trustees of the North-Western University, making it the first chartered university in Illinois. The school’s nine founders, all of whom were Methodists (three of them ministers), knelt in prayer and worship before launching their first organizational meeting. Although they affiliated the university with the Methodist Episcopal Church, they favored a non-sectarian admissions policy, believing that Northwestern should serve all people in the newly developing territory by bettering the economy in Evanston.

    John Evans, for whom Evanston is named, bought 379 acres (153 ha) of land along Lake Michigan in 1853, and Philo Judson developed plans for what would become the city of Evanston, Illinois. The first building, Old College, opened on November 5, 1855. To raise funds for its construction, Northwestern sold $100 “perpetual scholarships” entitling the purchaser and his heirs to free tuition. Another building, University Hall, was built in 1869 of the same Joliet limestone as the Chicago Water Tower, also built in 1869, one of the few buildings in the heart of Chicago to survive the Great Chicago Fire of 1871. In 1873 the Evanston College for Ladies merged with Northwestern, and Frances Willard, who later gained fame as a suffragette and as one of the founders of the Woman’s Christian Temperance Union (WCTU), became the school’s first dean of women (Willard Residential College, built in 1938, honors her name). Northwestern admitted its first female students in 1869, and the first woman was graduated in 1874.

    Northwestern fielded its first intercollegiate football team in 1882, later becoming a founding member of the Big Ten Conference. In the 1870s and 1880s, Northwestern affiliated itself with already existing schools of law, medicine, and dentistry in Chicago. Northwestern University Pritzker School of Law is the oldest law school in Chicago. As the university’s enrollments grew, these professional schools were integrated with the undergraduate college in Evanston; the result was a modern research university combining professional, graduate, and undergraduate programs, which gave equal weight to teaching and research. By the turn of the century, Northwestern had grown in stature to become the third largest university in the United States after Harvard University(US) and the University of Michigan(US).

    Under Walter Dill Scott’s presidency from 1920 to 1939, Northwestern began construction of an integrated campus in Chicago designed by James Gamble Rogers, noted for his design of the Yale University(US) campus, to house the professional schools. The university also established the Kellogg School of Management and built several prominent buildings on the Evanston campus, including Dyche Stadium, now named Ryan Field, and Deering Library among others. In the 1920s, Northwestern became one of the first six universities in the United States to establish a Naval Reserve Officers Training Corps (NROTC). In 1939, Northwestern hosted the first-ever NCAA Men’s Division I Basketball Championship game in the original Patten Gymnasium, which was later demolished and relocated farther north, along with the Dearborn Observatory, to make room for the Technological Institute.

    After the golden years of the 1920s, the Great Depression in the United States (1929–1941) had a severe impact on the university’s finances. Its annual income dropped 25 percent from $4.8 million in 1930-31 to $3.6 million in 1933-34. Investment income shrank, fewer people could pay full tuition, and annual giving from alumni and philanthropists fell from $870,000 in 1932 to a low of $331,000 in 1935. The university responded with two salary cuts of 10 percent each for all employees. It imposed hiring and building freezes and slashed appropriations for maintenance, books, and research. Having had a balanced budget in 1930-31, the university now faced deficits of roughly $100,000 for the next four years. Enrollments fell in most schools, with law and music suffering the biggest declines. However, the movement toward state certification of school teachers prompted Northwestern to start a new graduate program in education, thereby bringing in new students and much needed income. In June 1933, Robert Maynard Hutchins, president of the University of Chicago(US), proposed a merger of the two universities, estimating annual savings of $1.7 million. The two presidents were enthusiastic, and the faculty liked the idea; many Northwestern alumni, however, opposed it, fearing the loss of their Alma Mater and its many traditions that distinguished Northwestern from Chicago. The medical school, for example, was oriented toward training practitioners, and alumni feared it would lose its mission if it were merged into the more research-oriented University of Chicago Medical School. The merger plan was ultimately dropped. In 1935, the Deering family rescued the university budget with an unrestricted gift of $6 million, bringing the budget up to $5.4 million in 1938-39. This allowed many of the previous spending cuts to be restored, including half of the salary reductions.

    Like other American research universities, Northwestern was transformed by World War II (1939–1945). Regular enrollment fell dramatically, but the school opened high-intensity, short-term programs that trained over 50,000 military personnel, including future president John F. Kennedy. Northwestern’s existing NROTC program proved to be a boon to the university as it trained over 36,000 sailors over the course of the war, leading Northwestern to be called the “Annapolis of the Midwest.” Franklyn B. Snyder led the university from 1939 to 1949, and after the war, surging enrollments under the G.I. Bill drove dramatic expansion of both campuses. In 1948, prominent anthropologist Melville J. Herskovits founded the Program of African Studies at Northwestern, the first center of its kind at an American academic institution. J. Roscoe Miller’s tenure as president from 1949 to 1970 saw an expansion of the Evanston campus, with the construction of the Lakefill on Lake Michigan, growth of the faculty and new academic programs, and polarizing Vietnam-era student protests. In 1978, the first and second Unabomber attacks occurred at Northwestern University. Relations between Evanston and Northwestern became strained throughout much of the post-war era because of episodes of disruptive student activism, disputes over municipal zoning, building codes, and law enforcement, as well as restrictions on the sale of alcohol near campus until 1972. Northwestern’s exemption from state and municipal property-tax obligations under its original charter has historically been a source of town-and-gown tension.

    Although government support for universities declined in the 1970s and 1980s, President Arnold R. Weber was able to stabilize university finances, leading to a revitalization of its campuses. As admissions to colleges and universities grew increasingly competitive in the 1990s and 2000s, President Henry S. Bienen’s tenure saw a notable increase in the number and quality of undergraduate applicants, continued expansion of the facilities and faculty, and renewed athletic competitiveness. In 1999, Northwestern student journalists uncovered information exonerating Illinois death-row inmate Anthony Porter two days before his scheduled execution. The Innocence Project has since exonerated 10 more men. On January 11, 2003, in a speech at Northwestern School of Law’s Lincoln Hall, then Governor of Illinois George Ryan announced that he would commute the sentences of more than 150 death-row inmates.

    In the 2010s, a 5-year capital campaign resulted in a new music center, a replacement building for the business school, and a $270 million athletic complex. In 2014, President Barack Obama delivered a seminal economics speech at the Evanston campus.

    Organization and administration

    Governance

    Northwestern is privately owned and governed by an appointed Board of Trustees, which is composed of 70 members and, as of 2011, has been chaired by William A. Osborn ’69. The board delegates its power to an elected president who serves as the chief executive officer of the university. Northwestern has had sixteen presidents in its history (excluding interim presidents). The current president, economist Morton O. Schapiro, succeeded Henry Bienen whose 14-year tenure ended on August 31, 2009. The president maintains a staff of vice presidents, directors, and other assistants for administrative, financial, faculty, and student matters. Kathleen Haggerty assumed the role of interim provost for the university in April 2020.

    Students are formally involved in the university’s administration through the Associated Student Government, elected representatives of the undergraduate students, and the Graduate Student Association, which represents the university’s graduate students.

    The admission requirements, degree requirements, courses of study, and disciplinary and degree recommendations for each of Northwestern’s 12 schools are determined by the voting members of that school’s faculty (assistant professor and above).

    Undergraduate and graduate schools

    Evanston Campus:

    Weinberg College of Arts and Sciences (1851)
    School of Communication (1878)
    Bienen School of Music (1895)
    McCormick School of Engineering and Applied Science (1909)
    Medill School of Journalism (1921)
    School of Education and Social Policy (1926)
    School of Professional Studies (1933)

    Graduate and professional

    Evanston Campus

    Kellogg School of Management (1908)
    The Graduate School

    Chicago Campus

    Feinberg School of Medicine (1859)
    Kellogg School of Management (1908)
    Pritzker School of Law (1859)
    School of Professional Studies (1933)

    Northwestern University had a dental school from 1891 to May 31, 2001, when it closed.

    Endowment

    In 1996, Princess Diana made a trip to Evanston to raise money for the university hospital’s Robert H. Lurie Comprehensive Cancer Center at the invitation of then President Bienen. Her visit raised a total of $1.5 million for cancer research.

    In 2003, Northwestern finished a five-year capital campaign that raised $1.55 billion, exceeding its fundraising goal by $550 million.

    In 2014, Northwestern launched the “We Will” campaign with a fundraising goal of $3.75 billion. As of December 31, 2019, the university has received $4.78 billion from 164,026 donors.

    Sustainability

    In January 2009, the Green Power Partnership (sponsored by the EPA) listed Northwestern as one of the top 10 universities in the country in purchasing energy from renewable sources. The university matches 74 million kilowatt hours (kWh) of its annual energy use with Green-e Certified Renewable Energy Certificates (RECs). This green power commitment represents 30 percent of the university’s total annual electricity use and places Northwestern in the EPA’s Green Power Leadership Club. The Initiative for Sustainability and Energy at Northwestern (ISEN), supporting research, teaching and outreach in these themes, was launched in 2008.

    Northwestern requires that all new buildings be LEED-certified. Silverman Hall on the Evanston campus was awarded Gold LEED Certification in 2010; Wieboldt Hall on the Chicago campus was awarded Gold LEED Certification in 2007, and the Ford Motor Company Engineering Design Center on the Evanston campus was awarded Silver LEED Certification in 2006. New construction and renovation projects will be designed to provide at least a 20% improvement over energy code requirements where feasible. At the beginning of the 2008–09 academic year, the university also released the Evanston Campus Framework Plan, which outlines plans for future development of the university’s Evanston campus. The plan not only emphasizes sustainable building construction, but also focuses on reducing the energy costs of transportation by optimizing pedestrian and bicycle access. Northwestern has had a comprehensive recycling program in place since 1990. The university recycles over 1,500 tons of waste, or 30% of all waste produced on campus, each year. All landscape waste at the university is composted.

    Academics

    Education and rankings

    Northwestern is a large, residential research university, and is frequently ranked among the top universities in the United States. The university is a leading institution in the fields of materials engineering, chemistry, business, economics, education, journalism, and communications. It is also prominent in law and medicine. Accredited by the Higher Learning Commission and the respective national professional organizations for chemistry, psychology, business, education, journalism, music, engineering, law, and medicine, the university offers 124 undergraduate programs and 145 graduate and professional programs. Northwestern conferred 2,190 bachelor’s degrees, 3,272 master’s degrees, 565 doctoral degrees, and 444 professional degrees in 2012–2013. Since 1951, Northwestern has awarded 520 honorary degrees. Northwestern also has chapters of academic honor societies such as Phi Beta Kappa (Alpha of Illinois), Eta Kappa Nu, Tau Beta Pi, Eta Sigma Phi (Beta Chapter), Lambda Pi Eta, and Alpha Sigma Lambda (Alpha Chapter).

    The four-year, full-time undergraduate program comprises the majority of enrollments at the university. Although there is no university-wide core curriculum, a foundation in the liberal arts and sciences is required for all majors; individual degree requirements are set by the faculty of each school. The university heavily emphasizes interdisciplinary learning, with 72% of undergrads combining two or more areas of study. Northwestern’s full-time undergraduate and graduate programs operate on an approximately 10-week academic quarter system with the academic year beginning in late September and ending in early June. Undergraduates typically take four courses each quarter and twelve courses in an academic year and are required to complete at least twelve quarters on campus to graduate. Northwestern offers honors, accelerated, and joint degree programs in medicine, science, mathematics, engineering, and journalism. The comprehensive doctoral graduate program has high coexistence with undergraduate programs.

    Despite being a mid-sized university, Northwestern maintains a relatively low student to faculty ratio of 6:1.

    Research

    Northwestern was elected to the Association of American Universities in 1917 and is classified as an R1 university, denoting “very high” research activity. Northwestern’s schools of management, engineering, and communication are among the most academically productive in the nation. The university received $887.3 million in research funding in 2019 and houses over 90 school-based and 40 university-wide research institutes and centers. Northwestern also supports nearly 1,500 research laboratories across two campuses, predominately in the medical and biological sciences.

    Northwestern is home to the Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern Institute for Complex Systems, Nanoscale Science and Engineering Center, Materials Research Center, Center for Quantum Devices, Institute for Policy Research, International Institute for Nanotechnology, Center for Catalysis and Surface Science, Buffet Center for International and Comparative Studies, the Initiative for Sustainability and Energy at Northwestern, and the Argonne/Northwestern Solar Energy Research Center among other centers for interdisciplinary research.

    Student body

    Northwestern enrolled 8,186 full-time undergraduate, 9,904 full-time graduate, and 3,856 part-time students in the 2019–2020 academic year. The freshman retention rate for that year was 98%. 86% of students graduated after four years and 92% graduated after five years. These numbers can largely be attributed to the university’s various specialized degree programs, such as those that allow students to earn master’s degrees with a one or two year extension of their undergraduate program.

    The undergraduate population is drawn from all 50 states and over 75 foreign countries. 20% of students in the Class of 2024 were Pell Grant recipients and 12.56% were first-generation college students. Northwestern also enrolls the 9th-most National Merit Scholars of any university in the nation.

    In Fall 2014, 40.6% of undergraduate students were enrolled in the Weinberg College of Arts and Sciences, 21.3% in the McCormick School of Engineering and Applied Science, 14.3% in the School of Communication, 11.7% in the Medill School of Journalism, 5.7% in the Bienen School of Music, and 6.4% in the School of Education and Social Policy. The five most commonly awarded undergraduate degrees are economics, journalism, communication studies, psychology, and political science. The Kellogg School of Management’s MBA, the School of Law’s JD, and the Feinberg School of Medicine’s MD are the three largest professional degree programs by enrollment. With 2,446 students enrolled in science, engineering, and health fields, the largest graduate programs by enrollment include chemistry, integrated biology, material sciences, electrical and computer engineering, neuroscience, and economics.

    Athletics

    Northwestern is a charter member of the Big Ten Conference. It is the conference’s only private university and possesses the smallest undergraduate enrollment (the next-smallest member, the University of Iowa, is roughly three times as large, with almost 22,000 undergraduates).

    Northwestern fields 19 intercollegiate athletic teams (8 men’s and 11 women’s) in addition to numerous club sports. 12 of Northwestern’s varsity programs have had NCAA or bowl postseason appearances. Northwestern is one of five private AAU members to compete in NCAA Power Five conferences (the other four being Duke, Stanford, USC, and Vanderbilt) and maintains a 98% NCAA Graduation Success Rate, the highest among Football Bowl Subdivision schools.

    In 2018, the school opened the Walter Athletics Center, a $270 million state of the art lakefront facility for its athletics teams.

    Nickname and mascot

    Before 1924, Northwestern teams were known as “The Purple” and unofficially as “The Fighting Methodists.” The name Wildcats was bestowed upon the university in 1924 by Wallace Abbey, a writer for the Chicago Daily Tribune, who wrote that even in a loss to the University of Chicago, “Football players had not come down from Evanston; wildcats would be a name better suited to “[Coach Glenn] Thistletwaite’s boys.” The name was so popular that university board members made “Wildcats” the official nickname just months later. In 1972, the student body voted to change the official nickname to “Purple Haze,” but the new name never stuck.

    The mascot of Northwestern Athletics is “Willie the Wildcat”. Prior to Willie, the team mascot had been a live, caged bear cub from the Lincoln Park Zoo named Furpaw, who was brought to the playing field on game days to greet the fans. After a losing season however, the team decided that Furpaw was to blame for its misfortune and decided to select a new mascot. “Willie the Wildcat” made his debut in 1933, first as a logo and then in three dimensions in 1947, when members of the Alpha Delta fraternity dressed as wildcats during a Homecoming Parade.

    Traditions

    Northwestern’s official motto, “Quaecumque sunt vera,” was adopted by the university in 1890. The Latin phrase translates to “Whatsoever things are true” and comes from the Epistle of Paul to the Philippians (Philippians 4:8), in which St. Paul admonishes the Christians in the Greek city of Philippi. In addition to this motto, the university crest features a Greek phrase taken from the Gospel of John inscribed on the pages of an open book, ήρης χάριτος και αληθείας or “the word full of grace and truth” (John 1:14).
    Alma Mater is the Northwestern Hymn. The original Latin version of the hymn was written in 1907 by Peter Christian Lutkin, the first dean of the School of Music from 1883 to 1931. In 1953, then Director-of-Bands John Paynter recruited an undergraduate music student, Thomas Tyra (’54), to write an English version of the song, which today is performed by the Marching Band during halftime at Wildcat football games and by the orchestra during ceremonies and other special occasions.
    Purple became Northwestern’s official color in 1892, replacing black and gold after a university committee concluded that too many other universities had used these colors. Today, Northwestern’s official color is purple, although white is something of an official color as well, being mentioned in both the university’s earliest song, Alma Mater (1907) (“Hail to purple, hail to white”) and in many university guidelines.
    The Rock, a 6-foot high quartzite boulder donated by the Class of 1902, originally served as a water fountain. It was painted over by students in the 1940s as a prank and has since become a popular vehicle of self-expression on campus.
    Armadillo Day, commonly known as Dillo Day, is the largest student-run music festival in the country. The festival is hosted every Spring on Northwestern’s Lakefront.
    Primal Scream is held every quarter at 9 p.m. on the Sunday before finals week. Students lean out of windows or gather in courtyards and scream to help relieve stress.
    In the past, students would throw marshmallows during football games, but this tradition has since been discontinued.

    Philanthropy

    One of Northwestern’s most notable student charity events is Dance Marathon, the most established and largest student-run philanthropy in the nation. The annual 30-hour event is among the most widely-attended events on campus. It has raised over $1 million for charity ever year since 2011 and has donated a total of $13 million to children’s charities since its conception.

    The Northwestern Community Development Corps (NCDC) is a student-run organization that connects hundreds of student volunteers to community development projects in Evanston and Chicago throughout the year. The group also holds a number of annual community events, including Project Pumpkin, a Halloween celebration that provides over 800 local children with carnival events and a safe venue to trick-or-treat each year.

    Many Northwestern students participate in the Freshman Urban Program, an initiative for students interested in community service to work on addressing social issues facing the city of Chicago, and the university’s Global Engagement Studies Institute (GESI) programs, including group service-learning expeditions in Asia, Africa, or Latin America in conjunction with the Foundation for Sustainable Development.

    Several internationally recognized non-profit organizations were established at Northwestern, including the World Health Imaging, Informatics and Telemedicine Alliance, a spin-off from an engineering student’s honors thesis.

    Media
    Print

    Established in 1881, The Daily Northwestern is the university’s main student newspaper and is published on weekdays during the academic year. It is directed entirely by undergraduate students and owned by the Students Publishing Company. Although it serves the Northwestern community, the Daily has no business ties to the university and is supported wholly by advertisers.
    North by Northwestern is an online undergraduate magazine established in September 2006 by students at the Medill School of Journalism. Published on weekdays, it consists of updates on news stories and special events throughout the year. It also publishes a quarterly print magazine.
    Syllabus is the university’s undergraduate yearbook. It is distributed in late May and features a culmination of the year’s events at Northwestern. First published in 1885, the yearbook is published by Students Publishing Company and edited by Northwestern students.
    Northwestern Flipside is an undergraduate satirical magazine. Founded in 2009, it publishes a weekly issue both in print and online.
    Helicon is the university’s undergraduate literary magazine. Established in 1979, it is published twice a year: a web issue is released in the winter and a print issue with a web complement is released in the spring.
    The Protest is Northwestern’s quarterly social justice magazine.
    The Northwestern division of Student Multicultural Affairs supports a number of publications for particular cultural groups including Ahora, a magazine about Hispanic and Latino/a culture and campus life; Al Bayan, published by the Northwestern Muslim-cultural Student Association; BlackBoard Magazine, a magazine centered around African-American student life; and NUAsian, a magazine and blog on Asian and Asian-American culture and issues.
    The Northwestern University Law Review is a scholarly legal publication and student organization at Northwestern University School of Law. Its primary purpose is to publish a journal of broad legal scholarship. The Law Review publishes six issues each year. Student editors make the editorial and organizational decisions and select articles submitted by professors, judges, and practitioners, as well as student pieces. The Law Review also publishes scholarly pieces weekly on the Colloquy.
    The Northwestern Journal of Technology and Intellectual Property is a law review published by an independent student organization at Northwestern University School of Law.
    The Northwestern Interdisciplinary Law Review is a scholarly legal publication published annually by an editorial board of Northwestern undergraduates. Its mission is to publish interdisciplinary legal research, drawing from fields such as history, literature, economics, philosophy, and art. Founded in 2008, the journal features articles by professors, law students, practitioners, and undergraduates. It is funded by the Buffett Center for International and Comparative Studies and the Office of the Provost.

    Web-based

    Established in January 2011, Sherman Ave is a humor website that often publishes content on Northwestern student life. Most of its staff writers are current Northwestern undergraduates writing under various pseudonyms. The website is popular among students for its interviews of prominent campus figures, Freshman Guide, and live-tweeting coverage of football games. In Fall 2012, the website promoted a satiric campaign to end the Vanderbilt University football team’s custom of clubbing baby seals.
    Politics & Policy is dedicated to the analysis of current events and public policy. Established in 2010 by students at the Weinberg College of Arts and Sciences, School of Communication, and Medill School of Journalism, the publication reaches students on more than 250 college campuses around the world. Run entirely by undergraduates, it is published several times a week and features material ranging from short summaries of events to extended research pieces. The publication is financed in part by the Buffett Center.
    Northwestern Business Review is a campus source for business news. Founded in 2005, it has an online presence as well as a quarterly print schedule.
    TriQuarterly Online (formerly TriQuarterly) is a literary magazine published twice a year featuring poetry, fiction, nonfiction, drama, literary essays, reviews, blog posts, and art.
    The Queer Reader is Northwestern’s first radical feminist and LGBTQ+ publication.

    Radio, film, and television

    WNUR (89.3 FM) is a 7,200-watt radio station that broadcasts to the city of Chicago and its northern suburbs. WNUR’s programming consists of music (jazz, classical, and rock), literature, politics, current events, varsity sports (football, men’s and women’s basketball, baseball, softball, and women’s lacrosse), and breaking news on weekdays.
    Studio 22 is a student-run production company that produces roughly ten films each year. The organization financed the first film Zach Braff directed, and many of its films have featured students who would later go into professional acting, including Zach Gilford of Friday Night Lights.
    Applause for a Cause is currently the only student-run production company in the nation to create feature-length films for charity. It was founded in 2010 and has raised over $5,000 to date for various local and national organizations across the United States.
    Northwestern News Network is a student television news and sports network, serving the Northwestern and Evanston communities. Its studios and newsroom are located on the fourth floor of the McCormick Tribune Center on Northwestern’s Evanston campus. NNN is funded by the Medill School of Journalism.

     
  • richardmitnick 4:08 pm on January 22, 2021 Permalink | Reply
    Tags: "Raising a global centre for deep learning", , Competing with the world through hardware, Deep30, DEEPCORE, DeepX, Japan Deep Learning Association (JDLA), Japan has historically been strong in hardware manufacturing and Japanese corporations hold top international shares for industrial robots., Japan’s aspiring young AI entrepreneurs view Matsuo’s lab as a gateway to success., KERNEL HONGO, Matsuo Lab at The University of Tokyo., , Robotics, The new hub dubbed Hongo Valley   

    From Nature Research: “Raising a global centre for deep learning” 

    From Nature Research

    1.21.21

    Hongo, a neighbourhood in the centre of Tokyo and home to the University of Tokyo, is rapidly transforming into a global technology hub with strengths in artificial intelligence (AI) and deep learning. “This is Japan’s answer to Silicon Valley and Shenzhen,” says Yutaka Matsuo, a professor at the School of Engineering at the University of Tokyo, who heads the laboratory spearheading this initiative.

    Japan’s aspiring young AI entrepreneurs view Matsuo’s lab as a gateway to success. This is due in part to its remarkable track record in incubating startups. It has fostered ten successful AI startups, two of which are listed on the Tokyo Stock Exchange. When all these startups are included, the lab’s market value exceeds US$2 billion. The lab also advises more than 30 companies.

    1
    Matsuo and his lab members.© Matsuo Lab, The University of Tokyo.

    Competing with the world through hardware

    Matsuo — a leading figure in Japanese AI research — is clear that the new hub, dubbed Hongo Valley, is not aiming to outsmart Silicon Valley tech giants on web-based initiatives. “It’s unrealistic to compete head-to-head with the rule makers of the web on their playing field,” says Matsuo. Instead, he points to collaboration with large manufacturers as the way forward, especially in robotics. “If Japan has any chance of competing, it’s in combining deep learning with the hardware produced by manufacturing giants like Toyota and Panasonic,” explains Matsuo.

    3
    Yutaka Matsuo is excited about combining Japan’s strength in manufacturing with AI. The University of Tokyo. © Matsuo Lab.

    4
    Robotics is an area where AI can play a critical role.© Matsuo Lab, The University of Tokyo.

    Japan has historically been strong in hardware manufacturing, and Japanese corporations hold top international shares for industrial robots. “It will be a game changer if startups in Hongo Valley can provide AI that reimagines the hardware that these manufacturers produce,” he says.

    “Deep learning has great chemistry with hardware,” Matsuo emphasizes. He envisions using AI to automate the craftsmanship that Japanese professionals display in industries like agriculture, medicine and construction. One example is DeepX, a startup that one of Matsuo’s current PhD students founded in 2016. In August this year, the company raised US$15 million to expand its team of engineers. In one project, DeepX is fully automating excavators on construction sites. Controlling the machinery requires extensive experience. DeepX engineers are using images from an operator’s eye view to model the movements that excavators should make under various conditions.

    To foster more such startups, Matsuo supported the launch of KERNEL HONGO, a co-working space for aspiring AI entrepreneurs who pass a strict selection process. KERNEL HONGO is organized by DEEPCORE, a business incubator and venture capital for AI and deep learning.

    5
    DeepX is using AI to automate excavators. © DeepX, Inc.

    Giving back to basic research

    While the lab is often credited for nurturing startups, “the lab’s success ultimately stems from our strength in basic research,” explains Matsuo. By raising venture capital, Deep30, with the lab’s alumni, Matsuo created a feedback loop in which part of the investment is returned to the basic research being undertaken in the lab. Historically, the lab has focused on topics in social media and web network analysis (for example, how Twitter users report earthquakes; a study cited more than 4,500 times) — research that has a large social impact. This goal of conducting socially relevant research continues to guide the lab.

    6
    AI is used to control the movement of robots.© Matsuo Lab, The University of Tokyo.

    A key area of focus is world models, an emerging sub-discipline of machine learning. “World models are about predicting events that happen as a result of an action; for instance, foreseeing how water in a cup will behave when the cup is moved in a certain way,” explains Yusuke Iwasawa, the basic-research leader in Matsuo’s lab. “When coupled with robots, world models can make a robot’s movement less awkward — they construct a model of how the world works and act based on it. That allows it to solve tasks that they have never learned to solve before.”

    While robots have become adept at pursuing single tasks under well-defined criteria, such as placing folded laundry in a designated space, they have a hard time performing general commands like “tidy up”. “This is because there are so many factors associated with ‘tidy up’ that robots have to take into account,” he says. “With world models, however, we can teach robots things we consider common sense, for instance, that shelves are for storing things.”

    7
    Faculty of Engineering Bldg.2, where Matsuo’s lab is located.© Matsuo Lab, The University of Tokyo.

    Leading the way in education

    Matsuo has a suite of initiatives underway to educate the next generation of academics and businesspeople with foundational skills in AI. In 2015, Matsuo’s lab began offering non-credit courses at the University of Tokyo on consumer marketing, data science and deep learning. More than 5,000 people have taken these courses. Outside the university environment, Matsuo established the Japan Deep Learning Association (JDLA) to advocate and promote the use of deep learning in Japanese society and industry. Under his guidance, the JDLA established a certification for deep learning in 2017 to facilitate structured learning. More than 40,000 people have already taken the exam, including business people, researchers and students, and there are plans to conduct an English version of the exam in 2021. In 2020, the JDLA launched a business competition called the KOSEN Deep Learning Contest (KOSEN-DCON) in which contestants from KOSEN, an educational institution that fosters technicians and engineers, present business plans that integrate deep learning with hardware. “The students are well trained on hardware, so the aim is to give them hands-on experience with deep learning,” says Matsuo. The contestants were evaluated by venture capitalists and investors, gave monetary valuations of the business plans. The best plan was evaluated as having 500 million yen of equity by capitalists. And three start-ups have already been formed. “We’ve started small, but an ecosystem will emerge once the groundwork has been laid,” says Matsuo. “Now it’s time for Hongo Valley to grow into a giant hub 100 times its current size.”

    8
    KOSEN-DCON is a contest where teams apply deep learning to hardware.© Japan Deep Learning Association.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 11:26 am on January 21, 2021 Permalink | Reply
    Tags: "Designing customized “brains” for robots", , , Robomorphic computing, Robotics, Robots often don’t move quickly. The hang up is what’s going on in the robot’s head., Using graphics processing units (GPU's) instead of CPU's.   

    From MIT: “Designing customized “brains” for robots” 

    MIT News

    From MIT News

    January 21, 2021
    Daniel Ackerman

    A new system devises hardware architectures to hasten robots’ response time.

    1
    MIT researchers have developed an automated way to design customized hardware, or “brains,” that speeds up a robot’s operation. Credit: Jose-Luis Olivares, MIT.

    Contemporary robots can move quickly. “The motors are fast, and they’re powerful,” says Sabrina Neuman.

    Yet in complex situations, like interactions with people, robots often don’t move quickly. “The hang up is what’s going on in the robot’s head,” she adds.

    Perceiving stimuli and calculating a response takes a “boatload of computation,” which limits reaction time, says Neuman, who recently graduated with a PhD from the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL). Neuman has found a way to fight this mismatch between a robot’s “mind” and body. The method, called robomorphic computing, uses a robot’s physical layout and intended applications to generate a customized computer chip that minimizes the robot’s response time.

    The advance could fuel a variety of robotics applications, including, potentially, frontline medical care of contagious patients. “It would be fantastic if we could have robots that could help reduce risk for patients and hospital workers,” says Neuman.

    Neuman will present the research at this April’s International Conference on Architectural Support for Programming Languages and Operating Systems. MIT co-authors include graduate student Thomas Bourgeat and Srini Devadas, the Edwin Sibley Webster Professor of Electrical Engineering and Neuman’s PhD advisor. Other co-authors include Brian Plancher, Thierry Tambe, and Vijay Janapa Reddi, all of Harvard University. Neuman is now a postdoctoral NSF Computing Innovation Fellow at Harvard’s School of Engineering and Applied Sciences.

    There are three main steps in a robot’s operation, according to Neuman. The first is perception, which includes gathering data using sensors or cameras. The second is mapping and localization: “Based on what they’ve seen, they have to construct a map of the world around them and then localize themselves within that map,” says Neuman. The third step is motion planning and control — in other words, plotting a course of action.

    These steps can take time and an awful lot of computing power. “For robots to be deployed into the field and safely operate in dynamic environments around humans, they need to be able to think and react very quickly,” says Plancher. “Current algorithms cannot be run on current CPU hardware fast enough.”

    Neuman adds that researchers have been investigating better algorithms, but she thinks software improvements alone aren’t the answer. “What’s relatively new is the idea that you might also explore better hardware.” That means moving beyond a standard-issue CPU processing chip that comprises a robot’s brain — with the help of hardware acceleration.

    Hardware acceleration refers to the use of a specialized hardware unit to perform certain computing tasks more efficiently. A commonly used hardware accelerator is the graphics processing unit (GPU), a chip specialized for parallel processing. These devices are handy for graphics because their parallel structure allows them to simultaneously process thousands of pixels. “A GPU is not the best at everything, but it’s the best at what it’s built for,” says Neuman. “You get higher performance for a particular application.” Most robots are designed with an intended set of applications and could therefore benefit from hardware acceleration. That’s why Neuman’s team developed robomorphic computing.

    The system creates a customized hardware design to best serve a particular robot’s computing needs. The user inputs the parameters of a robot, like its limb layout and how its various joints can move. Neuman’s system translates these physical properties into mathematical matrices. These matrices are “sparse,” meaning they contain many zero values that roughly correspond to movements that are impossible given a robot’s particular anatomy. (Similarly, your arm’s movements are limited because it can only bend at certain joints — it’s not an infinitely pliable spaghetti noodle.)

    The system then designs a hardware architecture specialized to run calculations only on the non-zero values in the matrices. The resulting chip design is therefore tailored to maximize efficiency for the robot’s computing needs. And that customization paid off in testing.

    Hardware architecture designed using this method for a particular application outperformed off-the-shelf CPU and GPU units. While Neuman’s team didn’t fabricate a specialized chip from scratch, they programmed a customizable field-programmable gate array (FPGA) chip according to their system’s suggestions. Despite operating at a slower clock rate, that chip performed eight times faster than the CPU and 86 times faster than the GPU.

    “I was thrilled with those results,” says Neuman. “Even though we were hamstrung by the lower clock speed, we made up for it by just being more efficient.”

    Plancher sees widespread potential for robomorphic computing. “Ideally we can eventually fabricate a custom motion-planning chip for every robot, allowing them to quickly compute safe and efficient motions,” he says. “I wouldn’t be surprised if 20 years from now every robot had a handful of custom computer chips powering it, and this could be one of them.” Neuman adds that robomorphic computing might allow robots to relieve humans of risk in a range of settings, such as caring for covid-19 patients or manipulating heavy objects.

    “This work is exciting because it shows how specialized circuit designs can be used to accelerate a core component of robot control,” says Robin Deits, a robotics engineer at Boston Dynamics who was not involved in the research. “Software performance is crucial for robotics because the real world never waits around for the robot to finish thinking.” He adds that Neuman’s advance could enable robots to think faster, “unlocking exciting behaviors that previously would be too computationally difficult.”

    Neuman next plans to automate the entire system of robomorphic computing. Users will simply drag and drop their robot’s parameters, and “out the other end comes the hardware description. I think that’s the thing that’ll push it over the edge and make it really useful.”

    This research was funded by the National Science Foundation, the Computing Research Agency, the CIFellows Project, and the Defense Advanced Research Projects Agency.

    4

    5

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

     
  • richardmitnick 9:07 am on January 20, 2021 Permalink | Reply
    Tags: "The humans at the heart of AI", AI and robotics development pull us right into the heart of what it is to be human., , , Garmi will learn from and teach the other robots in its network., In its AI research TUM focuses on two fields: embodied AI; the recently founded Munich Data Science Institute (MDSI) has a data- centric perspective., MSRM’s research agenda covers the understanding of humans in order to develop intelligent machines that can in turn help humans., Munich School of Robotics and Machine Intelligence (MSRM) at TUM, , Robotics, The robot called Garmi was designed through consultations with elderly people and caregivers to help the elderly to continue living independently., The Technical University of Munich (TUM) is ahead of the game when it comes to AI and robotics., The Technical University of Munich [Technische Universität München] (DE), We are not just doing engineering but we are creating a new discipline.   

    From The Technical University of Munich [Technische Universität München] (DE) via nature research: “The humans at the heart of AI” 

    Techniche Universitat Munchen

    From The Technical University of Munich [Technische Universität München] (DE)

    via

    nature research

    1.19.21

    The Technical University of Munich (TUM) is ahead of the game when it comes to AI and robotics. And that includes the societal side as much as the technological.

    1
    Sami Haddadin runs a ‘robot kindergarten’ where intelligent machines learn from each other.Credit: TUM.

    “AI and robotics development pull us right into the heart of what it is to be human,” says Sami Haddadin, founding director of the Munich School of Robotics and Machine Intelligence (MSRM) at TUM. “We’re not looking to usher in an ‘age of automatons’. Rather, we hope to enable a smooth transition to an age of human- machine interaction.”

    MSRM’s research agenda covers the understanding of humans in order to develop intelligent machines that can, in turn, help humans. Haddadin gives an example: give a young child a key and, within around 20 tries, they can unlock a door. A child’s intuitive ability to manipulate a tool is one aspect, but they also watch and learn from adults. Humans are born with this ability to transfer knowledge, but robots are not. It could take several million trials for a robot to use a key.

    “We don’t have time to wait for a single robot to insert a key into a keyhole, let alone learn how to turn it,” says Haddadin. “But we can connect AI robots so they can share what their algorithms have learned while trying. Basically, we run a robot kindergarten here at TUM.”

    MSRM is one of TUM’s Integrative Research Centers, bringing together researchers from various fields, from computer sciences to natural sciences, from medicine to social sciences. “We are not just doing engineering, but we are creating a new discipline,” says Haddadin. TUM pursues an “embedded ethics approach” integrating ethics throughout the whole technology development process.

    3
    Medical researchers at TUM’s university hospital work closely with AI researchers.Credit: TUM.

    This applies not least to technologies intended for everyday life. The robot called Garmi was designed through consultations with elderly people and caregivers to help the elderly to continue living independently. Garmi can do general tasks, collect medical data, help with rehabilitation exercises, and act as an avatar for communication with doctors and family members. “Garmi will learn from, and teach, the other robots in its network, so each robot can quickly adapt to an individual’s needs,” says Haddadin.

    In its AI research, TUM focuses on two fields. While MSRM concentrates on embodied AI, the recently founded Munich Data Science Institute (MDSI) has a data- centric perspective. On the one hand, it investigates the basic mathematical, informatics and algorithmic questions of data analysis and develops new fundamental theories and methods, especially for machine learning. On the other hand, the MDSI will develop applications in the different research fields of TUM, including quantum technology, climate science, aerospace and genome research.

    Daniel Rückert, professor for artificial intelligence in healthcare and medicine, is one of the MDSI members. His lab is within TUM’s university hospital, allowing his team to collaborate directly with doctors and radiologists. “That was one of the reasons why I returned to Germany after 20 years in the UK,” says Rückert, who until a few months ago worked at Imperial College London.

    4
    Assistant robot GARMI, developed by the Munich School of Robotics and Machine Intelligence, could help elderly people live a self-determined life. Credit: TUM; Astrid Eckert.

    Rückert and his team are working on using AI to generate medical images more efficiently and to facilitate their interpretation. Currently, they are developing a ‘smart’ MRI scanner that can detect whether it has generated enough information to make a comprehensive diagnosis. The technology could also compensate for movement, to improve scanning of active young children, for example, and even foetuses.

    Rückert believes that AI will ultimately make health-care more humane, not less. “By taking on the routine, time- consuming tasks inherent in data acquisition, image reconstruction and analysis, AI will give medical professionals more time to focus on patients.” And because it can leverage the power of big data in its analyses, AI can pick up on rare phenomena that the human eye might miss.

    “TUM is strong in both foundational and applied AI,” says Rückert. Recent research successes highlight the university’s broad range of disciplines. With machine learning methods, a research team has succeeded in making the mass analysis of proteins significantly faster than before and almost error-free. Another team has developed algorithms for autonomous vehicles that prevent accidents by predicting different variants of a traffic situation every millisecond.

    The university, together with other scientific institutions, global companies and start-ups, has emerged as one of the most outstanding research ecosystems worldwide. Munich was recently heralded by the European Commission as the best ICT hub in Europe. TUM, in particular, is driving many innovations. “One of our key strengths is the translation of research into useful technologies via strong partnerships with industry,” says Sami Haddadin.

    Now, with funding from the regional government of Bavaria, TUM is further boosting AI research and will create some 20 professorships in the coming months alone. “We welcome inquisitive, adventurous researchers from diverse disciplines to join us. Look at Leonardo DaVinci, who combined his imaginative, artistic flair with mathematical and scientific concepts to design beautiful machines,” says Haddadin. “This kind of multidisciplinary creativity is at the heart of TUM.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     Technische Universität München Campus

    The Technical University of Munich [Technische Universität München] (DE) is one of Europe’s top universities. It is committed to excellence in research and teaching, interdisciplinary education and the active promotion of promising young scientists. The university also forges strong links with companies and scientific institutions across the world. TUM was one of the first universities in Germany to be named a University of Excellence. Moreover, TUM regularly ranks among the best European universities in international rankings.

     
  • richardmitnick 3:13 pm on January 1, 2021 Permalink | Reply
    Tags: "Active matter", "By controlling sequences of low rattling states we were able to make the system reach configurations that do useful work.", "Spontaneous Robot Dances Highlight a New Kind of Order in Active Matter", Active matter systems can spontaneously order without need for higher level instructions or even programmed interaction among the agents., , , Low rattling is either very slight or highly organized-or both., More challenging to predict are the collective behaviors that can be achieved when the particles become more complicated such that they can move under their own power., Predicting when and how collections of particles robots or animals become orderly remains a challenge across science and engineering., Rattling can be greater either when the motion is more violent or more random., Rattling is when matter takes energy flowing into it and turns it into random motion., Rattling theory, Robotics, Smarticles   

    From Georgia Institute of Technology: “Spontaneous Robot Dances Highlight a New Kind of Order in Active Matter” 

    From Georgia Institute of Technology

    December 31, 2020

    John Toon
    Research News
    (404) 894-6986
    john.toon@comm.gatech.edu

    1
    The flower-like set of points represents all possible shapes that the smarticle swarm can take on. In line with rattling theory, the most common shapes are also the most orderly with the lowest rattling (shown in blue). Credit: Thomas A. Berrueta.

    Predicting when and how collections of particles, robots, or animals become orderly remains a challenge across science and engineering.

    In the 19th century, scientists and engineers developed the discipline of statistical mechanics, which predicts how groups of simple particles transition between order and disorder, as when a collection of randomly colliding atoms freezes to form a uniform crystal lattice.

    More challenging to predict are the collective behaviors that can be achieved when the particles become more complicated, such that they can move under their own power. This type of system — observed in bird flocks, bacterial colonies, and robot swarms — goes by the name “active matter.”

    As reported in the January 1, 2021 issue of the journal Science, a team of physicists and engineers have proposed a new principle by which active matter systems can spontaneously order, without need for higher level instructions or even programmed interaction among the agents. And they have demonstrated this principle in a variety of systems, including groups of periodically shape-changing robots called “smarticles” — smart, active particles.

    The theory, developed by Postdoctoral Researcher Pavel Chvykov at the Massachusetts Institute of Technology while a student of Prof. Jeremy England, who is now a researcher in the School of Physics at Georgia Institute of Technology, posits that certain types of active matter with sufficiently messy dynamics will spontaneously find what the researchers refer to as “low rattling” states.

    “Rattling is when matter takes energy flowing into it and turns it into random motion,” England said. “Rattling can be greater either when the motion is more violent, or more random. Conversely, low rattling is either very slight or highly organized — or both. So, the idea is that if your matter and energy source allow for the possibility of a low rattling state, the system will randomly rearrange until it finds that state and then gets stuck there. If you supply energy through forces with a particular pattern, this means the selected state will discover a way for the matter to move that finely matches that pattern.”

    To develop their theory, England and Chvykov took inspiration from a phenomenon — dubbed thermophoresis — discovered by the Swiss physicist Charles Soret in the late 19th century. In Soret’s experiments, he discovered that subjecting an initially uniform salt solution in a tube to a difference in temperature would spontaneously lead to an increase in salt concentration in the colder region — which corresponds to an increase in order of the solution.

    Chvykov and England developed numerous mathematical models to demonstrate the low rattling principle, but it wasn’t until they connected with Daniel Goldman, Dunn Family Professor of Physics at the Georgia Institute of Technology, that they were able to test their predictions.

    Said Goldman, “A few years back, I saw England give a seminar and thought that some of our smarticle robots might prove valuable to test this theory.” Working with Chvykov, who visited Goldman’s lab, Ph.D. students William Savoie and Akash Vardhan used three flapping smarticles enclosed in a ring to compare experiments to theory. The students observed that instead of displaying complicated dynamics and exploring the container completely, the robots would spontaneously self-organize into a few dances — for example, one dance consists of three robots slapping each other’s arms in sequence. These dances could persist for hundreds of flaps, but suddenly lose stability and be replaced by a dance of a different pattern.

    After first demonstrating that these simple dances were indeed low rattling states, Chvykov worked with engineers at Northwestern University, Prof. Todd Murphey and Ph.D. student Thomas Berrueta, who developed more refined and better controlled smarticles. The improved smarticles allowed the researchers to test the limits of the theory, including how the types and number of dances varied for different arm flapping patterns, as well as how these dances could be controlled. “By controlling sequences of low rattling states, we were able to make the system reach configurations that do useful work,” Berrueta said. The Northwestern University researchers say that these findings may have broad practical implications for micro-robotic swarms, active matter, and metamaterials.

    As England noted: “For robot swarms, it’s about getting many adaptive and smart group behaviors that you can design to be realized in a single swarm, even though the individual robots are relatively cheap and computationally simple. For living cells and novel materials, it might be about understanding what the ‘swarm’ of atoms or proteins can get you, as far as new material or computational properties.”

    The study’s Georgia Tech-based team includes Jeremy L. England, a Physics of Living Systems scientist who researches with the School of Physics; Dunn Family Professor Daniel Goldman; professor Kurt Wiesenfeld, and graduate students Akash Vardhan (Quantitative Biosciences) and William Savoie (School of Physics). They join Pavel Chvykov (Massachusetts Institute of Technology), along with professor Todd D. Murphey and graduate students Thomas A. Berrueta and Alexander Samland of Northwestern University.

    This material is based on work supported by the Army Research Office under awards from ARO W911NF-18-1-0101, ARO MURI Award W911NF-19-1-0233, ARO W911NF-13-1-0347, by the National Science Foundation under grants PoLS-0957659, PHY-1205878, PHY-1205878, PHY-1205878, and DMR-1551095, NSF CBET-1637764, by the James S. McDonnell Foundation Scholar Grant 220020476, and the Georgia Institute of Technology Dunn Family Professorship. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsoring agencies.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    The Georgia Institute of Technology, commonly referred to as Georgia Tech, is a public research university and institute of technology located in the Midtown neighborhood of Atlanta, Georgia. It is a part of the University System of Georgia and has satellite campuses in Savannah, Georgia; Metz, France; Athlone, Ireland; Shenzhen, China; and Singapore.

    The school was founded in 1885 as the Georgia School of Technology as part of Reconstruction plans to build an industrial economy in the post-Civil War Southern United States. Initially, it offered only a degree in mechanical engineering. By 1901, its curriculum had expanded to include electrical, civil, and chemical engineering. In 1948, the school changed its name to reflect its evolution from a trade school to a larger and more capable technical institute and research university.

    Today, Georgia Tech is organized into six colleges and contains about 31 departments/units, with emphasis on science and technology. It is well recognized for its degree programs in engineering, computing, industrial administration, the sciences and design. Georgia Tech is ranked 8th among all public national universities in the United States, 35th among all colleges and universities in the United States by U.S. News & World Report rankings, and 34th among global universities in the world by Times Higher Education rankings. Georgia Tech has been ranked as the “smartest” public college in America (based on average standardized test scores).

    Student athletics, both organized and intramural, are a part of student and alumni life. The school’s intercollegiate competitive sports teams, the four-time football national champion Yellow Jackets, and the nationally recognized fight song “Ramblin’ Wreck from Georgia Tech”, have helped keep Georgia Tech in the national spotlight. Georgia Tech fields eight men’s and seven women’s teams that compete in the NCAA Division I athletics and the Football Bowl Subdivision. Georgia Tech is a member of the Coastal Division in the Atlantic Coast Conference.

     
  • richardmitnick 12:48 pm on December 9, 2020 Permalink | Reply
    Tags: "To cooperate better robots need to think about hidden agendas", , Robotics, , To seamlessly co-adapt with other machines a robot must first anticipate the unspoken ways in which its collaborators’ behavior will change and then modify its own behaviors to subtly influence thos   

    From Stanford University Engineering: “To cooperate better robots need to think about hidden agendas” 

    From Stanford University Engineering

    November 20, 2020
    Andrew Myers

    New approaches favoring unspoken strategies between collaborating machines could drive the next wave of advances in robotics.

    1
    Researchers trained the learning robot — the goalie — to block more than 90% of the shooter robot’s attempts. Credit: Dorsa Sadigh.

    Most artificial intelligence experts and technophiles understand that the smart future will someday include countless robots and autonomous vehicles that interact seamlessly among themselves and with people.

    But to avoid total mayhem, autonomous cars will have to influence and avoid other vehicles on the road, including those driven by humans. To do this, the robots will have to anticipate the behavior of these other mobile and free-thinking objects and to “co-adapt” for each other’s mutual benefit.

    The incredible complexity of such a challenge is just one of the roadblocks that must be overcome, but new research from Stanford University indicates that the key may be to simplify rather than overthink.

    Computer scientists Dorsa Sadigh and Chelsea Finn, faculty members at the Stanford Center for Human-Centered Artificial Intelligence (HAI), along with their team, Stanford computer science graduate student Annie Xie, Virginia Tech assistant professor Dylan Losey, and Stanford undergraduate Ryan Tolsma, have developed a novel way for robots to divine the next moves of other autonomous entities by thinking less about all the possible actions the other might take and more about what the other party is trying to accomplish — a concept dubbed “latent intent.”

    One perspective, commonly referred to as Theory of Mind, has tended to approach the problem as if programming a robot to play chess. The overarching goal has been to try to calculate and plot out every potential move, and the subsequent consequences of each move the other might make, in order to settle upon what seems most likely or most rewarding. But this is far too probabilistically complex and computationally intensive to be done effectively.

    “Instead,” Sadigh says, “what we discovered is that they actually need to focus on a much smaller and simpler set of strategies, not every imaginable option.”

    By simplifying the process, Sadigh and Finn have found success where others only reached dead ends. They call the approach “LILI” — Learning and Influencing Latent Intent, which recently won the “Best Paper” award at the 2020 Conference on Robot Learning.

    To seamlessly co-adapt with other machines, a robot must first anticipate the unspoken ways in which its collaborators’ behavior will change and then modify its own behaviors to subtly influence those hidden intentions. In the simplest terms, using LILI, the robot learns which move will come next and then anticipates how its own behavior will affect the other’s strategy — actively influencing the other agent in a process of give-and-take co-adaptation.

    Every day, people achieve such tasks without a second thought. When driving or walking, they don’t secretly model every nuance of the thinking of others. They confine their thinking to understanding their collaborators’ high-level priorities — what is that person trying to accomplish? Sadigh and Finn call this the latent strategy.

    By learning the other’s high-level strategy, the robot anticipates how the other will respond. What’s more, LILI then uses that high-level understanding to modify its own behavior to influence the future behavior of its correspondents. LILI works whether the two agents are cooperating with or competing against one another.

    To demonstrate, Sadigh and team taught two robots to play air hockey. Over repeated interactions, the learning robot (the goalie) comes to understand its opponent’s policy is not only to score but to actively aim away from the spot where it was last blocked. The learning robot then uses that understanding to influence its opponent into aiming exactly where the goalie blocks best. Soon, the shooting robot is continually aiming exactly where the goalie robot is most likely to block the shot. Eventually, the goalie robot is able to block more than 90 percent of the shooter’s attempts.

    When a human steps in as the shooter, the results are similar but not quite as impressive, which Sadigh chalks up to complexities and imperfections in the human’s movements. “It works very well with other robots and, overall, LILI performed better than state-of-the-art reinforcement learning algorithms now in use,” Sadigh says. “We’re working on that.”

    Real-world applications of this work run the gamut from the aforementioned autonomous vehicles, which must continually anticipate and cooperate with other vehicles to avoid calamity, to assistive robots that help physically challenged individuals do everything from feeding themselves to getting dressed in the morning.

    “I’m particularly excited about the possibility of robots operating in real, human environments. To get there, it will be important for robots to learn amidst people with intentions that change over time, and I believe this work is an important step in addressing that challenge,” Finn says. “That day is still out there in the future, but I think we are moving in the right direction.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford Engineering has been at the forefront of innovation for nearly a century, creating pivotal technologies that have transformed the worlds of information technology, communications, health care, energy, business and beyond.

    The school’s faculty, students and alumni have established thousands of companies and laid the technological and business foundations for Silicon Valley. Today, the school educates leaders who will make an impact on global problems and seeks to define what the future of engineering will look like.
    Mission

    Our mission is to seek solutions to important global problems and educate leaders who will make the world a better place by using the power of engineering principles, techniques and systems. We believe it is essential to educate engineers who possess not only deep technical excellence, but the creativity, cultural awareness and entrepreneurial skills that come from exposure to the liberal arts, business, medicine and other disciplines that are an integral part of the Stanford experience.

    Our key goals are to:

    Conduct curiosity-driven and problem-driven research that generates new knowledge and produces discoveries that provide the foundations for future engineered systems
    Deliver world-class, research-based education to students and broad-based training to leaders in academia, industry and society
    Drive technology transfer to Silicon Valley and beyond with deeply and broadly educated people and transformative ideas that will improve our society and our world.

    The Future of Engineering

    The engineering school of the future will look very different from what it looks like today. So, in 2015, we brought together a wide range of stakeholders, including mid-career faculty, students and staff, to address two fundamental questions: In what areas can the School of Engineering make significant world‐changing impact, and how should the school be configured to address the major opportunities and challenges of the future?

    One key output of the process is a set of 10 broad, aspirational questions on areas where the School of Engineering would like to have an impact in 20 years. The committee also returned with a series of recommendations that outlined actions across three key areas — research, education and culture — where the school can deploy resources and create the conditions for Stanford Engineering to have significant impact on those challenges.

    Stanford University

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: