Tagged: Robotics Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:18 pm on August 20, 2019 Permalink | Reply
    Tags: "GRASP Lab’s high-flying robots", Autonomous airborne robots which can link together and work together to complete tasks and break apart., David Saldaña, From a remote computer Saldaña can send a command to eight robots simultaneously to perform a certain task., GRASP- General Robotics; Automation; Sensing Perception Laboratory, Penn Engineering Research and Collaboration Hub, , Robotics, Saldaña also spends much of his time designing the shape and structure of the modular robots., The typical workflow for creating the modular robots is to create a mathematical model; write computer code; and run simulations before testing a new program out on actual drones.   

    From Penn Today: “GRASP Lab’s high-flying robots” 


    From Penn Today

    August 19, 2019

    Credits
    Gina Vitale Writer
    Eric Sucar Photographer

    Postdoctoral researcher David Saldaña is working on algorithms and designs for autonomous airborne robots which can link together, break apart, and work together to complete tasks.

    1
    David Saldaña, a postdoctoral researcher with the GRASP lab, works on flying robots that can self-assemble into specific structures or align themselves around an object to lift it up.

    In the Penn Engineering Research and Collaboration Hub, there is a wide-open space with high ceilings and a padded floor. All around it are aisles of soldering equipment, propped-up prototypes, and metal parts of many shapes and sizes. Nestled on the third floor of the looming Pennovation Center building in the Grays Ferry neighborhood, it’s the perfect venue for robotics research.

    This is where Saldaña, a member of the General Robotics, Automation, Sensing & Perception (GRASP) Laboratory, and his collaborators in the School of Engineering and Applied Science perform test flights with some of his robots. Although the designs vary in size, the newest square prototype is about the size of a shoebox. Each can be remote controlled like most drones, but when he activates several of them at once, they autonomously come together in the air.

    From a remote computer, Saldaña can send a command to eight robots simultaneously to perform a certain task such as getting into a formation of four across, two wide. The robots rise, communicate with each other to determine their spots in the two rows, align, and snap together using the magnets on their corners. When he tells them to disassemble, one coupling at a time, they break apart by angling down in opposite directions similar to a pencil being snapped in half.

    3
    The typical workflow for creating the modular robots is to create a mathematical model, write computer code, and run simulations before testing a new program out on actual drones. Saldaña also spends much of his time designing the shape and structure of the modular robots.

    If you ask Saldaña, there are a lot of problems that can be solved by robots. With a little more honing, robots like this could have major real-world applications. Saldaña uses the example of a remote area where a bridge has collapsed, leaving people stranded during a natural disaster. These robots, which are small and easy to transport, could self-assemble and hover where the bridge used to stand, providing a pathway for stranded people to safely cross.

    One of the reasons this isn’t already common practice is because autonomous control of robots is a hard task in obstacle-filled environments like the outdoors. Operating hundreds of them in those situations is no small challenge.

    “Autonomous control of a single robot is difficult,” he says. “Somebody’s going to hit the robot. It has to avoid obstacles. Simple tasks, like moving from point A to point B, can be very complicated if you do it in a forest. So that’s for a single robot, but now when you have 100 robots, the things become even more complicated. The problem is even harder. And that’s what we tried to solve here.”

    3
    Some examples of the prototypes made and tested by the ModLab.

    Another part of the challenge is making sure the robots are communicating sufficiently with each other. Because they don’t have predetermined positions for a given formation, they must figure out which unit can go in each spot based on current position. Then, once together, they must move smoothly as a single unit.

    “It’s like when you walk with someone, and you are holding on to the other person. It’s not that easy to walk,” Saldaña says. “That’s the same with these robots. Now one robot is holding the other, and if they don’t coordinate, they crash.”

    Looking to the future, Saldaña says another application could be for package delivery. Delivery drones grasp objects with a mechanical claw-like mechanism, but with the way Saldaña’s robots work, the robots can both grasp and lift the object by forming a shell around it and rising upwards.

    Saldaña shows how four of these robots fly down to a coffee cup on the floor and arrange themselves in a diamond pattern around it, touching each other only at their magnetized edges. When they are formed closely enough that the lip of the coffee cup extends just over the top of them, they gently rise, lifting the coffee cup and transporting it to a preprogrammed destination.

    5

    “We can also transport soda, beers, depending on what you want,” Saldaña jokes. Right now, the prototypes haven’t yet moved beyond lifting small beverage cups. But as their designs are continually refined, there is potential for lifting even bigger objects.

    With a number of scientific publications under his belt, including his most recent work published in Robotics and Automation Letters, Saldaña emphasizes the collaborative nature of his project, with support from his advisors Vijay Kumar and Mark Yim, along with the ModLab and the many graduate students he’s worked with during his two years at Penn.

    “David’s work is a great example of what the GRASP Lab and Penn Engineering is all about,” says Kumar, the dean of Penn Engineering. “When you bring people with lots of different ideas and skills together, that’s where real innovation occurs.”

    In his time as a post-doctoral researcher, Saldaña has made the flying robots smaller and more efficient through several iterations. This fall, as he leaves to accept a position at Lehigh University, he hopes to continue to collaborate with GRASP, now as an alumni.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at Penn is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

     
  • richardmitnick 8:32 am on August 19, 2019 Permalink | Reply
    Tags: 2019 RoboCup Millennium Challenge, According to IDC the global robotics market was worth $151 billion in 2018 and that’s expected to double to $315.5 billion by 2021., , , Robotics   

    From CSIROscope- “Cashing in: Australia’s role in $1trn robotic revolution” 

    CSIRO bloc

    From CSIROscope

    19 August 2019
    Adrian Turner

    Fifteen international teams from Australia, Brazil, China, Germany, Iran, Japan and Portugal recently descended on Sydney for the 2019 RoboCup Millennium Challenge. Eleven fully autonomous virtual robots known as “agents” played as part of each team without the assistance of a remote control and complying with FIFA rules. The nail-biting final came down to the wire, with an Australian team emerging victorious over the 2018 world champions with seconds to spare.

    But this was more than a game, it highlighted Australia’s strengths in robotics and the speed with which the field is evolving.

    1
    Robots of the team NomadZ (ETH Zurich) of Switzerland, 1st and 2nd of left,and the Australian Runswift team (University of New South Wales), right, challenge for the ball during a soccer match.

    According to IDC the global robotics market was worth $151 billion in 2018, and that’s expected to double to $315.5 billion by 2021. Robots are used today in wide-ranging fields such as precision agriculture, mining, medical procedures, construction, biosecurity, transportation and even for companionship.

    Advancements in robotics have been accompanied by a fear that robots and automation will take our jobs along the way. While there are short-term risks with forecasts of 40 per cent of jobs potentially being displaced, it’s not clear that there will be an overall reduction in the number of jobs over time. The World Economic Forum suggests that the opposite will occur. In their Future of Jobs 2018 report, the authors concluded that while automation technologies including artificial intelligence could see 75 million jobs displaced globally, 133 million new roles may emerge as companies shake up their division of labour between humans and machines, translating to an additional 58 million new jobs created by 2022.

    A recent report by AlphaBeta estimates that automation can boost Australia’s productivity and national income by (up to) $2.2 trillion by 2030 and result in improved health and safety, the development of new products and services, new types of jobs and new business models. In that same report AlphaBeta concluded that by 2025 automation in manufacturing could increase by 6 per cent along with an 11 per cent reduction in injuries while wages for non-automatable tasks will rise 20 per cent.

    The key to unlocking economic and societal benefit from robotics will be to have them do things not possible or economic before. Take caring of an ageing population that is forecast to live longer but with a smaller workforce to support them. The math doesn’t add up without new methods for care to keep people out of hospitals and in their homes longer. Or supporting children with autism to develop social interaction and communication skills with Kaspar, a social robot being trialled by researchers at the University of New South and CSIRO. Robots can help with dangerous jobs too. CSIRO’s Data61 spinout Emesent develops drones capable of travelling in GPS-denied environments utilising 3D LiDAR technology. They travel down mineshafts to safely inspect hard to access areas of underground mines, so people don’t have to.

    On the other side of the world, a Harvard University group has spent the last 12 years creating a robotic bee capable of partially untethered flight powered by artificial muscles beating the wings 120 times a second. The ultimate objective of the program is to create a robobee swarm for use in natural disasters and artificial pollination given the devastating effectives of colony collapse disorder on bee populations and consequently food pollination. The US Department of Agriculture estimates that of the 1400 crops grown for food, 80 per cent depend on pollination and globally pollination services are likely worth more than $3 trillion.

    Robotic advancements

    Advancement in robotics is accelerating. They will increasingly evolve from isolated machines to be seamlessly integrated with our environments and each other. When one robot encounters an obstacle or new context and learns, the entire network of robots can instantaneously learn.

    Other advancements include the use of more tactile skins with embedded pressure sensors, and more flexible sensors. A team of engineers from the university of Delaware have created flexible carbon nanotube coatings on fibres that include cotton and wool, resulting in shape forming, flexible and pressure sensitive skins. Just as with the robobee there are also advancements in collaborative robots, or cobots, that can be used for resilient search and rescue operations among other things.

    We are also witnessing improvements in dexterity. The California-based Intuitive Surgical has developed a robot allowing a surgeon to control three fully articulated instruments to treat deep-seated damaged or diseased tissues or organs. Robots are also being developed that can unfold and soft robotics that will be important for applications that involve people contact. The challenge until recently has been a lack of actuators or artificial muscles that can replicate the versatility of real muscles. Advancements are being made with one design made from inexpensive materials reportedly able to lift 200 times its weight. Another compelling advancement is in augmenting our own muscles via wearable robots or exoskeletons. Applications today range from helping prevent workplace injury to helping people function more fully after spinal cord damage or strokes.

    Australia can benefit substantially from robotics in areas like managing environmental threats, maintaining vital urban infrastructure, maximise crop yields in drought-affected regions, transportation or supporting law enforcement. Australia was the first country to automate its ports and mine sites and we have strong university capabilities at QUT and Sydney University among others. Today there are about 1100 robotics companies in the country and CSIRO’s Data61 recently opened the largest robotic motion-capture facility in the southern hemisphere.

    The question of how Australia can capitalise on the trillion-dollar artificial intelligence and robotics revolution will be the focal point of the upcoming D61+LIVE conference in Sydney this October. Like all other industry creation opportunities in front of us right now, the opportunity is perishable and the way to maximise the benefit as a country is to be a global leader in parts. The Australian Robocup team has shown us how it’s done. Game on.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    SKA/ASKAP radio telescope at the Murchison Radio-astronomy Observatory (MRO) in Mid West region of Western Australia

    So what can we expect these new radio projects to discover? We have no idea, but history tells us that they are almost certain to deliver some major surprises.

    Making these new discoveries may not be so simple. Gone are the days when astronomers could just notice something odd as they browse their tables and graphs.

    Nowadays, astronomers are more likely to be distilling their answers from carefully-posed queries to databases containing petabytes of data. Human brains are just not up to the job of making unexpected discoveries in these circumstances, and instead we will need to develop “learning machines” to help us discover the unexpected.

    With the right tools and careful insight, who knows what we might find.

    CSIRO campus

    CSIRO, the Commonwealth Scientific and Industrial Research Organisation, is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

     
  • richardmitnick 7:59 am on July 22, 2019 Permalink | Reply
    Tags: "For Climbing Robots, A tiny climbing robot rolls up a wall gripping with fishhooks - technology adapted from LEMUR's gripping feet., Ice Worm moves by scrunching and extending its joints like an inchworm., , RoboSimian can walk on four legs crawl move like an inchworm and slide on its belly., Robotics, The climbing robot LEMUR, the Sky's the Limit"   

    From NASA JPL-Caltech: “For Climbing Robots, the Sky’s the Limit” 

    NASA JPL Banner

    From NASA JPL-Caltech

    July 10, 2019

    Arielle Samuelson
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-0307
    arielle.a.samuelson@jpl.nasa.gov

    1
    The climbing robot LEMUR rests after scaling a cliff in Death Valley, California. The robot uses special gripping technology that has helped lead to a series of new, off-roading robots that can explore other worlds.Credit: NASA/JPL-Caltech

    2
    A tiny climbing robot rolls up a wall, gripping with fishhooks – technology adapted from LEMUR’s gripping feet.Credit: NASA/JPL-Caltech

    3
    RoboSimian can walk on four legs, crawl, move like an inchworm and slide on its belly. In this photo it stands on the Devil’s Golf Course in Death Valley, California, for field testing with engineer Brendan Chamberlain-Simon.Credit: NASA/JPL-Caltech

    4
    For Climbing Robots, the Sky’s the Limit
    Ice Worm climbs an icy wall like an inchworm, an adaptation of LEMUR’s design.Credit: NASA/JPL-Caltech

    Robots can drive on the plains and craters of Mars, but what if we could explore cliffs, polar caps and other hard-to-reach places on the Red Planet and beyond? Designed by engineers at NASA’s Jet Propulsion Laboratory in Pasadena, California, a four-limbed robot named LEMUR (Limbed Excursion Mechanical Utility Robot) can scale rock walls, gripping with hundreds of tiny fishhooks in each of its 16 fingers and using artificial intelligence (AI) to find its way around obstacles. In its last field test in Death Valley, California, in early 2019, LEMUR chose a route up a cliff while scanning the rock for ancient fossils from the sea that once filled the area.

    LEMUR was originally conceived as a repair robot for the International Space Station. Although the project has since concluded, it helped lead to a new generation of walking, climbing and crawling robots. In future missions to Mars or icy moons, robots with AI and climbing technology derived from LEMUR could aid in the search for similar signs of life. Those robots are being developed now, honing technology that may one day be part of future missions to distant worlds.

    A Mechanical Worm for Icy Worlds

    How does a robot navigate a slippery, icy surface? For Ice Worm, the answer is one inch at a time. Adapted from a single limb of LEMUR, Ice Worm moves by scrunching and extending its joints like an inchworm. The robot climbs ice walls by drilling one end at a time into the hard surface. It can use the same technique to stabilize itself while taking scientific samples, even on a precipice. The robot also has LEMUR’s AI, enabling it to navigate by learning from past mistakes. To hone its technical skills, JPL project lead Aaron Parness tests Ice Worm on glaciers in Antarctica and ice caves on Mount St. Helens so that it can one day contribute to science on Earth and more distant worlds: Ice Worm is part of a generation of projects being developed to explore the icy moons of Saturn and Jupiter, which may have oceans under their frozen crusts.


    Robots can land on the Moon and drive on Mars, but what about the places they can’t reach? Designed by engineers as NASA’s Jet Propulsion Laboratory in Pasadena, California, a four-limbed robot named LEMUR (Limbed Excursion Mechanical Utility Robot) can scale rock walls, gripping with hundreds of tiny fishhooks in each of its 16 fingers and using artificial intelligence to find its way around obstacles. In its last field test in Death Valley, California, in early 2019, LEMUR chose a route up a cliff, scanning the rock for ancient fossils from the sea that once filled the area.

    A Robotic Ape on the Tundra

    Ice Worm isn’t the only approach being developed for icy worlds like Saturn’s moon Enceladus, where geysers at the south pole blast liquid into space. A rover in this unpredictable world would need to be able to move on ice and silty, crumbling ground. RoboSimian is being developed to meet that challenge.

    Originally built as a disaster-relief robot for the Defense Advanced Research Projects Agency (DARPA), it has been modified to move in icy environments. Nicknamed “King Louie” after the character in “The Jungle Book,” RoboSimian can walk on four legs, crawl, move like an inchworm and slide on its belly like a penguin. It has the same four limbs as LEMUR, but JPL engineers replaced its gripping feet with springy wheels made from music wire (the kind of wire found in a piano). Flexible wheels help King Louie roll over uneven ground, which would be essential in a place like Enceladus.

    Tiny Climbers

    Micro-climbers are wheeled vehicles small enough to fit in a coat pocket but strong enough to scale walls and survive falls up to 9 feet (3 meters). Developed by JPL for the military, some micro-climbers use LEMUR’s fishhook grippers to cling to rough surfaces, like boulders and cave walls. Others can scale smooth surfaces, using technology inspired by a gecko’s sticky feet. The gecko adhesive, like the lizard it’s named for, relies on microscopic angled hairs that generate van der Waals forces – atomic forces that cause “stickiness” if both objects are in close proximity.

    Enhancing this gecko-like stickiness, the robots’ hybrid wheels also use an electrical charge to cling to walls (the same phenomenon makes your hair stick to a balloon after you rub it on your head). JPL engineers created the gecko adhesive for the first generation of LEMUR, using van der Waals forces to help it cling to metal walls, even in zero gravity. Micro-climbers with this adhesive or gripping technology could repair future spacecraft or explore hard-to-reach spots on the Moon, Mars and beyond.

    Ocean to Asteroid Grippers

    Just as astronauts train underwater for spacewalks, technology built for ocean exploration can be a good prototype for missions to places with nearly zero gravity. The Underwater Gripper is one of the gripping hands from LEMUR, with the same 16 fingers and 250 fishhooks for grasping irregular surfaces. It could one day be sent for operations on an asteroid or other small body in the solar system. For now, it’s attached to the underwater research vessel Nautilus operated by the Ocean Exploration Trust off the coast of Hawaii, where it helps take deep ocean samples from more than a mile below the surface.

    A Cliff-Climbing Mini-Helicopter

    The small, solar-powered helicopter accompanying NASA’s Mars 2020 rover will fly in short bursts as a technology demonstration, paving the way for future flying missions at the Red Planet. But JPL engineer Arash Kalantari isn’t content to simply fly; he’s developing a concept for a gripper that could allow a flying robot to cling to Martian cliffsides. The perching mechanism is adapted from LEMUR’s design: It has clawed feet with embedded fishhooks that grip rock much like a bird clings to a branch. While there, the robot would recharge its batteries via solar panels, giving it the freedom to roam and search for evidence of life.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL)) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 9:19 am on July 5, 2019 Permalink | Reply
    Tags: , Robotics, SpaceBok robot   

    From European Space Agency: “Jumping space robot ‘flies’ like a spacecraft” 

    ESA Space For Europe Banner

    From European Space Agency

    1
    Spacebok jumping in simulated lunar gravity

    4 July 2019

    Astronauts on the Moon found themselves hopping around, rather than simply walking. Switzerland’s SpaceBok planetary exploration robot has followed their example, launching all four legs off the ground during tests at ESA’s technical heart.

    SpaceBok is a quadruped robot designed and built by a Swiss student team from ETH Zurich and ZHAW Zurich. It is currently being tested using robotic facilities at ESA’s

    ESA Estec

    technical centre in the Netherlands.

    Work is proceeding under the leadership of PhD student Hendrik Kolvenbach from ETH Zurich’s Robotic Systems Lab, currently based at ESTEC. The robot is being used to investigate the potential of ‘dynamic walking’ to get around in low gravity environments.

    Hendrik explains: “Instead of static walking, where at least three legs stay on the ground at all times, dynamic walking allows for gaits with full flight phases during which all legs stay off the ground. Animals make use of dynamic gaits due to their efficiency, but until recently, the computational power and algorithms required for control made it challenging to realise them on robots.

    “For the lower gravity environments of the Moon, Mars or asteroids, jumping off the ground like this turns out to be a very efficient way to get around.”

    2
    Hendrik Kolvenbach with SpaceBok. Work on SpaceBok is proceeding under the leadership of PhD student Hendrik Kolvenbach from ETH Zurich’s Robotic Systems Lab, currently based at ESTEC. The robot is being used to investigate the potential of ‘dynamic walking’ to get around in low gravity environments.

    3
    Simulating low-gravity conditions

    “Astronauts moving in the one-sixth gravity of the Moon adopted jumping instinctively. SpaceBok could potentially go up to 2 m high in lunar gravity, although such a height poses new challenges. Once it comes off the ground the legged robot needs to stabilise itself to come down again safely – it’s basically behaving like a mini-spacecraft at this point,” says team member Alexander Dietsche.

    “So what we’ve done is harness one of the methods a conventional satellite uses to control its orientation, called a reaction wheel. It can be accelerated and decelerated to trigger an equal and opposite reaction in SpaceBok itself,” explains team member Philip Arm.

    “Additionally, SpaceBok’s legs incorporate springs to store energy during landing and release it at take-off, significantly reducing the energy needed to achieve those jumps,” adds another team member, Benjamin Sun.

    The team is slowly increasing the height of the robot’s repetitive jumps, up to 1.3 m in simulated lunar gravity conditions so far.

    Test rigs have been set up to simulate various gravity environments, mimicking not only lunar conditions but also the very low gravities of asteroids. The lower the gravity the longer the flight phase can be for each robot jump, but effective control is needed for both take-off and landing.

    To simulate the vanishingly low gravity of asteroids, the SpaceBok team made use of the flattest floor in the Netherlands – a 4.8 x 9 m epoxy floor smoothed to an overall flatness within 0.8 mm, called the Orbital Robotics Bench for Integrated Technology (ORBIT), part of ESA’s Orbital Robotics and Guidance Navigation and Control Laboratory.

    4
    Robot mounted sideways

    SpaceBok was placed on its side, then attached to a free-floating platform to reproduce zero-G conditions in two dimensions. When jumping off a wall its reaction wheel allowed it to twirl around mid-jump, letting it land feet first again on the other side of the chamber – as if it was jumping along a scaled-down single low-gravity surface.

    Hendrik added: “The testing went sufficiently well that we even used SpaceBok to play a live-action game of Pong, the video game classic.”

    6
    SpaceBok robot

    Testing will continue in more realistic conditions, with jumps made over obstacles, hilly terrain, and realistic soil, eventually moving out of doors.

    Hendrik is studying at ESTEC through ESA’s Networking Partnering Initiative, intended to harness advanced academic research for space applications.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 9:34 am on May 5, 2019 Permalink | Reply
    Tags: "America's infrastructure is like a third-world country" said Ray LaHood transportation secretary under President Obama., , But the next generation of these machines it seems clear will gain more autonomy and machine learning technologies, In short the infrastructure robots are coming; in fact some of them are already here., Infrastructure spending, Robotics, Robots and artificial intelligence can help us build the infrastructure we need here and around the world., The early infrastructure robots don't use much AI.   

    From WIRED: “Spend Part of the $2 Trillion Infrastructure Plan on Robots” 

    Wired logo

    From WIRED

    5.5.19
    Gretchen Greene

    1
    Alexis Rosenfeld/Getty Images

    This week, the Democrats and President Trump are talking about a $2 trillion infrastructure plan, a number in line with American Society of Civil Engineers’ estimates for infrastructure needs, but it isn’t clear where the money will come from or if a bipartisan plan will actually move forward.

    The ASCE’s 2017 report card gave America’s infrastructure a D+ with scant progress these last 20 years. “America’s infrastructure is like a third-world country,” said Ray LaHood, transportation secretary under President Obama. If we don’t make a major infrastructure investment, our enormous infrastructure needs will just keep growing. We need good new ideas to make the most of whatever money is approved by the federal government or local governments.

    New technologies are threatening jobs but they also offer the possibility of completing projects we otherwise couldn’t afford, minimizing disruption, improving safety and optimizing systems in ways humans working alone could not. Robots and artificial intelligence can help us build the infrastructure we need, here and around the world. In short, the infrastructure robots are coming; in fact, some of them are already here.

    In Minnesota, spider-like bridge inspection drones crawl along high abutments and into narrow gaps while hovering drones inspect the undersides of bridge decks. Their access is better, cheaper, and safer with less disruption of traffic. Gas pipe repair robots allow utility crews in Boston, NYC, and Edinburgh, Scotland, to finish a job in a third of the time, without digging up the street at every joint or interrupting service because the robots can safely work inside pressurized lines. In Saudi Arabia and Mexico, water pipe inspection robots are inserted in one fire hydrant, carried by the water flow and captured with a net at another fire hydrant down the line, reporting the locations of leaks a tenth to a third the size old methods could find. In Connecticut, drones are replacing low flying helicopters for power line inspections.

    In Oslo, Norway, submarine drones are mapping the landscape of underwater garbage: old tires and toys, plastic bags and the carcasses of abandoned cars, so boats with cranes and human divers can be deployed to clean up the fjords.

    In Fukushima, Japan, engineers have embarked on a half century project one expert called more challenging than putting a man on the moon: designing and building robots that can operate in an extremely challenging environment to find, recover, and seal the lost radioactive fuel from the biggest nuclear plant disaster cleanup effort in history.

    The early infrastructure robots don’t use much AI. They are remotely controlled or tethered, relaying video to human operators to interpret, carrying tools a human operator can use from a distance, and relying on a human operator to tell them where to go. Their genius lies in their ability to squeeze into small spaces, levitate in the sky, or dive into the water and survive in harsh environments, going places humans can’t go easily, safely, cheaply, or at all.

    But the next generation of these machines, it seems clear, will gain more autonomy, adopting computer vision, autonomous vehicle navigation and machine learning technologies. Semi-autonomous drones and robots are in testing and early commercial deployment for inspection of industrial assets, land surveying and sidewalk snow clearing.

    It’s not a big step to imagine robots creeping through the gas and water lines all day and night, mapping their own course, quietly fixing leaks, docking at charging and maintenance stations as needed, like a Roomba underground. Above ground robots could patrol the roads, the power grid and the waterways, cleaning up trash and fixing potholes, electrical wires and bridges or reporting what they can’t fix, directing a human crew to the spot.

    Machine learning software systems are learning to predict code violations, safety incidents, mechanical failures and natural disasters, directing robotic or human resources to intervene. They are being used for fire code, health code and industrial safety inspection prioritization in Pittsburgh, New York, New Orleans, Boston, Chicago and British Columbia, Canada. Rolls Royce is testing machine learning to predict engine failures. The oil and gas industry is automating the detection of serious pipeline corrosion, adding machine learning to the pipeline robot pigs it has used for decades. British Columbia is trying to predict elevator problems. Pittsburgh is trying to predict landslides on roads.

    Robots, sensors and machine learning are being used to direct water to where we want it before it ever hits a pipeline and to reduce pollution. Tech startups in Boston and San Francisco are using sensors and machine learning to create hyperlocal air quality and weather data and predictions. In crowded industrial cities in Guangzhou, China, pollution-detecting airborne drones help law enforcement identify which factory should be punished for emissions. China has used chemical carrying drones to disperse smog and to make rain and is considering the creation of a vast network of fuel burning chambers, planes, drones and artillery, guided by real-time data from satellites, to seed clouds over the Tibetan plateau, the source of most of Asia’s biggest rivers, an area three times the size of Spain.

    Advances in robotics, hardware and artificial intelligence have combined to make a new vision possible for how infrastructure maintenance and repair is carried out. More importantly, they offer a vision for how we might be able to afford to do the work we can’t put off forever.

    There’s a rising army of robots, ready to serve.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 1:19 pm on April 12, 2019 Permalink | Reply
    Tags: , , , , , , , Robotics,   

    From University of New South Wales: “Sky’s the limit: celebrating engineering that’s out of this world” 

    U NSW bloc

    From University of New South Wales

    12 Apr 2019
    Cecilia Duong

    Researchers from UNSW Engineering are harnessing new technologies to help build Australia’s space future.

    1
    An impression of UNSW Cubesat in orbit. Image: Jamie Tufrey

    On International Day of Human Space Flight – an annual celebration of the beginning of the space era for mankind that’s designed to reaffirm the important contribution of space science and technology in today’s world – UNSW Engineering is looking at some of its own space-related research highlights.

    Whether it’s finding ways to mine water on the moon or developing space cells with the highest efficiencies, researchers from UNSW Engineering are harnessing new technologies to help build Australia’s space future. Our student-led projects, such as BlueSAT and American Institute of Aeronautics and Astronautics (AIAA Rocketry), are also providing students with real-world experience in multi-disciplinary space engineering projects to continue to promote space technology in Australia.

    Here are a few highlights of how UNSW Engineering research is innovating both on Earth and in space.

    Mining water on the Moon
    2
    Image: Shutterstock

    A team of UNSW Engineers have put together a multi-university, agency and industry project team to investigate the possibilities of mining water on the moon to produce rocket fuel.

    Find out more.

    Satellite solar technology comes down to Earth
    3
    Solar cells used in space are achieving higher efficiencies than those used at ground level, and now there are ways to have them working on Earth without breaking the bank.

    Researchers from the School of Photovoltaics Renewable Energy Engineering are no strangers to setting new records for solar cell efficiency levels but Associate Professor Ned Ekins-Daukes has made it his mission to develop space cells with the highest efficiencies at the lowest weight.

    Find out more.

    Students shine in off-world robotics competition
    4
    UNSW’s Off-World Robotics team – part of the long-running BLUEsat student-led project – achieved their best placing in the competition to date.

    A team of eight UNSW Engineering students came eighth in the European Rover Challenge (ERC) in Poland, one of the world’s biggest international space and robotics events, defeating 57 teams from around the globe.

    Find out more.

    Exploring a little-understood region above Earth
    5
    Associate Professor Elias Aboutanios with UNSW-Ec0. Photo:Grant Turner

    UNSW-EC0, a CubeSat built by a team led by Australian Centre for Space Engineering Research (ACSER) deputy director Associate Professor Elias Aboutanios, is studying the atomic composition of the thermosphere using an on-board ion neutral mass spectrometer.

    Find out more.

    Rocketing into an internship
    6
    Third-year Aerospace Engineering student, Sam Wilkinson, scored an internship at Rocket Lab in New Zealand.

    Third-year Aerospace Engineering student, Sam Wilkinson, describes how he landed an internship at an international aerospace company, which works with organisations such as NASA, without going through the usual application process.

    Find out more.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U NSW Campus

    Welcome to UNSW Australia (The University of New South Wales), one of Australia’s leading research and teaching universities. At UNSW, we take pride in the broad range and high quality of our teaching programs. Our teaching gains strength and currency from our research activities, strong industry links and our international nature; UNSW has a strong regional and global engagement.

    In developing new ideas and promoting lasting knowledge we are creating an academic environment where outstanding students and scholars from around the world can be inspired to excel in their programs of study and research. Partnerships with both local and global communities allow UNSW to share knowledge, debate and research outcomes. UNSW’s public events include concert performances, open days and public forums on issues such as the environment, healthcare and global politics. We encourage you to explore the UNSW website so you can find out more about what we do.

     
  • richardmitnick 12:02 pm on February 20, 2019 Permalink | Reply
    Tags: "Robots track moving objects with unprecedented precision", , , RFID tags, Robotics   

    From MIT News: “Robots track moving objects with unprecedented precision” 

    MIT News
    MIT Widget

    From MIT News

    February 18, 2019
    Rob Matheson

    System uses RFID tags to home in on targets; could benefit robotic manufacturing, collaborative drones, and other applications.

    1
    MIT Media Lab researchers are using RFID tags to help robots home in on moving objects with unprecedented speed and accuracy, potentially enabling greater collaboration in robotic packaging and assembly and among swarms of drones. Photo courtesy of the researchers.

    A novel system developed at MIT uses RFID tags to help robots home in on moving objects with unprecedented speed and accuracy. The system could enable greater collaboration and precision by robots working on packaging and assembly, and by swarms of drones carrying out search-and-rescue missions.

    In a paper being presented next week at the USENIX Symposium on Networked Systems Design and Implementation, the researchers show that robots using the system can locate tagged objects within 7.5 milliseconds, on average, and with an error of less than a centimeter.

    In the system, called TurboTrack, an RFID (radio-frequency identification) tag can be applied to any object. A reader sends a wireless signal that reflects off the RFID tag and other nearby objects, and rebounds to the reader. An algorithm sifts through all the reflected signals to find the RFID tag’s response. Final computations then leverage the RFID tag’s movement — even though this usually decreases precision — to improve its localization accuracy.

    The researchers say the system could replace computer vision for some robotic tasks. As with its human counterpart, computer vision is limited by what it can see, and it can fail to notice objects in cluttered environments. Radio frequency signals have no such restrictions: They can identify targets without visualization, within clutter and through walls.

    To validate the system, the researchers attached one RFID tag to a cap and another to a bottle. A robotic arm located the cap and placed it onto the bottle, held by another robotic arm. In another demonstration, the researchers tracked RFID-equipped nanodrones during docking, maneuvering, and flying. In both tasks, the system was as accurate and fast as traditional computer-vision systems, while working in scenarios where computer vision fails, the researchers report.

    “If you use RF signals for tasks typically done using computer vision, not only do you enable robots to do human things, but you can also enable them to do superhuman things,” says Fadel Adib, an assistant professor and principal investigator in the MIT Media Lab, and founding director of the Signal Kinetics Research Group. “And you can do it in a scalable way, because these RFID tags are only 3 cents each.”

    In manufacturing, the system could enable robot arms to be more precise and versatile in, say, picking up, assembling, and packaging items along an assembly line. Another promising application is using handheld “nanodrones” for search and rescue missions. Nanodrones currently use computer vision and methods to stitch together captured images for localization purposes. These drones often get confused in chaotic areas, lose each other behind walls, and can’t uniquely identify each other. This all limits their ability to, say, spread out over an area and collaborate to search for a missing person. Using the researchers’ system, nanodrones in swarms could better locate each other, for greater control and collaboration.

    “You could enable a swarm of nanodrones to form in certain ways, fly into cluttered environments, and even environments hidden from sight, with great precision,” says first author Zhihong Luo, a graduate student in the Signal Kinetics Research Group.

    The other Media Lab co-authors on the paper are visiting student Qiping Zhang, postdoc Yunfei Ma, and Research Assistant Manish Singh.

    Super resolution

    Adib’s group has been working for years on using radio signals for tracking and identification purposes, such as detecting contamination in bottled foods, communicating with devices inside the body, and managing warehouse inventory.

    Similar systems have attempted to use RFID tags for localization tasks. But these come with trade-offs in either accuracy or speed. To be accurate, it may take them several seconds to find a moving object; to increase speed, they lose accuracy.

    The challenge was achieving both speed and accuracy simultaneously. To do so, the researchers drew inspiration from an imaging technique called “super-resolution imaging.” These systems stitch together images from multiple angles to achieve a finer-resolution image.

    “The idea was to apply these super-resolution systems to radio signals,” Adib says. “As something moves, you get more perspectives in tracking it, so you can exploit the movement for accuracy.”

    The system combines a standard RFID reader with a “helper” component that’s used to localize radio frequency signals. The helper shoots out a wideband signal comprising multiple frequencies, building on a modulation scheme used in wireless communication, called orthogonal frequency-division multiplexing.

    The system captures all the signals rebounding off objects in the environment, including the RFID tag. One of those signals carries a signal that’s specific to the specific RFID tag, because RFID signals reflect and absorb an incoming signal in a certain pattern, corresponding to bits of 0s and 1s, that the system can recognize.

    Because these signals travel at the speed of light, the system can compute a “time of flight” — measuring distance by calculating the time it takes a signal to travel between a transmitter and receiver — to gauge the location of the tag, as well as the other objects in the environment. But this provides only a ballpark localization figure, not subcentimter precision.

    Leveraging movement

    To zoom in on the tag’s location, the researchers developed what they call a “space-time super-resolution” algorithm.

    The algorithm combines the location estimations for all rebounding signals, including the RFID signal, which it determined using time of flight. Using some probability calculations, it narrows down that group to a handful of potential locations for the RFID tag.

    As the tag moves, its signal angle slightly alters — a change that also corresponds to a certain location. The algorithm then can use that angle change to track the tag’s distance as it moves. By constantly comparing that changing distance measurement to all other distance measurements from other signals, it can find the tag in a three-dimensional space. This all happens in a fraction of a second.

    “The high-level idea is that, by combining these measurements over time and over space, you get a better reconstruction of the tag’s position,” Adib says.

    The work was sponsored, in part, by the National Science Foundation.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    MIT Campus

     
  • richardmitnick 10:18 am on January 9, 2019 Permalink | Reply
    Tags: , , , Robotics   

    From CSIROscope : “Robots of the future: it’s about to get weird” 

    CSIRO bloc

    From CSIROscope

    9 January 2019

    The word “robot” was coined almost a hundred years ago by Czech writer Karel Čapek, to refer to the artificial life forms in his play “Rossum’s Universal Robots”. Ever since humanoid shaped robots have dominated concepts of what a robot should look like.

    Think of Star War’s C3PO, The Terminator, The Iron Giant, or even Marvin the Paranoid Android from “Hitchhikers guide to the Galaxy”.

    In the real world there are also machines like Boston Dynamic’s incredibly agile “Atlas”. Or Sophia, the first robot to receive citizenship.

    More often than not though our shape isn’t the best one for robots faced with challenging assignments in extreme environments.

    In a just published paper [Nature Machine Intelligence] our scientists have offered a bold glimpse into what the robots of the future could look like – and it’s not “Robby the Robot”.

    Robot evolution revolution

    Our Active Integrated Matter Future Science Platform (AIM FSP) says that within 20 years robots could look unpredictably different. Scientific breakthroughs in areas like materials discovery, advanced manufacturing, 3D printing, and artificial intelligence will allow robots to be designed from the molecular level up to perform their specific mission. Resulting in unusual and unexpected shapes, limbs and behaviours.

    2
    An artist’s impression of a robot for use in the Amazon. Based on tree crawling lizards and gecko, it would have articulated legs for more flexibility and climbing.

    Central to this all is a concept known as Multi-Level Evolution (MLE). It argues that robots should be taking their engineering cues from the one tried and true design philosophy that’s survived millennia on Earth: evolution.

    Evolution has seen animals undergo incredibly diverse adaptation to survive challenging environments. It creates effective solutions that are often totally different to any a human engineer would come up with. Kangaroos, for instance, probably wouldn’t have made it off the drawing board but have survived and thrived for eons in Australia.

    How would MLE work?

    A robot’s mission, as well as details about the relevant terrain and environment, would be entered into a computer. It would then run algorithms based on evolution to automatically design robots.

    The computer would do this by exploring a diverse range of materials, components, sensors and behaviours. Advanced, computer based modelling could rapidly test prototypes in simulated, “real world” scenarios to decide which works best.

    Once that’s done 3D printing and other technologies would be used to create and physically test prototype robots.

    The end result? Small, simple, highly specialised robots that can automatically adapt to their environment and are tough enough to survive their mission.

    3
    An artist’s impression of an ocean, coastal or river based amphibious robot. It would travel in water like an eel, but have legs in order to crawl and climb.

    Do the robot

    Say, in the future, you need to design robots for environmental monitoring in extreme environments. They’d all need to move across difficult landscapes while gathering data. Eventually, to avoid polluting the environment, they’d have to return to base or degrade away to nothing. How could you do this?

    MLE would come up with remarkably different results, depending on the terrain, climate and other factors.

    To cope with the Sahara Desert a robot would need materials designed to survive punishing heat, sand and dust. Given the amount of sun the Sahara receives the robot could be solar powered, and slide across sand dunes. The harsh UV light could also be used as the trigger to eventually wear the robot away.

    In the Amazon a robot would have entirely different challenges to face. Thick, low lying vegetation and fallen trees would hamper its movement so it would need to be flexible enough to climb over or go round obstacles. It could perhaps be powered by biomass such as the leaves covering the jungle floor, and degrade with humidity.

    4
    An artist’s impression of an Antarctic based robot. Turtle like, it would be strong and robust for extreme conditions. It could also suit desert applications.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    SKA/ASKAP radio telescope at the Murchison Radio-astronomy Observatory (MRO) in Mid West region of Western Australia

    So what can we expect these new radio projects to discover? We have no idea, but history tells us that they are almost certain to deliver some major surprises.

    Making these new discoveries may not be so simple. Gone are the days when astronomers could just notice something odd as they browse their tables and graphs.

    Nowadays, astronomers are more likely to be distilling their answers from carefully-posed queries to databases containing petabytes of data. Human brains are just not up to the job of making unexpected discoveries in these circumstances, and instead we will need to develop “learning machines” to help us discover the unexpected.

    With the right tools and careful insight, who knows what we might find.

    CSIRO campus

    CSIRO, the Commonwealth Scientific and Industrial Research Organisation, is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

     
  • richardmitnick 9:44 am on May 23, 2018 Permalink | Reply
    Tags: , , Meet Our Robot Family, Robotics   

    From CSIROscope: “Meet Our Robot Family” 

    CSIRO bloc

    From CSIROscope

    23 May 2018
    Ketan Joshi

    1
    We’re developing robotic systems that help humans perform dangerous tasks, and expanding the Australian robotics industry. Above, Weaver. No image credit.

    The family of robots that live at our Data61 are incredibly diverse. They’ve got legs, wheels, cameras, sensors, fins, blades and magnets. They sense the world, navigate it autonomously, and they traverse places too dangerous and dirty for human work. They’re as varied as the challenges they’re designed to resolve, but the common DNA is a focus on the use of cutting-edge data science.

    This isn’t something we go at alone—our partners include: DARPA (Defence Advanced Research Projects Agency), Rockwell Collins, Boeing, Woodside, Queensland University of Technology, and many other government, universities and enterprises. We recently announced the Sixth Wave Alliance, to develop a national robotics R&D strategy and create the critical mass required to address large-scale Australian and international challenges using robotics technologies.

    This week, we’re also at the International Conference on Robotics (ICRA 2018), where we’re showcasing the best of our bots.


    Meet the family below, and read more about our robotics research here.

    Machines that see – Sensing and mapping the world

    Sucking up information from the world is a capability we fleshy humans take for granted. Data61’s robotic and autonomous devices are particularly good at sensing and mapping – two capabilities that are of high importance for modern robotics and industries like mining, exploration and environmental conservation.

    Hovermap and Zebedee – moving without GPSs

    Drones are increasingly common as consumer goods, but they’re reliant on direct access to global position satellites (GPS).

    Hovermap is a 3D mapping system that uses LIDAR (light detection and ranging) technology, combined with Data61’s proprietary Simultaneous Localisation and Mapping (SLAM) solution. Hovermap works in conjunction with a UAV (uncrewed autonomous vehicle), and can map both indoor and outdoor locations without relying on GPS.

    2
    Zebedee, our high-accuracy 3D laser mapping technology, was commercialised and is already being used around the world by 25 multinational organisations. It was recently trialled by the International Atomic Energy Agency in nuclear safeguards inspections.

    Camazotz – the bat god tech

    Camazotz, named after a Mayan bat god, is a small, portable device that is used to monitor flying foxes across Australia, helping ecologists understand and predict the spread of disease. The Wireless Ad hoc System for Positioning (WASP) uses similar tags to track vehicles and mine workers relative to reference nodes – assisting with safety and boosting productivity.

    Legged Robots

    You’ve probably seen videos of animal robots doing clever tasks and being shared with a tone of alarm. Legged robots aren’t reason for alarm – these systems are well suited to navigating environments that are too dangerous or dirty for safe human work, such as a chemical spill in a plant or the ceiling beam in a factory.

    Gizmo

    3
    Gizmo dancing

    Gizmo is Data61’s newest bot – a small, smooth hexapod designed for versatility and small spaces. One of the motivating applications for this robot is to inspect and map ceiling cavity and underfloor-type confined spaces.

    Zee

    4
    Zee

    Zee is a prototype hexapod robot equipped with a streaming camera sensor and a real-time 3D scanning LIDAR. You’ve probably seen Zee around – it’s an older machine but still an excellent demonstration of six-legged robotics.

    Weaver

    5
    Zee’s big sister, Weaver, features five joints per leg and 30 degrees of freedom. Weaver can self-stabilise through ‘exteroceptive’ sensing – enabling the robot to walk up gradients of 30°, and remain stable on inclines up to 50°.

    MaX

    6

    MaX (Multi-legged autonomous explorer) is even bigger – 2.25m tall when standing up straight. But MaX only weighs 60kg; around 5 to 20 times lighter than comparable robots. MaX is a research vehicle designed to help our scientists understand how to traverse and explore challenging indoor and outdoor environments.

    Magnapod

    7

    Magnapods are Data61’s wall-climbing, electro-magnetic inspection robots, useful in confined space inspection tasks and capable of carrying a 10 kilogram sensor payload.

    You can read more about the scientific goals of our legged robot research program here.

    Autonomous vehicles

    Creating systems that can navigate and respond without human intervention is a key component in removing the human element from tasks that are dangerous or poorly suited for human control. We’ve developed several ground vehicles normally used in industrial environments that can operate without human intervention, including the Gator, the load haul dump vehicle and the 20 tonne hot metal carrier.

    8

    Our Science Rover enabled the complicated process of satellite calibration – the autonomous vehicle collects measurements at the same time an Earth observation satellite passes overhead – the two datasets are compared, and the satellite is calibrated. Our underwater autonomous vehicle, Starbug, uses underwater sensor networks to locate itself (GPS signals cannot be used underwater), enabling smart underwater data collection for protection and tracking of ecosystems.

    Our family of robots is, as you can see, pretty diverse. It’s the broad nature of the challenges they’re addressing that gives them these shapes, from small to big, wheeled to legged.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.
    stem
    Stem Education Coalition

    SKA/ASKAP radio telescope at the Murchison Radio-astronomy Observatory (MRO) in Mid West region of Western Australia

    So what can we expect these new radio projects to discover? We have no idea, but history tells us that they are almost certain to deliver some major surprises.

    Making these new discoveries may not be so simple. Gone are the days when astronomers could just notice something odd as they browse their tables and graphs.

    Nowadays, astronomers are more likely to be distilling their answers from carefully-posed queries to databases containing petabytes of data. Human brains are just not up to the job of making unexpected discoveries in these circumstances, and instead we will need to develop “learning machines” to help us discover the unexpected.

    With the right tools and careful insight, who knows what we might find.

    CSIRO campus

    CSIRO, the Commonwealth Scientific and Industrial Research Organisation, is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

     
  • richardmitnick 9:02 am on January 3, 2018 Permalink | Reply
    Tags: , Bimorph, , Graphene-based Bimorphs for Micron-sized Autonomous Origami Machines, Physicists take first step toward cell-sized robots, , Robotics, You could put the computational power of the spaceship Voyager onto an object the size of a cell   

    From Cornell Chronicle: “Physicists take first step toward cell-sized robots” 

    Cornell Bloc

    Cornell Chronicle

    January 2, 2018
    Tom Fleischman
    tjf85@cornell.edu

    Charles Walcott

    1
    An electricity-conducting, environment-sensing, shape-changing machine the size of a human cell? Is that even possible?

    Cornell physicists Paul McEuen and Itai Cohen not only say yes, but they’ve actually built the “muscle” for one.

    With postdoctoral researcher Marc Miskin at the helm, the team has made a robot exoskeleton that can rapidly change its shape upon sensing chemical or thermal changes in its environment. And, they claim, these microscale machines – equipped with electronic, photonic and chemical payloads – could become a powerful platform for robotics at the size scale of biological microorganisms.

    “You could put the computational power of the spaceship Voyager onto an object the size of a cell,” Cohen said. “Then, where do you go explore?”

    “We are trying to build what you might call an ‘exoskeleton’ for electronics,” said McEuen, the John A. Newman Professor of Physical Science and director of the Kavli Institute at Cornell for Nanoscale Science. “Right now, you can make little computer chips that do a lot of information-processing … but they don’t know how to move or cause something to bend.”

    Their work is outlined in Graphene-based Bimorphs for Micron-sized, Autonomous Origami Machines, published Jan. 2 in Proceedings of the National Academy of Sciences. Miskin is lead author; other contributors included David Muller, the Samuel B. Eckert Professor of Engineering, and doctoral students Kyle Dorsey, Baris Bircan and Yimo Han.

    The machines move using a motor called a bimorph. A bimorph is an assembly of two materials – in this case, graphene and glass – that bends when driven by a stimulus like heat, a chemical reaction or an applied voltage. The shape change happens because, in the case of heat, two materials with different thermal responses expand by different amounts over the same temperature change.

    As a consequence, the bimorph bends to relieve some of this strain, allowing one layer to stretch out longer than the other. By adding rigid flat panels that cannot be bent by bimorphs, the researchers localize bending to take place only in specific places, creating folds. With this concept, they are able to make a variety of folding structures ranging from tetrahedra (triangular pyramids) to cubes.

    In the case of graphene and glass, the bimorphs also fold in response to chemical stimuli by driving large ions into the glass, causing it to expand. Typically this chemical activity only occurs on the very outer edge of glass when submerged in water or some other ionic fluid. Since their bimorph is only a few nanometers thick, the glass is basically all outer edge and very reactive.

    “It’s a neat trick,” Miskin said, “because it’s something you can do only with these nanoscale systems.”

    The bimorph is built using atomic layer deposition – chemically “painting” atomically thin layers of silicon dioxide onto aluminum over a cover slip – then wet-transferring a single atomic layer of graphene on top of the stack. The result is the thinnest bimorph ever made.

    One of their machines was described as being “three times larger than a red blood cell and three times smaller than a large neuron” when folded. Folding scaffolds of this size have been built before, but this group’s version has one clear advantage.

    “Our devices are compatible with semiconductor manufacturing,” Cohen said. “That’s what’s making this compatible with our future vision for robotics at this scale.”

    And due to graphene’s relative strength, Miskin said, it can handle the types of loads necessary for electronics applications.

    “If you want to build this electronics exoskeleton,” he said, “you need it to be able to produce enough force to carry the electronics. Ours does that.”

    For now, these tiniest of tiny machines have no commercial application in electronics, biological sensing or anything else. But the research pushes the science of nanoscale robots forward, McEuen said.

    “Right now, there are no ‘muscles’ for small-scale machines,” he said, “so we’re building the small-scale muscles.”

    This work was performed at the Cornell NanoScale Facility for Science and Technology and supported by the Cornell Center for Materials Research, the National Science Foundation, the Air Force Office of Scientific Research and the Kavli Institute at Cornell.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: