Tagged: Quantum superposition Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:01 pm on August 9, 2022 Permalink | Reply
    Tags: , , , , , , , Quantum superposition, , , "Record-Breaking Experiment Could Solve a Huge Challenge in Quantum Computing", A two-qubit gate is the fundamental building block of efficient quantum computers.   

    From The National Institute of Natural Sciences [自然科学研究機](JP) via “Science Alert (AU)” : “Record-Breaking Experiment Could Solve a Huge Challenge in Quantum Computing” 

    From The National Institute of Natural Sciences [自然科学研究機](JP)



    “Science Alert (AU)”


    Conceptual diagram illustrating the quantum gate. (Dr. Takafumi Tomita/IMS)

    Two atoms inflated to an almost comical size and cooled to a fraction above absolute zero have been used to generate a robust, insanely fast two-qubit quantum gate that could help overcome some of quantum computing’s persistent challenges.

    Since a two-qubit gate is the fundamental building block of efficient quantum computers, this breakthrough has huge implications. It could lead to a new type of quantum computer architecture that breaks through current limitations for noise-free quantum operations.

    Qubit is a contraction, short for the term “quantum bit”. It is the quantum computing equivalent of a conventional bit – the basic unit of information on which computing technology is based.

    To solve a problem the old fashioned way, information (and the logic used to compute it) is represented by a binary system. Like a light switch, the units making up this system are all in an exclusive state of on or off. Or, as they’re often described, as a one or zero.

    What makes quantum computing so much more powerful is that qubits can be both simultaneously, as a state known as a quantum superposition. On its own, a qubit isn’t much of a computer. Combined (or entangled) with the superpositions of other qubits, however, they can represent some seriously powerful algorithms.

    The two-qubit gate is a logical operation based on the quantum state of two entangled qubits. It’s the simplest component of a quantum computer, allowing qubits to be both entangled and read.

    Scientists have been experimenting with quantum gates based on different materials for some time, and have achieved some extraordinary breakthroughs. However, one problem has continued to be significant: the superpositions of the qubits can quickly and easily degrade thanks to external sources becoming entangled as well.

    Speeding up the gate is the best way to resolve this issue: since that intrusion is generally slower than a millionth of a second (one microsecond), a quantum gate that is faster than this will be able to “outrun” the noise to produce accurate calculations.

    To take a tilt at this goal using a slightly different approach to usual, a team of researchers led by physicist Yeelai Chew of the National Institutes of Natural Sciences in Japan turned to a complicated setup.

    The qubits themselves are atoms of the metal rubidium in its gaseous state. Using lasers, these atoms were cooled to almost absolute zero, and positioned at a precise micron-scale distance from each other using optical tweezers – laser beams that can be used to manipulate atomic-scale objects.

    Then, the physicists pulsed the atoms with lasers. This knocked electrons from the closest orbital distance to each of the atomic nuclei into a very wide orbital separation, puffing the atoms up into objects known as Rydberg atoms. This produced a 6.5-nanosecond periodic exchange of orbital shape and electron energy between the now huge atoms.

    Using more laser pulses, the research team was able to perform a quantum gate operation between the two of the atoms. The speed of that operation was 6.5 billionths of a second (nanoseconds) – over 100 times faster than any previous experiments with Rydberg atoms, the researchers said, which sets a new record for quantum gates based on this particular kind of technology.

    That’s not quite beating the overall record for the fastest two-qubit quantum gate operations yet. That was achieved in 2019, using phosphorus atoms in silicon, achieving a mind-blowing 0.8 nanoseconds; but the new work involves a different approach that could sidestep some of the limitations of other types currently in development.

    In addition, exploring different architectures could lead to clues that help minimize deficiencies in other types of hardware.

    The next steps, the team said, are fairly clear. They need to replace the commercial laser with one purpose-built, in order to improve accuracy, since the laser can contribute to noise; and implement better control techniques.

    The research has been published in Nature Photonics.

    See the full article here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Institute of Natural Sciences [自然科学研究機構] [NINS] is an inter-university research institute corporation consisting of five member institutes: the National Astronomical Observatory (NAOJ), the National Institute for fusion Science (NIFS), the National Institute for Basic Biology (NIBB), the National Institute for Physiological Sciences (NIPS), and the Institutes for Molecular Sciences (IMS). NINS was established in April 2004 to bring about further development of the natural sciences in Japan.
    The five institutes established under NINS are Japan’s main centers of academic research in their respective fields. These institutes cooperate actively as a base for interdisciplinary research in natural science with universities, university-affiliated research institutes, and inter-university research institutes to promote the formation of new research communities.

    NINS established the Research Cooperation and Liaison Committee under the authority of the President, to discuss and plan matters of research cooperation. It has also established the Research Cooperation and Liaison Office, which is in charge of implementing plans made by the Research Cooperation and Liaison Committee. The Research Cooperation and Liaison Office has set “Imaging science” and “Hierarchy and Holism in Natural Science” as themes for cooperation across fields, and is promoting symposiums and other projects under these themes.

  • richardmitnick 3:14 pm on April 22, 2022 Permalink | Reply
    Tags: "New hardware created by Stanford team shows a way to develop delicate quantum technologies based on tiny mechanical devices", , , , , , , Quantum superposition, Reliable; compact; durable and efficient acoustic devices harness mechanical motion to perform useful tasks. A prime example of such a device is the mechanical oscillator., Researchers have sought to bring the benefits of mechanical systems down into the extremely small scales of the mysterious quantum realm.,   

    From Stanford University: “New hardware created by Stanford team shows a way to develop delicate quantum technologies based on tiny mechanical devices” 

    Stanford University Name

    From Stanford University

    April 21, 2022

    Written By Adam Hadhazy

    Media Contact
    Holly Alyssa MacCormick,
    Stanford School of Humanities and Sciences:

    Angled-view photograph of the fully packaged device. The top (mechanical) chip is secured facedown to the bottom (qubit) chip by an adhesive polymer. Image credit: Agnetta Cleland.

    Stanford University researchers have developed a key experimental device for future quantum physics-based technologies that borrows a page from current, everyday mechanical devices.

    Reliable, compact, durable, and efficient, acoustic devices harness mechanical motion to perform useful tasks. A prime example of such a device is the mechanical oscillator. When displaced by a force – like sound, for instance – components of the device begin moving back-and-forth about their original position. Creating this periodic motion is a handy way to keep time, filter signals, and sense motion in ubiquitous electronics, including phones, computers, and watches.

    Researchers have sought to bring the benefits of mechanical systems down into the extremely small scales of the mysterious quantum realm, where atoms delicately interact and behave in counterintuitive ways. Toward this end, Stanford researchers led by Amir Safavi-Naeini have demonstrated new capabilities by coupling tiny nanomechanical oscillators with a type of circuit that can store and process energy in the form of a qubit, or quantum “bit” of information. Using the device’s qubit, the researchers can manipulate the quantum state of mechanical oscillators, generating the kinds of quantum mechanical effects that could someday empower advanced computing and ultraprecise sensing systems.

    “With this device, we’ve shown an important next step in trying to build quantum computers and other useful quantum devices based on mechanical systems,” said Safavi-Naeini, an associate professor in the Department of Applied Physics at Stanford’s School of Humanities and Sciences. Safavi-Naeini is senior author of a new study published April 20 in the journal Nature describing the findings. “We’re in essence looking to build ‘mechanical quantum mechanical’ systems,” he said.

    Mustering quantum effects on computer chips

    The joint first authors of the study, Alex Wollack and Agnetta Cleland, both PhD candidates at Stanford, spearheaded the effort to develop this new mechanics-based quantum hardware. Using the Stanford Nano Shared Facilities on campus, the researchers worked in cleanrooms while outfitted in the body-covering white “bunny suits” worn at semiconductor manufacturing plants in order to prevent impurities from contaminating the sensitive materials in play.

    With specialized equipment, Wollack and Cleland fabricated hardware components at nanometer-scale resolutions onto two silicon computer chips. The researchers then adhered the two chips together so the components on the bottom chip faced those on the top half, sandwich-style.

    On the bottom chip, Wollack and Cleland fashioned an aluminum superconducting circuit that forms the device’s qubit. Sending microwave pulses into this circuit generates photons (particles of light), which encode a qubit of information in the device. Unlike conventional electrical devices, which store bits as voltages representing either a 0 or a 1, qubits in quantum mechanical devices can also represent weighted combinations of 0 and 1 simultaneously. This is because of the quantum mechanical phenomenon known as superposition, where a quantum system exists in multiple quantum states at once until the system is measured.

    “The way reality works at the quantum mechanical level is very different from our macroscopic experience of the world,” said Safavi-Naeini.

    The top chip contains two nanomechanical resonators formed by suspended, bridge-like crystal structures just a few tens of nanometers – or billionths of a meter – long. The crystals are made of lithium niobate, a piezoelectric material. Materials with this property can convert an electrical force into motion, which in the case of this device means the electric field conveyed by the qubit photon is converted into a quantum (or a single unit) of vibrational energy called a phonon.

    “Just like light waves, which are quantized into photons, sound waves are quantized into ‘particles’ called phonons,” said Cleland, “and by combining energy of these different forms in our device, we create a hybrid quantum technology that harnesses the advantages of both.”

    The generation of these phonons allowed each nanomechanical oscillator to act like a register, which is the smallest possible data-holding element in a computer, and with the qubit supplying the data. Like the qubit, the oscillators accordingly can also be in a superposition state – they can be both excited (representing 1) and not excited (representing 0) at the same time. The superconducting circuit enabled the researchers to prepare, read out, and modify the data stored in the registers, conceptually similar to how conventional (non-quantum) computers work.

    “The dream is to make a device that works in the same way as silicon computer chips, for example, in your phone or on a thumb drive, where registers store bits,” said Safavi-Naeini. “And while we can’t store quantum bits on a thumb drive just yet, we’re showing the same sort of thing with mechanical resonators.”

    Leveraging entanglement

    Beyond superposition, the connection between the photons and resonators in the device further leveraged another important quantum mechanical phenomenon called entanglement. What makes entangled states so counterintuitive, and also notoriously difficult to create in the lab, is that the information about the state of the system is distributed across a number of components. In these systems, it is possible to know everything about two particles together, but nothing about one of the particles observed individually. Imagine two coins that are flipped in two different places, and that are observed to land as heads or tails randomly with equal probability, but when measurements at the different places are compared, they are always correlated; that is, if one coin lands as tails, the other coin is guaranteed to land as heads.

    A single quantum of motion, or phonon, is shared between two nanomechanical devices, causing them to become entangled. Image credit: Agnetta Cleland.

    The manipulation of multiple qubits, all in superposition and entangled, is the one-two punch powering computation and sensing in sought-after quantum-based technologies. “Without superposition and lots of entanglement, you can’t build a quantum computer,” said Safavi-Naeini.

    To demonstrate these quantum effects in the experiment, the Stanford researchers generated a single qubit, stored as a photon in the circuit on the bottom chip. The circuit was then allowed to exchange energy with one of the mechanical oscillators on the top chip before transferring the remaining information to the second mechanical device. By exchanging energy in this way – first with one mechanical oscillator, and then with the second oscillator – the researchers used the circuit as a tool to quantum mechanically entangle the two mechanical resonators with each other.

    “The bizarreness of quantum mechanics is on full display here,” said Wollack. “Not only does sound come in discrete units, but a single particle of sound can be shared between the two entangled macroscopic objects, each with trillions of atoms moving – or not moving – in concert.”

    For eventually performing practical calculations, the period of sustained entanglement, or coherence, would need to be significantly longer – on the order of seconds instead of the fractions of seconds achieved so far. Superposition and entanglement are both highly delicate conditions, vulnerable to even slight disturbances in the form of heat or other energy, and accordingly endow proposed quantum sensing devices with exquisite sensitivity. But Safavi-Naeini and his co-authors believe longer coherence times can be readily achievable by honing the fabrication processes and optimizing the materials involved.

    “We’ve improved the performance of our system over the last four years by nearly 10 times every year,” said Safavi-Naeini. “Moving forward, we will continue to make concrete steps toward devising quantum mechanical devices, like computers and sensors, and bring the benefits of mechanical systems into the quantum domain.”

    Additional co-authors on the paper include Rachel G. Gruenke, Zhaoyou Wang, and Patricio Arrangoiz-Arriola of the Department of Applied Physics in Stanford’s School of Humanities and Sciences.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus

    Leland and Jane Stanford founded Stanford University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members.

    Stanford University, officially Leland Stanford Junior University, is a private research university located in Stanford, California. Stanford was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Stanford is consistently ranked as among the most prestigious and top universities in the world by major education publications. It is also one of the top fundraising institutions in the country, becoming the first school to raise more than a billion dollars in a year.

    Leland Stanford was a U.S. senator and former governor of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891, as a coeducational and non-denominational institution. Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, provost Frederick Terman supported faculty and graduates’ entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley.

    The university is organized around seven schools: three schools consisting of 40 academic departments at the undergraduate level as well as four professional schools that focus on graduate programs in law, medicine, education, and business. All schools are on the same campus. Students compete in 36 varsity sports, and the university is one of two private institutions in the Division I FBS Pac-12 Conference. It has gained 126 NCAA team championships, and Stanford has won the NACDA Directors’ Cup for 24 consecutive years, beginning in 1994–1995. In addition, Stanford students and alumni have won 270 Olympic medals including 139 gold medals.

    As of October 2020, 84 Nobel laureates, 28 Turing Award laureates, and eight Fields Medalists have been affiliated with Stanford as students, alumni, faculty, or staff. In addition, Stanford is particularly noted for its entrepreneurship and is one of the most successful universities in attracting funding for start-ups. Stanford alumni have founded numerous companies, which combined produce more than $2.7 trillion in annual revenue, roughly equivalent to the 7th largest economy in the world (as of 2020). Stanford is the alma mater of one president of the United States (Herbert Hoover), 74 living billionaires, and 17 astronauts. It is also one of the leading producers of Fulbright Scholars, Marshall Scholars, Rhodes Scholars, and members of the United States Congress.

    Stanford University was founded in 1885 by Leland and Jane Stanford, dedicated to Leland Stanford Jr, their only child. The institution opened in 1891 on Stanford’s previous Palo Alto farm.

    Jane and Leland Stanford modeled their university after the great eastern universities, most specifically Cornell University. Stanford opened being called the “Cornell of the West” in 1891 due to faculty being former Cornell affiliates (either professors, alumni, or both) including its first president, David Starr Jordan, and second president, John Casper Branner. Both Cornell and Stanford were among the first to have higher education be accessible, nonsectarian, and open to women as well as to men. Cornell is credited as one of the first American universities to adopt this radical departure from traditional education, and Stanford became an early adopter as well.

    Despite being impacted by earthquakes in both 1906 and 1989, the campus was rebuilt each time. In 1919, The Hoover Institution on War, Revolution and Peace was started by Herbert Hoover to preserve artifacts related to World War I. The Stanford Medical Center, completed in 1959, is a teaching hospital with over 800 beds. The DOE’s SLAC National Accelerator Laboratory (originally named the Stanford Linear Accelerator Center), established in 1962, performs research in particle physics.


    Most of Stanford is on an 8,180-acre (12.8 sq mi; 33.1 km^2) campus, one of the largest in the United States. It is located on the San Francisco Peninsula, in the northwest part of the Santa Clara Valley (Silicon Valley) approximately 37 miles (60 km) southeast of San Francisco and approximately 20 miles (30 km) northwest of San Jose. In 2008, 60% of this land remained undeveloped.

    Stanford’s main campus includes a census-designated place within unincorporated Santa Clara County, although some of the university land (such as the Stanford Shopping Center and the Stanford Research Park) is within the city limits of Palo Alto. The campus also includes much land in unincorporated San Mateo County (including the SLAC National Accelerator Laboratory and the Jasper Ridge Biological Preserve), as well as in the city limits of Menlo Park (Stanford Hills neighborhood), Woodside, and Portola Valley.

    Non-central campus

    Stanford currently operates in various locations outside of its central campus.

    On the founding grant:

    Jasper Ridge Biological Preserve is a 1,200-acre (490 ha) natural reserve south of the central campus owned by the university and used by wildlife biologists for research.
    SLAC National Accelerator Laboratory is a facility west of the central campus operated by the university for the Department of Energy. It contains the longest linear particle accelerator in the world, 2 miles (3.2 km) on 426 acres (172 ha) of land.
    Golf course and a seasonal lake: The university also has its own golf course and a seasonal lake (Lake Lagunita, actually an irrigation reservoir), both home to the vulnerable California tiger salamander. As of 2012 Lake Lagunita was often dry and the university had no plans to artificially fill it.

    Off the founding grant:

    Hopkins Marine Station, in Pacific Grove, California, is a marine biology research center owned by the university since 1892.
    Study abroad locations: unlike typical study abroad programs, Stanford itself operates in several locations around the world; thus, each location has Stanford faculty-in-residence and staff in addition to students, creating a “mini-Stanford”.

    Redwood City campus for many of the university’s administrative offices located in Redwood City, California, a few miles north of the main campus. In 2005, the university purchased a small, 35-acre (14 ha) campus in Midpoint Technology Park intended for staff offices; development was delayed by The Great Recession. In 2015 the university announced a development plan and the Redwood City campus opened in March 2019.

    The Bass Center in Washington, DC provides a base, including housing, for the Stanford in Washington program for undergraduates. It includes a small art gallery open to the public.

    China: Stanford Center at Peking University, housed in the Lee Jung Sen Building, is a small center for researchers and students in collaboration with Beijing University [北京大学](CN) (Kavli Institute for Astronomy and Astrophysics at Peking University(CN) (KIAA-PKU).

    Administration and organization

    Stanford is a private, non-profit university that is administered as a corporate trust governed by a privately appointed board of trustees with a maximum membership of 38. Trustees serve five-year terms (not more than two consecutive terms) and meet five times annually.[83] A new trustee is chosen by the current trustees by ballot. The Stanford trustees also oversee the Stanford Research Park, the Stanford Shopping Center, the Cantor Center for Visual Arts, Stanford University Medical Center, and many associated medical facilities (including the Lucile Packard Children’s Hospital).

    The board appoints a president to serve as the chief executive officer of the university, to prescribe the duties of professors and course of study, to manage financial and business affairs, and to appoint nine vice presidents. The provost is the chief academic and budget officer, to whom the deans of each of the seven schools report. Persis Drell became the 13th provost in February 2017.

    As of 2018, the university was organized into seven academic schools. The schools of Humanities and Sciences (27 departments), Engineering (nine departments), and Earth, Energy & Environmental Sciences (four departments) have both graduate and undergraduate programs while the Schools of Law, Medicine, Education and Business have graduate programs only. The powers and authority of the faculty are vested in the Academic Council, which is made up of tenure and non-tenure line faculty, research faculty, senior fellows in some policy centers and institutes, the president of the university, and some other academic administrators, but most matters are handled by the Faculty Senate, made up of 55 elected representatives of the faculty.

    The Associated Students of Stanford University (ASSU) is the student government for Stanford and all registered students are members. Its elected leadership consists of the Undergraduate Senate elected by the undergraduate students, the Graduate Student Council elected by the graduate students, and the President and Vice President elected as a ticket by the entire student body.

    Stanford is the beneficiary of a special clause in the California Constitution, which explicitly exempts Stanford property from taxation so long as the property is used for educational purposes.

    Endowment and donations

    The university’s endowment, managed by the Stanford Management Company, was valued at $27.7 billion as of August 31, 2019. Payouts from the Stanford endowment covered approximately 21.8% of university expenses in the 2019 fiscal year. In the 2018 NACUBO-TIAA survey of colleges and universities in the United States and Canada, only Harvard University, the University of Texas System, and Yale University had larger endowments than Stanford.

    In 2006, President John L. Hennessy launched a five-year campaign called the Stanford Challenge, which reached its $4.3 billion fundraising goal in 2009, two years ahead of time, but continued fundraising for the duration of the campaign. It concluded on December 31, 2011, having raised a total of $6.23 billion and breaking the previous campaign fundraising record of $3.88 billion held by Yale. Specifically, the campaign raised $253.7 million for undergraduate financial aid, as well as $2.33 billion for its initiative in “Seeking Solutions” to global problems, $1.61 billion for “Educating Leaders” by improving K-12 education, and $2.11 billion for “Foundation of Excellence” aimed at providing academic support for Stanford students and faculty. Funds supported 366 new fellowships for graduate students, 139 new endowed chairs for faculty, and 38 new or renovated buildings. The new funding also enabled the construction of a facility for stem cell research; a new campus for the business school; an expansion of the law school; a new Engineering Quad; a new art and art history building; an on-campus concert hall; a new art museum; and a planned expansion of the medical school, among other things. In 2012, the university raised $1.035 billion, becoming the first school to raise more than a billion dollars in a year.

    Research centers and institutes

    DOE’s SLAC National Accelerator Laboratory
    Stanford Research Institute, a center of innovation to support economic development in the region.
    Hoover Institution, a conservative American public policy institution and research institution that promotes personal and economic liberty, free enterprise, and limited government.
    Hasso Plattner Institute of Design, a multidisciplinary design school in cooperation with the Hasso Plattner Institute of University of Potsdam [Universität Potsdam](DE) that integrates product design, engineering, and business management education).
    Martin Luther King Jr. Research and Education Institute, which grew out of and still contains the Martin Luther King Jr. Papers Project.
    John S. Knight Fellowship for Professional Journalists
    Center for Ocean Solutions
    Together with UC Berkeley and UC San Francisco, Stanford is part of the Biohub, a new medical science research center founded in 2016 by a $600 million commitment from Facebook CEO and founder Mark Zuckerberg and pediatrician Priscilla Chan.

    Discoveries and innovation

    Natural sciences

    Biological synthesis of deoxyribonucleic acid (DNA) – Arthur Kornberg synthesized DNA material and won the Nobel Prize in Physiology or Medicine 1959 for his work at Stanford.
    First Transgenic organism – Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living organism to another, a fundamental discovery for genetic engineering. Thousands of products have been developed on the basis of their work, including human growth hormone and hepatitis B vaccine.
    Laser – Arthur Leonard Schawlow shared the 1981 Nobel Prize in Physics with Nicolaas Bloembergen and Kai Siegbahn for his work on lasers.
    Nuclear magnetic resonance – Felix Bloch developed new methods for nuclear magnetic precision measurements, which are the underlying principles of the MRI.

    Computer and applied sciences

    ARPANETStanford Research Institute, formerly part of Stanford but on a separate campus, was the site of one of the four original ARPANET nodes.

    Internet—Stanford was the site where the original design of the Internet was undertaken. Vint Cerf led a research group to elaborate the design of the Transmission Control Protocol (TCP/IP) that he originally co-created with Robert E. Kahn (Bob Kahn) in 1973 and which formed the basis for the architecture of the Internet.

    Frequency modulation synthesis – John Chowning of the Music department invented the FM music synthesis algorithm in 1967, and Stanford later licensed it to Yamaha Corporation.

    Google – Google began in January 1996 as a research project by Larry Page and Sergey Brin when they were both PhD students at Stanford. They were working on the Stanford Digital Library Project (SDLP). The SDLP’s goal was “to develop the enabling technologies for a single, integrated and universal digital library” and it was funded through the National Science Foundation, among other federal agencies.

    Klystron tube – invented by the brothers Russell and Sigurd Varian at Stanford. Their prototype was completed and demonstrated successfully on August 30, 1937. Upon publication in 1939, news of the klystron immediately influenced the work of U.S. and UK researchers working on radar equipment.

    RISCARPA funded VLSI project of microprocessor design. Stanford and University of California- Berkeley are most associated with the popularization of this concept. The Stanford MIPS would go on to be commercialized as the successful MIPS architecture, while Berkeley RISC gave its name to the entire concept, commercialized as the SPARC. Another success from this era were IBM’s efforts that eventually led to the IBM POWER instruction set architecture, PowerPC, and Power ISA. As these projects matured, a wide variety of similar designs flourished in the late 1980s and especially the early 1990s, representing a major force in the Unix workstation market as well as embedded processors in laser printers, routers and similar products.
    SUN workstation – Andy Bechtolsheim designed the SUN workstation for the Stanford University Network communications project as a personal CAD workstation, which led to Sun Microsystems.

    Businesses and entrepreneurship

    Stanford is one of the most successful universities in creating companies and licensing its inventions to existing companies; it is often held up as a model for technology transfer. Stanford’s Office of Technology Licensing is responsible for commercializing university research, intellectual property, and university-developed projects.

    The university is described as having a strong venture culture in which students are encouraged, and often funded, to launch their own companies.

    Companies founded by Stanford alumni generate more than $2.7 trillion in annual revenue, equivalent to the 10th-largest economy in the world.

    Some companies closely associated with Stanford and their connections include:

    Hewlett-Packard, 1939, co-founders William R. Hewlett (B.S, PhD) and David Packard (M.S).
    Silicon Graphics, 1981, co-founders James H. Clark (Associate Professor) and several of his grad students.
    Sun Microsystems, 1982, co-founders Vinod Khosla (M.B.A), Andy Bechtolsheim (PhD) and Scott McNealy (M.B.A).
    Cisco, 1984, founders Leonard Bosack (M.S) and Sandy Lerner (M.S) who were in charge of Stanford Computer Science and Graduate School of Business computer operations groups respectively when the hardware was developed.[163]
    Yahoo!, 1994, co-founders Jerry Yang (B.S, M.S) and David Filo (M.S).
    Google, 1998, co-founders Larry Page (M.S) and Sergey Brin (M.S).
    LinkedIn, 2002, co-founders Reid Hoffman (B.S), Konstantin Guericke (B.S, M.S), Eric Lee (B.S), and Alan Liu (B.S).
    Instagram, 2010, co-founders Kevin Systrom (B.S) and Mike Krieger (B.S).
    Snapchat, 2011, co-founders Evan Spiegel and Bobby Murphy (B.S).
    Coursera, 2012, co-founders Andrew Ng (Associate Professor) and Daphne Koller (Professor, PhD).

    Student body

    Stanford enrolled 6,996 undergraduate and 10,253 graduate students as of the 2019–2020 school year. Women comprised 50.4% of undergraduates and 41.5% of graduate students. In the same academic year, the freshman retention rate was 99%.

    Stanford awarded 1,819 undergraduate degrees, 2,393 master’s degrees, 770 doctoral degrees, and 3270 professional degrees in the 2018–2019 school year. The four-year graduation rate for the class of 2017 cohort was 72.9%, and the six-year rate was 94.4%. The relatively low four-year graduation rate is a function of the university’s coterminal degree (or “coterm”) program, which allows students to earn a master’s degree as a 1-to-2-year extension of their undergraduate program.

    As of 2010, fifteen percent of undergraduates were first-generation students.


    As of 2016 Stanford had 16 male varsity sports and 20 female varsity sports, 19 club sports and about 27 intramural sports. In 1930, following a unanimous vote by the Executive Committee for the Associated Students, the athletic department adopted the mascot “Indian.” The Indian symbol and name were dropped by President Richard Lyman in 1972, after objections from Native American students and a vote by the student senate. The sports teams are now officially referred to as the “Stanford Cardinal,” referring to the deep red color, not the cardinal bird. Stanford is a member of the Pac-12 Conference in most sports, the Mountain Pacific Sports Federation in several other sports, and the America East Conference in field hockey with the participation in the inter-collegiate NCAA’s Division I FBS.

    Its traditional sports rival is the University of California, Berkeley, the neighbor to the north in the East Bay. The winner of the annual “Big Game” between the Cal and Cardinal football teams gains custody of the Stanford Axe.

    Stanford has had at least one NCAA team champion every year since the 1976–77 school year and has earned 126 NCAA national team titles since its establishment, the most among universities, and Stanford has won 522 individual national championships, the most by any university. Stanford has won the award for the top-ranked Division 1 athletic program—the NACDA Directors’ Cup, formerly known as the Sears Cup—annually for the past twenty-four straight years. Stanford athletes have won medals in every Olympic Games since 1912, winning 270 Olympic medals total, 139 of them gold. In the 2008 Summer Olympics, and 2016 Summer Olympics, Stanford won more Olympic medals than any other university in the United States. Stanford athletes won 16 medals at the 2012 Summer Olympics (12 gold, two silver and two bronze), and 27 medals at the 2016 Summer Olympics.


    The unofficial motto of Stanford, selected by President Jordan, is Die Luft der Freiheit weht. Translated from the German language, this quotation from Ulrich von Hutten means, “The wind of freedom blows.” The motto was controversial during World War I, when anything in German was suspect; at that time the university disavowed that this motto was official.
    Hail, Stanford, Hail! is the Stanford Hymn sometimes sung at ceremonies or adapted by the various University singing groups. It was written in 1892 by mechanical engineering professor Albert W. Smith and his wife, Mary Roberts Smith (in 1896 she earned the first Stanford doctorate in Economics and later became associate professor of Sociology), but was not officially adopted until after a performance on campus in March 1902 by the Mormon Tabernacle Choir.
    “Uncommon Man/Uncommon Woman”: Stanford does not award honorary degrees, but in 1953 the degree of “Uncommon Man/Uncommon Woman” was created to recognize individuals who give rare and extraordinary service to the University. Technically, this degree is awarded by the Stanford Associates, a voluntary group that is part of the university’s alumni association. As Stanford’s highest honor, it is not conferred at prescribed intervals, but only when appropriate to recognize extraordinary service. Recipients include Herbert Hoover, Bill Hewlett, Dave Packard, Lucile Packard, and John Gardner.
    Big Game events: The events in the week leading up to the Big Game vs. UC Berkeley, including Gaieties (a musical written, composed, produced, and performed by the students of Ram’s Head Theatrical Society).
    “Viennese Ball”: a formal ball with waltzes that was initially started in the 1970s by students returning from the now-closed Stanford in Vienna overseas program. It is now open to all students.
    “Full Moon on the Quad”: An annual event at Main Quad, where students gather to kiss one another starting at midnight. Typically organized by the Junior class cabinet, the festivities include live entertainment, such as music and dance performances.
    “Band Run”: An annual festivity at the beginning of the school year, where the band picks up freshmen from dorms across campus while stopping to perform at each location, culminating in a finale performance at Main Quad.
    “Mausoleum Party”: An annual Halloween Party at the Stanford Mausoleum, the final resting place of Leland Stanford Jr. and his parents. A 20-year tradition, the “Mausoleum Party” was on hiatus from 2002 to 2005 due to a lack of funding, but was revived in 2006. In 2008, it was hosted in Old Union rather than at the actual Mausoleum, because rain prohibited generators from being rented. In 2009, after fundraising efforts by the Junior Class Presidents and the ASSU Executive, the event was able to return to the Mausoleum despite facing budget cuts earlier in the year.
    Former campus traditions include the “Big Game bonfire” on Lake Lagunita (a seasonal lake usually dry in the fall), which was formally ended in 1997 because of the presence of endangered salamanders in the lake bed.

    Award laureates and scholars

    Stanford’s current community of scholars includes:

    19 Nobel Prize laureates (as of October 2020, 85 affiliates in total)
    171 members of the National Academy of Sciences
    109 members of National Academy of Engineering
    76 members of National Academy of Medicine
    288 members of the American Academy of Arts and Sciences
    19 recipients of the National Medal of Science
    1 recipient of the National Medal of Technology
    4 recipients of the National Humanities Medal
    49 members of American Philosophical Society
    56 fellows of the American Physics Society (since 1995)
    4 Pulitzer Prize winners
    31 MacArthur Fellows
    4 Wolf Foundation Prize winners
    2 ACL Lifetime Achievement Award winners
    14 AAAI fellows
    2 Presidential Medal of Freedom winners

    Stanford University Seal

  • richardmitnick 8:59 pm on January 27, 2022 Permalink | Reply
    Tags: "Physicists find vibrating atoms make robust qubits", A fermion is technically defined as any particle that has an odd half-integer spin like neutrons; protons and electrons., A new quantum bit-or “qubit”-in the form of vibrating pairs of atoms known as fermions, , , Electrons are classic examples of fermions. Their mutual Pauli exclusion is responsible for the structure of atoms and Periodic Table along with the stability of all the matter in the universe., If one fermion spins up the other must spin down., It should take only a millisecond for these qubits to interact so there is hope for 10000 operations during that coherence time., No two identical fermions can occupy the same quantum state-a property known as the Pauli exclusion principle., , , Quantum superposition, , The new system of qubits appears to be robust over relatively long periods of time., The new vibrating qubits could be made to briefly interact and potentially carry out tens of thousands of operations in the blink of an eye., The physicists confirmed that the fermion pairs were holding a superposition of two vibrational states-simultaneously moving together-like two pendula swinging in sync., The physicists were able to simultaneously manipulate about 400 fermion pairs.   

    From The Massachusetts Institute of Technology (US): “Physicists find vibrating atoms make robust qubits” 

    MIT News

    From The Massachusetts Institute of Technology (US)

    January 26, 2022
    Jennifer Chu

    Quibits graphic. Credit: Sampson Wilcox/MIT Research Laboratory of Electronics.

    The new qubits stay in “superposition” for up to 10 seconds, and could make a promising foundation for quantum computers.

    MIT physicists have discovered a new quantum bit-or “qubit”-in the form of vibrating pairs of atoms known as fermions. They found that when pairs of fermions are chilled and trapped in an optical lattice, the particles can exist simultaneously in two states — a weird quantum phenomenon known as superposition. In this case, the atoms held a superposition of two vibrational states, in which the pair wobbled against each other while also swinging in sync, at the same time.

    The team was able to maintain this state of superposition among hundreds of vibrating pairs of fermions. In so doing, they achieved a new “quantum register,” or system of qubits, that appears to be robust over relatively long periods of time. The discovery, published today in the journal Nature, demonstrates that such wobbly qubits could be a promising foundation for future quantum computers.

    A qubit represents a basic unit of quantum computing. Where a classical bit in today’s computers carries out a series of logical operations starting from one of either two states, 0 or 1, a qubit can exist in a superposition of both states. While in this delicate in-between state, a qubit should be able to simultaneously communicate with many other qubits and process multiple streams of information at a time, to quickly solve problems that would take classical computers years to process.

    There are many types of qubits, some of which are engineered and others that exist naturally. Most qubits are notoriously fickle, either unable to maintain their superposition or unwilling to communicate with other qubits.

    By comparison, the MIT team’s new qubit appears to be extremely robust, able to maintain a superposition between two vibrational states, even in the midst of environmental noise, for up to 10 seconds. The team believes the new vibrating qubits could be made to briefly interact and potentially carry out tens of thousands of operations in the blink of an eye.

    “We estimate it should take only a millisecond for these qubits to interact, so we can hope for 10,000 operations during that coherence time, which could be competitive with other platforms,” says Martin Zwierlein, the Thomas A. Frank Professor of Physics at MIT. “So, there is concrete hope toward making these qubits compute.”

    Zwierlein is a co-author on the paper, along with lead author Thomas Hartke, Botond Oreg, and Ningyuan Jia, who are all members of MIT’s Research Laboratory of Electronics.

    Happy accidents

    The team’s discovery initially happened by chance. Zwierlein’s group studies the behavior of atoms at ultracold, super-low densities. When atoms are chilled to temperatures a millionth that of interstellar space, and isolated at densities a millionth that of air, quantum phenomena and novel states of matter can emerge.

    Under these extreme conditions, Zwierlein and his colleagues were studying the behavior of fermions. A fermion is technically defined as any particle that has an odd half-integer spin like neutrons; protons and electrons. In practical terms, this means that fermions are prickly by nature. No two identical fermions can occupy the same quantum state-a property known as the Pauli exclusion principle. For instance, if one fermion spins up the other must spin down.

    Electrons are classic examples of fermions, and their mutual Pauli exclusion is responsible for the structure of atoms and the diversity of the periodic table of elements, along with the stability of all the matter in the universe. Fermions are also any type of atom with an odd number of elementary particles, as these atoms would also naturally repel each other.

    Zwierlein’s team happened to be studying fermionic atoms of potassium-40. They cooled a cloud of fermions down to 100 nanokelvins and used a system of lasers to generate an optical lattice in which to trap the atoms. They tuned the conditions so that each well in the lattice trapped a pair of fermions. Initially, they observed that under certain conditions, each pair of fermions appeared to move in sync, like a single molecule.

    To probe this vibrational state further, they gave each fermion pair a kick, then took fluorescence images of the atoms in the lattice, and saw that every so often, most squares in the lattice went dark, reflecting pairs bound in a molecule. But as they continued imaging the system, the atoms seemed to reappear, in periodic fashion, indicating that the pairs were oscillating between two quantum vibrational states.

    “It’s often in experimental physics that you have some bright signal, and the next moment it goes to hell, to never come back,” Zwierlein says. “Here, it went dark, but then bright again, and repeating. That oscillation shows there is a coherent superposition evolving over time. That was a happy moment.”
    “A low hum”

    After further imaging and calculations, the physicists confirmed that the fermion pairs were holding a superposition of two vibrational states-simultaneously moving together-like two pendula swinging in sync, and also relative to, or against each other.

    “They oscillate between these two states at about 144 hertz,” Hartke notes. “That’s a frequency you could hear, like a low hum.”

    The team was able to tune this frequency, and control the vibrational states of the fermion pairs, by three orders of magnitude, by applying and varying a magnetic field, through an effect known as Feshbach resonance.

    “It’s like starting with two noninteracting pendula, and by applying a magnetic field, we create a spring between them, and can vary the strength of that spring, slowly pushing the pendula apart,” Zwierlein says.

    In this way, they were able to simultaneously manipulate about 400 fermion pairs. They observed that as a group, the qubits maintained a state of superposition for up to 10 seconds, before individual pairs collapsed into one or the other vibrational state.

    “We show we have full control over the states of these qubits,” Zwierlein says.

    To make a functional quantum computer using vibrating qubits, the team will have to find ways to also control individual fermion pairs — a problem the physicists are already close to solving. The bigger challenge will be finding a way for individual qubits to communicate with each other. For this, Zwierlein has some ideas.

    “This is a system where we know we can make two qubits interact,” he says. “There are ways to lower the barrier between pairs, so that they come together, interact, then split again, for about one millisecond. So, there is a clear path toward a two-qubit gate, which is what you would need to make a quantum computer.”

    This research was supported, in part, by the National Science Foundation, the Gordon and Betty Moore Foundation, the Vannevar Bush Faculty Fellowship, and the Alexander von Humboldt Foundation.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology (US) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory (US), the MIT Bates Research and Engineering Center (US), and the Haystack Observatory (US), as well as affiliated laboratories such as the Broad Institute of MIT and Harvard(US) and Whitehead Institute (US).

    Massachusettes Institute of Technology-Haystack Observatory(US) Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology (US) adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology (US) . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology (US) is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia (US), wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after Massachusetts Institute of Technology (US) was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst (US)). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    Massachusetts Institute of Technology (US) was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology (US) faculty and alumni rebuffed Harvard University (US) president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the Massachusetts Institute of Technology (US) administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology (US) catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities (US)in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at Massachusetts Institute of Technology (US) that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    Massachusetts Institute of Technology (US)‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology (US)’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, Massachusetts Institute of Technology (US) became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected Massachusetts Institute of Technology (US) profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of Massachusetts Institute of Technology (US) between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, Massachusetts Institute of Technology (US) no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and Massachusetts Institute of Technology (US)’s defense research. In this period Massachusetts Institute of Technology (US)’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. Massachusetts Institute of Technology (US) ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT (US) Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology (US) students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at Massachusetts Institute of Technology (US) over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, Massachusetts Institute of Technology (US)’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    Massachusetts Institute of Technology (US) has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology (US) classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    Massachusetts Institute of Technology (US) was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, Massachusetts Institute of Technology (US) launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, Massachusetts Institute of Technology (US) announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology (US) faculty adopted an open-access policy to make its scholarship publicly accessible online.

    Massachusetts Institute of Technology (US) has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology (US) community with thousands of police officers from the New England region and Canada. On November 25, 2013, Massachusetts Institute of Technology (US) announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the Massachusetts Institute of Technology (US) community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO (US) was designed and constructed by a team of scientists from California Institute of Technology (US), Massachusetts Institute of Technology (US), and industrial contractors, and funded by the National Science Foundation (US) .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology (US) physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an Massachusetts Institute of Technology (US) graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of Massachusetts Institute of Technology (US) is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

  • richardmitnick 11:41 am on January 26, 2022 Permalink | Reply
    Tags: "What is a quantum network?", , , Cloud supercomputing with quantum networks harnessing the power of multiple quantum computers., Connecting optical telescopes allowing multiple observatories to function as a single giant scope—an optical interferometer., Entanglement allows two qubits to become inextricably interlinked no matter how much space separates them., It may be decades before the average person has contact with a quantum network. But their applications in science may be a lot more imminent., , , , Quantum networks are like the classical networks we use in everyday life to transmit and share digital information., Quantum networks don’t exist—and many scientists in the field will tell you they’re a long way off., Quantum networks use quantum bits-or qubits-which encode information in a way that is utterly foreign to the classical way of thinking., Quantum superposition, , Qubits use tricks from the weird world of quantum mechanics and are fundamentally different from classical computing bits., , , When quantum networks arrive they could revolutionize everyday life making unhackable communications secured for banking; medicine; navigation and more.   

    From Symmetry: “What is a quantum network?” 

    Symmetry Mag

    From Symmetry

    Mara Johnson-Groh

    Illustration by Sandbox Studio, Chicago with Ana Kova.

    As we step into the quantum age, here are four things to know about quantum networks.

    Four years, four months, and twelve days ago, a photon—a particle of light—left Proxima Centauri, the closest star to us. Just now, it finally arrived at Earth.

    Centauris Alpha, Beta, Proxima, 27 February 2012. Skatebiker.

    This photon, and others that have come with it, could reveal incredible secrets about the planets that orbit the red dwarf star—such as if they’re habitable, or even inhabited. However, with current instruments, we’re not able to tease out this information.

    That could one day change with technology called quantum networks.

    Quantum networks are like the classical networks we use in everyday life to transmit and share digital information. However, quantum networks use quantum bits-or qubits-which encode information in a way that is utterly foreign to the classical way of thinking. Qubits use tricks from the weird world of quantum mechanics and are fundamentally different from classical computing bits. And when employed on quantum networks, they are radically more powerful.

    Quantum networks don’t exist—and many scientists in the field will tell you they’re a long way off. But when they arrive, they could revolutionize everyday life, making unhackable communications secured for banking, medicine, navigation and more. We might not be there yet, but already scientists are testing the building blocks and putting together prototype systems.

    “There are breakthroughs happening all the time,” says Sophia Economou, a physics professor and quantum information expert at The Virginia Polytechnic Institute and State University (US).

    Already, basic quantum communications called quantum key distributions are helping secure transmissions made over short distances. But before quantum networks become commonplace, they’ll likely make their more public debut in scientific settings.

    As we step into the quantum age, here are four things to know about quantum networks.

    1. Quantum networks are possible because of the weird world of quantum mechanics.

    Understanding quantum networks boils down to grasping a few fundamental quantum phenomena with sci-fi sounding names: superposition, entanglement and teleportation.

    Understanding these phenomena requires stepping out of your daily experience of how the world works.

    For example, classical computer bits are either 1 or 0—like a coin flipped heads or tails or a computer’s electrical signal switched on or off. The quantum realm, though, isn’t so decisive. Qubits, which are typically photons or electrons, can be 1 or 0. But they can also simultaneously be a 1 and 0. They’re more like spinning coins, which are undecidedly both heads and tails. Only once qubits are measured do they snap into a 1 or a 0 state. This duality is called superposition, and it allows for faster completion of some computing processes.

    Furthermore, computing with qubits is more secure than with classical bits, thanks to a phenomenon known as entanglement. As described by Panagiotis Spentzouris, a scientist at The DOE’s Fermi National Accelerator Laboratory (US), “entanglement is one of the coolest and most intriguing aspects of quantum physics.”

    Entanglement allows two qubits to become inextricably interlinked no matter how much space separates them. Once entangled, two qubits can mirror one another, each fully correlated with the measurement of the other. If one qubit is switched to a 0, so will its correlated partner.

    This quirk is used to pass quantum information securely—a process known as teleportation. While this teleportation doesn’t involve moving physical objects, it does move information.

    Imagine you wanted to send a secure message to a friend connected via a quantum network.

    With a quantum network, you could send an entangled qubit to them and keep the other one for yourself. Measuring the state of the qubit would provide a key that you could use to encrypt a message sent through a non-quantum channel. Your friend’s qubit, entangled with and thus fully correlated to your qubit, would function as the key to unencrypting the received message.

    An unread quantum state can’t be copied. If a spy intercepted the qubit to steal the encryption, the qubit’s state would be interrupted, leaving a clue someone was eavesdropping.

    These types of quantum-encoded messages are already being sent. Quantum key distribution has been used for bank transfers and secure ballot result transmissions. However, this type of communication is currently practical only at short, city-scale distances.

    That’s because quantum information is delicate. Qubits are typically sent as photons using the same standard fiber-optic cables that carry the bulk of the internet. The slightest bump against the wall of a fiber optic cable, a passing photon of sunlight, and even a tiny mismatch in distances traveled can all lead to two qubits falling out of entanglement.

    2. Extended quantum networks will need special repeaters to go the distance.

    Sending information halfway around the world is much harder with quantum networks than with classical networks. In classical networks, amplifiers placed periodically along the line reemit signals, splitting a marathon into a relay race. Quantum networks can’t use amplifiers, though, because reading and reemitting qubits would disrupt their entanglement, ruining the transmission.

    Researchers are instead working on building quantum repeaters, which would be able to pass along the information without having to read the qubits. To do this, quantum repeaters would create multiple entangled pairs of qubits that would link together to form a giant entangled chain—something known as entanglement swapping. Instead of a relay race, this is more like a game of “Simon Says”, where each qubit mirrors its neighbor. The system retains its security because, just as with entanglement, if an outsider tried to copy the information, the qubits’ state would be interrupted, revealing the snooper.

    While conceptually simple, it is incredibly hard to implement.

    “Some people have demonstrated designs that would in principle be a quantum repeater, but there aren’t any deployed in a real network,” says Emilio Nanni, an assistant professor at Stanford University (US) and The DOE’s SLAC National Accelerator Laboratory (US).

    Right now, researchers are largely focusing on developing metropolitan-scale networks, which are small enough to avoid needing quantum repeaters. Spentzouris is one such researcher. He’s creating a Chicago-wide network to test network infrastructure, like entanglement swapping, which can already be done with nodes that do not use quantum repeaters. He hopes such steps will help quantum networks be ready to expand when repeaters are available.

    Other groups around the world, such as those at The Delft University of Technology [Technische Universiteit Delft](NL) and The University of Science and Technology [中国科学技术大学](CN) at Chinese Academy of Sciences [中国科学院](CN), have demonstrated longer network-like connections, including linking multiple quantum devices, entanglement over a dozen or more qubits, and using quantum teleportation over a thousand kilometers with satellite links, which suffer less loss than fiber optic cables. Though impressive, such demonstrations are still a long way from being true quantum networks.

    3. Quantum networks will work with existing networks.

    Quantum networks will ultimately need to be highly reliable and should seamlessly integrate into our lives. As such, it’s likely quantum networks will work off of a backbone of fiber optic cables, alongside our current networks and internet. To merge with our current infrastructure, quantum networks will need interfaces that can connect non-quantum systems—like your smartphone—with quantum processors and nodes.

    In his lab, Nanni and his collaborators are working to create a computer chip that could connect classical computers to a quantum network. Such chips and other classical-quantum bridges could one day allow us to send bank transfers or information effortlessly and securely via quantum networking without needing personal quantum computers.

    As researchers work toward more reliable networks, new prototypes and designs are being developed, with breakthroughs coming almost monthly. Most areas of research have designed multiple options with no clear winners.

    For example, qubits can be encoded in a multitude of ways—using their polarization states, spin states, times of arrival, the motions of trapped ions and atoms, and the states of superconductors. Some designs work incredibly well but only at supercooled temperatures, while others are compatible at room temperatures but are less reliable. Likely, future quantum networks will exist as a mash-up of such options, with different designs specialized for different applications.

    “A key challenge for quantum networks is being able to interface between many different types of quantum systems and whatever you choose to be the network,” Nanni says. “I strongly suspect that in the long run we will not really settle on just one type of device because different types of platforms have different inherent advantages.”

    4. Quantum networks will be important in scientific sensing first.
    It may be decades before the average person has contact with a quantum network. But their applications in science may be a lot more imminent.

    Early networks will likely be used for things like cloud supercomputing with quantum networks harnessing the power of multiple quantum computers. Quantum networks will also enable more precise scientific sensing, which can improve atomic clocks and make GPS more reliable.

    Astronomers are also looking to leverage quantum networks by connecting optical telescopes allowing multiple observatories to function as a single giant scope—an optical interferometer.

    Scientists already achieved something similar, in 2019, when they used the Event Horizon Telescope to create the first-ever image of a black hole.

    EHT map.

    Messier 87*, The first image of the event horizon of a black hole. This is the supermassive black hole at the center of the galaxy Messier 87. Image via The Event Horizon Telescope Collaboration released on 10 April 2019 via National Science Foundation(US).

    The EHT was not a single telescope, but rather a network of radio telescopes located around the world. Similarly, the GRAVITY instrument on ESO’s Very Large Telescope Interferometer, which consists of telescopes spread along a small hilltop, used optical interferometry to image a planet around another star in the same year.

    ESO VLTI GRAVITY instrument.

    European Southern Observatory(EU) VLTI Interferometer image at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).

    The next step is to combine optical telescopes spaced even farther apart, which would improve image resolution further. This could lead to ground-breaking discoveries about the habitability of nearby planets, dark matter and the expansion of the universe.

    “Such a resolution [that could be achieved with optical interferometers] is enough to see an area like New York City on a planet in the closest star system,” says Emil Khabiboulline, a PhD student at Harvard University (US), who published a paper [Physical Review A] describing one possible way to connect telescopes with quantum networks.

    Increasing the distance between optical telescopes, however, is a big challenge. Photons are inevitably lost during the journey to a central hub where they’re recombined, and longer distances mean more data lost.

    Quantum networks offer one solution to this problem. If the photons’ quantum information can be recorded at each telescope and passed in a network, it could massively reduce data loss. But the huge number of photons possibly amassed by an optical telescope would overwhelm the bandwidth of quantum networks as they’re now envisioned.

    One workaround is a quantum approach, proposed by Khabiboulline and others, that could compress and store the photons’ quantum information before sending it over a quantum network using a smaller number of qubits. Other groups, like researchers at The University of Sydney (AU), have proposed using quantum hard drives, devices that would store the quantum information of photons arriving at separate telescopes until they could be physically brought together and recombined.

    Regardless of the final approach, the advances first designed by astronomers and other scientists will likely trickle down into the quantum networks the public may someday use.

    “I think with a level of enthusiasm that is present in the scientific community now, over the next decade, we’re going to really make a big impact,” Nanni says.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.

  • richardmitnick 11:15 am on January 18, 2022 Permalink | Reply
    Tags: "What is quantum information?", A classical bit is definitely a 0 or a 1 but a quantum bit- called a qubit- can be a bit of both., , , Classical information follows a set of rules. Quantum information breaks those rules., Classical information is discrete: A bit is always either a 0 or a 1 and nothing in between., In a classical computer information travels in the form of a string of bits-a pattern of 1s and 0s., , Quantum information allows a qubit to carry a different kind of information: continuous information about the relative balance of 0 and 1 within the qubit., Quantum information breaks the rules of classical information in a way that could allow us to answer questions that a classical computer cannot., Quantum information has to be carefully protected from its environment lest it become entangled with that environment and effectively lost., Quantum information is not discrete. A classical bit is definitely a 0 or a 1, Quantum superposition, , The way we process and interact with quantum information is fundamentally different.   

    From Symmetry: “What is quantum information?” 

    Symmetry Mag

    From Symmetry

    Nathan Collins

    Illustration by Sandbox Studio, Chicago with Ana Kova.

    Quantum information breaks the rules of classical information in a way that could allow us to answer questions that a classical computer cannot.

    Imagine mailing a letter. You, as the person sending the letter, know what the letter says. But the situation is different for the person you’re mailing the letter to. Until they read it, they generally won’t know what it says.

    This is the way scientists think about information, at least in the classical sense.

    A computer stores information, sends and receives information, and processes information. In a classical computer, the information travels in the form of a string of bits—a pattern of 1s and 0s. As each bit arrives, the recipient doesn’t know what value it will have; from their point of view, it is just as likely to be a 0 as it is to be a 1. To be sure, it will definitely be one or the other, but which it is will be revealed only once it arrives.

    In this sense, upon its arrival each bit resolves a certain amount of uncertainty.

    Now, it could be that knowing the start of a message gives clues about the rest of it. If a message starts, “O Romeo, Romeo,” it’s a good bet the message will conclude, “wherefore art thou Romeo?”

    Still, knowing the first part of the message does not determine—perhaps more to the point, it does not affect—the next part of the message. It could be that the rest of the message is “could you get me a sandwich?”

    All of this makes sense because classical information follows a set of rules.

    Quantum information breaks those rules, making it at once a powerful basis for computing and an exquisitely fragile beast.

    The quantum difference

    The rules of classical information are so intuitive that they are easy to take for granted.

    First, classical information is discrete: A bit is always either a 0 or a 1 and nothing in between. Second, bits are deterministic. That is, to the extent there is uncertainty in a bit, that uncertainty exists in the mind of someone who has not yet received a message (or in the possibility that an error might change the value of the bit). Finally, classical information is local—as in the Shakespeare example, a bit may suggest what’s coming, but observing that bit doesn’t actually affect any other bits.

    Quantum information, on the other hand, is not discrete. A classical bit is definitely a 0 or a 1, but a quantum bit, called a qubit, can be a bit of both.

    This feature allows a qubit to carry a different kind of information: continuous information about the relative balance of 0 and 1 within the qubit. Quantum algorithms can sometimes use this fact to run more efficiently than their classical counterparts.

    Quantum information is also not deterministic. When someone takes a look at a classical bit, it simply is a 0 or a 1, as it was beforehand and as it will be afterward, apart from the possibility of error. Not so with qubits, which are affected by the measurement.

    Although the qubit can be in any mix of 0 and 1, measuring it—as one would need to do to read the output of a calculation—forces it to be either 0 or 1. In general, there is some chance the answer will come out 0 and some complementary chance it will come out 1. This is not an error, and it is not the same as a message recipient simply not yet knowing the bit’s value—it is a fundamental feature of quantum physics.

    Importantly, this feature also means that reading the output of a quantum computer—a kind of measurement—destroys most of the information it stores. Where once there was a superposition, measurement makes it so that all that’s left is a 0 or a 1.

    Finally, quantum information is not local. While each classical bit is independent of every other bit, a qubit is typically not independent of other qubits.

    For instance, engineers can prepare a pair of qubits in a state such that if we measured one qubit as a 0, the other would have to be a 1, and vice versa. In theory, engineers can build up systems with as many qubits as they want, where each qubit’s state depends on many other qubits’ states, and all are part of a complex entangled system.

    This observation has a curious consequence: Where classical bits store information locally and independently of each other, quantum information is typically stored in the relationships between individual qubits.

    The upside of quantum information

    Quantum superposition, measurement and entanglement introduce certain difficulties. For instance, there are more ways for errors to creep into the system. And quantum information has to be carefully protected from its environment, lest it become entangled with that environment and effectively lost. Quantum error correction is in turn more challenging, since a problem that affects one qubit can end up corrupting the entire system.

    But quantum information brings with it some remarkable advantages as well, and these advantages are big enough to make it worth solving the challenges that arise.

    One early argument for quantum computing goes something like this: Classical computers are deterministic things—that is, when they perform a calculation, they produce only one answer. Nature, on the other hand, is not perfectly predictable. Since some aspects of it are fundamentally quantum mechanical, nature can produce more than one answer. That means a classical computer is going to have a hard time simulating quantum behavior.

    Imagine using a classical computer to simulate a single qubit. At a bare minimum, a classical computer would need many bits to describe what state the qubit was in, since the qubit could be in any combination of the 0 and 1 states. A classical computer would need still more bits to encode how qubits are entangled with each other, and even more to simulate what happens when someone performs a quantum algorithm and measures the output.

    In other words, it takes a lot more than 10 classical bits to simulate 10 quantum bits, suggesting that one might be able to do a lot more with 10 quantum bits than one could with 10 classical bits.

    But even that thought experiment doesn’t fully capture the distinction. There isn’t simply more information in a quantum bit—quantum superposition, measurement and entanglement also mean that the way we process and interact with quantum information is fundamentally different.

    One consequence is that quantum computers could be better than classical computers even when it comes to solving some deterministic problems. A now-classic example is factoring, or finding the prime numbers that multiply together to make another number. While there is only one way to factor any number, factoring large numbers is a very hard problem on classical computers. On a quantum computer, it’s relatively easy.

    These distinctions don’t mean that quantum computers are better than classical computers at everything. The main point is that they are different and therefore suited to solving different kinds of problems, and indeed researchers are working hard to understand which computational problems quantum computers would be best suited to. What’s clear is that quantum information opens up new possibilities, and the future is still unwritten.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.

  • richardmitnick 12:39 pm on December 21, 2020 Permalink | Reply
    Tags: "When light and atoms share a common vibe", , , In the new study EPFL researchers managed to entangle the photon and the phonon (i.e. light and vibration) produced in the fission of an incoming laser photon inside the crystal., , , , , Quantum superposition   

    From École Polytechnique Fédérale de Lausanne (CH): “When light and atoms share a common vibe” 

    From École Polytechnique Fédérale de Lausanne (CH)

    Scientists from EPFL, MIT, and CEA Saclay demonstrate a state of vibration that exists simultaneously at two different times. They evidence this quantum superposition by measuring the strongest class of quantum correlations between light beams that interact with the vibration.

    When light and atoms share a common vibe.

    An especially counter-intuitive feature of quantum mechanics is that a single event can exist in a state of superposition – happening bothhereandthere, or bothtodayandtomorrow.

    Such superpositions are hard to create, as they are destroyed if any kind of information about the place and time of the event leaks into the surrounding – and even if nobody actually records this information. But when superpositions do occur, they lead to observations that are very different from that of classical physics, questioning down to our very understanding of space and time.

    Scientists from EPFL, MIT, and CEA Saclay, publishing in Science Advances, demonstrate a state of vibration that exists simultaneously at two different times, and evidence this quantum superposition by measuring the strongest class of quantum correlations between light beams that interact with the vibration.

    The researchers used a very short laser-pulse to trigger a specific pattern of vibration inside a diamond crystal. Each pair of neighboring atoms oscillated like two masses linked by a spring, and this oscillation was synchronous across the entire illuminated region. To conserve energy during this process, a light of a new color is emitted, shifted toward the red of the spectrum.

    This classical picture, however, is inconsistent with the experiments. Instead, both light and vibration should be described as particles, or quanta: light energy is quantized into discrete photons while vibrational energy is quantized into discrete phonons (named after the ancient Greek “photo = light” and “phono = sound”).

    The process described above should therefore be seen as the fission of an incoming photon from the laser into a pair of photon and phonon – akin to nuclear fission of an atom into two smaller pieces.

    But it is not the only shortcoming of classical physics. In quantum mechanics, particles can exist in a superposition state, like the famous Schrödinger cat being alive and dead at the same time.

    Even more counterintuitive: two particles can become entangled, losing their individuality. The only information that can be collected about them concerns their common correlations. Because both particles are described by a common state (the wavefunction), these correlations are stronger than what is possible in classical physics. It can be demonstrated by performing appropriate measurements on the two particles. If the results violate a classical limit, one can be sure they were entangled.

    In the new study, EPFL researchers managed to entangle the photon and the phonon (i.e., light and vibration) produced in the fission of an incoming laser photon inside the crystal. To do so, the scientists designed an experiment in which the photon-phonon pair could be created at two different instants. Classically, it would result in a situation where the pair is created at time t1 with 50% probability, or at a later time t2 with 50% probability.

    But here comes the “trick” played by the researchers to generate an entangled state. By a precise arrangement of the experiment, they ensured that not even the faintest trace of the light-vibration pair creation time (t1 vs. t2) was left in the universe. In other words, they erased information about t1 and t2. Quantum mechanics then predicts that the phonon-photon pair becomes entangled, and exists in a superposition of time t1andt2. This prediction was beautifully confirmed by the measurements, which yielded results incompatible with the classical probabilistic theory.

    By showing entanglement between light and vibration in a crystal that one could hold in their finger during the experiment, the new study creates a bridge between our daily experience and the fascinating realm of quantum mechanics.

    “Quantum technologies are heralded as the next technological revolution in computing, communication, sensing, says Christophe Galland, head of the Laboratory for Quantum and Nano-Optics at EPFL and one of the study’s main authors. “They are currently being developed by top universities and large companies worldwide, but the challenge is daunting. Such technologies rely on very fragile quantum effects surviving only at extremely cold temperatures or under high vacuum. Our study demonstrates that even a common material at ambient conditions can sustain the delicate quantum properties required for quantum technologies. There is a price to pay, though: the quantum correlations sustained by atomic vibrations in the crystal are lost after only 4 picoseconds — i.e., 0.000000000004 of a second! This short time scale is, however, also an opportunity for developing ultrafast quantum technologies. But much research lies ahead to transform our experiment into a useful device — a job for future quantum engineers.”

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    EPFL (CH) is Europe’s most cosmopolitan technical university. It receives students, professors and staff from over 120 nationalities. With both a Swiss and international calling, it is therefore guided by a constant wish to open up; its missions of teaching, research and partnership impact various circles: universities and engineering schools, developing and emerging countries, secondary schools and gymnasiums, industry and economy, political circles and the general public.

  • richardmitnick 12:37 pm on December 8, 2020 Permalink | Reply
    Tags: , , Entangled quantum systems, , , , Quantum superposition, , Three of the four fundamental forces in physics can be described in terms of quantum theory. This is not the case for the fourth force (gravity).,   

    From University of Gronigen [Rijksuniversiteit Groningen] (NL) via phys.org: “Experiment to test quantum gravity just got a bit less complicated” 

    From University of Gronigen [Rijksuniversiteit Groningen] (NL)



    December 8, 2020

    In the proposed experiment, two diamonds are each placed in superposition and studied in freefall. Apart from gravity, the Casimir effect also draws them together, causing noise in the experiment. A thin copper plate can shield this effect, reducing the noise and making the experiment more manageable. Credit: A. Mazumdar, University of Groningen.

    Is gravity a quantum phenomenon? That has been one of the big outstanding questions in physics for decades. Together with colleagues from the UK, Anupam Mazumdar, a physicist from the University of Groningen, proposed an experiment that could settle the issue. However, it requires studying two very large entangled quantum systems in freefall. In a new paper
    [Physical Review A], which has a third-year Bachelor’s student as the first author, Mazumdar presents a way to reduce background noise to make this experiment more manageable.

    Three of the four fundamental forces in physics can be described in terms of quantum theory. This is not the case for the fourth force (gravity), which is described by Einstein’s theory of general relativity. The experiment that Mazumdar and his colleagues previously designed could prove or disprove the quantum nature of gravity.


    A well-known consequence of the quantum theory is the phenomenon called quantum superposition: in certain situations, quantum states can have two different values at the same time. Take an electron that is irradiated with laser light. Quantum theory says that it can either absorb or not absorb the photon energy from the light. Absorbing the energy would alter the electron’s spin, a magnetic moment that can be either up or down. The result of quantum superposition is that the spin is both up and down.

    These quantum effects take place in tiny objects, such as electrons. By targeting an electron in a specially constructed miniature diamond, it is possible to create superposition in a much larger object. The diamond is small enough to sustain this superposition, but also large enough to feel the pull of gravity. This characteristic is what the experiment exploits: placing two of these diamonds next to each other in freefall and, therefore, canceling out external gravity. This means that they only interact through the gravity between them.


    And that is where another quantum phenomenon comes in. Quantum entanglement means that when two or more particles are generated in close proximity, their quantum states are linked. In the case of the diamonds, if one is spin up, the other, entangled diamond should be spin down. So, the experiment is designed to determine whether quantum entanglement occurs in the pair during freefall, when the force of the gravity between the diamonds is the only way that they interact.

    “However, this experiment is very challenging,” explains Mazumdar. When two objects are very close together, another possible mechanism for interaction is present, the Casimir effect. In a vacuum, two objects can attract each other through this effect. “The size of the effect is relatively large and to overcome the noise it creates, we would have to use relatively large diamonds.” It was clear from the outset that this noise should be reduced to make the experiment more manageable. Therefore, Mazumdar wanted to know if shielding for the Casimir effect was possible.


    He handed the problem to Thomas van de Kamp, a third-year Bachelor’s student of Physics. “He came to me because he was interested in quantum gravity and wanted to do a research project for his Bachelor’s thesis,” says Mazumdar. During the spring lockdown, when most normal classes were suspended, Van de Kamp started working on the problem. “Within a remarkably short time, he presented his solution, which is described in our paper.”

    This solution is based on placing a conducting plate of copper, around one millimeter thick, between the two diamonds. The plate shields the Casimir potential between them. Without the plate, this potential would draw the diamonds closer to each other. But with the plate, the diamonds are no longer attracted to each other, but to the plate between them. Mazumdar: “This removes the interaction between the diamonds through the Casimir effect, and therefore removes a lot of noise from the experiment.”


    The calculations performed by Van de Kamp show that the masses of the two diamonds can be reduced by two orders of magnitude. “It may seem like a small step, but it does make the experiment less demanding.” Furthermore, other parameters such as the level of vacuum needed during the experiment also become less demanding due to the shielding of the Casimir effect. Mazumdar says that a further update on the experiment, which also includes a contribution from Bachelor’s student Thomas van de Kamp, will probably appear in the near future. “So, his six-month project has brought him co-authorship on two papers, quite a remarkable feat.”

    See the full article here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Gronigen [Rijksuniversiteit Groningen] (NL) is a public research university in the city of Groningen in the Netherlands. The university was founded in 1614 and is the second-oldest university in the Netherlands. In 2014, the university celebrated its 400th anniversary. Currently, RUG is placed in the top 100 universities worldwide according to three international ranking tables.

    The university was ranked 65th in the world, according to Academic Ranking of World Universities (ARWU) in 2019. In April 2013, according to the results of the International Student Barometer, the University of Groningen, for the third time in a row, was voted the best university of the Netherlands.

    The University of Groningen has eleven faculties, nine graduate schools, 27 research centres and institutes, and more than 175-degree programmes. The university’s alumni and faculty include Johann Bernoulli, Aletta Jacobs, four Nobel Prize winners, nine Spinoza Prize winners, one Stevin Prize winner, royalty, multiple mayors, the first president of the European Central Bank, and a secretary general of NATO.

  • richardmitnick 10:33 am on September 19, 2019 Permalink | Reply
    Tags: Classical nonseparability can be applied to acoustic waves not just light waves., From Light to Sound, , , Quantum superposition, ,   

    From University of Arizona: “Sound of the Future: A New Analog to Quantum Computing” 

    U Arizona bloc

    From University of Arizona

    Sept. 17, 2019
    Emily Dieckman

    University of Arizona engineers are using soundwaves to search through big data with more stability and ease.

    Pierre Deymier (right) and UA President Robert C. Robbins examine the acoustic system that allowed researchers to create Bell states using phonons. (Photo: Paul Tumarkin/Tech Launch Arizona)

    Human beings create a lot of data in the digital age – whether it’s through everyday items like social media posts, emails and Google searches, or more complex information about health, finances and scientific findings.

    The International Data Corp. reported that the global datasphere contained 33 zettabytes, or 33 trillion gigabytes, in 2018. By 2025, they expect that number to grow to 175 zettabytes. 175 zettabytes of information stored on DVDs would fill enough DVDs to circle Earth 222 times.

    While quantum computing has been touted as a way to intelligently sort through big data, quantum environments are difficult to create and maintain. Entangled quantum bit states, or qubits, usually last less than a second before collapsing. Qubits are also highly sensitive to their surrounding environments and must be stored at cryogenic temperatures.

    In a paper Nature Communications Physics, researchers in the University of Arizona Department of Materials Science and Engineering have demonstrated the possibility for acoustic waves in a classical environment to do the work of quantum information processing without the time limitations and fragility.

    “We could run our system for years,” said Keith Runge, director of research in the Department of Materials Science and Engineering and one of the paper’s authors. “It’s so robust that we could take it outside to a tradeshow without it being perturbed at all – earlier this year, we did.”

    Materials science and engineering research assistant professor Arif Hasan led the research. Other co-authors include MSE research assistant professor Lazaro Calderin; undergraduate student Trevor Lata; Pierre Lucas, professor of MSE and optical sciences; and Pierre Deymier, MSE department head, member of the applied mathematics Graduate Interdisciplinary Program, and member of the BIO5 Institute. The team is working with Tech Launch Arizona, the office of the UA that commercializes inventions stemming from research, to patent their device and is investigating commercial pathways to bring the innovation to the public.

    Quantum Superposition

    In classical computing, information is stored as either 0s or 1s, the same way a coin must land on either heads or tails. In quantum computing, qubits can be stored in both states at the same time – a so-called superposition of states. Think of a coin balanced on its side, spinning so quickly that both heads and tails seem to appear at once.

    When qubits are entangled, anything that happens to one qubit affects the other through a principle called nonseparability. In other words, knock down one spinning coin on a table and another spinning coin on the same table falls down, too. A principle called nonlocality keeps the particles linked even if they’re far apart – knock down one spinning coin, and its entangled counterpart on the other side of the universe falls down, too. The entangled qubits create a Bell state, in which all parts of a collective are affected by one another.

    “This is key, because if you manipulate just one qubit, you are manipulating the entire collection of qubits,” Deymier said. “In a regular computer, you have many bits of info stored as 0s or 1s, and you have to address each one of them.”

    From Light to Sound

    But, like a coin spinning on its edge, quantum mechanics are fragile. The act of measuring a quantum state can cause the link to collapse, or decohere – just like how taking a picture of a spinning coin will mean capturing just one side of the coin. That’s why qubit states can only be maintained for short periods.

    But there’s a way around the use of quantum mechanics for data processing: Optical scientists and electrical and computer engineering researchers have demonstrated the ability to create systems of photons, or units of light, that exhibit nonseparability without nonlocality. Though nonlocality is important for specific applications like cryptography, it’s the nonseparability that matters for applications like quantum computing. And particles that are nonseparable in classical Bell states, rather than entangled in a quantum Bell state, are much more stable.

    The materials science and engineering team has taken this a step further by demonstrating for the first time that that classical nonseparability can be applied to acoustic waves, not just light waves. They use phi-bits, units made up of quasi-particles called phonons that transmit sound and heat waves.

    “Light lasers and single photons are part of the field photonics, but soundwaves fall under the umbrella of phononics, or the study of phonons,” Deymier said. “In addition to being stable, classically entangled acoustic waves are easy to interact with and manipulate.”

    Complex Science, Simple Tools

    The materials to demonstrate such a complex concept were simple, including three aluminum rods, enough epoxy to connect them and some rubber bands for elasticity.

    Researchers sent a wave of sound vibrations down the rods, then monitored two degrees of freedom of the waves: what direction the waves moved down the rods (forward or backward) and how the rods moved in relation to one another (whether they were waving in the same direction and at similar amplitudes). To excite the system into a nonseparable state, they identified a frequency at which these two degrees of freedom were linked and sent the waves at that frequency. The result? A Bell state.

    “So, we have an acoustic system that gives us the possibility creating these Bell states,” Deymier said. “It’s the complete analog to quantum mechanics.”

    Demonstrating that this is possible has opened the door to applying classical nonseparability to the emerging field of phononics. Next, the researchers will work to increase the number of degrees of freedom that can be classically entangled – the more, the better. They also want to develop algorithms that can use these nonseparable states to manipulate information.

    Once the system is refined, they plan to resize it from the tabletop down to the microscale, ready to deploy on computer chips in data centers around the world.

    This work was supported by the W.M. Keck Foundation and the National Science Foundation Emerging Frontiers in Research and Innovation Program.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Arizona campus

    The University of Arizona (UA) is a place without limits-where teaching, research, service and innovation merge to improve lives in Arizona and beyond. We aren’t afraid to ask big questions, and find even better answers.

    In 1885, establishing Arizona’s first university in the middle of the Sonoran Desert was a bold move. But our founders were fearless, and we have never lost that spirit. To this day, we’re revolutionizing the fields of space sciences, optics, biosciences, medicine, arts and humanities, business, technology transfer and many others. Since it was founded, the UA has grown to cover more than 380 acres in central Tucson, a rich breeding ground for discovery.

    U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why the UA is a university unlike any other.

  • richardmitnick 8:59 am on July 30, 2019 Permalink | Reply
    Tags: A team of physicists at University of Illinois at Chicago and the University of Hamburg have taken a different approach., Entangled Majorana quasiparticles produced by splitting an electron into two halves are surprisingly stable., , , Majorana quasiparticles, , , Quantum superposition, , , , They remember how they've been moved around a property that could be exploited for storing information., They've started with a rhenium superconductor a material that conducts electricity with zero resistance when supercooled to around 6 Kelvin (–267°C; 449°F)., , ,   

    From University of Illinois and U Hamburg, via Science Alert: “An Elusive Particle That Acts as Its Own Antiparticle Has Just Been Imaged” 

    U Illinois bloc

    From University of Illinois Chicago


    U Hamburg


    30 JULY 2019

    (Palacio-Morales et al. Science Advances, 2019)

    New images of the Majorana fermion have brought physicists a step closer to harnessing the mysterious objects for quantum computing.

    These strange objects – particles that acts as their own antiparticles – have a vast as-yet untapped potential to act as qubits, the quantum bits that are the basic units of information in a quantum computer.

    IBM iconic image of Quantum computer

    They’re equivalent to binary bits in a traditional computer. But, where regular bits can represent a 1 or a 0, qubits can be either 1, 0 or both at the same time, a state known as quantum superposition. Quantum superposition is actually pretty hard to maintain, although we’re getting better at it.

    This is where Majorana quasiparticles come in. These are excitations in the collective behaviour of electrons that act like Majorana fermions, and they have a number of properties that make them an attractive candidate for qubits.

    Normally, a particle and an antiparticle will annihilate each other, but entangled Majorana quasiparticles produced by splitting an electron into two halves are surprisingly stable. In addition, they remember how they’ve been moved around, a property that could be exploited for storing information.

    But the quasiparticles have to remain separated by a sufficient distance. This can be done with a special nanowire, but a team of physicists at the University of Illinois at Chicago and the University of Hamburg in Germany have taken a different approach.

    They’ve started with a rhenium superconductor, a material that conducts electricity with zero resistance when supercooled to around 6 Kelvin (–267°C; 449°F).

    On top of these superconductors, the researchers deposited nanoscale islands of single layers of magnetic iron atoms. This creates what is known as a topological superconductor – that is, a superconductor that contains a topological knot.

    “This topological knot is similar to the hole in a donut,” explained physicist Dirk Morr of the University of Illinois at Chicago.

    “You can deform the donut into a coffee mug without losing the hole, but if you want to destroy the hole, you have to do something pretty dramatic, such as eating the donut.”

    When electrons flow through the superconductor, the team predicted that Majorana fermions would appear in a one-dimensional mode at the edges of the iron islands – around the so-called donut hole. And that by using a scanning tunneling microscope – an instrument used for imaging surfaces at the atomic level – they would see this visualised as a bright line.

    Sure enough, a bright line showed up.

    It’s not the first time Majorana fermions have been imaged, but it does represent a step forward. And just last month, a different team of researchers revealed that they had been able to turn Majorana quasiparticles on and off.

    But being able to visualise these particles, the researchers said, brings us closer to using them as qubits.

    “The next step will be to figure out how we can quantum engineer these Majorana qubits on quantum chips and manipulate them to obtain an exponential increase in our computing power,” Morr said.

    The research has been published in Science Advances.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition


    The University

    Universität Hamburg is the largest institution for research and education in northern Germany. As one of the country’s largest universities, we offer a diverse range of degree programs and excellent research opportunities. The University boasts numerous interdisciplinary projects in a broad range of fields and an extensive partner network of leading regional, national, and international higher education and research institutions.
    Sustainable science and scholarship

    Universität Hamburg is committed to sustainability. All our faculties have taken great strides towards sustainability in both research and teaching.
    Excellent research

    As part of the Excellence Strategy of the Federal and State Governments, Universität Hamburg has been granted clusters of excellence for 4 core research areas: Advanced Imaging of Matter (photon and nanosciences), Climate, Climatic Change, and Society (CliCCS) (climate research), Understanding Written Artefacts (manuscript research) and Quantum Universe (mathematics, particle physics, astrophysics, and cosmology).

    An equally important core research area is Infection Research, in which researchers investigate the structure, dynamics, and mechanisms of infection processes to promote the development of new treatment methods and therapies.
    Outstanding variety: over 170 degree programs

    Universität Hamburg offers approximately 170 degree programs within its eight faculties:

    Faculty of Law
    Faculty of Business, Economics and Social Sciences
    Faculty of Medicine
    Faculty of Education
    Faculty of Mathematics, Informatics and Natural Sciences
    Faculty of Psychology and Human Movement Science
    Faculty of Business Administration (Hamburg Business School).

    Universität Hamburg is also home to several museums and collections, such as the Zoological Museum, the Herbarium Hamburgense, the Geological-Paleontological Museum, the Loki Schmidt Garden, and the Hamburg Observatory.

    Universität Hamburg was founded in 1919 by local citizens. Important founding figures include Senator Werner von Melle and the merchant Edmund Siemers. Nobel Prize winners such as the physicists Otto Stern, Wolfgang Pauli, and Isidor Rabi taught and researched at the University. Many other distinguished scholars, such as Ernst Cassirer, Erwin Panofsky, Aby Warburg, William Stern, Agathe Lasch, Magdalene Schoch, Emil Artin, Ralf Dahrendorf, and Carl Friedrich von Weizsäcker, also worked here.

    U Illinois campus

    The University of Illinois at Urbana-Champaign community of students, scholars, and alumni is changing the world.

    With our land-grant heritage as a foundation, we pioneer innovative research that tackles global problems and expands the human experience. Our transformative learning experiences, in and out of the classroom, are designed to produce alumni who desire to make a significant, societal impact.

    The University of Illinois at Chicago (UIC) is a public research university in Chicago, Illinois. Its campus is in the Near West Side community area, adjacent to the Chicago Loop. The second campus established under the University of Illinois system, UIC is also the largest university in the Chicago area, having approximately 30,000 students[9] enrolled in 15 colleges.

    UIC operates the largest medical school in the United States with research expenditures exceeding $412 million and consistently ranks in the top 50 U.S. institutions for research expenditures.[10][11][12] In the 2019 U.S. News & World Report’s ranking of colleges and universities, UIC ranked as the 129th best in the “national universities” category.[13] The 2015 Times Higher Education World University Rankings ranked UIC as the 18th best in the world among universities less than 50 years old.[14]

    UIC competes in NCAA Division I Horizon League as the UIC Flames in sports. The Credit Union 1 Arena (formerly UIC Pavilion) is the Flames’ venue for home games.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: