From The Cavendish Laboratory – Department of Physics At The University of Cambridge (UK): “Researchers devise a new path toward ‘quantum light’”
From The Cavendish Laboratory – Department of Physics
At
The University of Cambridge (UK)
2.2.23
Sarah Collins
sarah.collins@admin.cam.ac.uk
Credit: David Wall via Getty Images.
Researchers have theorized a new mechanism to generate high-energy ‘quantum light’, which could be used to investigate new properties of matter at the atomic scale.
The researchers, from the University of Cambridge, along with colleagues from the US, Israel and Austria, developed a theory describing a new state of light, which has controllable quantum properties over a broad range of frequencies, up as high as X-ray frequencies. Their results are reported in the journal Nature Physics [below].
The world we observe around us can be described according to the laws of classical physics, but once we observe things at an atomic scale, the strange world of quantum physics takes over. Imagine a basketball: observing it with the naked eye, the basketball behaves according to the laws of classical physics. But the atoms that make up the basketball behave according to quantum physics instead.
“Light is no exception: from sunlight to radio waves, it can mostly be described using classical physics,” said lead author Dr Andrea Pizzi, who carried out the research while based at Cambridge’s Cavendish Laboratory. “But at the micro and nanoscale so-called quantum fluctuations start playing a role and classical physics cannot account for them.”
Pizzi, who is currently based at Harvard University, worked with Ido Kaminer’s group at the Technion-Israel Institute of Technology and colleagues at MIT and the University of Vienna to develop a theory that predicts a new way of controlling the quantum nature of light.
“Quantum fluctuations make quantum light harder to study, but also more interesting: if correctly engineered, quantum fluctuations can be a resource,” said Pizzi. “Controlling the state of quantum light could enable new techniques in microscopy and quantum computation.”
One of the main techniques for generating light uses strong lasers. When a strong enough laser is pointed at a collection of emitters, it can rip some electrons away from the emitters and energize them. Eventually, some of these electrons recombine with the emitters they were extracted from, and the excess energy they absorbed is released as light. This process turns the low-frequency input light into high-frequency output radiation.
“The assumption has been that all these emitters are independent from one another, resulting in output light in which quantum fluctuations are pretty featureless,” said Pizzi. “We wanted to study a system where the emitters are not independent, but correlated: the state of one particle tells you something about the state of another. In this case, the output light starts behaving very differently, and its quantum fluctuations become highly structured, and potentially more useful.”
To solve this type of problem, known as a many body problem, the researchers used a combination of theoretical analysis and computer simulations, where the output light from a group of correlated emitters could be described using quantum physics.
The theory, whose development was led by Pizzi and Alexey Gorlach from the Technion, demonstrates that controllable quantum light can be generated by correlated emitters with a strong laser. The method generates high-energy output light, and could be used to engineer the quantum-optical structure of X-rays.
“We worked for months to get the equations cleaner and cleaner until we got to the point where we could describe the connection between the output light and the input correlations with just one compact equation. As a physicist, I find this beautiful,” said Pizzi. “Looking forward, we would like to collaborate with experimentalists to provide a validation of our predictions. On the theory side of things, our work suggests many-body systems as a resource for generating quantum light, a concept that we want to investigate more broadly, beyond the setup considered in this work.”
The research was supported in part by the Royal Society. Andrea Pizzi is a Junior Research Fellow at Trinity College, Cambridge.
See the full article here .
Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.
five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.
The Cavendish Laboratory is the Department of Physics at the University of Cambridge, and is part of the School of Physical Sciences. The laboratory was opened in 1874 on the New Museums Site as a laboratory for experimental physics and is named after the British chemist and physicist Henry Cavendish. The laboratory has had a huge influence on research in the disciplines of physics and biology.
As of 2019, 30 Cavendish researchers have won Nobel Prizes. Notable discoveries to have occurred at the Cavendish Laboratory include the discovery of the electron, neutron, and structure of DNA.
The Cavendish Laboratory was initially located on the New Museums Site, Free School Lane, in the centre of Cambridge. It is named after British chemist and physicist Henry Cavendish for contributions to science and his relative William Cavendish, 7th Duke of Devonshire, who served as chancellor of the university and donated funds for the construction of the laboratory.
Professor James Clerk Maxwell, the developer of electromagnetic theory, was a founder of the laboratory and the first Cavendish Professor of Physics. The Duke of Devonshire had given to Maxwell, as head of the laboratory, the manuscripts of Henry Cavendish’s unpublished Electrical Works. The editing and publishing of these was Maxwell’s main scientific work while he was at the laboratory. Cavendish’s work aroused Maxwell’s intense admiration and he decided to call the Laboratory (formerly known as the Devonshire Laboratory) the Cavendish Laboratory and thus to commemorate both the Duke and Henry Cavendish.
Physics
Several important early physics discoveries were made here, including the discovery of the electron by J.J. Thomson (1897); the Townsend discharge by John Sealy Townsend and the development of the cloud chamber by C.T.R. Wilson.
Ernest Rutherford became Director of the Cavendish Laboratory in 1919. Under his leadership the neutron was discovered by James Chadwick in 1932, and in the same year the first experiment to split the nucleus in a fully controlled manner was performed by students working under his direction; John Cockcroft and Ernest Walton.
Physical chemistry
Physical Chemistry (originally the department of Colloid Science led by Eric Rideal) had left the old Cavendish site, subsequently locating as the Department of Physical Chemistry (under RG Norrish) in the then new chemistry building with the Department of Chemistry (led by Lord Todd) in Lensfield Road: both chemistry departments merged in the 1980s.
Nuclear physics
In World War II the laboratory carried out research for the MAUD Committee, part of the British Tube Alloys project of research into the atomic bomb. Researchers included Nicholas Kemmer, Alan Nunn May, Anthony French, Samuel Curran and the French scientists including Lew Kowarski and Hans von Halban. Several transferred to Canada in 1943; the Montreal Laboratory and some later to the Chalk River Laboratories. The production of plutonium and neptunium by bombarding uranium-238 with neutrons was predicted in 1940 by two teams working independently: Egon Bretscher and Norman Feather at the Cavendish and Edwin M. McMillan and Philip Abelson at Berkeley Radiation Laboratory at The University of California-Berkeley.
Biology
The Cavendish Laboratory has had an important influence on biology, mainly through the application of X-ray crystallography to the study of structures of biological molecules. Francis Crick already worked in the Medical Research Council Unit, headed by Max Perutz and housed in the Cavendish Laboratory, when James Watson came from the United States and they made a breakthrough in discovering the structure of DNA. For their work while in the Cavendish Laboratory, they were jointly awarded the Nobel Prize in Physiology or Medicine in 1962, together with Maurice Wilkins of King’s College London (UK), himself a graduate of St. John’s College, Cambridge.
The discovery was made on 28 February 1953; the first Watson/Crick paper appeared in Nature on 25 April 1953. Sir Lawrence Bragg, the director of the Cavendish Laboratory, where Watson and Crick worked, gave a talk at Guy’s Hospital Medical School in London on Thursday 14 May 1953 which resulted in an article by Ritchie Calder in The News Chronicle of London, on Friday 15 May 1953, entitled Why You Are You. Nearer Secret of Life. The news reached readers of The New York Times the next day; Victor K. McElheny, in researching his biography, Watson and DNA: Making a Scientific Revolution, found a clipping of a six-paragraph New York Times article written from London and dated 16 May 1953 with the headline Form of `Life Unit’ in Cell Is Scanned. The article ran in an early edition and was then pulled to make space for news deemed more important. (The New York Times subsequently ran a longer article on 12 June 1953). The Cambridge University undergraduate newspaper Varsity also ran its own short article on the discovery on Saturday 30 May 1953. Bragg’s original announcement of the discovery at a Solvay Conference on proteins in Belgium on 8 April 1953 went unreported by the British press.
Sydney Brenner, Jack Dunitz, Dorothy Hodgkin, Leslie Orgel, and Beryl M. Oughton, were some of the first people in April 1953 to see the model of the structure of DNA, constructed by Crick and Watson; at the time they were working at The University of Oxford (UK)’s Chemistry Department. All were impressed by the new DNA model, especially Brenner who subsequently worked with Crick at Cambridge in the Cavendish Laboratory and the new Laboratory of Molecular Biology. According to the late Dr. Beryl Oughton, later Rimmer, they all travelled together in two cars once Dorothy Hodgkin announced to them that they were off to Cambridge to see the model of the structure of DNA. Orgel also later worked with Crick at The Salk Institute for Biological Studies.
The University of Cambridge (UK) [legally The Chancellor, Masters, and Scholars of the University of Cambridge] is a collegiate public research university in Cambridge, England. Founded in 1209 Cambridge is the second-oldest university in the English-speaking world and the world’s fourth-oldest surviving university. It grew out of an association of scholars who left the University of Oxford(UK) after a dispute with townsfolk. The two ancient universities share many common features and are often jointly referred to as “Oxbridge”.
Cambridge is formed from a variety of institutions which include 31 semi-autonomous constituent colleges and over 150 academic departments, faculties and other institutions organised into six schools. All the colleges are self-governing institutions within the university, each controlling its own membership and with its own internal structure and activities. All students are members of a college. Cambridge does not have a main campus and its colleges and central facilities are scattered throughout the city. Undergraduate teaching at Cambridge is organised around weekly small-group supervisions in the colleges – a feature unique to the Oxbridge system. These are complemented by classes, lectures, seminars, laboratory work and occasionally further supervisions provided by the central university faculties and departments. Postgraduate teaching is provided predominantly centrally.
Cambridge University Press a department of the university is the oldest university press in the world and currently the second largest university press in the world. Cambridge Assessment also a department of the university is one of the world’s leading examining bodies and provides assessment to over eight million learners globally every year. The university also operates eight cultural and scientific museums, including the Fitzwilliam Museum, as well as a botanic garden. Cambridge’s libraries – of which there are 116 – hold a total of around 16 million books, around nine million of which are in Cambridge University Library, a legal deposit library. The university is home to – but independent of – the Cambridge Union – the world’s oldest debating society. The university is closely linked to the development of the high-tech business cluster known as “Silicon Fe”. It is the central member of Cambridge University Health Partners, an academic health science centre based around the Cambridge Biomedical Campus.
By both endowment size and consolidated assets Cambridge is the wealthiest university in the United Kingdom. In the fiscal year ending 31 July 2019, the central university – excluding colleges – had a total income of £2.192 billion of which £592.4 million was from research grants and contracts. At the end of the same financial year the central university and colleges together possessed a combined endowment of over £7.1 billion and overall consolidated net assets (excluding “immaterial” historical assets) of over £12.5 billion. It is a member of numerous associations and forms part of the ‘golden triangle’ of English universities.
Cambridge has educated many notable alumni including eminent mathematicians; scientists; politicians; lawyers; philosophers; writers; actors; monarchs and other heads of state. As of October 2020 121 Nobel laureates; 11 Fields Medalists; 7 Turing Award winners; and 14 British prime ministers have been affiliated with Cambridge as students; alumni; faculty or research staff. University alumni have won 194 Olympic medals.
History
By the late 12th century the Cambridge area already had a scholarly and ecclesiastical reputation due to monks from the nearby bishopric church of Ely. However it was an incident at Oxford which is most likely to have led to the establishment of the university: three Oxford scholars were hanged by the town authorities for the death of a woman without consulting the ecclesiastical authorities who would normally take precedence (and pardon the scholars) in such a case; but were at that time in conflict with King John. Fearing more violence from the townsfolk scholars from the University of Oxford started to move away to cities such as Paris; Reading; and Cambridge. Subsequently enough scholars remained in Cambridge to form the nucleus of a new university when it had become safe enough for academia to resume at Oxford. In order to claim precedence it is common for Cambridge to trace its founding to the 1231 charter from Henry III granting it the right to discipline its own members (ius non-trahi extra) and an exemption from some taxes; Oxford was not granted similar rights until 1248.
A bull in 1233 from Pope Gregory IX gave graduates from Cambridge the right to teach “everywhere in Christendom”. After Cambridge was described as a studium generale in a letter from Pope Nicholas IV in 1290 and confirmed as such in a bull by Pope John XXII in 1318 it became common for researchers from other European medieval universities to visit Cambridge to study or to give lecture courses.
Foundation of the colleges
The colleges at the University of Cambridge were originally an incidental feature of the system. No college is as old as the university itself. The colleges were endowed fellowships of scholars. There were also institutions without endowments called hostels. The hostels were gradually absorbed by the colleges over the centuries; but they have left some traces, such as the name of Garret Hostel Lane.
Hugh Balsham, Bishop of Ely, founded Peterhouse – Cambridge’s first college in 1284. Many colleges were founded during the 14th and 15th centuries but colleges continued to be established until modern times. There was a gap of 204 years between the founding of Sidney Sussex in 1596 and that of Downing in 1800. The most recently established college is Robinson built in the late 1970s. However Homerton College only achieved full university college status in March 2010 making it the newest full college (it was previously an “Approved Society” affiliated with the university).
In medieval times many colleges were founded so that their members would pray for the souls of the founders and were often associated with chapels or abbeys. The colleges’ focus changed in 1536 with the Dissolution of the Monasteries. Henry VIII ordered the university to disband its Faculty of Canon Law and to stop teaching “scholastic philosophy”. In response, colleges changed their curricula away from canon law and towards the classics; the Bible; and mathematics.
Nearly a century later the university was at the centre of a Protestant schism. Many nobles, intellectuals and even commoners saw the ways of the Church of England as too similar to the Catholic Church and felt that it was used by the Crown to usurp the rightful powers of the counties. East Anglia was the centre of what became the Puritan movement. In Cambridge the movement was particularly strong at Emmanuel; St Catharine’s Hall; Sidney Sussex; and Christ’s College. They produced many “non-conformist” graduates who, greatly influenced by social position or preaching left for New England and especially the Massachusetts Bay Colony during the Great Migration decade of the 1630s. Oliver Cromwell, Parliamentary commander during the English Civil War and head of the English Commonwealth (1649–1660), attended Sidney Sussex.
Modern period
After the Cambridge University Act formalised the organisational structure of the university the study of many new subjects was introduced e.g. theology, history and modern languages. Resources necessary for new courses in the arts architecture and archaeology were donated by Viscount Fitzwilliam of Trinity College who also founded the Fitzwilliam Museum. In 1847 Prince Albert was elected Chancellor of the University of Cambridge after a close contest with the Earl of Powis. Albert used his position as Chancellor to campaign successfully for reformed and more modern university curricula, expanding the subjects taught beyond the traditional mathematics and classics to include modern history and the natural sciences. Between 1896 and 1902 Downing College sold part of its land to build the Downing Site with new scientific laboratories for anatomy, genetics, and Earth sciences. During the same period the New Museums Site was erected including the Cavendish Laboratory which has since moved to the West Cambridge Site and other departments for chemistry and medicine.
The University of Cambridge began to award PhD degrees in the first third of the 20th century. The first Cambridge PhD in mathematics was awarded in 1924.
In the First World War 13,878 members of the university served and 2,470 were killed. Teaching and the fees it earned came almost to a stop and severe financial difficulties followed. As a consequence the university first received systematic state support in 1919 and a Royal Commission appointed in 1920 recommended that the university (but not the colleges) should receive an annual grant. Following the Second World War the university saw a rapid expansion of student numbers and available places; this was partly due to the success and popularity gained by many Cambridge scientists.
Reply