Tagged: Red Giant Stars Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:38 am on July 16, 2019 Permalink | Reply
    Tags: , , , , , , Red Giant Stars   

    From NASA/ESA Hubble Telescope: “New Hubble Constant Measurement Adds to Mystery of Universe’s Expansion Rate” 

    NASA Hubble Banner

    NASA/ESA Hubble Telescope


    From NASA/ESA Hubble Telescope

    July 16, 2019

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4514
    villard@stsci.edu

    Louise Lerner
    University of Chicago, Chicago, Illinois
    773-702-8366
    louise@uchicago.edu

    1
    About This Image

    These galaxies are selected from a Hubble Space Telescope program to measure the expansion rate of the universe, called the Hubble constant. The value is calculated by comparing the galaxies’ distances to the apparent rate of recession away from Earth (due to the relativistic effects of expanding space).

    By comparing the apparent brightnesses of the galaxies’ red giant stars with nearby red giants, whose distances were measured with other methods, astronomers are able to determine how far away each of the host galaxies are. This is possible because red giants are reliable milepost markers because they all reach the same peak brightness in their late evolution. And, this can be used as a “standard candle” to calculate distance. Hubble’s exquisite sharpness and sensitivity allowed for red giants to be found in the stellar halos of the host galaxies.

    The red giants were searched for in the halos of the galaxies. The center row shows Hubble’s full field of view. The bottom row zooms even tighter into the Hubble fields. The red giants are identified by yellow circles. Credits: NASA, ESA, W. Freedman (University of Chicago), ESO, and the Digitized Sky Survey

    ________________________________________________________
    2
    About This Image: Credits: NASA, ESA, W. Freedman (University of Chicago), ESO, and the Digitized Sky Survey

    ________________________________________________________

    3

    Red Giant Stars Used as Milepost Markers

    Astronomers have made a new measurement of how fast the universe is expanding, using an entirely different kind of star than previous endeavors. The revised measurement, which comes from NASA’s Hubble Space Telescope, falls in the center of a hotly debated question in astrophysics that may lead to a new interpretation of the universe’s fundamental properties.

    Scientists have known for almost a century that the universe is expanding, meaning the distance between galaxies across the universe is becoming ever more vast every second. But exactly how fast space is stretching, a value known as the Hubble constant, has remained stubbornly elusive.

    Now, University of Chicago professor Wendy Freedman and colleagues have a new measurement for the rate of expansion in the modern universe, suggesting the space between galaxies is stretching faster than scientists would expect. Freedman’s is one of several recent studies that point to a nagging discrepancy between modern expansion measurements and predictions based on the universe as it was more than 13 billion years ago, as measured by the European Space Agency’s Planck satellite.

    ESA/Planck 2009 to 2013

    As more research points to a discrepancy between predictions and observations, scientists are considering whether they may need to come up with a new model for the underlying physics of the universe in order to explain it.

    “The Hubble constant is the cosmological parameter that sets the absolute scale, size and age of the universe; it is one of the most direct ways we have of quantifying how the universe evolves,” said Freedman. “The discrepancy that we saw before has not gone away, but this new evidence suggests that the jury is still out on whether there is an immediate and compelling reason to believe that there is something fundamentally flawed in our current model of the universe.”

    In a new paper accepted for publication in The Astrophysical Journal, Freedman and her team announced a new measurement of the Hubble constant using a kind of star known as a red giant. Their new observations, made using Hubble, indicate that the expansion rate for the nearby universe is just under 70 kilometers per second per megaparsec (km/sec/Mpc). One parsec is equivalent to 3.26 light-years distance.

    This measurement is slightly smaller than the value of 74 km/sec/Mpc recently reported by the Hubble SH0ES (Supernovae H0 for the Equation of State) team using Cepheid variables, which are stars that pulse at regular intervals that correspond to their peak brightness. This team, led by Adam Riess of the Johns Hopkins University and Space Telescope Science Institute, Baltimore, Maryland, recently reported refining their observations to the highest precision to date for their Cepheid distance measurement technique.

    How to Measure Expansion

    A central challenge in measuring the universe’s expansion rate is that it is very difficult to accurately calculate distances to distant objects.

    In 2001, Freedman led a team that used distant stars to make a landmark measurement of the Hubble constant. The Hubble Space Telescope Key Project team measured the value using Cepheid variables as distance markers. Their program concluded that the value of the Hubble constant for our universe was 72 km/sec/Mpc.

    But more recently, scientists took a very different approach: building a model based on the rippling structure of light left over from the big bang, which is called the Cosmic Microwave Background [CMB].

    CMB per ESA/Planck

    The Planck measurements allow scientists to predict how the early universe would likely have evolved into the expansion rate astronomers can measure today. Scientists calculated a value of 67.4 km/sec/Mpc, in significant disagreement with the rate of 74.0 km/sec/Mpc measured with Cepheid stars.

    Astronomers have looked for anything that might be causing the mismatch. “Naturally, questions arise as to whether the discrepancy is coming from some aspect that astronomers don’t yet understand about the stars we’re measuring, or whether our cosmological model of the universe is still incomplete,” Freedman said. “Or maybe both need to be improved upon.”

    Freedman’s team sought to check their results by establishing a new and entirely independent path to the Hubble constant using an entirely different kind of star.

    Certain stars end their lives as a very luminous kind of star called a red giant, a stage of evolution that our own Sun will experience billions of years from now. At a certain point, the star undergoes a catastrophic event called a helium flash, in which the temperature rises to about 100 million degrees and the structure of the star is rearranged, which ultimately dramatically decreases its luminosity. Astronomers can measure the apparent brightness of the red giant stars at this stage in different galaxies, and they can use this as a way to tell their distance.

    The Hubble constant is calculated by comparing distance values to the apparent recessional velocity of the target galaxies — that is, how fast galaxies seem to be moving away. The team’s calculations give a Hubble constant of 69.8 km/sec/Mpc — straddling the values derived by the Planck and Riess teams.

    “Our initial thought was that if there’s a problem to be resolved between the Cepheids and the Cosmic Microwave Background, then the red giant method can be the tie-breaker,” said Freedman.

    But the results do not appear to strongly favor one answer over the other say the researchers, although they align more closely with the Planck results.

    NASA’s upcoming mission, the Wide Field Infrared Survey Telescope (WFIRST), scheduled to launch in the mid-2020s, will enable astronomers to better explore the value of the Hubble constant across cosmic time.

    NASA/WFIRST

    WFIRST, with its Hubble-like resolution and 100 times greater view of the sky, will provide a wealth of new Type Ia supernovae, Cepheid variables, and red giant stars to fundamentally improve distance measurements to galaxies near and far.

    More links at the full article.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

     
  • richardmitnick 2:28 pm on January 12, 2019 Permalink | Reply
    Tags: Astronomers find signatures of a ‘messy’ star that made its companion go supernova, , , , , , It takes many astronomers and a wide variety of types of telescopes working together to understand transient cosmic phenomena, Red Giant Stars, SN 2015cp, , ,   

    From University of Washington: “Astronomers find signatures of a ‘messy’ star that made its companion go supernova” 

    U Washington

    From University of Washington

    January 10, 2019
    James Urton

    1
    An X-ray/infrared composite image of G299, a Type Ia supernova remnant in the Milky Way Galaxy approximately 16,000 light years away.NASA/Chandra X-ray Observatory/University of Texas/2MASS/University of Massachusetts/Caltech/NSF

    NASA/Chandra X-ray Telescope


    Caltech 2MASS Telescopes, a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center (IPAC) at Caltech, at the Whipple Observatory on Mt. Hopkins south of Tucson, AZ, Altitude 2,606 m (8,550 ft) and at the Cerro Tololo Inter-American Observatory at an altitude of 2200 meters near La Serena, Chile.

    Many stars explode as luminous supernovae when, swollen with age, they run out of fuel for nuclear fusion. But some stars can go supernova simply because they have a close and pesky companion star that, one day, perturbs its partner so much that it explodes.

    These latter events can happen in binary star systems, where two stars attempt to share dominion. While the exploding star gives off lots of evidence about its identity, astronomers must engage in detective work to learn about the errant companion that triggered the explosion.

    On Jan. 10 at the 2019 American Astronomical Society meeting in Seattle, an international team of astronomers announced that they have identified the type of companion star that made its partner in a binary system, a carbon-oxygen white dwarf star, explode. Through repeated observations of SN 2015cp, a supernova 545 million light years away, the team detected hydrogen-rich debris that the companion star had shed prior to the explosion.

    “The presence of debris means that the companion was either a red giant star or similar star that, prior to making its companion go supernova, had shed large amounts of material,” said University of Washington astronomer Melissa Graham, who presented the discovery and is lead author on the accompanying paper accepted for publication in The Astrophysical Journal.

    The supernova material smacked into this stellar litter at 10 percent the speed of light, causing it to glow with ultraviolet light that was detected by the Hubble Space Telescope and other observatories nearly two years after the initial explosion. By looking for evidence of debris impacts months or years after a supernova in a binary star system, the team believes that astronomers could determine whether the companion had been a messy red giant or a relatively neat and tidy star.

    The team made this discovery as part of a wider study of a particular type of supernova known as a Type Ia supernova. These occur when a carbon-oxygen white dwarf star explodes suddenly due to activity of a binary companion. Carbon-oxygen white dwarfs are small, dense and — for stars — quite stable. They form from the collapsed cores of larger stars and, if left undisturbed, can persist for billions of years.

    Type Ia supernovae have been used for cosmological studies because their consistent luminosity makes them ideal “cosmic lighthouses,” according to Graham. They’ve been used to estimate the expansion rate of the universe and served as indirect evidence for the existence of dark energy.

    2
    An image of SN 1994D (lower left), a Type Ia supernova detected in 1994 at the edge of galaxy NGC 4526 (center).NASA/ESA/The Hubble Key Project Team/The High-Z Supernova Search Team.

    NASA/ESA Hubble Telescope

    Yet scientists are not certain what kinds of companion stars could trigger a Type Ia event. Plenty of evidence indicates that, for most Type Ia supernovae, the companion was likely another carbon-oxygen white dwarf, which would leave no hydrogen-rich debris in the aftermath. Yet theoretical models have shown that stars like red giants could also trigger a Type Ia supernova, which could leave hydrogen-rich debris that would be hit by the explosion. Out of the thousands of Type Ia supernovae studied to date, only a small fraction were later observed impacting hydrogen-rich material shed by a companion star. Prior observations of at least two Type Ia supernovae detected glowing debris months after the explosion. But scientists weren’t sure if those events were isolated occurrences, or signs that Type Ia supernovae could have many different kinds of companion stars.

    “All of the science to date that has been done using Type Ia supernovae, including research on dark energy and the expansion of the universe, rests on the assumption that we know reasonably well what these ‘cosmic lighthouses’ are and how they work,” said Graham. “It is very important to understand how these events are triggered, and whether only a subset of Type Ia events should be used for certain cosmology studies.”

    The team used Hubble Space Telescope observations to look for ultraviolet emissions from 70 Type Ia supernovae approximately one to three years following the initial explosion.

    “By looking years after the initial event, we were searching for signs of shocked material that contained hydrogen, which would indicate that the companion was something other than another carbon-oxygen white dwarf,” said Graham.

    In the case of SN 2015cp, a supernova first detected in 2015, the scientists found what they were searching for. In 2017, 686 days after the supernova exploded, Hubble picked up an ultraviolet glow of debris. This debris was far from the supernova source — at least 100 billion kilometers, or 62 billion miles, away. For reference, Pluto’s orbit takes it a maximum of 7.4 billion kilometers from our sun.

    3
    In 2017, 686 days after the initial explosion, the Hubble Space Telescope recorded an ultraviolet emission (blue circle) from SN 2015cp, which was caused by supernova material impacting hydrogen-rich material previously shed by a companion star. Yellow circles indicate cosmic ray strikes, which are unrelated to the supernova. NASA/Hubble Space Telescope/Graham et al. 2019.

    By comparing SN 2015cp to the other Type Ia supernovae in their survey, the researchers estimate that no more than 6 percent of Type Ia supernovae have such a litterbug companion. Repeated, detailed observations of other Type Ia events would help cement these estimates, Graham said.

    The Hubble Space Telescope was essential for detecting the ultraviolet signature of the companion star’s debris for SN 2015cp. In the fall of 2017, the researchers arranged for additional observations of SN 2015cp by the W.M. Keck Observatory in Hawaii, the Karl G. Jansky Very Large Array in New Mexico, the European Southern Observatory’s Very Large Telescope and NASA’s Neil Gehrels Swift Observatory, among others. These data proved crucial in confirming the presence of hydrogen and are presented in a companion paper lead by Chelsea Harris, a research associate at Michigan State University.

    Keck Observatory, Maunakea, Hawaii, USA.4,207 m (13,802 ft), above sea level,

    NRAO/Karl V Jansky Expanded Very Large Array, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo, with an elevation of 2,635 metres (8,645 ft) above sea level,

    NASA Neil Gehrels Swift Observatory

    “The discovery and follow-up of SN 2015cp’s emission really demonstrates how it takes many astronomers, and a wide variety of types of telescopes, working together to understand transient cosmic phenomena,” said Graham. “It is also a perfect example of the role of serendipity in astronomical studies: If Hubble had looked at SN 2015cp just a month or two later, we wouldn’t have seen anything.”

    Graham is also a senior fellow with the UW’s DIRAC Institute and a science analyst with the Large Synoptic Survey Telescope, or LSST.

    LSST telescope, currently under construction at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes, altitude 2,663 m (8,737 ft),

    “In the future, as a part of its regularly scheduled observations, the LSST will automatically detect optical emissions similar to SN 2015cp — from hydrogen impacted by material from Type Ia supernovae,” said Graham said. “It’s going to make my job so much easier!”

    Co-authors are Harris; Peter Nugent at the University of California, Berkeley and the Lawrence Berkeley National Laboratory; Kate Maguire at Queen’s University Belfast; Mark Sullivan and Mathew Smith at the University of Southampton; Stefano Valenti at the University of California, Davis; Ariel Goobar at Stockholm University; Ori Fox at the Space Telescope Science Institute; Ken Shen, Tom Brink and Alex Filippenko at the University of California, Berkeley; Patrick Kelly at the University of Minnesota; and Curtis McCully at the University of California, Santa Barbara and the Las Cumbres Observatory. The research was funded by the National Science Foundation, NASA, the European Research Council and the U.K.’s Science and Technology Facilities Council.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    u-washington-campus
    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.
    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

     
  • richardmitnick 2:52 pm on August 30, 2018 Permalink | Reply
    Tags: , , , , Nothing left but hot rocky ashes, Red Giant Stars, Which Worlds Will Survive When The Sun Dies?   

    From Ethan Siegel: “Which Worlds Will Survive When The Sun Dies?” 

    From Ethan Siegel
    Aug 30, 2018

    For the Pluto fans, another sad state of affairs: your favorite world won’t make it.

    1
    When our Sun runs out of fuel, it will become a red giant, followed by a planetary nebula with a white dwarf at the center. The Cat’s Eye nebula is a visually spectacular example of this potential fate, with the intricate, layered, asymmetrical shape of this particular one suggesting a binary companion. (NASA, ESA, HEIC, AND THE HUBBLE HERITAGE TEAM (STSCI/AURA); ACKNOWLEDGMENT: R. CORRADI (ISAAC NEWTON GROUP OF TELESCOPES, SPAIN) AND Z. TSVETANOV (NASA))

    NASA/ESA Hubble Telescope

    Isaac Newton Group telescopes, at Roque de los Muchachos Observatory on La Palma in the Canary Islands, Spain, at an altitude of 2400m

    Nothing on Earth lasts forever, and that’s a truth that even extends to all the objects we can see in our sky. The Sun, giver of light and heat to every world in our Solar System, shines on borrowed time. Currently fusing hydrogen into helium in its core, the Sun gets its energy by converting small amounts of mass into pure energy — via Einstein’s E = mc² — with every nuclear reaction that takes place.

    This cannot last forever, as the core’s fuel is finite. The Sun has already lost the equivalent of the mass of Saturn through this process, and in 5-to-7 billion years, will run out of its core fuel entirely. After swelling into a red giant, it will eventually blow off its outer layers, creating a planetary nebula, with its core contracting down to a white dwarf. It will be a beautiful, spectacular sight to an outsider. But inside our Solar System, it will lead to catastrophe everywhere.

    White dwarf star by Miriam Nielsen

    3
    The Sun, today, is very small compared to giants, but will grow to the size of Arcturus in its red giant phase, some 250 times its current size. A monstrous supergiant like Antares will be forever beyond our Sun’s reach. (ENGLISH WIKIPEDIA AUTHOR SAKURAMBO)

    The first thing to know about a red giant is that it’s huge. We think of our Sun as large: some 1.4 million kilometers across and weighing in at 300,000 times the mass of our Earth, but that size is nothing compared to a red giant. With the same mass, our Sun will grow to over 100 times its present size, engulfing both Mercury and Venus. Earth will likely be pushed out as the Sun expands and loses mass, and although it may be engulfed, scientists are split about the possibility of whether it will survive or not [even if Earth survives, it will be uninhabitable, fried].

    4
    The Earth, if calculations are correct, should not be engulfed by the Sun when it swells into a red giant. It should, however, become very, very hot, and will experience catastrophic changes [I think I just said that]. (WIKIMEDIA COMMONS USER FSGREGS)

    If it does, though, both Earth and Mars will become charred, barren worlds. The oceans and atmospheres of these planets will boil and be stripped away, and we will become airless, roasting worlds just like Mercury is today. These effects will extend far beyond the inner, rocky worlds of the Solar System.

    You see, red giants aren’t just large, they’re still many thousands of degrees, while shining thousands of times as luminous as our Sun does today. Much of the ejected material — between a third and half the mass of the Sun — will make its way at extreme temperatures into the outer portions of our Solar System. The asteroids will melt, losing all of their volatile components, leaving only their rocky nuclei behind.

    But the gas giant worlds are massive enough to continue to hold onto their gas envelopes, perhaps destined to even grow as the Sun enters this phase. The planets we find around red giant stars today, for example, are all gas giants and are much larger than even Jupiter is. This may be a selection effect — meaning that we see these worlds because they’re the easiest type to see — but it may also be something that will inevitably occur.

    As huge amounts of mass leave the Sun, they will encounter these giant worlds, all of which have large gravitational fields. Much of the matter that encounters these atmospheres will make a cosmic “splat,” causing the size and masses of these worlds to increase. When all is said and done, Jupiter, Saturn, Uranus and Neptune may all be larger and more massive than they are today.

    5
    While a visual inspection shows a large gap between Earth-size and Neptune-size worlds, the transformation of the Sun into a red giant will increase this disparity. Earth and Mars will lose their atmospheres and potentially even parts of their surfaces, while the gas giants will grow, accreting more and more matter as the Sun expels its outer layers. (LUNAR AND PLANETARY INSTITUTE)

    But the Sun will be so hot and so bright that much of the outer Solar System will be absolutely destroyed. Each of the gas giants has a ringed system; although Saturn’s is the most famous, all four of them have rings. These rings are mostly made of various ices, such as water ice, methane ice, and carbon dioxide. With the extreme energies given off by the Sun, not only will these ices melt/boil away, but the individual molecules will be so energetic that they will be ejected from the Solar System.

    6
    The rings of Neptune, taken with Voyager 2’s wide-angle camera and overexposed. You can see how continuous the rings are in this photo. The rings of Neptune, like the rings of all the gas giants, are made of volatile, icy compounds, and will melt/boil/sublimate away when the Sun becomes a red giant. (NASA / JPL)

    Ditto for water-rich moons around these worlds. Europa’s frozen surface with water-ice beneath it will boil away completely. Same deal for Enceladus, which should see the entire world except for the rock-and-metal core evaporate. Practically all of the moons around Jupiter, Saturn, Uranus and Neptune will see a significant reduction in size, as their atmospheres boil away, their outer layers melt and disappear, and only the rock-and-metal cores of these satellite worlds remain. Some moons, if made completely of volatiles, may wind up extinguished entirely.

    Even the largest, best-known objects from the Kuiper belt aren’t immune to this trouble. Even at their tremendous distances, worlds like Triton, Eris, and Pluto will receive more than four times the energy at their surface that Earth receives today. Their atmospheres and surfaces, currently laden with various types of ices and likely subsurface oceans, will also boil away entirely. When the Sun becomes a red giant and the inner worlds become charred and/or engulfed by the Sun, worlds like Pluto won’t become planets or potentially habitable; they’ll fry. They’ll become a barren core of rock-and-metal, like miniature versions of how Mercury is today.

    7
    The geologic structure beneath the surface of Sputnik Planitia. On Pluto, it is possible that the thinned crust is overlying a liquid water ocean. When the Sun becomes a red giant, all of the outer layers will sublimate and boil away, leaving only the metal/rock core behind. (JAMES T. KEANE)

    For a few tens or hundreds of millions of years, there may be hope for more temperature conditions out in the outer Kuiper belt: about 80-to-100 Earth-Sun distances away. For this brief amount of cosmic time, objects at that distance will receive roughly the same amount of sunlight that Earth does at its surface. It takes a lot more than sunlight to make a habitable world, though; you need enough mass, the right size, and the right ingredients. The Moon and Earth fare very differently for habitability despite receiving practically identical amounts of energy-per-square-meter.

    8
    The orbits of the known Sednoids, along with the proposed Planet Nine. Even with the Sun as a red giant, Planet Nine — whose existence is very controversial to begin with — will not reach sufficient temperatures to become potentially habitable. The other worlds in the Kuiper belt, even the ones at the right distances, are far too small to be interesting from that perspective, too. (K. BATYGIN AND M. E. BROWN ASTRONOM. J. 151, 22 (2016), WITH MODIFICATIONS/ADDITIONS BY E. SIEGEL)

    However, even a hypothetical Planet Nine would be too far away to become habitable, while everything at the right distance is far too small to possibly house life. The Solar System will become a melted catastrophe, with only the stripped cores of planets, moons, and other objects remaining. The gas giants may swell and grow, losing their rings and many of their satellites, but everything else will literally be nothing more than a metal-rich hunk of junk. If you were hoping that these frozen, outer worlds in our Solar System would finally get their chance to shine, you’re in for a big disappointment. When the Sun reaches the end of its life, those worlds, like our hopes for survival, will see everything meaningful about them melt away.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    “Starts With A Bang! is a blog/video blog about cosmology, physics, astronomy, and anything else I find interesting enough to write about. I am a firm believer that the highest good in life is learning, and the greatest evil is willful ignorance. The goal of everything on this site is to help inform you about our world, how we came to be here, and to understand how it all works. As I write these pages for you, I hope to not only explain to you what we know, think, and believe, but how we know it, and why we draw the conclusions we do. It is my hope that you find this interesting, informative, and accessible,” says Ethan

     
  • richardmitnick 9:36 am on March 12, 2018 Permalink | Reply
    Tags: , , , , , Carbon-based molecules are a by-product of red giants, Circumstellar envelopes, , , , Red Giant Stars,   

    From University of Hawaii Manoa via COSMOS: “Complex organic compounds from dying stars could be life precursors” 

    U Hawaii

    University of Hawaii Manoa

    COSMOS

    12 March 2018
    Richard A. Lovett

    Lab experiments reveal carbon-based molecules are a by-product of red giants.

    1
    A red giant star – the font, perhaps, of life… QAI Publishing/UIG via Getty Images

    Laboratory experiments designed to recreate conditions around carbon-rich red giant stars have revealed that startlingly complex organic compounds can form in the “circumstellar envelopes” created by stellar winds blowing off from them.

    The carbon is present because nuclear reactions in these dying stars have progressed to the point that much of their initial complement of hydrogen and helium has been converted into heavier elements such as carbon.

    “There is a lot of carbon in these circumstellar envelopes,” says Ralf Kaiser, a physical chemist at the University of Hawaii at Manoa, US.

    In research published in the journal Nature Astronomy, a team led by Kaiser used a high-temperature chemical reactor to simulate conditions inside these circumstellar envelopes.

    The goal, he says, is to demonstrate how complex compounds can be assembled a couple of carbon atoms at a time at temperatures of up to about 1200 degrees Celsius. Previous research found that a host of organic chemicals can indeed be formed, but the new study pushed the process farther, demonstrating that it is possible to create chemicals at least as complex as pyrene, a 16-carbon compound with a structure like four fused benzene rings.

    So far, pyrene is the most complex molecule constructed in this manner, but Kaiser thinks that it might be just the beginning. “We hope when we do further experiments that this can be extended,” he says.

    What this means, he explains, is that circumstellar envelopes might be able to create molecules with 60 or 70 carbons, or even nanoparticle-sized sheets of graphene, a material composed of a larger array of fused rings.

    Such materials, he says, can act as building blocks on which other molecules, such as water, methane, methanol, carbon monoxide, and ammonia can condense as they move away from the star and cool to temperatures as low as minu-263 degrees Celsius. When the resulting chemical stew is exposed to ionising radiation either from nearby sources or galactic cosmic rays, Kaiser says, they can form sugars, amino acids, and dipeptides.

    “These are molecules relevant to the origins of life,” he adds.

    Billions of years ago, such organic-rich particles may have found their way into asteroids that then rained down onto the primordial Earth, endowing us with the precursors for life.

    Pyrene is a member of a family of compounds called polycyclic aromatic hydrocarbons (PAHs), the simplest of which is naphthalene, the primary ingredient of mothballs. Simple PAHs have already been detected in space, but the holy grail, Kaiser says, will be if more complex ones, such as pyrene, are found by NASA’s OSIRIS-REx mission, now en route to asteroid 101955 Bennu, from which it is expected to send back a sample in 2023.

    NASA OSIRIS-REx Spacecraft

    “We do not know what this mission will find,” Kaiser says. But, “if they find carbonaceous materials such as PAHs, then our experiments say how this organic matter can be formed.”

    Humberto Campins, a planetary scientist from Central Florida University, Orlando, Florida, and member of the OSIRIS REx science team, agrees. Studying the chemical makeup of asteroids, he says, doesn’t just tell us about the composition of our own early solar system, but can also reveal information about “pre-solar” compounds.

    “One of the beauties of sample return missions is that the latest analytical techniques for chemical, mineralogical, and isotopic composition can be applied to very small components of the sample, such as pre-solar grains or molecules,” he says.

    “We know that the dust from these kinds of stars gets incorporated into meteorites, so they are absolutely contributing to the compounds that would be present within Bennu,” adds Chris Bennett, also of the University of Central Florida (and a former student of Kaiser’s, although he was not part of the present study team).

    Chris McKay, an astrobiologist at NASA Ames Research Centre in Moffett Field, California, adds that the paper supports the notion that that the universe contains a large amount of carbon in the form of organic molecules. “[That’s] not a new result,” he says, “but [it is] further support for this key idea in astrobiology.”

    Kaiser adds that the finding demonstrates the value of interdisciplinary studies.

    “Most of the scientists dealing with PAHs [in space] are astronomers,” he says. “They are excellent spectroscopists, but by nature, astronomy sometimes lacks fundamental knowledge about chemistry.”

    Laboratory studies are necessary to turn theories for how complex chemicals can form in space from “hand-waving” into something more definitive, he says.

    But the interdisciplinary impact goes beyond astronomy. Pyrene and other PAHs are common pollutants that can be incorporated into dangerous soot particles created by internal combustion engines and other industrial processes.

    Lessons from astrochemistry about how they can be formed, he says, says Kaiser, can therefore have the very practical side effect of helping us develop less-polluting automobile engines.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    System Overview

    The University of Hawai‘i System includes 10 campuses and dozens of educational, training and research centers across the Hawaiian Islands. As the public system of higher education in Hawai‘i, UH offers opportunities as unique and diverse as our Island home.

    The 10 UH campuses and educational centers on six Hawaiian Islands provide unique opportunities for both learning and recreation.

    UH is the State’s leading engine for economic growth and diversification, stimulating the local economy with jobs, research and skilled workers.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: