Tagged: Quantum Physics Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:55 pm on January 15, 2022 Permalink | Reply
    Tags: "Playing by the quantum rules", , , , , Quantum Physics, Spooky action: on the quantum scale the universe doesn’t work the way you might expect.,   

    From Symmetry : “Playing by the quantum rules” 

    Symmetry Mag
    From Symmetry

    01/11/22
    Nathan Collins

    1
    Illustration by Sandbox Studio, Chicago with Ana Kova.

    Uncertainty, entanglement, spooky action: On the quantum scale the universe doesn’t work the way you might expect.

    While driving down the highway, physicist Werner Heisenberg is stopped by a police officer, the physics joke begins.

    “Do you know how fast you were going?” the officer demands.

    When Heisenberg shakes his head, the officer tells him: “You were doing 90.”

    “Great,” Heisenberg complains. “Now I don’t know where I am.”

    To get the joke, you need to be familiar with the Heisenberg uncertainty principle, Heisenberg’s observation that it’s impossible to simultaneously measure both the velocity and position of certain objects.

    It’s a joke because, of course, the uncertainty principle does not apply to something the size of a person or a car.

    The uncertainty principle comes from quantum physics, which deals with much smaller objects—things like atoms and quarks. The quantum world differs from the classical world we’re used to in a variety of ways.

    Being in two places at once

    In the classical world, a satellite is either traveling at 6,753 miles per hour, or it isn’t. Similarly, a rock is either sitting at 37°25’12.7”N, 122°12’16.5”W, or it isn’t. In both cases, in the classical world, there’s no ambiguity.

    A quantum mechanical satellite or rock would be different: It could be in many places, traveling at many speeds, all at the same time.

    Physicists refer to this as an object being in a superposition of states. At any given moment, a quantum system can be in a superposition of states with different positions, speeds, energies or whatever other property one can imagine.

    Only observing the object, taking a measure of it at a specific point in time, would collapse this superposition of possibilities. If an observer measured the position or speed of our quantum rock, they would get a definite answer.

    There’s a caveat, however: Because of the quantum uncertainty principle, the observer cannot perfectly determine both the position and the speed of the quantum rock at the same time. The more precisely the observer measures position, the less precisely they can measure speed, and vice versa.

    The truly weird part: However precisely one measures the quantum rock’s position or speed, quantum physics does not determine what that position or speed will be, only the probability that the rock will be in one place or another or have one speed or another.

    Entanglement and spooky action at a distance

    Unfortunately, there is no simple way to map the fact of quantum superposition and its consequences onto our intuitions. It is something one must simply accept about quantum physics.

    If you think that sounds difficult, you’re not alone. A number of highly regarded physicists tried to find a way around this befuddling feature.

    To illustrate their frustrations, Albert Einstein, Boris Podolsky and Nathan Rosen came up with a thought experiment they hoped would show something was missing from quantum theory. They were ultimately proved wrong, but the example helps explain another key idea, called quantum entanglement.

    First, here’s the thought experiment: Start with a particle that decays into a particle-antiparticle pair. In their example, the physicists chose a neutral pion decaying into an electron and a positron.

    Each of these particles has a fundamental property called spin, so named because it obeys some of the same rules as spinning objects in classical physics. Spin is conserved, so the total spin of the particle-antiparticle pair needs to add up to the spin of their parent particle.

    The neutral pion from the example has 0 spin, while electrons and positrons can have one of two possibilities: either spin +1/2 or -1/2. Since their spins must add up to 0, the electron-positron pair either could be in a state where the electron has spin +1/2 and the positron has spin -1/2, or the other way around. Physics does not determine which state the system is in, and in fact it will be in a superposition of the two states until a measurement is made.

    To physicists, the electron and positron are entangled. We don’t know the electron’s spin state, but we know that whatever it is, it’s the opposite of the positron’s spin state.

    Einstein, Podolsky and Rosen—EPR for short—noticed that this state of things, entanglement, implied what came to be known popularly as “spooky action at a distance.”

    In their thought experiment, the next step would be to separate the electron and positron by a great distance and then measure the electron’s spin. At that instant, the electron would no longer be in a superposition of states—its spin would be either +1/2 or -1/2.

    Say they measure the electron’s spin to be +1/2. Because the electron and positron are entangled, the positron’s spin instantly, in that moment, must become -1/2. Crucially, this happens before the positron could receive any signal from the electron—even if the signal traveled at the speed of light, the fastest possible speed in the universe.

    The thought experiment—which eventually was confirmed experimentally using larger and larger distances between the two entangled particles—seems to imply that, for entanglement to work, the electron must send a faster-than-light signal to the positron about what state it should be in. This is impossible, since the transmission of this signal would violate the rules of causality that govern all of physics.

    EPR regarded their thought experiment as proof that quantum mechanics was missing something, and they and others argued that there must be some so-called hidden variables that predetermined what states the electron and positron were actually in. The rules of quantum theory were correct, the argument went, but those rules were incomplete until these hidden variables could be discovered.

    But in 1964, physicist John Bell showed that quantum mechanics did not allow for any such hidden variables. Hidden variables would, in fact, violate the rules of quantum mechanics.

    Subsequent experiments have proven Bell correct. As counterintuitive as they are, entanglement and spooky action at a distance are real.

    Pixel by pixel

    There’s one more feature to mention: the one that gives the field its “quantum” name.

    In the classical world, most everything is continuous. You can stand anywhere between point A and point B. You can travel at any speed, up to the speed of light. And, with some constraints, orbits around a planet can have any radius.

    That’s sometimes true in the quantum world, but not often. In general, the quantum world is discrete, or quantized.

    One of the first signs that the quantum world might be discrete arrived in the late 19th century when physicists noticed that atoms emitted only certain specific wavelengths, or colors, of light. Hydrogen, for instance, emits only four visible wavelengths: 410, 434, 486 and 656 nanometers. These discrete wavelengths, physicists worked out, were the result of electrons orbiting the hydrogen nucleus hopping between different, discrete energy levels.

    Quantum physics is filled with examples of discrete systems, including one you already know about: spin. If one measures the spin of an electron or a positron, the answer is always either +1/2 or -1/2, never anything in between. Something similar holds for atoms and other particles.

    All of this is just the beginning. Superposition, the uncertainty principle, entanglement and quantized properties such as spin are some of the most important features of quantum physics. But scientists already knew about all of them by the 1930s. In the decades that followed, physicists developed quantum electrodynamics, a quantum theory of electromagnetic fields, as well as a completely quantum view of nearly all elementary particles and their interactions, today known as the Standard Model.

    And even now questions remain. There is still no adequate quantum theory of gravity, something that physicists will need to develop to understand black holes and the origins of our universe, when all matter was compressed in an extraordinarily tiny volume. The solution to those puzzles may lie in the idea that space itself is quantized or pixelated in some way, or in links between spacetime geometry, the standard way of describing gravity, and quantum physics. Right now, no one can say for sure.

    For physicists and others alike, it’s not easy to get a grasp on quantum physics. But understanding that the quantum world works differently from the world that we know is the beginning of understanding our universe at its most fundamental level.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 10:38 am on January 12, 2022 Permalink | Reply
    Tags: , At the dawn of the 20th century a new theory of matter and energy was emerging., , Could a quantum worldview prove useful outside the lab?, Information Theory: a blend of math and computer science, , One of the main questions quantum mechanics addressed was the nature of light-particle or wave, , Peter Shor: a fast-factoring algorithm for a quantum computer-a computer whose bits exist in superposition and can be entangled., Physicists developed a new system of mechanics to describe what seemed to be a quantized and uncertain probabilistic world-Heisenberg's Uncertainty Principle, , , , , Quantum Physics, , Shor’s algorithm is of particular interest in encryption because of the difficulty of identifying the prime factors of large numbers., Shor’s algorithm was designed to quickly divide large numbers into their prime factors., The second quantum revolution also relies on and encompasses new ways of using technology to manipulate matter at the quantum level., Today’s quantum computers are not yet advanced enough to implement Shor’s algorithm., , Vacuum tubes, What changed was Shor’s introduction of error-correcting codes.   

    From Symmetry: “The second quantum revolution” 

    Symmetry Mag

    From Symmetry

    01/12/22
    Daniel Garisto

    1
    Illustration by Ana Kova / Sandbox Studio, Chicago.

    Inventions like the transistor and laser changed the world. What changes will the second quantum revolution bring?

    For physicists trying to harness the power of electricity, no tool was more important than the vacuum tube. This lightbulb-like device controlled the flow of electricity and could amplify signals. In the early 20th century, vacuum tubes were used in radios, televisions and long-distance telephone networks.

    But vacuum tubes had significant drawbacks: They generated heat; they were bulky; and they had a propensity to burn out. Physicists at Bell Labs, a spin-off of AT&T, were interested in finding a replacement.

    Applying their knowledge of quantum mechanics—specifically how electrons flowed between materials with electrical conductivity—they found a way to mimic the function of vacuum tubes without those shortcomings.

    They had invented the transistor. At the time, the invention did not grace the front page of any major news publications. Even the scientists themselves couldn’t have appreciated just how important their device would be.

    First came the transistor radio, popularized in large part by the new Japanese company Sony. Spreading portable access to radio broadcasts changed music and connected disparate corners of the world.

    Transistors then paved the way for NASA’s Apollo Project, which first took humans to the moon. And perhaps most importantly, transistors were made smaller and smaller, shrinking room-sized computers and magnifying their power to eventually create laptops and smartphones.

    These quantum-inspired devices are central to every single modern electronic application that uses some computing power, such as cars, cellphones and digital cameras. You would not be reading this sentence without transistors, which are an important part of what is now called the First Quantum Revolution.

    Quantum physicists Jonathan Dowling and Gerard Milburn coined the term “quantum revolution” in a 2002 paper [The Royal Society]. In it, they argue that we have now entered a new era, a Second Quantum Revolution. “It just dawned on me that actually there was a whole new technological frontier opening up,” says Milburn, professor emeritus at The University of Queensland (AU).

    This second quantum revolution is defined by developments in technologies like quantum computing and quantum sensing, brought on by a deeper understanding of the quantum world and precision control down to the level of individual particles.

    A quantum understanding

    At the dawn of the 20th century a new theory of matter and energy was emerging. Unsatisfied with classical explanations about the strange behavior of particles, physicists developed a new system of mechanics to describe what seemed to be a quantized, uncertain, probabilistic world.

    One of the main questions quantum mechanics addressed was the nature of light. Eighteenth-century physicists believed light was a particle. Nineteenth-century physicists proved it had to be a wave. Twentieth-century physicists resolved the problem by redefining particles using the principles of quantum mechanics. They proposed that particles of light, now called photons, had some probability of existing in a given location—a probability that could be represented as a wave and even experience interference like one.

    This newfound picture of the world helped make sense of results such as those of the double-slit experiment, which showed that particles like electrons and photons could behave as if they were waves.

    But could a quantum worldview prove useful outside the lab?

    At first, “quantum was usually seen as just a source of mystery and confusion and all sorts of strange paradoxes,” Milburn says.

    But after World War II, people began figuring out how to use those paradoxes to get things done. Building on new quantum ideas about the behavior of electrons in metals and other materials, Bell Labs researchers William Shockley, John Bardeen and Walter Brattain created the first transistors. They realized that sandwiching semiconductors together could create a device that would allow electrical current to flow in one direction, but not another. Other technologies, such as atomic clocks and the nuclear magnetic resonance used for MRI scans, were also products of the first quantum revolution.

    Another important and, well, visible quantum invention was the laser.

    In the 1950s, optical physicists knew that hitting certain kinds of atoms with a few photons at the right energy could lead them to emit more photons with the same energy and direction as the initial photons. This effect would cause a cascade of photons, creating a stable, straight beam of light unlike anything seen in nature. Today, lasers are ubiquitous, used in applications from laser pointers to barcode scanners to life-saving medical techniques.

    All of these devices were made possible by studies of the quantum world. Both the laser and transistor rely on an understanding of quantized atomic energy levels. Milburn and Dowling suggest that the technologies of the first quantum revolution are unified by “the idea that matter particles sometimes behaved like waves, and that light waves sometimes acted like particles.”

    For the first time, scientists were using their understanding of quantum mechanics to create new tools that could be used in the classical world.

    The second quantum revolution

    Many of these developments were described to the public without resorting to the word “quantum,” as this Bell Labs video about the laser attests.

    One reason for the disconnect was that the first quantum revolution didn’t make full use of quantum mechanics. “The systems were too noisy. In a sense, the full richness of quantum mechanics wasn’t really accessible,” says Ivan Deutsch, a quantum physicist at The University of New Mexico (US). “You can get by with a fairly classical picture.”

    The stage for the second quantum revolution was set in the 1960s, when the North Irish physicist John Stewart Bell [B.Sc.The Queen’s University of Belfast (NIR); Ph.DThe University of Birmingham (UK);The European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN]; Stanford University (US) ] shook the foundations of quantum mechanics. Bell proposed that entangled particles were correlated in strange quantum ways and could not be explained with so-called “hidden variables.” Tests performed in the ’70s and ’80s confirmed that measuring one entangled particle really did seem to determine the state of the other, faster than any signal could travel between the two.

    The other critical ingredient for the second quantum revolution was information theory, a blend of math and computer science developed by pioneers like Claude Shannon and Alan Turing. In 1994, combining new insight into the foundations of quantum mechanics with information theory led the mathematician Peter Shor to introduce a fast-factoring algorithm for a quantum computer, a computer whose bits exist in superposition and can be entangled.

    Shor’s algorithm was designed to quickly divide large numbers into their prime factors. Using the algorithm, a quantum computer could solve the problem much more efficiently than a classical one. It was the clearest early demonstration of the worth of quantum computing.

    “It really made the whole idea of quantum information, a new concept that those of us who had been working in related areas, instantly appreciated,” Deutsch says. “Shor’s algorithm suggested the possibilities new quantum tech could have over existing classical tech, galvanizing research across the board.”

    Shor’s algorithm is of particular interest in encryption because the difficulty of identifying the prime factors of large numbers is precisely what keeps data private online. To unlock encrypted information, a computer must know the prime factors of a large number associated with it. Use a large enough number, and the puzzle of guessing its prime factors can take a classical computer thousands of years. With Shor’s algorithm, the guessing game can take just moments.

    Today’s quantum computers are not yet advanced enough to implement Shor’s algorithm. But as Deutsch points out, skeptics once doubted a quantum computer was even possible.

    “Because there was a kind of trade-off,” he says. “The kind of exponential increase in computational power that might come from quantum superpositions would be counteracted exactly, by exponential sensitivity to noise.”

    While inventions like the transistor required knowledge of quantum mechanics, the device itself wasn’t in a delicate quantum state, so it could be described semi-classically. Quantum computers, on the other hand, require delicate quantum connections.

    What changed was Shor’s introduction of error-correcting codes. By combining concepts from classical information theory with quantum mechanics, Shor showed that, in theory, even the delicate state of a quantum computer could be preserved.

    Beyond quantum computing, the second quantum revolution also relies on and encompasses new ways of using technology to manipulate matter at the quantum level.

    Using lasers, researchers have learned to sap the energy of atoms and cool them. Like a soccer player dribbling a ball up field with a series of taps, lasers can cool atoms to billionths of a degree above absolute zero—far colder than conventional cooling techniques. In 1995, scientists used laser cooling to observe a long-predicted state of matter: the Bose-Einstein condensate.

    Other quantum optical techniques have been developed to make ultra-precise measurements.

    Classical interferometers, like the type used in the famous Michelson-Morley experiment that measured the speed of light in different directions to search for signs of a hypothetical aether, looked at the interference pattern of light. New matter-wave interferometers exploit the principle that everything—not just light—has a wavefunction. Measuring changes in the phase of atoms, which have far shorter wavelengths than light, could give unprecedented control to experiments that attempt to measure the smallest effects, like those of gravity.

    With laboratories and companies around the world focused on advancements in quantum science and applications, the second quantum revolution has only begun. As Bardeen put it in his Nobel lecture, we may be at another “particularly opportune time … to add another small step in the control of nature for the benefit of [hu]mankind.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 11:21 am on December 3, 2021 Permalink | Reply
    Tags: "CMS homes in on Higgs boson’s lifetime", , , , , , , , Quantum Physics, , The Higgs boson lives for a mere less than a trillionth of a billionth of a second or more precisely 1.6 x 10^-22 seconds.   

    From The European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] CMS: “CMS homes in on Higgs boson’s lifetime” 

    European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN]

    Cern New Bloc

    Cern New Particle Event

    European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) (EU) [CERN] CMS

    From The European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] CMS

    2 December, 2021
    Ana Lopes

    1
    A Higgs boson candidate transforming into four muons (red lines). (Image: CERN)

    The Higgs boson doesn’t stick around for long. Once it is created in particle collisions, the famed particle lives for a mere less than a trillionth of a billionth of a second or more precisely 1.6 x 10-22 seconds. According to theory, that is, for so far experiments have only been able to set bounds on the value of the particle’s lifetime or to determine this property with a large uncertainty. Until now. In a new study, the CMS collaboration reports a value for the particle’s lifetime that has a small enough uncertainty to confirm that the Higgs boson does have such a short lifetime.

    Measuring the Higgs boson’s lifetime is high on the wish list of particle physicists, because an experimental value of the lifetime would allow them not only to better understand the nature of the particle but also to find out whether or not the value matches the value predicted by the Standard Model of particle physics. A deviation from the prediction could point to new particles or forces not predicted by the Model, including new particles into which the Higgs boson would decay.

    But it isn’t easy to measure the Higgs boson’s lifetime. For one, the predicted lifetime is too short to be measured directly. A possible solution entails measuring a related property called the mass width, which is inversely proportional to the lifetime and represents the small range of possible masses around the particle’s nominal mass of 125 GeV. But this isn’t easy either, as the predicted mass width of the Higgs boson is too small to be easily measured by experiments.

    Quantum physics to the rescue. In addition to being produced with a mass equal or close to its nominal value, a short-lived particle such as the Higgs boson can also be produced with a much larger mass than the nominal value, although the odds of this happening are lower. This effect – and in fact the mass width of the particle as well – is a manifestation of a quantum quirk known as Heisenberg’s uncertainty principle, and a comparison between the production rate of these large-mass, or “off-shell”, Higgs bosons with that of the nominal or close to nominal, or “on-shell”, Higgs bosons can be used to extract the Higgs boson’s mass width and therefore its lifetime.

    This is the method employed by the CMS team in their new study. By analysing data collected by the CMS experiment during the second run of the Large Hadron Collider (LHC), specifically data on Higgs bosons transforming into two Z bosons, which themselves transform into four charged leptons or two charged leptons plus two neutrinos, the CMS researchers have obtained the first-ever evidence for the production of off-shell Higgs bosons. From this result, which has only a 1 in 1000 chance of being a statistical fluke, the CMS team obtained a Higgs boson’s lifetime of 2.1 x 10^-22 seconds, with an upper/lower uncertainty of (+2.3/-0.9) x 10^-22 seconds. This value, the most precise yet, aligns well with the Standard Model prediction and confirms that the particle does indeed have a tiny lifespan.

    “Our result demonstrates that off-shell Higgs-boson production offers an excellent way to measure the Higgs boson’s lifetime,” says CMS physicist Pascal Vanlaer. “And it sets a milestone in the study of the properties of this unique particle. The precision of the measurement is expected to improve in the coming years with data from the next LHC runs and new analysis ideas.”

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN (CH) in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier (CH)

    European Organization for Nuclear Research (Organisation européenne pour la recherche nucléaire)(EU) CMS

     
  • richardmitnick 9:16 pm on November 29, 2021 Permalink | Reply
    Tags: "A catalytic recipe for transforming quantum states", , Entangled catalysts are quantum systems that are not changed by the process under consideration but influence the process to allow transformations that would not be possible without them., Entanglement is a key feature of quantum mechanics and indeed most quantum technologies being developed., How much a given quantum system is entangled is given by its entanglement entropy., Quantum catalysis: the quantum equivalent of chemical catalysis used in industry, , Quantum Physics, The breakthrough is particularly pertinent to any quantum technology involving two or more distant labs-for instance-quantum key distribution networks or distributed quantum computing., The University of Warsaw [Uniwersytet Warszawski] (PL), The utility of catalysts in boosting quantum processes and quantifing the amount of entanglement available for quantum information processing.   

    From The University of Warsaw [Uniwersytet Warszawski] (PL) via phys.org : “A catalytic recipe for transforming quantum states” 

    From The University of Warsaw [Uniwersytet Warszawski] (PL)

    via

    phys.org

    November 29, 2021

    1
    Catalytic transformation via local operations and classical communication. Credit: Centre for Quantum Optical Technologies, University of Warsaw.

    Quantum physicists at the University of Warsaw have discovered new applications for quantum catalysis—the quantum equivalent of chemical catalysis used in industry—revealing that quantum catalysts are useful in many more setups than previously known. The breakthrough could prove pivotal in future quantum key distribution networks or distributed quantum computing.

    A team of quantum physicists from the Centre for Quantum Optical Technologies, University of Warsaw, Poland, has found a complete solution to the vexing problem of whether catalytic transformations from one initial quantum state to another desired quantum state are possible. The results of their study—released on 5 October 2021 in Physical Review Letters—prove the utility of catalysts in boosting quantum processes and quantify the amount of entanglement available for quantum information processing. The breakthrough is particularly pertinent to any quantum technology involving two or more distant labs-for instance-quantum key distribution networks or distributed quantum computing.

    Entanglement is a key feature of quantum mechanics and indeed most quantum technologies being developed. In its simplest form, it occurs as correlation between two distant parties, say Alice and Bob. How much a given quantum system is entangled is given by its entanglement entropy, and this provides information on how efficient quantum communication is between Alice and Bob.

    Before this work, entanglement entropy only had meaning when the two parties exchanged many signals, as Alexander Streltsov, co-author of the paper alongside Tulja Varun Kondra and Chandan Datta, explains: “If you flip a coin only once, then even if you know that the coin is fair, you will not know anything about the outcome of the flip—the entropy is only meaningful asymptotically,” he says. “Similarly with entanglement entropy, if Alice and Bob share only one instance of a quantum state, the entropy doesn’t have much meaning.”

    To overcome this, the international team theoretically introduced an entangled catalyst into the mix.

    Like catalysts used in industry to increase the rate of chemical reactions without being consumed themselves in the process, entangled catalysts are quantum systems that are not changed by the process under consideration but influence the process to allow transformations that would not be possible without them. Specific examples of entangled catalysts inducing transformations were put forward as early as 1999, but it was not previously known which other quantum states could be achieved by adding a catalyst.

    Streltsov and collaborators theoretically proved that in the presence of a suitable catalyst, entanglement entropy has physical meaning even when only a single instance of a pure quantum state is available, and in fact entanglement entropy completely characterizes transformations in this situation. From this, the researchers showed how to predict which transformations are indeed possible or not. “We have found a complete solution to the problem of whether catalytic transition is possible,” Streltsov confirms.

    This new knowledge has a number of practical future applications. For instance, in quantum cryptography if Alice and Bob want to establish secure communication, they can share what is known as a singlet. Singlets are the optimal quantum states of two quantum bits (qubits). If Alice holds one of the qubits and Bob the other, then by performing a certain protocol, they can extract a perfectly secure key. The work of Streltsov and colleagues provides a way to know which quantum states can be transformed into singlets, and then subsequently used by Alice and Bob.

    Streltsov and colleagues have applied their methods in more complicated quantum information tasks than transforming one quantum state to another as well, revealing how catalysts can enhance the efficiency of quantum state merging, a way of optimally sending information using entanglement and classical communication. Among other uses, the results are applicable to show how entangled catalysts make noisy states useful in quantum cryptography. “If there’s a lot of noise in the state, then eventually the standard quantum cryptography protocols will not give you a good result,” says Streltsov. But if the process is enhanced by adding an entangled catalyst at each end of, say, a noisy optical fiber, qubits can be exchanged without the process being spoiled. “Even if the fiber is very noisy, with this we can in principle reach very good efficiencies,” adds Streltsov.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Warsaw [Uniwersytet Warszawski] (PL), established in 1816, is the largest university in Poland. It employs over 6,000 staff including over 3,100 academic educators. It provides graduate courses for 53,000 students (on top of over 9,200 postgraduate and doctoral candidates). The University offers some 37 different fields of study, 18 faculties and over 100 specializations in Humanities, technical as well as Natural Sciences.

    It was founded as a Royal University on 19 November 1816, when the Partitions of Poland separated Warsaw from the oldest and most influential University of Kraków. Alexander I granted permission for the establishment of five faculties – law and political science, medicine, philosophy, theology and the humanities. The university expanded rapidly but was closed during November Uprising in 1830. It was reopened in 1857 as the Warsaw Academy of Medicine, which was now based in the nearby Staszic Palace with only medical and pharmaceutical faculties. All Polish-language campuses were closed in 1869 after the failed January Uprising, but the university managed to train 3,000 students, many of whom were important part of the Polish intelligentsia; meanwhile the Main Building was reopened for training military personnel. The university was resurrected during the First World War and the number of students reached 4,500 in 1918. After Poland’s independence the new government focused on improving the university, and in the early 1930s it became the country’s largest. New faculties were established and the curriculum was extended. Following the Second World War and the devastation of Warsaw, the University successfully reopened in 1945.

    Today, University of Warsaw [Uniwersytet Warszawski](PL) consists of 126 buildings and educational complexes with over 18 faculties: biology, chemistry, journalism and political science, philosophy and sociology, physics, geography and regional studies, geology, history, applied linguistics and Slavic philology, economics, philology, pedagogy, Polish language, law and public administration, psychology, applied social sciences, management and mathematics, computer science and mechanics.

    The University of Warsaw [Uniwersytet Warszawski](PL) is one of the top Polish universities. It was ranked by Perspektywy magazine as best Polish university in 2010, 2011, 2014 and 2016. International rankings such as ARWU and University Web Ranking rank the university as the best Polish higher level institution. On the list of 100 best European universities compiled by University Web Ranking, the University of Warsaw [Uniwersytet Warszawski] (PL) was placed as 61st. QS World University Rankings previously positioned the University of Warsaw [Uniwersytet Warszawski] (PL) as the best higher level institution among the world’s top 400.

     
  • richardmitnick 1:38 pm on November 12, 2021 Permalink | Reply
    Tags: "A new method to measure quantum entanglement in a nuclear spin ensemble", , Quantum Physics,   

    From The University of Cambridge (UK) via phys.org : “A new method to measure quantum entanglement in a nuclear spin ensemble” 

    U Cambridge bloc

    From The University of Cambridge (UK)

    via

    phys.org

    November 12, 2021
    Ingrid Fadelli, Science X Network, Phys.org

    1
    This is the three-dimensional spectral data the team obtained from the proxy electron qubit, with spin-wave modes corresponding to each “peak”. Horizontally, the qubit probes a fixed state of the nuclear ensemble. Vertically, the state of the nuclear ensemble is tuned by the qubit. The spectral asymmetry is a witness for quantum correlations amongst nuclei. It is also somewhat symbolic as this work is the result of almost two decades of continued research efforts, by the researchers at Cambridge and many other teams, to reach this demonstration of entangled nuclear ensemble. Credit: Gangloff et al.

    One of the primary objectives of quantum physics studies is to measure the quantum states of large systems composed of many interacting particles. This could be particularly useful for the development of quantum computers and other quantum information processing devices.

    Researchers at the University of Cambridge’s Cavendish Laboratory have recently introduced a new approach for measuring the spin states of a nuclear ensemble, a system comprised of many interacting particles with long-lived quantum properties. This method, presented in a paper published in Nature Physics, works by exploiting the response of this system to collective spin excitations.

    “For a dense ensemble of quantum objects, such as spins, it isn’t possible to measure each individually, to learn how they interacted with each other,” Claire Le Gall and Mete Atatüre, two of the researchers who carried out the study, told Phys.org. “Instead, one can look for tell-tale signals in the collective response of the ensemble; a bit like the behavior of a flock of birds might say something about how the birds engage with each other. Our system of interest is a large flock, or ensemble, of nuclear spins in a semiconductor quantum dot.”

    In 2002, three Harvard University (US) physicists figured out that large ensembles of nuclear spins in a semiconductor quantum dot could be potential hosts for solid-state quantum memories, then published their work a year later. 19 years later, Le Gall, Atatüre, and their colleagues probed this type of nuclear ensemble using a ‘proxy’ quantum bit, an electron spin that simultaneously couples to all nuclear spins, as reported in their latest paper.

    “We achieved a significant milestone recently [Science], when we showed that collective modes of the nuclear ensemble (i.e., spin waves) could be excited coherently via the electron,” Dorian Gangloff, the first author of the paper, said. “In our new study, we set out to use these electron-activated spin waves to change the state of the nuclear ensemble and to read it out. This would demonstrate a basic form of ‘write-in’ and ‘read-out’ via the electron spin.”

    The idea behind the approach proposed by the Cambridge scientists is that the type of nuclear spin-wave mode that can be activated by an electron spin depends on the state of the nuclear ensemble that is being examined. For instance, some spin-wave modes increase an ensemble’s polarization (i.e., how much all spins point ‘up’) and others decrease it. The relative strength of these two different types of spin-wave modes depends on how much an ensemble already ‘points up’ or ‘points down.” Measuring both can thus offer valuable insight about how much each nuclear spin, on average, is already pointing up or down, ultimately allowing researchers to infer spin populations.

    “But there is more: If the nuclear spins have interacted beforehand and built up some mutual information, which in this case can be quantum in nature, then the electron, as a quantum object with one-to-all coupling with these nuclei, will feel this pre-existing interaction,” Atatüre said. “This modifies the strength of spin-wave modes it can activate, and this is what is entirely unique about our approach. As a result, combining measurements of multiple spin-wave modes, we were able to use the electron as a ‘witness’ for entanglement amongst the nuclei in the ensemble.”

    The researchers’ method of observing many-body systems using a ‘proxy’ electron spin qubit opens new and interesting possibilities for probing nuclear ensembles without relying on individual spin readouts. In contrast with previously proposed methods, their approach leverages the native connectivity of a proxy qubit in contact interaction with a dense nuclear ensemble, ultimately extracting interesting information from these systems, including their quantum properties.

    “This will be critical if we want to use quantum dot nuclei for a quantum memory,” Gangloff said. “Once we achieve more coherence—particularly with a new generation of quantum dots, based on a different growth method, that show a very promising hundredfold improvement over the quantum dots used thus far—our plans involve crafting the nuclei into evermore controlled quantum states, understanding how entanglement is lost and can be preserved in this many-body system, and demonstrating that this resource can be used in quantum computing and quantum communication.”

    Related:
    Physical Review Letters

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Cambridge Campus

    The University of Cambridge (UK) [legally The Chancellor, Masters, and Scholars of the University of Cambridge] is a collegiate public research university in Cambridge, England. Founded in 1209 Cambridge is the second-oldest university in the English-speaking world and the world’s fourth-oldest surviving university. It grew out of an association of scholars who left the University of Oxford(UK) after a dispute with townsfolk. The two ancient universities share many common features and are often jointly referred to as “Oxbridge”.

    Cambridge is formed from a variety of institutions which include 31 semi-autonomous constituent colleges and over 150 academic departments, faculties and other institutions organised into six schools. All the colleges are self-governing institutions within the university, each controlling its own membership and with its own internal structure and activities. All students are members of a college. Cambridge does not have a main campus and its colleges and central facilities are scattered throughout the city. Undergraduate teaching at Cambridge is organised around weekly small-group supervisions in the colleges – a feature unique to the Oxbridge system. These are complemented by classes, lectures, seminars, laboratory work and occasionally further supervisions provided by the central university faculties and departments. Postgraduate teaching is provided predominantly centrally.

    Cambridge University Press a department of the university is the oldest university press in the world and currently the second largest university press in the world. Cambridge Assessment also a department of the university is one of the world’s leading examining bodies and provides assessment to over eight million learners globally every year. The university also operates eight cultural and scientific museums, including the Fitzwilliam Museum, as well as a botanic garden. Cambridge’s libraries – of which there are 116 – hold a total of around 16 million books, around nine million of which are in Cambridge University Library, a legal deposit library. The university is home to – but independent of – the Cambridge Union – the world’s oldest debating society. The university is closely linked to the development of the high-tech business cluster known as “Silicon Fe”. It is the central member of Cambridge University Health Partners, an academic health science centre based around the Cambridge Biomedical Campus.

    By both endowment size and consolidated assets Cambridge is the wealthiest university in the United Kingdom. In the fiscal year ending 31 July 2019, the central university – excluding colleges – had a total income of £2.192 billion of which £592.4 million was from research grants and contracts. At the end of the same financial year the central university and colleges together possessed a combined endowment of over £7.1 billion and overall consolidated net assets (excluding “immaterial” historical assets) of over £12.5 billion. It is a member of numerous associations and forms part of the ‘golden triangle’ of English universities.

    Cambridge has educated many notable alumni including eminent mathematicians; scientists; politicians; lawyers; philosophers; writers; actors; monarchs and other heads of state. As of October 2020 121 Nobel laureates; 11 Fields Medalists; 7 Turing Award winners; and 14 British prime ministers have been affiliated with Cambridge as students; alumni; faculty or research staff. University alumni have won 194 Olympic medals.

    History

    By the late 12th century the Cambridge area already had a scholarly and ecclesiastical reputation due to monks from the nearby bishopric church of Ely. However it was an incident at Oxford which is most likely to have led to the establishment of the university: three Oxford scholars were hanged by the town authorities for the death of a woman without consulting the ecclesiastical authorities who would normally take precedence (and pardon the scholars) in such a case; but were at that time in conflict with King John. Fearing more violence from the townsfolk scholars from the University of Oxford started to move away to cities such as Paris; Reading; and Cambridge. Subsequently enough scholars remained in Cambridge to form the nucleus of a new university when it had become safe enough for academia to resume at Oxford. In order to claim precedence it is common for Cambridge to trace its founding to the 1231 charter from Henry III granting it the right to discipline its own members (ius non-trahi extra) and an exemption from some taxes; Oxford was not granted similar rights until 1248.

    A bull in 1233 from Pope Gregory IX gave graduates from Cambridge the right to teach “everywhere in Christendom”. After Cambridge was described as a studium generale in a letter from Pope Nicholas IV in 1290 and confirmed as such in a bull by Pope John XXII in 1318 it became common for researchers from other European medieval universities to visit Cambridge to study or to give lecture courses.

    Foundation of the colleges

    The colleges at the University of Cambridge were originally an incidental feature of the system. No college is as old as the university itself. The colleges were endowed fellowships of scholars. There were also institutions without endowments called hostels. The hostels were gradually absorbed by the colleges over the centuries; but they have left some traces, such as the name of Garret Hostel Lane.

    Hugh Balsham, Bishop of Ely, founded Peterhouse – Cambridge’s first college in 1284. Many colleges were founded during the 14th and 15th centuries but colleges continued to be established until modern times. There was a gap of 204 years between the founding of Sidney Sussex in 1596 and that of Downing in 1800. The most recently established college is Robinson built in the late 1970s. However Homerton College only achieved full university college status in March 2010 making it the newest full college (it was previously an “Approved Society” affiliated with the university).

    In medieval times many colleges were founded so that their members would pray for the souls of the founders and were often associated with chapels or abbeys. The colleges’ focus changed in 1536 with the Dissolution of the Monasteries. Henry VIII ordered the university to disband its Faculty of Canon Law and to stop teaching “scholastic philosophy”. In response, colleges changed their curricula away from canon law and towards the classics; the Bible; and mathematics.

    Nearly a century later the university was at the centre of a Protestant schism. Many nobles, intellectuals and even commoners saw the ways of the Church of England as too similar to the Catholic Church and felt that it was used by the Crown to usurp the rightful powers of the counties. East Anglia was the centre of what became the Puritan movement. In Cambridge the movement was particularly strong at Emmanuel; St Catharine’s Hall; Sidney Sussex; and Christ’s College. They produced many “non-conformist” graduates who, greatly influenced by social position or preaching left for New England and especially the Massachusetts Bay Colony during the Great Migration decade of the 1630s. Oliver Cromwell, Parliamentary commander during the English Civil War and head of the English Commonwealth (1649–1660), attended Sidney Sussex.

    Modern period

    After the Cambridge University Act formalised the organisational structure of the university the study of many new subjects was introduced e.g. theology, history and modern languages. Resources necessary for new courses in the arts architecture and archaeology were donated by Viscount Fitzwilliam of Trinity College who also founded the Fitzwilliam Museum. In 1847 Prince Albert was elected Chancellor of the University of Cambridge after a close contest with the Earl of Powis. Albert used his position as Chancellor to campaign successfully for reformed and more modern university curricula, expanding the subjects taught beyond the traditional mathematics and classics to include modern history and the natural sciences. Between 1896 and 1902 Downing College sold part of its land to build the Downing Site with new scientific laboratories for anatomy, genetics, and Earth sciences. During the same period the New Museums Site was erected including the Cavendish Laboratory which has since moved to the West Cambridge Site and other departments for chemistry and medicine.

    The University of Cambridge began to award PhD degrees in the first third of the 20th century. The first Cambridge PhD in mathematics was awarded in 1924.

    In the First World War 13,878 members of the university served and 2,470 were killed. Teaching and the fees it earned came almost to a stop and severe financial difficulties followed. As a consequence the university first received systematic state support in 1919 and a Royal Commission appointed in 1920 recommended that the university (but not the colleges) should receive an annual grant. Following the Second World War the university saw a rapid expansion of student numbers and available places; this was partly due to the success and popularity gained by many Cambridge scientists.

     
  • richardmitnick 12:11 pm on November 10, 2021 Permalink | Reply
    Tags: "Laser light used to modulate free electrons into qubits", , , Attosecond electron microscopy, , Modulating a free electron in vacuum into a so-called qubit-a two-level quantum bit., , , Quantum Physics, The University of Konstanz [Universität Konstanz](DE)   

    From The University of Konstanz [Universität Konstanz](DE) via phys.org : “Laser light used to modulate free electrons into qubits” : 

    From The University of Konstanz [Universität Konstanz](DE)

    via

    phys.org

    1
    Representation of the qubits on the Bloch sphere. Credit: University of Konstanz.

    The laws of quantum physics are not only extraordinary—they also offer some far-reaching and unique possibilities for advanced information processing, quantum computing and cryptography. So far, the basic building blocks for such quantum operations are electric circuitry in form of superconducting resonators, light in form of photons or atoms in form of ion chains. However, all these quantum systems have their drawbacks, and scientists are therefore continuously searching for useful alternatives.

    In their recent publication in Physical Review Research, scientists from the Department of Physics at the University of Konstanz have found a way to modulate a free electron in vacuum into a so-called qubit-a two-level quantum bit. Such qubits are the building blocks of information processing in quantum computers. To generate their free-electron qubits, the researchers use the electron beam of a transmission electron microscope and intersect it with the electric field of classical laser light. “The resulting matter-wave interferences create a periodic modulation of the electron energy into discrete, well-defined energy levels, which we use as a resource for the formation of qubits,” explains Professor Peter Baum, the leader of the research team.

    The physical background

    To generate their qubits from free electrons, the researchers use the electron beam of a transmission electron microscope as an electron source and intersect it with the electric field of classical laser light. In the oscillations of the light wave, the beam electrons are periodically accelerated and decelerated in very rapid succession. “This rapid interaction between the electron beam and the optical cycles of the laser light results in a periodic modulation of the electron energy into discrete, well-defined energy levels,” explains Professor Peter Baum, the leader of the research team. “We use this quantization, which can be detected with our instruments, as a resource for the formation of qubits.”

    Attosecond electron microscopy

    Interestingly, the intersection of electron and laser beam in the experiment does not only lead to the described phenomena in the energy domain, which are relevant for qubit generation. With the right choice of laser parameters, additional useful phenomena arise in the time domain: the electron beam converts into a sequence of extremely short electron pulses with durations in the attosecond range.

    “This corresponds to the millionth of a billionth part of a second and even light covers only the size of a bigger molecule in such a time span,” says Peter Baum, illustrating these numbers. Such extremely short electron pulses are useful for ultrafast electron microscopy of complex light-matter interactions, where they enable maximum temporal resolution in addition to an enormous spatial resolution at an atomic level.

    Qubits in “mass production”

    Another practical feature of the qubits and attosecond electron pulses in the experiment is their high production rate: about one billion qubits or electron pulses are generated per second. This high flux is achieved by using a continuous, non-pulsed electron source and a continuous, non-pulsed laser beam. In this way, almost every free electron in the electron beam is modulated, and qubit production is only limited by the performance limit of modern high-energy electron sources.

    However, this is not the only reason why laser-shaped free electrons and qubits are an interesting and practical object for further investigations. “In the vacuum of free space, an electron as an elementary particle does not interact with any material. The so-called decoherence—the loss of information to the environment—is therefore rather slow,” adds Peter Baum. “In addition, the laser-optical control of electron beams is versatile and can be quickly switched.” Free-electron qubits under laser control could therefore play an important role in the future for both fundamental research and applications in quantum information.

    Details on the physics of the qubits

    When looked at closely, the free electrons from the electron beam used in the experiment are not point particles, but rather wave functions with a finite coherence length that covers multiple light oscillations of the laser beam used. If so, the same final energy is generated coherently by adjacent optical field cycles at multiple instances in time. Consequently, matter-wave interferences create a periodic modulation of the energy spectrum into discrete energy sidebands, which the researchers use as a resource for a two-level quantum system. Quantum operations are performed by simple free-space propagation, where different sidebands acquire nonlinear matter-wave phases due to the rest mass of the electrons, followed by a second laser interaction and sideband generation some centimeters later in the beam. In this way, the researchers can reach almost any point on the Bloch sphere, i.e. the “coordinate system” in which qubit states are geometrically represented as points on the surface of a unit sphere.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Konstanz [Universität Konstanz](DE) is a university in the city of Konstanz in Baden-Württemberg, Germany. Its main campus was opened on the Gießberg in 1972 after being founded in 1966. The university is Germany’s southernmost university and is situated on the shore of Lake Constance just four kilometres from the Swiss border. It has been successful in all three funding lines of the Excellence Initiative, and is therefore one of Germany’s elite “Universities of Excellence”, a group of prestigious universities often considered the German Ivy League. The university is ranked in top 100 worldwide in the field of social policy and administration in the 2020 QS World University Rankings, and ranked 51 in Political Science according to the 2020 Shanghai Ranking. The Department of Energy (US) also refers to the University of Konstanz as a “small Harvard”.

    Moreover, the University of Konstanz cooperates with a large number of renowned institutions, such as Harvard University (US), Johns Hopkins University (US), Yale University (US), The University of Chicago (US), The University of California-Berkeley (US), The University of Zürich [Universität Zürich ](CH), and The Balsillie School of International Affairs (CA).

    In addition to having approximately 11,500 students from around 100 countries, the university maintains over 220 partnerships with European universities as well as numerous international exchange programmes, thereby facilitating global networking. Students may choose from more than 100 degree programmes. Its library is open 24 hours a day and has more than two million books.

    Research institutions
    Collaborative Research Centres

    Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures (SFB 1214)
    Chemical and Biological Principles of Cellular Proteostasis (SFB 969)
    Controlled Nanosystems: Interaction and Interfacing to the Macroscale (SFB 767)
    Quantitative Methods for Visual Computing (SFB-TRR 161)

    Research groups

    The Dynamics of Risk – Perception and Behavior in the Context of Mental and Physical Health (Risk Dynamics – FOR 2374)
    New Insights into the Bcl-2 family interactions – from biophysics to function (FOR 2036)
    Nonlinear response to probe vitrification (FOR 1394)
    Mediale Teilhabe. Partizipation zwischen Anspruch und Inanspruchnahme (FOR 2252)
    PsychoEconomics (FOR 1882)
    Questions at the Interfaces (FOR 2111)
    What if? (FOR 1614)

    Institutions in the context of the German Excellence Initiative

    Cluster of Excellence “Cultural Foundations of Social Integration”
    Konstanz Research School Chemical Biology
    Graduate School of Decision Sciences
    Institutional strategy “Modell Konstanz – Towards a Culture of Creativity”
    Zukunftskolleg

    Clusters of Excellence as part of the Excellence Strategy

    Centre for the Advanced Study of Collective Behaviour
    The Politics of Inequality

     
  • richardmitnick 10:05 am on November 4, 2021 Permalink | Reply
    Tags: "Quantum Physics in Proteins", Artificial intelligence affords unprecedented insights into how biomolecules work., , , , Quantum Physics   

    From DESY German Electron Synchrotron [Deütsches Elektronen-Synchrotron] (DE) : “Quantum Physics in Proteins” 

    From DESY German Electron Synchrotron [Deütsches Elektronen-Synchrotron] (DE)

    2021/11/03

    Artificial intelligence affords unprecedented insights into how biomolecules work.

    A new analytical technique is able to provide hitherto unattainable insights into the extremely rapid dynamics of biomolecules. The team of developers, led by Abbas Ourmazd from The University of Wisconsin–Milwaukee (US) and Robin Santra from DESY, is presenting its clever combination of quantum physics and molecular biology in the scientific journal Nature. The scientists used the technique to track the way in which the photoactive yellow protein (PYP) undergoes changes in its structure in less than a trillionth of a second after being excited by light.

    1
    Illustration of a quantum wave packet in close vicinity of a conical intersection between two potential energy surfaces. The wave packet represents the collective motion of multiple atoms in the photoactive yellow protein. A part of the wave packet moves through the intersection from one potential energy surface to the other, while the another part remains on the top surface, leading to a superposition of quantum states. Credit: Niels Breckwoldt/DESY.

    “In order to precisely understand biochemical processes in nature, such as photosynthesis in certain bacteria, it is important to know the detailed sequence of events,” Santra explains their underlying motivation. “When light strikes photoactive proteins, their spatial structure is altered, and this structural change determines what role a protein takes on in nature.” Until now, however, it has been almost impossible to track the exact sequence in which structural changes occur. Only the initial and final states of a molecule before and after a reaction can be determined and interpreted in theoretical terms. “But we don’t know exactly how the energy and shape changes in between the two,” says Santra. “It’s like seeing that someone has folded their hands, but you can’t see them interlacing their fingers to do so.”

    Whereas a hand is large enough and the movement is slow enough for us to follow it with our eyes, things are not that easy when looking at molecules. The energy state of a molecule can be determined with great precision using spectroscopy; and bright X-rays for example from an X-ray laser can be used to analyse the shape of a molecule. The extremely short wavelength of X-rays means that they can resolve very small spatial structures, such as the positions of the atoms within a molecule. However, the result is not an image like a photograph, but instead a characteristic interference pattern, which can be used to deduce the spatial structure that created it.

    Bright and short X-ray flashes

    Since the movements are extremely rapid at the molecular level, the scientists have to use extremely short X-ray pulses to prevent the image from being blurred. It was only with the advent of X-ray lasers that it became possible to produce sufficiently bright and short X-ray pulses to capture these dynamics. However, since molecular dynamics takes place in the realm of quantum physics where the laws of physics deviate from our everyday experience, the measurements can only be interpreted with the help of a quantum-physical analysis.

    A peculiar feature of photoactive proteins needs to be taken into consideration: the incident light excites their electron shell to enter a higher quantum state, and this causes an initial change in the shape of the molecule. This change in shape can in turn result in the excited and ground quantum states overlapping each other. In the resulting quantum jump, the excited state reverts to the ground state, whereby the shape of the molecule initially remains unchanged. The conical intersection between the quantum states therefore opens a pathway to a new spatial structure of the protein in the quantum mechanical ground state.

    The team led by Santra and Ourmazd has now succeeded for the first time in unravelling the structural dynamics of a photoactive protein at such a conical intersection. They did so by drawing on machine learning because a full description of the dynamics would in fact require every possible movement of all the particles involved to be considered. This quickly leads to unmanageable equations that cannot be solved.

    6000 dimensions

    “The photoactive yellow protein we studied consists of some 2000 atoms,” explains Santra, who is a Lead Scientist at DESY and a professor of physics at The University of Hamburg [Universität Hamburg](DE). “Since every atom is basically free to move in all three spatial dimensions, there are a total of 6000 options for movement. That leads to a quantum mechanical equation with 6000 dimensions – which even the most powerful computers today are unable to solve.”

    However, computer analyses based on machine learning were able to identify patterns in the collective movement of the atoms in the complex molecule. “It’s like when a hand moves: there, too, we don’t look at each atom individually, but at their collective movement,” explains Santra. Unlike a hand, where the possibilities for collective movement are obvious, these options are not as easy to identify in the atoms of a molecule. However, using this technique, the computer was able to reduce the approximately 6000 dimensions to four. By demonstrating this new method, Santra’s team was also able to characterise a conical intersection of quantum states in a complex molecule made up of thousands of atoms for the first time.

    The detailed calculation shows how this conical intersection forms in four-dimensional space and how the photoactive yellow protein drops through it back to its initial state after being excited by light. The scientists can now describe this process in steps of a few dozen femtoseconds (quadrillionths of a second) and thus advance the understanding of photoactive processes. “As a result, quantum physics is providing new insights into a biological system, and biology is providing new ideas for quantum mechanical methodology,” says Santra, who is also a member of the Hamburg Cluster of Excellence “CUI: Advanced Imaging of Matter”. “The two fields are cross-fertilising each other in the process.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    desi

    DESY German Electron Synchrotron [Deütsches Elektronen-Synchrotron] (DE) is one of the world’s leading accelerator centres. Researchers use the large-scale facilities at DESY to explore the microcosm in all its variety – from the interactions of tiny elementary particles and the behaviour of new types of nanomaterials to biomolecular processes that are essential to life. The accelerators and detectors that DESY develops and builds are unique research tools. The facilities generate the world’s most intense X-ray light, accelerate particles to record energies and open completely new windows onto the universe. 
That makes DESY not only a magnet for more than 3000 guest researchers from over 40 countries every year, but also a coveted partner for national and international cooperations. Committed young researchers find an exciting interdisciplinary setting at DESY. The research centre offers specialized training for a large number of professions. DESY cooperates with industry and business to promote new technologies that will benefit society and encourage innovations. This also benefits the metropolitan regions of the two DESY locations, Hamburg and Zeuthen near Berlin.

    DESY Petra III interior

    DESY Petra III

    DESY/FLASH

    H1 detector at DESY HERA ring

    DESY DORIS III

    DESY LUX beamline

     
  • richardmitnick 11:46 am on September 26, 2021 Permalink | Reply
    Tags: "One of nature’s key constants is much larger in a quantum material", , "Spinons", , If the fine-structure constant throughout the cosmos were as large as the one in quantum spin ices “the periodic table would only have 10 elements., , Quantum Physics, Quantum spin ices are a class of substances in which particles can’t agree., , The fine-structure constant is about 10 times its normal value in a type of material called quantum spin ice., The impasse occurs because of the materials’ geometry: The particles are located at the corners of an array of pyramids that are connected at the corners., Unfortunately scientists haven’t yet found a material that definitively qualifies as quantum spin ice.   

    From “Science News (US) : “One of nature’s key constants is much larger in a quantum material” 

    From “Science News (US)

    September 21, 2021
    Emily Conover

    1
    Particles with the quantum property called spin, illustrated by the blue arrow, can’t agree on an orientation in a type of material called quantum spin ice. Credit: ELLA MARU STUDIO/Science Source.

    The fine-structure constant is about 10 times its normal value in a type of material called quantum spin ice, physicists calculate in the Sept. 10 Physical Review Letters. The new calculation hints that quantum spin ice could give a glimpse at physics within an alternate universe where the constant is much larger.

    With an influence that permeates physics and chemistry, the fine-structure constant sets the strength of interactions between electrically charged particles. Its value, about 1/137, consternates physicists because they can’t explain why it has that value, even though it is necessary for the complex chemistry that is the basis of life (SN: 11/2/16).

    If the fine-structure constant throughout the cosmos were as large as the one in quantum spin ices “the periodic table would only have 10 elements,” says theoretical physicist Christopher Laumann of Boston University (US). “And it probably would be hard to make people; there wouldn’t be enough richness to chemistry.”

    Quantum spin ices are a class of substances in which particles can’t agree. The materials are made up of particles with spin, a quantum version of angular momentum, which makes them magnetic. In a normal material, particles would come to a consensus below a certain temperature, with the magnetic poles lining up in either the same direction or in alternating directions. But in quantum spin ices, the particles are arranged in such a way that the magnetic poles, or equivalently the spins, can’t agree even at a temperature of absolute zero (SN: 2/13/11).

    The impasse occurs because of the materials’ geometry: The particles are located at the corners of an array of pyramids that are connected at the corners. Conflicts between multiple sets of neighbors mean that the closest these particles can get to harmony is arranging themselves so that two spins face out from each pyramid, and two face in.

    2
    In quantum spin ices, particles (black dots) are located at the corners of an array of pyramids (red). Normally, the spins of the particles (green arrows) arrange so that two are pointing into the pyramid and two out. If that rule is broken, as illustrated, quasiparticles called spinons (orange and blue) form.S.D. Pace et al/PRL 2021.

    This uneasy truce can give rise to disturbances that behave like particles within the material, or quasiparticles (SN: 10/3/14). Flip particles’ spins around and you can get what are called spinons, quasiparticles that can move through the material and interact with other spinons in a manner akin to electrons and other charged particles found in the world outside the material. The material re-creates the theory of quantum electrodynamics, the piece of particles physics’ standard model that hashes out how electrically charged particles do their thing. But the specifics, including the fine-structure constant, don’t necessarily match those in the wider universe.

    So Laumann and colleagues set out to calculate the fine-structure constant in quantum spin ices for the first time. The team pegged the number at about 1/10, instead of 1/137. What’s more, the researchers found that they could change the value of the fine-structure constant by tweaking the properties of the theoretical material. That could help scientists study the effects of altering the fine-structure constant — a test that’s well out of reach in our own universe, where the fine-structure constant is fixed.

    Unfortunately scientists haven’t yet found a material that definitively qualifies as quantum spin ice. But one much-studied prospect is a group of minerals called pyrochlores, which have magnetic ions, or electrically charged atoms, arranged in the appropriate pyramid configuration. Scientists might also be able to study the materials using a quantum computer or another quantum device designed to simulate quantum spin ices (SN: 6/29/17).

    If scientists succeed in creating quantum spin ice, the materials could reveal how quantum electrodynamics and the standard model would work in a universe with a much larger fine-structure constant. “That would be the hope,” says condensed matter theorist Shivaji Sondhi of the University of Oxford, who was not involved with the research. “It’s interesting to be able to make a fake standard model … and ask what would happen.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

     
  • richardmitnick 1:56 pm on September 22, 2021 Permalink | Reply
    Tags: "Simplifying quantum systems", Although redundancy renders the system more stable it also makes it exponentially more complex – and in turn much more susceptible to error., If only it were less prone to error quantum physics might already be giving us instant solutions to seemingly unsolvable problems., In crude terms our digitally driven information society is based on a simple binary opposition: 0 or 1., It is little wonder that quantum physics should exercise a fascination far beyond its immediate circle., It will take some time before a quantum computer can solve practical problems beyond the realm of quantum physics., One potential route is the use of free electrons in semiconductor materials., Quantum Physics, , Topological quantum systems offer an especially neat example of how in physics theory and experiment can be mutually enriching.   

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “Simplifying quantum systems” 

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    22.09.2021
    Felix Würsten

    If only it were less prone to error quantum physics might already be giving us instant solutions to seemingly unsolvable problems. ETH researchers are therefore working to develop systems that are more robust.

    1
    Quantum systems require sophisticated control technology, a lot of engineering know-​how and a better understanding of the physical correlations. (Photograph: Heidi Hostettler)

    In crude terms our digitally driven information society is based on a simple binary opposition: 0 or 1. But what happens when other alternatives exist alongside these polar opposites? Might this give rise to a whole raft of different states and enable us to process complex information much faster?

    It is precisely the prospect of going beyond conventional methods of data processing that has inspired such high hopes in the field of quantum physics – not only on the part of scientists in basic and theoretical research, but also among the CEOs of major corporations. Were this vision to materialise, and computers behave in accordance with the laws of quantum mechanics, it would open the door to a whole new world of applications. For example, such a powerful system would be able to determine the mechanism of proteins at a radically faster rate than a conventional computer could ever hope to achieve. This, in turn, would massively accelerate the development of new medicines.

    A rocky road

    Given such prospects, it is little wonder that quantum physics should exercise a fascination far beyond its immediate circle. Yet the road that will take us to a quantum computer capable of answering everyday questions is a rocky one – and much longer than many are prepared to admit. “We’re talking about decades, not years, before we reach that point,” says Jonathan Home, Professor of Experimental Quantum Optics and Photonics at ETH Zürich. And Professor Home is one of those working in a field in which quantum research is relatively far along. He uses individual atoms as qubits. These are the basic units of information used by a quantum computer to perform calculations. Home uses beryllium and calcium atoms held in special electrical ion traps. These are then manipulated with a laser according to the laws of quantum mechanics. “Atoms are great systems for information processing because they can be isolated – and because, provided they remain isolated, they can store quantum information for a couple of seconds or even minutes,” he explains.

    In order to be able to use this information, however, these fragile quantum objects have to be reconnected with the everyday physical world. During this step, even the slightest anomalies can corrupt the entire system. The question is, therefore, how to reduce this susceptibility to error and, at the same time, increase the number of qubits.

    Simpler and more robust

    An obvious approach is to equip the systems with a degree of redundancy, i.e. to link several physical qubits to a single logical qubit. But this has a major drawback. Although redundancy renders the system more stable it also makes it exponentially more complex – and in turn much more susceptible to error.

    This requires not only sophisticated control technology and a lot of engineering know-​how but also a better understanding of the physical correlations. According to Home, the development of quantum computers has already yielded concrete benefits, even if today’s technology is still far removed from being able to investigate protein structures: “In essence, our experiments pose an endurance test for the physical theories. The results then provide us with new insights as to how the quantum world works.” One of ETH’s big strengths is that researchers here are working on very different approaches. The ion traps used by Home are just one of a number of routes that could deliver a breakthrough. Superconducting circuits are another promising option. “It’s highly unusual for one university to be pursuing so many different approaches,” says Home.

    Highly specialised infrastructure

    In common with his colleagues, Home has big hopes for the planned physics building on the Hönggerberg campus. Funded by an endowment from Walter Haefner, this will feature highly specialised laboratories that are exceptionally well isolated from outside interference. It is here that scientists will attempt to push back the boundaries of quantum research. In so doing, they will also explore ideas that are still very much in their infancy.

    One potential route is the use of free electrons in semiconductor materials. These are able to move freely of the influence of the crystal lattice structure and exhibit quantum mechanical properties that can be used for processing information. “But for this purpose, the semiconductors have to be extremely pure,” explains Werner Wegscheider, who as Professor of Solid State Physics has experience in producing these specialised materials. He uses a vacuum chamber to build customised semiconductors atom by atom. “We make the world’s purest semiconductors,” he says with pride. Such materials can exhibit completely new properties. When cooled to a very low temperature and exposed to a magnetic field, the free electrons condense to form a quasiparticle. In other words, they collectively behave in the manner of a single particle and can therefore be described mathematically. Researchers have good reason to believe that such topological quantum systems are more resistant to perturbation than other quantum objects – which is precisely why they may be less prone to error.

    A worthwhile effort

    Topological quantum systems offer an especially neat example of how in physics theory and experiment can be mutually enriching. The basic quantum Hall effect underpinning these systems was discovered experimentally. This effect was then described theoretically. The resulting theory subsequently led to the prediction of the topological states about which researchers are currently so excited. It has yet to be experimentally verified whether these theoretically predicted states actually exist in practice. If experimental physicists can demonstrate this, they may soon be returning the problem for additional theoretical elaboration.

    Like Home, Wegscheider warns it will take some time before a quantum computer can solve practical problems beyond the realm of quantum physics. “Three years ago, I was still sceptical, but now I’m pretty confident that we’ll get there,” he says.

    At present, it is still unclear which of the various approaches will ultimately prevail. The answer may well lie in a mix of different solutions – semiconductors with superconducting circuits, for example. “When these two options are combined, you get quasiparticles known as Majorana fermions, which are thought to be less susceptible to error,” says Wegscheider. Yiwen Chu, Assistant Professor of Hybrid Quantum Systems, is investigating combinations of different quantum systems. “There’s a whole range of quantum objects, such as photons, ions or even superconducting circuits,” she explains. “All have their specific strengths, but also disadvantages. The question is how to bring these elements together in a way that combines their strengths.”

    Bridging the gap

    Her model is the classic computer, which uses, for example, a silicon chip to process information and optical fibre to transfer the data. By analogy, a quantum system might use superconducting circuits to process data, which would then be transferred by photons. “But it turns out that these two quantum objects are not particularly compatible,” says Chu. What is needed, therefore, is something to bridge the gap. Chu and her research group are currently investigating the use of small crystals for this purpose. As mechanical objects, they are able to communicate with both sides by means of acoustic vibrations.

    At the same time, it may well be that these crystals themselves are capable of storing and processing quantum information. “The crystals use acoustic vibrations, which are much slower than light waves, so we could use them to build smaller qubits,” she explains. Yet her chief aim here is not to accommodate as many qubits as possible on a given surface. The advantage is rather that these crystals can be isolated from one another much more easily than, for example, superconducting circuits. The greater degree of isolation prevents an unwanted loss of information, which in turn helps reduce the susceptibility to error. Yet the greatest challenge of all is that as more and more qubits are connected together, the system itself has to become increasingly complex.

    Yet it would be wrong, she says, to look upon the quantum computer as purely an engineering problem. “There are also a lot of unanswered questions on the physics side of the equation.” One of these is whether the transition between the worlds of classical and quantum physics is continuous or abrupt. “We don’t yet have a definitive answer to this problem,” says Chu. “But either way, it’s going be an exciting time for us physicists!”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

     
  • richardmitnick 9:53 am on September 18, 2021 Permalink | Reply
    Tags: "UArizona Engineer Awarded $5M to Build Quantum-Powered Navigation Tools", , Gaining an Edge on Earth and Beyond, Many electronics including cellphones are equipped with tiny gyroscopes and accelerometers that enable features like automatic screen rotation and directional pointers for GPS apps., , , Quantum Physics, Quantum technology and AI innovation are a priority for the National Science Foundation, The National Science Foundation (US) Convergence Accelerator, , Upgrading Gyroscopes and Accelerometers   

    From University of Arizona (US) : “UArizona Engineer Awarded $5M to Build Quantum-Powered Navigation Tools” 

    From University of Arizona (US)

    9.16.21
    Emily Dieckman, College of Engineering

    Funded by The National Science Foundation (US) Convergence Accelerator Program the Quantum Sensors project aims to make space and terrestrial navigation far more sensitive, accurate and affordable.

    1
    Zheshen Zhang. Credit: Emily Dieckman.

    Zheshen Zhang, a University of Arizona assistant professor of materials science and engineering, is leading a $5 million quantum technology project to advance navigation for autonomous vehicles and spacecraft, as well as measurement of otherworldly materials such as Dark Matter and gravitational waves.

    The National Science Foundation’s Convergence Accelerator Program, which fast-tracks multidisciplinary efforts to solve real-world problems, is funding the Quantum Sensors project.

    In September 2020, 29 U.S. teams received phase I funding to develop solutions in either quantum technology or artificial intelligence-driven data sharing and modeling. Ten prototypes have advanced to phase II, each receiving $5 million, including two projects led by UArizona researchers – Zhang’s project and another by hydrology and atmospheric sciences assistant professor Laura Condon.

    “Quantum technology and AI innovation are a priority for the National Science Foundation,” said Douglas Maughan, head of the NSF Convergence Accelerator program. “Today’s scientific priorities and national-scale societal challenges cannot be solved by a single discipline. Instead, the merging of new ideas, techniques and approaches, plus the Convergence Accelerator’s innovation curriculum, enables teams to speed their research into application. We are excited to welcome Quantum Sensors into phase II and to assist them in applying our program fundamentals to ensure their solution provides a positive impact on society at large.”

    Upgrading Gyroscopes and Accelerometers

    The objects we interact with in our daily lives adhere to classic laws of physics, like gravity and thermodynamics. Quantum physics, however, has different rules, and objects in quantum states can exhibit strange but useful properties. For example, when two particles are linked by quantum entanglement, anything that happens to one particle affects the other, no matter how far apart they are. This means probes in two locations can share information, allowing for more precise measurements. Or, while “classical” light emits photons at random intervals, scientists can induce a quantum state called “squeezed” light to make photon emission more regular and reduce uncertainty – or “noise” – in measurements.

    The Quantum Sensors project will take advantage of quantum states to create ultrasensitive gyroscopes, accelerometers and other sensors. Gyroscopes are used in navigation of aircraft and other vehicles to maintain balance as orientation shifts. In tandem, accelerometers measure vibration or acceleration of motion. These navigation-grade gyroscopes and accelerometers are light-based and can be extremely precise, but they are bulky and expensive.

    Many electronics including cellphones are equipped with tiny gyroscopes and accelerometers that enable features like automatic screen rotation and directional pointers for GPS apps. At this scale, gyroscopes are made up of micromechanical parts, rather than lasers or other light sources, rendering them far less precise. Zhang and his team aim to develop chip-scale light-based gyroscopes and accelerometers to outperform current mechanical methods. However, the detection of light at this scale is limited by the laws of quantum physics, presenting a fundamental performance limit for such optical gyroscopes and accelerometers.

    Rather than combat these quantum limitations with classical resources, Zhang and his team are fighting fire with fire, so to speak, by using quantum resources. For example, the stability of squeezed light can counterbalance the uncertainty of quantum fluctuations, which are temporary changes in variables such as position and momentum.

    “The fundamental quantum limit is induced by quantum fluctuations, but this limit can be broken using a quantum state of light, like entangled photons or squeezed light, for the laser itself,” said Zhang, director of The University of Arizona (US) Quantum Information and Materials Group. “With this method, we can arrive at much better measurements.”

    Gaining an Edge on Earth and Beyond

    The benefits of extremely precise measurements are numerous. If a self-driving car could determine its exact location and speed using only a compact, quantum-enhanced, onboard gyroscope and accelerometer, it wouldn’t need to rely on GPS to navigate. A self-contained navigation system would protect the car from hackers and provide more stability. The same goes for navigation of spacecraft and terrestrial vehicles sent to other planets.

    “In both space-based and terrestrial technologies, there are a lot of fluctuations. In an urban environment, you might lose GPS signal driving through a tunnel,” Zhang said. “This method could capture information not provided by a GPS. GPS tells you where you are, but it doesn’t tell you your altitude, the direction your vehicle is driving or the angle of the road. With all of this information, the safety of the passengers would be ensured.”

    Zhang is collaborating with partners at General Dynamics Mission Systems, Honeywell, NASA JPL-Caltech (US) The National Institute of Standards and Technology (US), Purdue University (US), The Texas A&M University (US), The University of California-Los Angeles (US) and Morgan State University (US).

    “We are excited to work with the University of Arizona on this NSF Convergence Accelerator project,” said Jianfeng Wu, Honeywell representative and project co-principal investigator. “The integrated entangled light sources can reduce the noise floor and enable the navigation-grade performance from chip-scale gyroscopes. The success of this program will significantly disrupt the current gyroscope landscape from many perspectives.”

    Because precise navigation would directly affect 700 million people worldwide, researchers estimate that quantum sensors could create a $2.5 billion market by 2035. They also expect that the precision and stability offered by the technology will give researchers a way to measure previously unmeasurable forces, such as gravitational waves and Dark Matter.

    “As a leading international research university bringing the Fourth Industrial Revolution to life, we are deeply committed to advance amazing new information technologies like quantum networking to benefit humankind,” said University of Arizona President Robert C. Robbins. “The University of Arizona is an internationally recognized leader in this area, and I look forward to seeing how Dr. Zhang’s Quantum Sensors project moves us forward in addressing real-world challenges with quantum technology.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    As of 2019, the University of Arizona (US) enrolled 45,918 students in 19 separate colleges/schools, including the UArizona College of Medicine in Tucson and Phoenix and the James E. Rogers College of Law, and is affiliated with two academic medical centers (Banner – University Medical Center Tucson and Banner – University Medical Center Phoenix). UArizona is one of three universities governed by the Arizona Board of Regents. The university is part of the Association of American Universities and is the only member from Arizona, and also part of the Universities Research Association(US). The university is classified among “R1: Doctoral Universities – Very High Research Activity”.

    Known as the Arizona Wildcats (often shortened to “Cats”), the UArizona’s intercollegiate athletic teams are members of the Pac-12 Conference of the NCAA. UArizona athletes have won national titles in several sports, most notably men’s basketball, baseball, and softball. The official colors of the university and its athletic teams are cardinal red and navy blue.

    After the passage of the Morrill Land-Grant Act of 1862, the push for a university in Arizona grew. The Arizona Territory’s “Thieving Thirteenth” Legislature approved the UArizona in 1885 and selected the city of Tucson to receive the appropriation to build the university. Tucson hoped to receive the appropriation for the territory’s mental hospital, which carried a $100,000 allocation instead of the $25,000 allotted to the territory’s only university (Arizona State University(US) was also chartered in 1885, but it was created as Arizona’s normal school, and not a university). Flooding on the Salt River delayed Tucson’s legislators, and by they time they reached Prescott, back-room deals allocating the most desirable territorial institutions had been made. Tucson was largely disappointed with receiving what was viewed as an inferior prize.

    With no parties willing to provide land for the new institution, the citizens of Tucson prepared to return the money to the Territorial Legislature until two gamblers and a saloon keeper decided to donate the land to build the school. Construction of Old Main, the first building on campus, began on October 27, 1887, and classes met for the first time in 1891 with 32 students in Old Main, which is still in use today. Because there were no high schools in Arizona Territory, the university maintained separate preparatory classes for the first 23 years of operation.

    Research

    UArizona is classified among “R1: Doctoral Universities – Very high research activity”. UArizona is the fourth most awarded public university by National Aeronautics and Space Administration(US) for research. UArizona was awarded over $325 million for its Lunar and Planetary Laboratory (LPL) to lead NASA’s 2007–08 mission to Mars to explore the Martian Arctic, and $800 million for its OSIRIS-REx mission, the first in U.S. history to sample an asteroid.

    The LPL’s work in the Cassini spacecraft orbit around Saturn is larger than any other university globally. The UArizona laboratory designed and operated the atmospheric radiation investigations and imaging on the probe. UArizona operates the HiRISE camera, a part of the Mars Reconnaissance Orbiter. While using the HiRISE camera in 2011, UArizona alumnus Lujendra Ojha and his team discovered proof of liquid water on the surface of Mars—a discovery confirmed by NASA in 2015. UArizona receives more NASA grants annually than the next nine top NASA/JPL-Caltech(US)-funded universities combined. As of March 2016, the UArizona’s Lunar and Planetary Laboratory is actively involved in ten spacecraft missions: Cassini VIMS; Grail; the HiRISE camera orbiting Mars; the Juno mission orbiting Jupiter; Lunar Reconnaissance Orbiter (LRO); Maven, which will explore Mars’ upper atmosphere and interactions with the sun; Solar Probe Plus, a historic mission into the Sun’s atmosphere for the first time; Rosetta’s VIRTIS; WISE; and OSIRIS-REx, the first U.S. sample-return mission to a near-earth asteroid, which launched on September 8, 2016.

    UArizona students have been selected as Truman, Rhodes, Goldwater, and Fulbright Scholars. According to The Chronicle of Higher Education, UArizona is among the top 25 producers of Fulbright awards in the U.S.

    UArizona is a member of the Association of Universities for Research in Astronomy(US), a consortium of institutions pursuing research in astronomy. The association operates observatories and telescopes, notably Kitt Peak National Observatory(US) just outside Tucson. Led by Roger Angel, researchers in the Steward Observatory Mirror Lab at UArizona are working in concert to build the world’s most advanced telescope. Known as the Giant Magellan Telescope(CL), it will produce images 10 times sharper than those from the Earth-orbiting Hubble Telescope.

    Giant Magellan Telescope, 21 meters, to be at the NOIRLab(US) National Optical Astronomy Observatory(US) Carnegie Institution for Science’s(US) Las Campanas Observatory(CL), some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.


    The telescope is set to be completed in 2021. GMT will ultimately cost $1 billion. Researchers from at least nine institutions are working to secure the funding for the project. The telescope will include seven 18-ton mirrors capable of providing clear images of volcanoes and riverbeds on Mars and mountains on the moon at a rate 40 times faster than the world’s current large telescopes. The mirrors of the Giant Magellan Telescope will be built at UArizona and transported to a permanent mountaintop site in the Chilean Andes where the telescope will be constructed.

    Reaching Mars in March 2006, the Mars Reconnaissance Orbiter contained the HiRISE camera, with Principal Investigator Alfred McEwen as the lead on the project. This National Aeronautics and Space Administration(US) mission to Mars carrying the UArizona-designed camera is capturing the highest-resolution images of the planet ever seen. The journey of the orbiter was 300 million miles. In August 2007, the UArizona, under the charge of Scientist Peter Smith, led the Phoenix Mars Mission, the first mission completely controlled by a university. Reaching the planet’s surface in May 2008, the mission’s purpose was to improve knowledge of the Martian Arctic. The Arizona Radio Observatory(US), a part of UArizona Department of Astronomy Steward Observatory(US), operates the Submillimeter Telescope on Mount Graham.

    The National Science Foundation(US) funded the iPlant Collaborative in 2008 with a $50 million grant. In 2013, iPlant Collaborative received a $50 million renewal grant. Rebranded in late 2015 as “CyVerse”, the collaborative cloud-based data management platform is moving beyond life sciences to provide cloud-computing access across all scientific disciplines.
    In June 2011, the university announced it would assume full ownership of the Biosphere 2 scientific research facility in Oracle, Arizona, north of Tucson, effective July 1. Biosphere 2 was constructed by private developers (funded mainly by Texas businessman and philanthropist Ed Bass) with its first closed system experiment commencing in 1991. The university had been the official management partner of the facility for research purposes since 2007.

    U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why the UA is a university unlike any other.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: