Tagged: Ribosomes Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:22 pm on August 7, 2018 Permalink | Reply
    Tags: Catching the dance of antibiotics and ribosomes at room temperature, , , Ribosomes, , , ,   

    From SLAC National Accelerator Lab: “Catching the dance of antibiotics and ribosomes at room temperature” 

    From SLAC National Accelerator Lab

    August 6, 2018
    Ali Sundermier

    1
    Hasan DeMirci refers to ribosomes as the 3D printers of the human body because they synthesize proteins, which are essential to life. (Dawn Harmer/SLAC National Accelerator Laboratory)

    2
    Interns in DeMirci’s lab help grow ribosome crystals. Once grown and suspended in a special chemical solution called “mother liquor,” the crystals are imaged at the LCLS to uncover how they interact with antibiotics. (Dawn Harmer/SLAC National Accelerator Laboratory)

    Antibiotics have been a pillar of modern medicine since the 1940s. Streptomycin, which belongs to a class of antibiotics called aminoglycosides, was the first hint of light in the millennia-long search for a treatment for tuberculosis, which remains one of the deadliest infectious diseases in human history.

    Today, aminoglycosides are the most commonly prescribed antibiotics in the world due to their low cost and high effectiveness in tackling a broad spectrum of bacterial infections. But they also bring along side effects that can have lifelong impacts. Depending on the dosage and the particular antibiotic, an estimated 10 to 20 percent of patients who take aminoglycosides suffer kidney damage and 20 to 60 percent end up with irreversible hearing loss.

    Now researchers at the Department of Energy’s SLAC National Accelerator Laboratory have developed a new imaging technique to better understand the mechanisms that lead to hearing loss when aminoglycosides are introduced to the body. Using the lab’s Linac Coherent Light Source (LCLS) X-ray laser and Stanford Synchrotron Lightsource (SSRL), SLAC researchers, in collaboration with researchers at Stanford University, were able to observe interactions between the drugs and bacterial ribosomes at both extremely low and room temperatures, revealing never-before-seen details.

    SLAC LCLS

    SLAC/SSRL

    They also demonstrated how small modifications to the antibiotics can lead to dramatic changes in ribosome shape that eliminate hearing loss. The research could lead to a better understanding of which parts of a drug molecule cause unwanted reactions in the body, which will enable the development of more effective antibiotics with fewer side effects.

    The group was led by research associate and senior author Hasan DeMirci. Their results were published in Nucleic Acids Research.

    3D printing proteins

    Hasan DeMirci refers to ribosomes – tiny molecular machines made up of tangles of RNA and proteins clumped together and intricately wired like ramen noodles in soup – as “the 3D printers of the human body.” The ribosomes synthesize proteins using the genetic information contained in DNA, “building our bodies from the ground up.”

    3
    Ribosomes (shown here) are tiny molecular machines made up of tangles of RNA and proteins clumped together and intricately wired like ramen noodles in soup. (Hasan DeMirci/SLAC National Accelerator Laboratory)

    “While one subunit of the ribosome, its brain, deciphers and translates the genetic code, the other, its hands, links together amino acids to form proteins,” DeMirci said.

    Unlike viruses, which have to leech off hosts to survive, bacteria have their own ribosomes, which is where antibiotics come into play. Bacterial ribosomes are the targets of many antibiotics. So-called “cidal” antibiotics like aminoglycosides function by attacking the brains of bacterial ribosomes, causing them to make mistakes and fill the cells with protein-like garbage molecules.

    “It’s like a house with a lot of hoarded junk,” DeMirci says. “There’s no going back. From that point the bacteria just die.”

    The problem with this strategy is that human cells contain energy-producing factories called mitochondria that have their very own ribosomes – and since those ribosomes are dangerously similar to those found in bacteria, they’re also vulnerable to antibiotic attack.

    “We’re killing the bacteria, but the same drug gets into our mitochondria and destroys the ribosomes there,” DeMirci says. “Now we cannot produce those enzymes that power us. You take an antibiotic and you start losing your hearing, your kidney fails.”

    Insights into molecular machinery

    DeMirci has a strong interest in aminoglycosides because he can use them to gain insight into the molecular machinery of the ribosome.

    “What I really want to know is what those drugs can teach us about how ribosomes decipher the genetic code,” DeMirci said. “Drugs give us an opportunity to stop that process at different stages to understand how each and every step is catalyzed by the ribosome.”

    To better understand this process, he struck up a collaboration with Anthony Ricci, a biophysicist and professor of medicine at Stanford who focuses on the inner ear. In previous research, Ricci found that aminoglycosides infiltrate specialized channels to target the sensory cells essential to hearing.

    “You can think of it as a roach motel,” Ricci says. “The drugs can get in but they can’t get out. They start to build up, binding to the ribosomes and altering protein synthesis. This puts a huge metabolic load on the sensory cells, which eventually leads to their deaths.”

    A major goal of Ricci’s lab has been to design and develop new aminoglycosides that kill bacteria but cannot squeeze through the channel. In order to do this, the researchers need to understand exactly how the aminoglycosides interact with the ribosomes so they can modify parts of the drug without weakening its bacteria-killing properties.

    Defrosting interactions

    The best way to reach this understanding, researchers have found, is through a technique called X-ray crystallography. In X-ray crystallography, researchers use the patterns formed when a beam of X-rays scatters off a crystal sample to form a 3D model of how its atoms and molecules are arranged. This technique allows researchers to observe how a drug binds to a ribosome.

    While the key interactions in these processes happen at body temperature, around 37 degrees Celsius, X-ray crystallography usually has to be done at extremely low, or cryogenic, temperatures, around minus 180 degrees Celsius. This leads to gaps in the data, obscuring tiny details that could greatly inform future experiments.

    “Our bodies are warm, so the important biology is happening at body temperature,” DeMirci said, “but in crystallography everything is frozen. When you cool these processes down, you miss out on thermal fluctuations, tiny movements that could change your understanding of how the drugs and ribosomes are behaving.”

    In order to design better antibiotics, they need to get as close a view as they can of this interaction happening under physiological conditions. At the LCLS, using a technique called serial femtosecond crystallography, DeMirci is able to catch the intricate waltz of the drugs and ribosomes at room temperature. Rather than freeze the ribosome crystals, the researchers suspend them in ‘mother liquor,’ a special chemical solution they were grown in that keeps them stable, so they are “swimming happily, still wiggling and fluctuating,” he says.

    The crystals travel from a reservoir to the interaction region through a single capillary, like a garden hose. Once in the interaction region, the crystals are zapped with a beam of X-rays from the LCLS, which scatters off of them into a detector and provides the researchers with patterns they can use to build detailed 3D models of the ribosome before and after they’ve bound with the drugs. They then use these models to piece together a simulation of the interaction.

    4
    At LCLS, crystallized ribosomes travel through a capillary into the interaction region, where they are zapped with a beam of X-rays. The X-rays scatter off the crystals into a detector, providing the researchers with patterns they can use to build detailed 3D models of interactions between the drug and ribosome. (Greg Stewart/SLAC National Accelerator Laboratory)

    Uncovering hidden wiggles

    To demonstrate their technique, the researchers imaged modified and unmodified drugs binding to ribosomes at both cryogenic and room temperatures to see if they could catch any differences. They found that the drug molecules were less flexible at cryogenic temperatures: Tiny wiggles essential to a better understanding of their interactions with ribosomes were frozen in place.

    “Despite the fact that we’ve recorded hundreds of thousands of structures of ribosomal interactions, less than a handful of new-generation drugs have been designed based on these cryogenic structures,” DeMirci said. “That’s because every small interaction makes a huge difference, even a single hydrogen bond.”

    With the images taken at room temperature, Ricci’s group identified a site where the drug could be modified without altering its effectiveness.

    “We now have some idea that when the drug binds with the ribosome, a global change occurs in the ribosome that might actually be important for the function of the antibiotic and the sensitivity of the ribosome,” Ricci said.

    Refining the jigsaw pieces

    In the next phase of experiments, DeMirci hopes to design a setup in which the antibiotics aren’t introduced until the last second before the ribosome is imaged so that they can watch as it binds to the ribosome, rather than just taking images before and after.

    Up to this point, Ricci said, his group had been doing drug synthesis with very little information or insight into how the antibiotic interacts with the ribosome.

    “What this paper and overall collaboration allow is a direct investigation of the drug-ribosome interaction,” he said. “It’s like having more defined pieces to the jigsaw puzzle. You don’t have to guess about what’s happening.”

    Developing antibiotics that can fight off drug-resistant bacteria with minimal side effects is essential because the rise of antibiotic resistant strains is currently the biggest threat to modern medicine, DeMirci said.

    “Every year more than a million people die from tuberculosis and nearly half a million are HIV positive,” he said. “People don’t usually die from HIV or cancer, they die because their immune system is suppressed and they can’t fight off bacterial infections. That’s when you need antibiotics. But what if you don’t have one that’s effective against the resistant strains? That’s exactly what’s happening right now. This research can help us make informed decisions when designing the next generation of drugs.”

    The research team included scientists from LCLS; SSRL; SLAC’s Biosciences Division; the Stanford PULSE Institute; and the Stanford School of Medicine.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.

     
  • richardmitnick 10:24 am on July 31, 2017 Permalink | Reply
    Tags: , , , , Ribosomes,   

    From HMS: “Making the Makers” 

    Harvard University

    Harvard University

    Harvard Medical School

    Harvard Medical School

    July 21, 2017
    KEVIN JIANG

    1
    Rendering of the structure of the eukaryotic ribosome. Ribosomal RNA is represented as a grey tube. Proteins are shown in blue, orange and red. Image: Wikimedia Commons.

    Every living cell, whether a single bacterium or a human neuron, is a biological system as dynamic and complex as any city. Contained within cells are walls, highways, power plants, libraries, recycling centers and much more, all working together in unison to ensure the continuation of life.

    The vast majority of these myriad structures are made of and made by proteins, and those proteins are made by one uniquely important molecular machine, the ribosome.

    In a new study published in Nature on July 20, a team led by Johan Paulsson, professor of systems biology at Harvard Medical School, now reveals the likely origin of several previously mysterious characteristics of the ribosome.

    They mathematically demonstrated that ribosomes are precisely structured to produce additional ribosomes as quickly as possible, in order to support efficient cell growth and division.

    The study’s theoretical predictions accurately reflect observed large-scale features—revealing why are ribosomes made of an unusually large number of small, uniformly sized proteins and a few strands of RNA that vary greatly in size—and provide perspective on the evolution of an exceptional molecular machine.

    “The ribosome is one of the most important molecular complexes in all of life, and it’s been studied across scientific disciplines for decades,” Paulsson said.

    “I was always puzzled by the fact that it seemed like we could explain its finer details, but ribosomes have these bizarre features that have not often been addressed, or if so in an unsatisfying way,” he said.

    Mysterious features

    2
    Atomic structure of a ribosome subunit from an archaea, a type of microorganism. Proteins are shown in blue and RNA chains in orange and yellow. Animation: Wikimedia Commons/David Goodsell.

    Although scientists have unlocked how ribosomes turn genetic information into proteins at atomic resolution, revealing a molecular machine finely tuned for accuracy, speed and control, it hasn’t been clear what advantages lay in its several large-scale features.

    Ribosomes are composed of a puzzlingly large number of different structural proteins—anywhere from 55 to 80, depending on organism type. These proteins are not just more numerous than expected, they are unusually short and uniform in length. Ribosomes are also composed of two to three strands of RNA, which account for up to 70 percent of the total mass of the ribosome.

    “Without understanding why collective features exist, it is a bit like looking at a forest and understanding how chloroplasts and photosynthesis work, and not being able to explain why there are trees instead of grass,” Paulsson said.

    So Paulsson and his collaborators Shlomi Reuveni, an HMS postdoctoral fellow, and Måns Ehrenberg of Uppsala University in Sweden, decided to look at the ribosome in a different light.

    “Our breakthrough came by zooming out from the atomic and looking at the ribosome from a different perspective,” Reuveni said. “We didn’t think of the ribosome as a machine that produces proteins, but rather as the product of the protein production process.”

    Forest for the trees

    For a cell to divide, it must have two full sets of ribosomes to make all the proteins that the daughter cells will need. The speed at which ribosomes can make themselves, therefore, places a hard limit on how fast cell division occurs. Paulsson and his colleagues devised theoretical mathematical models for what the ribosome’s features should look like if speed was the primary selective pressure that drove its evolution.

    The team calculated that distributing the task of making a new ribosome among many ribosomes—each making a small piece of the final product—can increase the rate of production by as much as 30 percent, since each new ribosome helps make more ribosomes as soon as they are created, accelerating the process.

    This represents an enormous advantage for cells that need to divide quickly, such as bacteria. However, the protein production process takes time to initiate, and this overhead cost limits the number of proteins that a ribosome can be made of, according to the math.

    The team’s models predicted that, for maximum self-production efficacy, a ribosome should be made of between 40 and 80 proteins. Each of these proteins should be around three times smaller than an average cellular protein, and they should all be roughly similar in size.

    It turns out that the researchers’ theory, developed completely independently of the laboratory, accurately reflects the observed protein composition of the ribosome.

    “An analogy for our findings would be to think of ribosomes not as a group of carpenters who merely build a lot of houses, but as carpenters who also build other carpenters,” Paulsson said. “There is then an incentive to divide the job into many small pieces that can be done in parallel to more quickly assemble another complete carpenter to help in the process.”

    Theory and reality

    Paulsson and his colleagues also examined ribosomal RNA, which act as a structural component and carry out the ribosome’s enzymatic activity of linking amino acids together into proteins.

    Their analysis showed that, the more RNA a ribosome is made of, the more rapidly it can be produced. This is because cells can make RNA orders of magnitude faster than protein. Thus, while RNA enzymes are thought to be less efficient than protein enzymes, ribosomes have enormous pressure to use as much RNA as possible to maximize the rate at which more ribosomes can be made.

    “Any place the ribosome can get away with using RNA, it should use it because self-production speed can essentially be doubled or tripled,” Paulsson said. “Even if RNA were inferior compared to protein for enzymatic function, there is still a great advantage to using RNA if a cell is trying to produce ribosomes as fast as possible.”

    This observation was predicted to hold primarily for self-producing ribosomes, according to the team. Most other structures in the cell do not self-produce and can sacrifice production speed for the stability and efficacy provided by using protein instead of RNA.

    Taken together, the team’s theory accurately predicts large-scale features of the ribosome that are seen across domains of life. It explains why the fastest growing organisms, such as bacteria, have the shortest ribosomal proteins and the greatest amounts of RNA. At the opposite end of the spectrum are mitochondria—the power plants of eukaryotic cells, which are thought to have once been bacteria that entered a permanent symbiotic state. Mitochondria have their own ribosomes that do not produce themselves. Without this pressure, mitochondrial ribosomes are indeed made of larger proteins and far less RNA than cellular ribosomes.

    “When we started this project, we didn’t have a long list of features that we tried to explain through theory,” Reuveni said. “We started with the theory, and certain features emerged. When we looked at data to compare with what our math predicted, we found in most cases that they matched what is seen in nature.”

    Rather than being mere relics of an evolutionary past, the unusual features of ribosomes thus seem to reflect an additional layer of functional optimization acting on collective properties of its parts, the team writes.

    “While this study is basic science, we are addressing something that is shared by all life,” Paulsson said. “It is important that we understand where the constraints on structure and function come from, because like much of basic science, it is unpredictable what the consequences of new knowledge can unlock in the future.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    HMS campus

    Established in 1782, Harvard Medical School began with a handful of students and a faculty of three. The first classes were held in Harvard Hall in Cambridge, long before the school’s iconic quadrangle was built in Boston. With each passing decade, the school’s faculty and trainees amassed knowledge and influence, shaping medicine in the United States and beyond. Some community members—and their accomplishments—have assumed the status of legend. We invite you to access the following resources to explore Harvard Medical School’s rich history.

    Harvard University campus

    Harvard is the oldest institution of higher education in the United States, established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. It was named after the College’s first benefactor, the young minister John Harvard of Charlestown, who upon his death in 1638 left his library and half his estate to the institution. A statue of John Harvard stands today in front of University Hall in Harvard Yard, and is perhaps the University’s best known landmark.

    Harvard University has 12 degree-granting Schools in addition to the Radcliffe Institute for Advanced Study. The University has grown from nine students with a single master to an enrollment of more than 20,000 degree candidates including undergraduate, graduate, and professional students. There are more than 360,000 living alumni in the U.S. and over 190 other countries.

     
  • richardmitnick 9:41 pm on January 15, 2017 Permalink | Reply
    Tags: , , , , ELSI - Earth-Life Science Institute, EON - ELSI Origins Network, LUCA - the Last Universal Common Ancestor of Life on Earth, , , Ribosomes,   

    From Many Worlds: “Messy Chemistry, Evolving Rocks, and the Origin of Life” 

    NASA NExSS bloc

    NASA NExSS

    Many Worlds

    Many Words icon

    2017-01-15
    Marc Kaufman

    1
    Ribosomes are life’s oldest and most universal assembly of molecules. Today’s ribosome converts genetic information (RNA) into proteins that carry out various functions in an organism. A growing number of scientists are exploring how earliest components of life such as the ribosome came to be. They’re making surprising progress, but the going remains tough. No image credit.

    Noted synthetic life researcher Steven Benner of Foundation for Applied Molecular Evolution is fond of pointing out that gooey tars are the end product of too many experiments in his field. His widely-held view is that the tars, made out of chemicals known to be important in the origin of life, are nonetheless a dead end to be avoided when trying to work out how life began.

    But in the changing world of origins of life research, others are asking whether those messy tars might not be a breeding ground for the origin of life, rather than an obstacle to it.

    One of those is chemist and astrobiologist Irena Mamajanov of the Earth-Life Science Institute (ELSI) in Tokyo. As she recently explained during an institute symposium, scientists know that tar-like substances were present on early Earth, and that she and her colleagues are now aggressively studying their potential role in the prebiotic chemical transformations that ultimately allowed life to emerge out of non-life.

    “We call what we do messy chemistry, and we think it can help shed light on some important processes that make life possible.”

    2
    Irena Mamajanov of the Earth-Life Science Institute (ELSI) in Tokyo was the science lead for a just completed symposium on emerging approaches to the origin of life question.

    It stands to reason that the gunky tar played a role, she said, because tars allow some essential processes to occur: They can concentrate compounds, it can encapsulate them, and they could provide a kind of primitive (messy) scaffolding that could eventually evolve into the essential backbones of a living entity.

    “Scientists in the field have tended to think of the origin of life as a process going from simple to more complex, but we think it may have gone from very complex — messy — to more structured.”

    Mamajanov is part of an unusual group gathered at (ELSI), a relatively new site on the campus of the Tokyo Institute of Technology for origin of life study with a mandate to be interdisciplinary and to think big and outside the box.

    ELSI just completed its fifth annual symposium, and it brought together researchers from a wide range of fields to share their research on what might have led to the emergence of life. And being so interdisciplinary, the ELSI gathering was anything but straight and narrow itself.

    There was talk of the “evolution” of prebiotic compounds; of how the same universal 30 to 50 genes can be found in all living things from bacteria to us; of the possibility that the genomes of currently alive microbes surviving in extreme environments provide a window into the very earliest life; and even that evolutionary biology suggests that life on other Earth-like planets may well have evolved to form rather familiar creatures.

    Except for that last subject, the focus was very much on ways to identify the last universal common ancestor (LUCA), and what about Earth made life possible and what about life changed Earth.

    Scientific interest in the origin of life on Earth (and potentially elsewhere) tends to wax and wane, in large part because the problem is so endlessly complex. It’s one of the biggest questions in science, but some say that it will never be fully answered.

    But there has been a relatively recent upsurge in attention being paid and in funding for origin of life researchers.

    The Japanese government gave $100 million to start and operate ELSI, the Simons Foundation has donated another $100 million for an origins of life institute at Harvard, the Templeton Foundation has made numerous origin of life grants and, as it has for years, the NASA Astrobiology Institute has funded researchers. Some of the findings and theories are most intriguing and represent a break of sorts from the past.

    For some decades now, the origins of life field has been pretty sharply divided. One group holds that life began when metabolism (a small set of reactions able to harness and transform energy ) arose spontaneously; others maintain that it was the ability of a chemical system to replicate itself (the RNA world) that was the turning point. Metabolism First versus the RNA First, plus some lower-profile theories.

    In keeping with its goal of bringing scientists and disciplines together and to avoid as much origin-of-life dogma as possible, Mamajanov sees their “messy chemistry” approach as a third way and a more non-confrontational approach. It’s not a model for how life began per se, but one of many new approaches designed to shed light and collect data about those myriad processes.

    “This division in the field is hurting science because people are not talking to each other ,” she said. “By design we’re not in one camp or another.”

    3
    Loren Williams of Georgia tech

    Another speaker who exemplified that approach was Loren Williams of Georgia Tech, a biochemist whose lab studies the genetic makeup of those universal 30 to 50 ribosomes (a complex molecule made of RNA molecules and proteins that form a factory for protein synthesis in cells.) He was principal investigator for the NASA Astrobiology Institute’s Georgia Tech Center for Ribosome Adaptation and Evolution from 2009-2014.

    His goal is to collect hard data on these most common genes, with the inference that they are the oldest and closest to LUCA.

    “What becomes quickly clear is that the models of the origin of life don’t fit the data,” he said. “What the RNA model predicts, for instance, is totally disconnected from this data. So what happens with this disconnect? The modelers throw away the data. They say it doesn’t relate. Instead, I ignore the models.”

    A primary conclusion of his work is that early molecules — rather like many symbiotic relationships in nature today — need each other to survive. He gave the current day example of the fig wasp, which spends its larval stage in a fig, then serves as a pollinator for the tree, and then survives on the fruit that appears.

    He sees a parallel “mutualism” in the ribosomes he studies. “RNA is made by protein; all protein is made by RNA,” he said. It’s such a powerful concept for him that he wonders if “mutualism” doesn’t define a living system from the non-living.

    4
    These stromatolites, wavelike patterns created by bacteria embedded in sediment, are 3.7 billion years old and may represent the oldest life on the planet. Photo by Allen Nutman

    5
    Stromalites, sedimentary structures produced by microorganisms, today at Shark Bay, Australia. Remarkably, the lifeform has survived through billions of years of radical transformation on Earth, catastrophes and ever-changing ecologies.

    A consistent theme of the conference was that life emerged from the geochemistry present in early Earth. It’s an unavoidable truth that leads down some intriguing pathways.

    As planetary scientist Marc Hirschmann of the University of Minnesota reported at the gathering, the Earth actually has far less carbon, oxygen, nitrogen and other elements essential for life than the sun, than most asteroids, than even intersellar space.

    Since Earth was initially formed with the same galactic chemistry as those other bodies and arenas, Hirschmann said, the story of how the Earth was formed is one of losing substantial amounts of those elements rather than, as is commonly thought, by gaining them.

    The logic of this dynamic raises the question of how much of those elements does a planet have to lose, or can lose, to be considered habitable. And that in turn requires examination of how the Earth lost so much of its primordial inheritance — most likely from the impact that formed the moon, the resulting destruction of the early Earth atmosphere, and the later movement of the elements into the depths of the planet via plate tectonics. It’s all now considered part of the origins story.

    And as argued by Charley Lineweaver, a cosmologist with the Planetary Science Institute and the Australian National University, it has become increasingly difficult to contend that life on other planets is anything but abundant, especially now that we know that virtually all stars have planets orbiting them and that many billions of those planets will be the size of Earth.

    Other planets will have similar geochemical regimes and some will have undergone events that make their distribution of elements favorable for life. And as described by Eric Smith, an expert in complex systems at ELSI and the Santa Fe Institute, the logic of physics says that if life can emerge then it will.

    Any particular planetary life may not evolve beyond single cell lifeforms for a variety of reasons, but it will have emerged. The concept of the “origin of life” has taken on some very new meanings.

    6
    ELSI was created in 2012 after its founders won a World Premier International Research Center Initiative grant from the Japanese government. The WPI grant is awarded to institutes with a research vision to become globally competitive centers that can attract the best scientists from around the world to come work in Japan.

    The nature and aims of ELSI and its companion group the ELSI Origins Network (EON) strike me as part of the story. They break many molds.

    The creators of ELSI, both Japanese and from elsewhere, say that the institute is highly unusual for its welcome of non-Japanese faculty and students. They stay for years or months or even weeks as visitors.

    While ELSI is an government-funded institute with buildings, professors, researchers and a mission (to greatly enhance origin of life study in Japan), EON is a far-flung collection of top international origins scientists of many disciplines. Their home bases are places like Princeton’s Institute for Advanced Study, Harvard, Columbia, Dartmouth, Caltech and the University of Minnesota, among others in the U.S., Europe and Asia. NASA officials also play a supporting, but not financial, role.

    ELSI postdocs and other students live in Tokyo, while the EON fellows spend six months at ELSI and six months at home institutions. All of this is in the pursuit of scientific collaboration, exposing young scientists in one field related to origins to those in another, and generally adding to global knowledge about the sprawling subject of origins of life.

    Jim Cleaves, of ELSI and the Institute for Advanced Study, is the director of EON and an ambassador of sorts for its unusual mission. He, and others at the ELSI symposium, are eager to share their science and want young scientists interested in the origins of life to know there are many opportunities with ELSI and EON for research, study and visitorships on the Tokyo campus.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About Many Worlds

    There are many worlds out there waiting to fire your imagination.

    Marc Kaufman is an experienced journalist, having spent three decades at The Washington Post and The Philadelphia Inquirer, and is the author of two books on searching for life and planetary habitability. While the “Many Worlds” column is supported by the Lunar Planetary Institute/USRA and informed by NASA’s NExSS initiative, any opinions expressed are the author’s alone.

    This site is for everyone interested in the burgeoning field of exoplanet detection and research, from the general public to scientists in the field. It will present columns, news stories and in-depth features, as well as the work of guest writers.

    About NExSS

    The Nexus for Exoplanet System Science (NExSS) is a NASA research coordination network dedicated to the study of planetary habitability. The goals of NExSS are to investigate the diversity of exoplanets and to learn how their history, geology, and climate interact to create the conditions for life. NExSS investigators also strive to put planets into an architectural context — as solar systems built over the eons through dynamical processes and sculpted by stars. Based on our understanding of our own solar system and habitable planet Earth, researchers in the network aim to identify where habitable niches are most likely to occur, which planets are most likely to be habitable. Leveraging current NASA investments in research and missions, NExSS will accelerate the discovery and characterization of other potentially life-bearing worlds in the galaxy, using a systems science approach.
    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: