From The University of California-Santa Cruz: “RNA Rescue challenge invites players to solve puzzles and advance RNA therapeutics”
From The University of California-Santa Cruz
2.21.23
Tim Stephens
stephens@ucsc.edu
Researchers at The University of California-Santa Cruz have developed a new puzzle challenge for the online game Eterna, enlisting players to help design a novel RNA drug to treat hemophilia A.
Introducing “OpenASO: RNA Rescue”
Researchers at The University of California-Santa Cruz working to develop novel RNA-based medicines are teaming up with a new group of collaborators—players of the online game Eterna. The game’s new “OpenASO: RNA Rescue” challenge will tap into the collective intelligence of Eterna’s 250,000 registered users to help design an RNA drug for the treatment of hemophilia A.
An antisense oligonucleotide (ASO) can bind to a messenger RNA molecule, as shown in this illustration, and, in some cases, can correct defects in RNA splicing caused by genetic mutations. (Image credit: Sharif Ezzat/Eterna)
“The Eterna player community may be able to come up with designs that we wouldn’t get using traditional screening methodologies for drug development,” said Michael Stone, professor of chemistry and biochemistry at The University of California-Santa Cruz.
Eterna is an open science platform that has been engaging citizen scientists in RNA-related puzzles for over 10 years. Previous challenges have included “OpenVaccine”, to design a more stable mRNA vaccine against COVID-19, and “OpenTB”, to develop a new diagnostic device to detect tuberculosis.
Stone and his colleagues at The University of California-Santa Cruz—including molecular biologist Jeremy Sanford and geneticist Olena Vaske, both faculty in the Department of Molecular, Cell and Developmental Biology—have been working to develop therapies for diseases caused by genetic mutations that disrupt the processing of RNA in the cell. One approach that has shown promise in treating this type of disease is called antisense oligonucleotide (ASO) therapy.
In all cells RNA molecules copy information from DNA and direct the synthesis of proteins. ASOs are short segments of RNA designed to bind to specific cellular RNA molecules. They can modify gene expression or RNA processing and, in some cases, correct defects caused by genetic mutations. But developing an ASO that has the desired effect typically requires “brute force” screening efforts that can take many years to yield positive results.
“One of the goals of our project is to accelerate that discovery process,” Stone said. “That’s where Eterna comes in.”
Rhiju Das, who leads Eterna and is a Howard Hughes Medical Institute investigator at Stanford University School of Medicine, said Eterna players have come up with RNA design solutions that out-performed the results of supercomputers and expert research teams.
When Stone told Das about his team’s work on developing an RNA-based therapy for hemophilia A, Das said he thought the Eterna community might be able to help.
“The community of Eterna players has discovered unusual principles for designing new kinds of RNA diagnostics and stabilizing mRNA vaccines, resulting in dozens of scientific papers. It will be exciting to see what they can now do in ASO therapeutics with experimental feedback from experts at The University of California-Santa Cruz,” Das said.
Hemophilia A is caused by mutations in the gene for the blood clotting factor 8 (F8), a protein required for the normal clotting of blood to control bleeding. When a protein-coding gene like F8 is activated, its DNA code is copied into RNA molecules called messenger RNAs. Before these messenger RNAs can direct protein synthesis, however, they undergo a modification process called RNA splicing that involves removing certain sections of the sequence. This RNA splicing process can be derailed by genetic mutations.
“It turns out that many genetic diseases involve splicing defects,” Stone said. “Jeremy Sanford’s research team has identified hemophilia-causing mutations in the factor 8 gene that lead to RNA-splicing defects, and we want to target this ‘toxic RNA’ with ASOs.”
In the OpenASO: RNA Rescue challenge, Eterna players are tasked with designing an RNA oligonucleotide that can bind to the F8 messenger RNA in a way that will correct the splicing defect. “Our idea is to design an oligonucleotide to disrupt a certain tract of the RNA that modulates splicing,” Stone explained. “But as players start to dig in, they’ll come up with solutions based on their own criteria, which may have nothing to do with biology but which might actually work.”
Winning solutions are determined by the votes of the player community. The University of California-Santa Cruz researchers will then synthesize the top candidates and test them in laboratory experiments, reporting the results back to the players.
“We’re all very excited to see how this goes,” Stone said. “There is a long list of mutations that appear to cause RNA splicing defects and a lot of interest in exploring the potential for ASO therapies.”
The University of California-Santa Cruz team’s preliminary work on Factor 8 mutations was funded by a seed grant from The University of California-Santa Cruz Office of Research. In addition, critical contributions to the investigation of RNA splicing defects in F8 were made by undergraduates in Sanford’s lab, funded by a National Science Foundation grant to support course-based undergraduate research experience (CURE) labs at The University of California-Santa Cruz.
See the full article here .
Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.
five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.
Stem Education Coalition
The University of California-Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.
The University of California-Santa Cruz is a public land-grant research university in Santa Cruz, California. It is one of the ten campuses in the University of California system. Located on Monterey Bay, on the edge of the coastal community of Santa Cruz, the campus lies on 2,001 acres (810 ha) of rolling, forested hills overlooking the Pacific Ocean.
Founded in 1965, The University of California-Santa Cruz began with the intention to showcase progressive, cross-disciplinary undergraduate education, innovative teaching methods and contemporary architecture. The residential college system consists of ten small colleges that were established as a variation of the Oxbridge collegiate university system.
Among the Faculty is 1 Nobel Prize Laureate, 1 Breakthrough Prize in Life Sciences recipient, 12 members from the National Academy of Sciences, 28 members of the American Academy of Arts and Sciences, and 40 members of the American Association for the Advancement of Science. Eight University of California-Santa Cruz alumni are winners of 10 Pulitzer Prizes. The University of California-Santa Cruz is classified among “R1: Doctoral Universities – Very high research activity”. It is a member of the Association of American Universities, an alliance of elite research universities in the United States and Canada.
The university has five academic divisions: Arts, Engineering, Humanities, Physical & Biological Sciences, and Social Sciences. Together, they offer 65 graduate programs, 64 undergraduate majors, and 41 minors.
Popular undergraduate majors include Art, Business Management Economics, Chemistry, Molecular and Cell Biology, Physics, and Psychology. Interdisciplinary programs, such as Computational Media, Feminist Studies, Environmental Studies, Visual Studies, Digital Arts and New Media, Critical Race & Ethnic Studies, and the History of Consciousness Department are also hosted alongside UCSC’s more traditional academic departments.
A joint program with The University of California-Hastings enables University of California-Santa Cruz students to earn a bachelor’s degree and Juris Doctor degree in six years instead of the usual seven. The “3+3 BA/JD” Program between University of California-Santa Cruz and The University of California-Hastings College of the Law in San Francisco accepted its first applicants in fall 2014. University of California-Santa Cruz students who declare their intent in their freshman or early sophomore year will complete three years at The University of California-Santa Cruz and then move on to The University of California-Hastings to begin the three-year law curriculum. Credits from the first year of law school will count toward a student’s bachelor’s degree. Students who successfully complete the first-year law course work will receive their bachelor’s degree and be able to graduate with their University of California-Santa Cruz class, then continue at The University of California-Hastings afterwards for two years.
According to the National Science Foundation, The University of California-Santa Cruz spent $127.5 million on research and development in 2018, ranking it 144th in the nation.
Although designed as a liberal arts-oriented university, The University of California-Santa Cruz quickly acquired a graduate-level natural science research component with the appointment of plant physiologist Kenneth V. Thimann as the first provost of Crown College. Thimann developed The University of California-Santa Cruz’s early Division of Natural Sciences and recruited other well-known science faculty and graduate students to the fledgling campus. Immediately upon its founding, The University of California-Santa Cruz was also granted administrative responsibility for the Lick Observatory, which established the campus as a major center for Astronomy research. Founding members of the Social Science and Humanities faculty created the unique History of Consciousness graduate program in The University of California-Santa Cruz’s first year of operation.
Famous former University of California-Santa Cruz faculty members include Judith Butler and Angela Davis.
The University of California-Santa Cruz’s organic farm and garden program is the oldest in the country, and pioneered organic horticulture techniques internationally.
As of 2015, The University of California-Santa Cruz’s faculty include 13 members of the National Academy of Sciences, 24 fellows of the American Academy of Arts and Sciences, and 33 fellows of the American Association for the Advancement of Science. The Baskin School of Engineering, founded in 1997, is The University of California-Santa Cruz’s first and only professional school. Baskin Engineering is home to several research centers, including the Center for Biomolecular Science and Engineering and Cyberphysical Systems Research Center, which are gaining recognition, as has the work that UCSC researchers David Haussler and Jim Kent have done on the Human Genome Project, including the widely used University of California-Santa Cruz Genome Browser. The University of California-Santa Cruz administers the National Science Foundation’s Center for Adaptive Optics.
Off-campus research facilities maintained by The University of California-Santa Cruz include the Lick and The W. M. Keck Observatory, Mauna Kea, Hawai’i and the Long Marine Laboratory. From September 2003 to July 2016, The University of California-Santa Cruz managed a University Affiliated Research System (UARC) for the NASA Ames Research Center under a task order contract valued at more than $330 million.
The University of California-Santa Cruz was tied for 58th in the list of Best Global Universities and tied for 97th in the list of Best National Universities in the United States by U.S. News & World Report’s 2021 rankings. In 2017 Kiplinger ranked The University of California-Santa Cruz 50th out of the top 100 best-value public colleges and universities in the nation, and 3rd in California. Money Magazine ranked The University of California-Santa Cruz 41st in the country out of the nearly 1500 schools it evaluated for its 2016 Best Colleges ranking. In 2016–2017, The University of California-Santa Cruz Santa Cruz was rated 146th in the world by Times Higher Education World University Rankings. In 2016 it was ranked 83rd in the world by the Academic Ranking of World Universities and 296th worldwide in 2016 by the QS World University Rankings.
In 2009, RePEc, an online database of research economics articles, ranked the The University of California-Santa Cruz Economics Department sixth in the world in the field of international finance. In 2007, High Times magazine placed The University of California-Santa Cruz as first among US universities as a “counterculture college.” In 2009, The Princeton Review (with Gamepro magazine) ranked The University of California-Santa Cruz’s Game Design major among the top 50 in the country. In 2011, The Princeton Review and Gamepro Media ranked The University of California-Santa Cruz’s graduate programs in Game Design as seventh in the nation. In 2012, The University of California-Santa Cruz was ranked No. 3 in the Most Beautiful Campus list of Princeton Review.
The University of California-Santa Cruz is the home base for the Lick Observatory.
UCO Lick Observatory’s 36-inch Great Refractor telescope housed in the South (large) Dome of main building.
The University of California-Santa Cruz Lick Observatory Since 1888 Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)
UC Observatories Lick Automated Planet Finder fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA.
The UCO Lick C. Donald Shane telescope is a 120-inch (3.0-meter) reflecting telescope located at the Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft).
Search for extraterrestrial intelligence expands at Lick Observatory
New instrument scans the sky for pulses of infrared light
March 23, 2015
By Hilary Lebow
Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at The University of California-Santa Cruz’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.
“Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at The University of California-San Diego who led the development of the new instrument while at The University of Toronto (CA)’s Dunlap Institute for Astronomy and Astrophysics (CA).
Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.
The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch.)
Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at University of California’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.
Alumna Shelley Wright, now an assistant professor of physics at The University of California- San Diego, discusses the dichroic filter of the NIROSETI instrument, developed at the University of Toronto Dunlap Institute for Astronomy and Astrophysics (CA) and brought to The University of California-San Diego and installed at the UC Santa Cruz Lick Observatory Nickel Telescope (Photo by Laurie Hatch).
“Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at The University of California-San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy and Astrophysics (CA).
NIROSETI team from left to right Rem Stone UCO Lick Observatory Dan Werthimer, UC Berkeley; Jérôme Maire, U Toronto; Shelley Wright, The University of California-San Diego Patrick Dorval, U Toronto; Richard Treffers, Starman Systems. (Image by Laurie Hatch).
Wright worked on an earlier SETI project at Lick Observatory as a University of California-Santa Cruz undergraduate, when she built an optical instrument designed by University of California-Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.
Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.
Frank Drake, professor emeritus of astronomy and astrophysics at The University of California-Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.
Frank Drake with his Drake Equation. Credit Frank Drake.
Drake Equation, Frank Drake, Seti Institute.
“The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.
The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”
Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.
“We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”
Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.
Reply