Tagged: Quantum optics Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:47 pm on October 8, 2021 Permalink | Reply
    Tags: "Fermilab boasts new Theory Division", Astrophysics Theory, , , , , , , Fermilab experts on perturbative QCD use high-performance computing to tackle the complexity of simulations for experiments at the Large Hadron Collider., Muon g-2 Theory Initiative and the Muon g-2 experiment, , Particle Theory, Quantum optics, , Superconducting Systems,   

    From DOE’s Fermi National Accelerator Laboratory (US) : “Fermilab boasts new Theory Division” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From DOE’s Fermi National Accelerator Laboratory (US) , an enduring source of strength for the US contribution to scientific research worldwide.

    October 8, 2021

    Theoretical physics research at Fermi National Particle Accelerator Laboratory has always sparked new ideas and scientific opportunities, while at the same time supporting the large experimental group that conducts research at Fermilab. In recent years, the Theoretical Physics Department has further strengthened its position worldwide as a hub for the high-energy physics theoretical community. The department has now become Fermilab’s newest division, the Theory Division, which officially launched early this year with strong support from HEP.

    This new division seeks to:

    support strategic theory leadership;
    promote new initiatives, as well as strengthen existing ones;
    and leverage U.S. Department of Energy support through partnerships with universities and more.

    “Creating the Theory Division increases the lab’s abilities to stimulate and develop new pathways to discovery,” said Fermilab Director Nigel Lockyer.

    Led by Marcela Carena and her deputy Patrick Fox, this new division features three departments: Particle Theory, Astrophysics Theory and Quantum Theory. “This structure will help us focus our scientific efforts in each area and will allow for impactful contributions to existing and developing programs for the theory community,” said Carena.

    Particle Theory Department

    At the helm of the Particle Theory Department is Andreas Kronfeld. This department studies all aspects of theoretical particle physics, especially those areas inspired by the experimental program—at Fermilab and elsewhere. It coordinates leading national efforts, including the Neutrino Theory Network, and the migration of the lattice gauge theory program to Exascale computing platforms. Lattice quantum chromodynamics, or QCD, experts support the Muon g-2 Theory Initiative, providing a solid theory foundation for the recently announced results of the Muon g-2 experiment.

    Fermilab particle theorists, working with DOE’s Argonne National Laboratory (US) nuclear theorists, are using machine learning for developing novel event generators to precisely model neutrino-nuclear interactions, and employ lattice QCD to model multi-nucleon interactions; both are important for achieving the science goals of DUNE.

    Fermilab experts on perturbative QCD use high-performance computing to tackle the complexity of simulations for experiments at the Large Hadron Collider. Fermilab theorists are strongly involved in the exploration of physics beyond the Standard Model, through model-building, particle physics phenomenology, and formal aspects of quantum field theory.

    Astrophysics Theory Department

    Astrophysics Theory, led by Dan Hooper, consists of researchers who work at the confluence of astrophysics, cosmology and particle physics. Fermilab’s scientists have played a key role in the development of this exciting field worldwide and continue to be deeply involved in supporting the Fermilab cosmic frontier program.

    Key areas of research include dark matter, dark energy, the cosmic microwave background, large-scale structure, neutrino astronomy and axion astrophysics. A large portion of the department’s research involves numerical cosmological simulations of galaxy formation, large-scale structures and gravitational lensing. The department is developing machine-learning tools to help solve these challenging problems.

    Quantum Theory Department

    Led by Roni Harnik, the Quantum Theory Department has researchers working at the interface of quantum information science and high-energy physics. Fermilab theorists are working to harness the developing power of unique quantum information capabilities to address important physics questions, such as the simulation of QCD processes, dynamics in the early universe, and more generally simulating quantum field theories. Quantum-enhanced capabilities also open new opportunities to explore the universe and test theories of new particles, dark matter, gravitational waves and other new physics.

    Scientists in the Quantum Theory Department are developing new algorithms for quantum simulations, and they are proposing novel methods to search for new phenomena using quantum technology, including quantum optics, atomic physics, optomechanical sensors and superconducting systems. The department works in close collaboration with both the Fermilab Superconducting Quantum Materials and Systems Center and the Fermilab Quantum Institute, as well as leads a national QuantISED theory consortium.

    Looking ahead

    The new Theory Division also intends to play a strong role in attracting and inspiring the next generation of theorists, training them in a data-rich environment, as well as promoting an inclusive culture that values diversity.

    “The best part about being a Fermilab theorist,” said Marcela Carena, “is working with brilliant junior scientists and sharing their excitement about exploring new ideas.”

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Fermi National Accelerator Laboratory (US), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been operated by the Fermi Research Alliance, a joint venture of the University of Chicago, and the Universities Research Association (URA). Fermilab is a part of the Illinois Technology and Research Corridor.

    Fermilab’s Tevatron was a landmark particle accelerator; until the startup in 2008 of the Large Hadron Collider(CH) near Geneva, Switzerland, it was the most powerful particle accelerator in the world, accelerating antiprotons to energies of 500 GeV, and producing proton-proton collisions with energies of up to 1.6 TeV, the first accelerator to reach one “tera-electron-volt” energy. At 3.9 miles (6.3 km), it was the world’s fourth-largest particle accelerator in circumference. One of its most important achievements was the 1995 discovery of the top quark, announced by research teams using the Tevatron’s CDF and DØ detectors. It was shut down in 2011.

    In addition to high-energy collider physics, Fermilab hosts fixed-target and neutrino experiments, such as MicroBooNE (Micro Booster Neutrino Experiment), NOνA (NuMI Off-Axis νe Appearance) and SeaQuest. Completed neutrino experiments include MINOS (Main Injector Neutrino Oscillation Search), MINOS+, MiniBooNE and SciBooNE (SciBar Booster Neutrino Experiment). The MiniBooNE detector was a 40-foot (12 m) diameter sphere containing 800 tons of mineral oil lined with 1,520 phototube detectors. An estimated 1 million neutrino events were recorded each year. SciBooNE sat in the same neutrino beam as MiniBooNE but had fine-grained tracking capabilities. The NOνA experiment uses, and the MINOS experiment used, Fermilab’s NuMI (Neutrinos at the Main Injector) beam, which is an intense beam of neutrinos that travels 455 miles (732 km) through the Earth to the Soudan Mine in Minnesota and the Ash River, Minnesota, site of the NOνA far detector. In 2017, the ICARUS neutrino experiment was moved from CERN to Fermilab.
    In the public realm, Fermilab is home to a native prairie ecosystem restoration project and hosts many cultural events: public science lectures and symposia, classical and contemporary music concerts, folk dancing and arts galleries. The site is open from dawn to dusk to visitors who present valid photo identification.
    Asteroid 11998 Fermilab is named in honor of the laboratory.
    Weston, Illinois, was a community next to Batavia voted out of existence by its village board in 1966 to provide a site for Fermilab.

    The laboratory was founded in 1969 as the National Accelerator Laboratory; it was renamed in honor of Enrico Fermi in 1974. The laboratory’s first director was Robert Rathbun Wilson, under whom the laboratory opened ahead of time and under budget. Many of the sculptures on the site are of his creation. He is the namesake of the site’s high-rise laboratory building, whose unique shape has become the symbol for Fermilab and which is the center of activity on the campus.
    After Wilson stepped down in 1978 to protest the lack of funding for the lab, Leon M. Lederman took on the job. It was under his guidance that the original accelerator was replaced with the Tevatron, an accelerator capable of colliding protons and antiprotons at a combined energy of 1.96 TeV. Lederman stepped down in 1989. The science education center at the site was named in his honor.
    The later directors include:

    John Peoples, 1989 to 1996
    Michael S. Witherell, July 1999 to June 2005
    Piermaria Oddone, July 2005 to July 2013
    Nigel Lockyer, September 2013 to the present

    Fermilab continues to participate in the work at the Large Hadron Collider (LHC); it serves as a Tier 1 site in the Worldwide LHC Computing Grid.

    DOE’s Fermi National Accelerator Laboratory(US)/MINERvA Reidar Hahn.

    FNAL Don Lincoln.[/caption]

    FNAL Icon

     
  • richardmitnick 8:52 am on July 31, 2021 Permalink | Reply
    Tags: "Rochester researchers join national initiative to advance quantum science", , , , , , Quantum optics,   

    From University of Rochester (US): “Rochester researchers join national initiative to advance quantum science” 

    From University of Rochester (US)

    July 30, 2021

    Peter Iglinski
    585.273.4726
    peter.iglinski@rochester.edu

    1
    The US Department of Energy has awarded a major grant to University of Rochester researchers, led by chemistry professor Todd Krauss (above), as part of an initiative to advance quantum science and technology. The researchers will address a principal challenge in quantum science: quantum states of matter are stable only at temperatures far colder than ever recorded on Earth. If stability can be achieved at room temperature, the benefits of quantum applications can be realized on a broader scale. Credit: J. Adam Fenster/University of Rochester photo.

    Department of Energy grant recognizes the University’s long history of quantum research.

    Todd Krauss, chair of the Department of Chemistry at the University of Rochester, and his fellow researchers are joining a $73 million initiative, funded by the Department of Energy (US), to advance quantum science and technology. Krauss’s project, “Understanding coherence in light‐matter interfaces for quantum science,” is one of 29 projects intended to help scientists better understand and to harness the “quantum world” in order to eventually benefit people and society.

    “It’s exciting to see the University recognized for its work in the emerging field of quantum information science,” says Krauss.

    The University has a long history in quantum science, dating back to physicist Leonard Mandel—considered a pioneer in quantum optics—in the 1960s. And Krauss says he and his colleagues are now building on the work of Mandel and other giants at Rochester, as well as leveraging the talents of the University’s current crop of quantum researchers.

    Quantum science “the next technological revolution”

    “Quantum science represents the next technological revolution and frontier in the Information Age, and America stands at the forefront,” said Secretary of Energy Jennifer M. Granholm as part of the DOE’s announcement of the funding. “At DOE, we’re investing in the fundamental research, led by universities and our National Labs, that will enhance our resiliency in the face of growing cyber threats and climate disasters, paving the path to a cleaner, more secure future.”

    One of the principle challenges in this line of research, explains Krauss, is that quantum states of matter are typically stable only at temperatures below 10 degrees Kelvin; that’s roughly –441 degrees Fahrenheit. By comparison, the coldest recorded temperature on Earth was –128.6 at Russia’s Vostok station in Antarctica in 1983. If stability can be achieved at room temperature, then the benefits of quantum applications can be realized on a broader scale.

    Faster computers, better sensors, more secure systems

    More robust quantum states could yield exponentially faster computers, extremely responsive chemical or biological sensors, as well as more secure communication systems, an area that Krauss’s project is focused on. “In quantum state communications, it will be possible to know when someone else is monitoring your messaging,” says Krauss.

    Krauss is being awarded $1.95 million over three years for his project on light-matter interfaces. Basically, says Krauss, “we’re sticking colloidal nanoparticles into optical cavities in order to interact the nanoparticles with the quantum-light of the cavity.” The work will be divided among four researchers:

    >Krauss will focus on materials synthesis, characterization and spectroscopy.
    >Nick Vamivakas, a professor of quantum optics and quantum physics at the University of Rochester’s Institute of Optics, will work on cavity fabrication and quantum optics measurements.
    >Pengfei Huo, assistant professor of chemistry at the University of Rochester, will be the theorist of the group and will provide critical modeling of experiments.
    .Steven Cundiff, professor of physics at the University of Michigan (US), will take state-of-the-art, nonlinear, ultrafast spectroscopic measurements.

    “We are excited to be taking the field of quantum optics in completely new and uncharted directions with our studies of the quantum optics of nanoparticles,” says Krauss.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Rochester

    The University of Rochester (US) is a private research university in Rochester, New York. The university grants undergraduate and graduate degrees, including doctoral and professional degrees.

    The University of Rochester (US) enrolls approximately 6,800 undergraduates and 5,000 graduate students. Its 158 buildings house over 200 academic majors. According to the National Science Foundation (US), Rochester spent $370 million on research and development in 2018, ranking it 68th in the nation. The university is the 7th largest employer in the Finger lakes region of New York.

    The College of Arts, Sciences, and Engineering is home to departments and divisions of note. The Institute of Optics was founded in 1929 through a grant from Eastman Kodak and Bausch and Lomb as the first educational program in the US devoted exclusively to optics and awards approximately half of all optics degrees nationwide and is widely regarded as the premier optics program in the nation and among the best in the world. The Departments of Political Science and Economics have made a significant and consistent impact on positivist social science since the 1960s and historically rank in the top 5 in their fields. The Department of Chemistry is noted for its contributions to synthetic organic chemistry, including the first lab based synthesis of morphine. The Rossell Hope Robbins Library serves as the university’s resource for Old and Middle English texts and expertise. The university is also home to Rochester’s Laboratory for Laser Energetics, a Department of Energy (US) supported national laboratory.

    The University of Rochester’s Eastman School of Music (US) ranks first among undergraduate music schools in the U.S. The Sibley Music Library at Eastman is the largest academic music library in North America and holds the third largest collection in the United States.

    In its history university alumni and faculty have earned 13 Nobel Prizes; 13 Pulitzer Prizes; 45 Grammy Awards; 20 Guggenheim Awards; 5 National Academy of Sciences; 4 National Academy of Engineering; 3 Rhodes Scholarships; 3 National Academy of Inventors; and 1 National Academy of Inventors Hall of Fame.

    History

    Early history

    The University of Rochester traces its origins to The First Baptist Church of Hamilton (New York) which was founded in 1796. The church established the Baptist Education Society of the State of New York later renamed the Hamilton Literary and Theological Institution in 1817. This institution gave birth to both Colgate University(US) and the University of Rochester. Its function was to train clergy in the Baptist tradition. When it aspired to grant higher degrees it created a collegiate division separate from the theological division.

    The collegiate division was granted a charter by the State of New York in 1846 after which its name was changed to Madison University. John Wilder and the Baptist Education Society urged that the new university be moved to Rochester, New York. However, legal action prevented the move. In response, dissenting faculty, students, and trustees defected and departed for Rochester, where they sought a new charter for a new university.

    Madison University was eventually renamed as Colgate University (US).

    Founding

    Asahel C. Kendrick- professor of Greek- was among the faculty that departed Madison University for Rochester. Kendrick served as acting president while a national search was conducted. He reprised this role until 1853 when Martin Brewer Anderson of the Newton Theological Seminary in Massachusetts was selected to fill the inaugural posting.

    The University of Rochester’s new charter was awarded by the Regents of the State of New York on January 31, 1850. The charter stipulated that the university have $100,000 in endowment within five years upon which the charter would be reaffirmed. An initial gift of $10,000 was pledged by John Wilder which helped catalyze significant gifts from individuals and institutions.

    Classes began that November with approximately 60 students enrolled including 28 transfers from Madison. From 1850 to 1862 the university was housed in the old United States Hotel in downtown Rochester on Buffalo Street near Elizabeth Street- today West Main Street near the I-490 overpass. On a February 1851 visit Ralph Waldo Emerson said of the university:

    “They had bought a hotel, once a railroad terminus depot, for $8,500, turned the dining room into a chapel by putting up a pulpit on one side, made the barroom into a Pythologian Society’s Hall, & the chambers into Recitation rooms, Libraries, & professors’ apartments, all for $700 a year. They had brought an omnibus load of professors down from Madison bag and baggage… called in a painter and sent him up the ladder to paint the title “University of Rochester” on the wall, and they had runners on the road to catch students. And they are confident of graduating a class of ten by the time green peas are ripe.

    For the next 10 years the college expanded its scope and secured its future through an expanding endowment; student body; and faculty. In parallel a gift of 8 acres of farmland from local businessman and Congressman Azariah Boody secured the first campus of the university upon which Anderson Hall was constructed and dedicated in 1862. Over the next sixty years this Prince Street Campus grew by a further 17 acres and was developed to include fraternities houses; dormitories; and academic buildings including Anderson Hall; Sibley Library; Eastman and Carnegie Laboratories the Memorial Art Gallery and Cutler Union.

    Twentieth century

    Coeducation

    The first female students were admitted in 1900- the result of an effort led by Susan B. Anthony and Helen Barrett Montgomery. During the 1890s a number of women took classes and labs at the university as “visitors” but were not officially enrolled nor were their records included in the college register. President David Jayne Hill allowed the first woman- Helen E. Wilkinson- to enroll as a normal student although she was not allowed to matriculate or to pursue a degree. Thirty-three women enrolled among the first class in 1900 and Ella S. Wilcoxen was the first to receive a degree in 1901. The first female member of the faculty was Elizabeth Denio who retired as Professor Emeritus in 1917. Male students moved to River Campus upon its completion in 1930 while the female students remained on the Prince Street campus until 1955.

    Expansion

    Major growth occurred under the leadership of Benjamin Rush Rhees over his 1900-1935 tenure. During this period George Eastman became a major donor giving more than $50 million to the university during his life. Under the patronage of Eastman the Eastman School of Music (US) was created in 1921. In 1925 at the behest of the General Education Board and with significant support for John D. Rockefeller George Eastman and Henry A. Strong’s family medical and dental schools were created. The university award its first Ph.D that same year.

    During World War II Rochester was one of 131 colleges and universities nationally that took part in the V-12 Navy College Training Program which offered students a path to a Navy commission. In 1942, the university was invited to join the Association of American Universities(US) as an affiliate member and it was made a full member by 1944. Between 1946 and 1947 in infamous uranium experiments researchers at the university injected uranium-234 and uranium-235 into six people to study how much uranium their kidneys could tolerate before becoming damaged.

    In 1955 the separate colleges for men and women were merged into The College on the River Campus. In 1958 three new schools were created in engineering; business administration and education. The Graduate School of Management was named after William E. Simon- former Secretary of the Treasury in 1986. He committed significant funds to the school because of his belief in the school’s free market philosophy and grounding in economic analysis.

    Financial decline and name change controversy

    Following the princely gifts given throughout his life George Eastman left the entirety of his estate to the university after his death by suicide. The total of these gifts surpassed $100 million before inflation and as such Rochester enjoyed a privileged position amongst the most well endowed universities. During the expansion years between 1936 and 1976 the University of Rochester’s financial position ranked third, near Harvard University’s(US) endowment and the University of Texas (US) System’s Permanent University Fund. Due to a decline in the value of large investments and a lack of portfolio diversity the university’s place dropped to the top 25 by the end of the 1980s. At the same time the preeminence of the city of Rochester’s major employers began to decline.

    In response the University commissioned a study to determine if the name of the institution should be changed to “Eastman University” or “Eastman Rochester University”. The study concluded a name change could be beneficial because the use of a place name in the title led respondents to incorrectly believe it was a public university, and because the name “Rochester” connoted a “cold and distant outpost.” Reports of the latter conclusion led to controversy and criticism in the Rochester community. Ultimately, the name “University of Rochester” was retained.

    Renaissance Plan

    In 1995 university president Thomas H. Jackson announced the launch of a “Renaissance Plan” for The College that reduced enrollment from 4,500 to 3,600 creating a more selective admissions process. The plan also revised the undergraduate curriculum significantly creating the current system with only one required course and only a few distribution requirements known as clusters. Part of this plan called for the end of graduate doctoral studies in chemical engineering; comparative literature; linguistics; and mathematics the last of which was met by national outcry. The plan was largely scrapped and mathematics exists as a graduate course of study to this day.

    Twenty-first century

    Meliora Challenge

    Shortly after taking office university president Joel Seligman commenced the private phase of the “Meliora Challenge”- a $1.2 billion capital campaign- in 2005. The campaign reached its goal in 2015- a year before the campaign was slated to conclude. In 2016, the university announced the Meliora Challenge had exceeded its goal and surpassed $1.36 billion. These funds were allocated to support over 100 new endowed faculty positions and nearly 400 new scholarships.

    The Mangelsdorf Years

    On December 17, 2018 the University of Rochester announced that Sarah C. Mangelsdorf would succeed Richard Feldman as President of the University. Her term started in July 2019 with a formal inauguration following in October during Meliora Weekend. Mangelsdorf is the first woman to serve as President of the University and the first person with a degree in psychology to be appointed to Rochester’s highest office.

    In 2019 students from China mobilized by the Chinese Students and Scholars Association (CSSA) defaced murals in the University’s access tunnels which had expressed support for the 2019 Hong Kong Protests, condemned the oppression of the Uighurs, and advocated for Taiwanese independence. The act was widely seen as a continuation of overseas censorship of Chinese issues. In response a large group of students recreated the original murals. There have also been calls for Chinese government run CSSA to be banned from campus.

    Research

    Rochester is a member of the Association of American Universities (US) and is classified among “R1: Doctoral Universities – Very High Research Activity”. Rochester had a research expenditure of $370 million in 2018. In 2008 Rochester ranked 44th nationally in research spending but this ranking has declined gradually to 68 in 2018. Some of the major research centers include the Laboratory for Laser Energetics, a laser-based nuclear fusion facility, and the extensive research facilities at the University of Rochester Medical Center. Recently the university has also engaged in a series of new initiatives to expand its programs in biomedical engineering and optics including the construction of the new $37 million Robert B. Goergen Hall for Biomedical Engineering and Optics on the River Campus. Other new research initiatives include a cancer stem cell program and a Clinical and Translational Sciences Institute. UR also has the ninth highest technology revenue among U.S. higher education institutions with $46 million being paid for commercial rights to university technology and research in 2009. Notable patents include Zoloft and Gardasil. WeBWorK, a web-based system for checking homework and providing immediate feedback for students was developed by University of Rochester professors Gage and Pizer. The system is now in use at over 800 universities and colleges as well as several secondary and primary schools. Rochester scientists work in diverse areas. For example, physicists developed a technique for etching metal surfaces such as platinum; titanium; and brass with powerful lasers enabling self-cleaning surfaces that repel water droplets and will not rust if tilted at a 4 degree angle; and medical researchers are exploring how brains rid themselves of toxic waste during sleep.

     
  • richardmitnick 3:16 pm on June 18, 2021 Permalink | Reply
    Tags: "New invention keeps qubits of light stable at room temperature", Even though the new discovery is a breakthrough in quantum research it stills needs more work., , Normally warm temperatures disturb the energy of each quantum bit of light., Quantum optics, QUANTUM RESEARCH-Researchers from University of Copenhagen have developed a new technique that keeps quantum bits of light stable at room temperature instead of only working at -270 degrees., Scientists developed a special coating for our memory chips that helps the quantum bits of light to be identical and stable while being in room temperature., Single photons or qubits of light as they are also called are extremely difficult to hack., University of Copenhagen [Københavns Universitet] [UCPH] (DK)   

    From Niels Bohr Institute [Niels Bohr Institutet] (DK): “New invention keeps qubits of light stable at room temperature” 

    Niels Bohr Institute bloc

    From Niels Bohr Institute [Niels Bohr Institutet] (DK)

    at

    University of Copenhagen [Københavns Universitet] [UCPH] (DK)

    17 June 2021

    Eugene Simon Polzik, Professor
    The Niels Bohr Institute
    University of Copenhagen
    +45 23 38 20 45
    polzik@nbi.ku.dk

    Ida Eriksen, Journalist
    Faculty of Science
    University of Copenhagen
    +4593516002
    ier@science.ku.dk

    QUANTUM RESEARCH-Researchers from University of Copenhagen have developed a new technique that keeps quantum bits of light stable at room temperature instead of only working at -270 degrees. Their discovery saves power and money and is a breakthrough in quantum research.

    1
    Photo: Eugene Simon Polzik.

    As almost all our private information is digitalized, it is increasingly important that we find ways to protect our data and ourselves from being hacked. Quantum Cryptography is the researchers’ answer to this problem, and more specifically a certain kind of qubit – consisting of single photons: particles of light.

    Single photons or qubits of light as they are also called are extremely difficult to hack. However, in order for these qubits of light to be stable and work properly they need to be stored at temperatures close to absolute zero – that is minus 270 C – something that requires huge amounts of power and resources.

    Yet in a recently published study [Nature Communications], researchers from University of Copenhagen, demonstrate a new way to store these qubits at room temperature for a hundred times longer than ever shown before.

    “We have developed a special coating for our memory chips that helps the quantum bits of light to be identical and stable while being in room temperature. In addition, our new method enables us to store the qubits for a much longer time, which is milliseconds instead of microseconds – something that has not been possible before. We are really excited about it,” says Eugene Simon Polzik, professor in quantum optics at the Niels Bohr Institute.

    The special coating of the memory chips makes it much easier to store the qubits of light without big freezers, which are troublesome to operate and require a lot of power. Therefore, the new invention will be cheaper and more compatible with the demands of the industry in the future.

    “The advantage of storing these qubits at room temperature is that it does not require liquid helium or complex laser-systems for cooling. Also it is a much more simple technology that can be implemented more easily in a future quantum internet,” says Karsten Dideriksen, a UCPH-PhD on the project.

    2
    Photo of the memory chip, protected in a glasscell. Credit: Eugene Simon Polzik.

    A special coating keeps the qubits stable

    Normally warm temperatures disturb the energy of each quantum bit of light.

    “In our memory chips, thousands of atoms are flying around emitting photons also known as qubits of light. When the atoms are exposed to heat, they start moving faster and collide with one another and with the walls of the chip. This leads them to emit photons that are very different from each other. But we need them to be exactly the same in order to use them for safe communication in the future,” explains Eugene Polzik and adds:

    “That is why we have developed a method that protects the atomic memory with the special coating for the inside of the memory chips. The coating consists of paraffin that has a wax like structure and it works by softening the collision of the atoms, making the emitted photons or qubits identical and stable. Also we used special filters to make sure that only identical photons were extracted from the memory chips”.

    Even though the new discovery is a breakthrough in quantum research it stills needs more work.

    “Right now we produce the qubits of light at a low rate – one photon per second, while cooled systems can produce millions in the same amount of time. But we believe there are important advantages to this new technology and that we can overcome this challenge in time,” Eugene concludes.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Stem Education Coalition

    Niels Bohr Institute Campus

    Niels Bohr Institutet (DK) is a research institute of the Københavns Universitet [UCPH] (DK). The research of the institute spans astronomy, geophysics, nanotechnology, particle physics, quantum mechanics and biophysics.

    The Institute was founded in 1921, as the Institute for Theoretical Physics of the Københavns Universitet [UCPH] (DK), by the Danish theoretical physicist Niels Bohr, who had been on the staff of the University of Copenhagen since 1914, and who had been lobbying for its creation since his appointment as professor in 1916. On the 80th anniversary of Niels Bohr’s birth – October 7, 1965 – the Institute officially became The Niels Bohr Institutet (DK). Much of its original funding came from the charitable foundation of the Carlsberg brewery, and later from the Rockefeller Foundation.

    During the 1920s, and 1930s, the Institute was the center of the developing disciplines of atomic physics and quantum physics. Physicists from across Europe (and sometimes further abroad) often visited the Institute to confer with Bohr on new theories and discoveries. The Copenhagen interpretation of quantum mechanics is named after work done at the Institute during this time.

    On January 1, 1993 the institute was fused with the Astronomic Observatory, the Ørsted Laboratory and the Geophysical Institute. The new resulting institute retained the name Niels Bohr Institutet (DK)).

    Københavns Universitet (UCPH) (DK) is the oldest university and research institution in Denmark. Founded in 1479 as a studium generale, it is the second oldest institution for higher education in Scandinavia after Uppsala University [ Uppsala universitet] (SE) (1477). The university has 23,473 undergraduate students, 17,398 postgraduate students, 2,968 doctoral students and over 9,000 employees. The university has four campuses located in and around Copenhagen, with the headquarters located in central Copenhagen. Most courses are taught in Danish; however, many courses are also offered in English and a few in German. The university has several thousands of foreign students, about half of whom come from Nordic countries.

    The university is a member of the International Alliance of Research Universities (IARU), along with University of Cambridge (UK), Yale University (US), The Australian National University (AU), and University of California-Berkeley (US), amongst others. The 2016 Academic Ranking of World Universities ranks the University of Copenhagen as the best university in Scandinavia and 30th in the world, the 2016-2017 Times Higher Education World University Rankings as 120th in the world, and the 2016-2017 QS World University Rankings as 68th in the world. The university has had 9 alumni become Nobel laureates and has produced one Turing Award recipient.

     
  • richardmitnick 10:48 am on January 19, 2021 Permalink | Reply
    Tags: "Transforming quantum computing’s promise into practice" William Oliver, , , Decoherence, , , MIT’s Lincoln Laboratory, , Quantum optics,   

    From MIT: “Transforming quantum computing’s promise into practice” William Oliver 

    MIT News

    From MIT News

    January 19, 2021
    Daniel Ackerman

    Electrical engineer William Oliver develops technology to enable reliable quantum computing at scale.

    1
    MIT electrical engineer William D. Oliver develops the fundamental technology to enable reliable quantum computers at scale.
    Credit: Adam Glanzman.

    It was music that sparked William Oliver’s lifelong passion for computers.

    Growing up in the Finger Lakes region of New York, he was an avid keyboard player. “But I got into music school on voice,” says Oliver, “because it was a little bit easier.”

    But once in school, first at State University of New York at Fredonia then the University of Rochester, he hardly shied away from a challenge. “I was studying sound recording technology, which led me to digital signal processing,” explains Oliver. “And that led me to computers.” Twenty-five years later, he’s still stuck on them.

    Oliver, a recently tenured associate professor in MIT’s Department of Electrical Engineering and Computer Science, is building a new class of computer — the quantum computer — with the potential to radically improve how we process information and simulate complex systems. Quantum computing is still in its early days, and Oliver aims to help usher the field out of the laboratory and into the real world. “Our mission is to build the fundamental technologies that are necessary to scale up quantum computing,” he says.

    Coast to coast and back again

    Oliver’s first stop at MIT was as a master’s student in the Media Lab with adviser Tod Machover. Their interactive Brain Opera project paired Oliver’s love for both music and computing. Oliver orchestrated users’ voices with a computer-generated “angelic arpeggiation of strings and a chorus.” The project was installed at the Haus der Musik museum in Vienna. “It was a fantastic master’s project. I really loved it,” says Oliver. “But the question was ‘okay, what do I do next?’”

    Eager for a new challenge, Oliver chose to explore more fundamental research. “I found quantum mechanics to be really puzzling and interesting,” says Oliver. So he traveled to Stanford University to earn a PhD studying quantum optics using free electrons. “I feel very fortunate that I could do those experiments, which have almost no practical application, but that allowed me to think really deeply about quantum mechanics,” he says.

    Oliver’s timing was fortunate too. He was delving into quantum mechanics just as the field of quantum computing was emerging. A classical computer, like the one you’re using to read this story, stores information in binary bits, each of which holds a value of 0 or 1. In contrast, a quantum computer stores information in qubits, each of which can hold a 0, 1, or any simultaneous combination of 0 and 1, thanks to a quantum mechanical phenomenon called superposition. That means quantum computers can process information far faster than classical computers, in some cases completing tasks in minutes where a classical computer would take millennia — at least in theory. When Oliver was completing his PhD, quantum computing was a field in its infancy, more idea than reality. But Oliver grasped the potential of quantum computing, so he returned to MIT to help it grow.

    The qubit quandary

    Quantum computers are frustratingly inconsistent. That’s in part because those qubit superposition states are fragile. In a process called decoherence, qubits can err and lose their quantum information from the slightest disturbance or material defect. In 2003, Oliver took a staff position at MIT’s Lincoln Laboratory to help solve problems like decoherence. His goal, with colleagues Terry Orlando, Leonya Levitov, and Seth Lloyd, was to engineer reliable quantum computing systems that can be scaled up for practical use. “Quantum computing is transitioning from scientific curiosity to technical reality,” says Oliver. “We know that it works at small scale. And we’re now trying to increase the size of the systems so we can do problems that are actually meaningful.”

    Even background levels of radiation can trigger decoherence in mere milliseconds. In a recent Nature paper, Oliver and his colleagues, including professor of physics Joe Formaggio, described this problem and proposed ways to shelter qubits from damaging radiation, like shielding them with lead.

    He is quick to emphasize the role of collaboration in solving these complex challenges. “Engineering these quantum systems into useful, larger scale machines is going to require almost every department at the Institute,” says Oliver. In his own research, he builds qubits from electrical circuits in aluminum that are supercooled to just a smidge warmer than absolute zero. At that temperature, the system loses electrical resistance and can be used as an anharmonic oscillator that stores quantum information. Engineering such an intricate system to reliably process information means “we need to bring in a lot of people with their own talents,” says Oliver.

    “For example, materials scientists will have a lot to say about the materials and the defects on the surfaces,” he adds. “Electrical engineers will have something to say about how to fabricate and control the qubits. Computer scientists and applied mathematicians will have something to say about the algorithms. Chemists and biologists know the hard problems to solve. And so on.” When he first joined Lincoln Laboratory, Oliver says just two Lincoln staff were focused on quantum technologies. That number now exceeds 100.

    In 2015, Oliver founded the Engineering Quantum Systems (EQuS) group to focus specifically on superconducting qubit technology. He is also a Lincoln Laboratory Fellow, director of MIT’s Center for Quantum Engineering, and associate director of the Research Laboratory of Electronics.

    A quantum future

    Oliver envisions a steadily growing role for quantum computing. Already, Google has demonstrated that for a particular task, a 53-qubit quantum computer can far outpace even the world’s largest supercomputer, which features quadrillions of transistors. “That was like the flight at Kitty Hawk,” says Oliver. “It got off the ground.”

    Google quantum computer.

    In the near-term, Oliver thinks quantum and classical computers could work as partners. The classical machine would churn through an algorithm, dispatching specific calculations for the quantum computer to run before its qubits decohere. In the longer term, Oliver says that error-correcting codes could enable quantum computers to function indefinitely, even as some individual components remain faulty. “And that’s when quantum computers will basically be universal,” says Oliver. “They’ll be able to run any quantum algorithm at large scale.” That could enable vastly improved simulations of complex systems in fields like molecular biology, quantum chemistry, and climatology.

    Oliver will continue to push quantum computing toward that reality. “There are real accomplishments that have been happening,” he says. “At the same time, on the theoretical side, there are real problems we could solve if we just had a quantum computer big enough.” While focused on his mission to scale up quantum computing, Oliver hasn’t lost his passion for music. Although, he says he rarely sings these days: “Only in the shower.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

     
  • richardmitnick 11:55 am on December 29, 2020 Permalink | Reply
    Tags: "Metasurface enabled quantum edge detection", Combining quantum entanglement and edge detection., Metasurfaces provide unique platforms to realize exotic phenomena including negative refraction; achromatic focusing; and electromagnetic cloaking due to the engineered dielectric or metallic architec, , , Quantum optics,   

    From phys.org: “Metasurface enabled quantum edge detection” 


    From phys.org

    December 29, 2020
    Thamarasee Jeewandara

    1
    The schematics of a metasurface enabled quantum edge detection. (A) The metasurface is designed to perform edge detection for a preferred linear polarization. |V〉, i.e., polarization state is orthogonal to the analyzer. The dashed light red line stands for the electrical path. The question mark means that polarization selection of idler photons of the heralding arm is unknown. If the Schrödinger’s cat is illuminated by unknown linear polarization photons from the polarization entangled source, the image would be a superposition of a regular “solid cat” and an edge-enhanced “outlined cat.” (B) The switch state ON or OFF of the heralding arm. When the idler photons of the heralding arm are projected to |H〉, it indicates the switch OFF state and leads to a solid cat captured. While the heralded photons are projected to |V〉, an edge-enhanced outlined cat is obtained with the switch ON state. (C and D) The calculated and experimental results of a solid cat, respectively. (E and F) The calculated and experimental results of the edge-enhanced outlined cat, respectively. Credit: Science Advances.

    Metasurfaces provide unique platforms to realize exotic phenomena including negative refraction, achromatic focusing, and electromagnetic cloaking due to the engineered dielectric or metallic architectures. The intersection of metasurfaces and quantum optics can lead to significant opportunities that remain to be explored. In a new report now published on Science Advances, Junxiao Zhou, Shikai Liu and a research team in quantum information, nano-optoelectronic devices and computer engineering in China and the U.S. proposed and demonstrated a polarization-entangled photon source. They used the source to switch the optical edge mode in an imaging system to ON or OFF states based on a highly dielectric metasurface. The experiment enriched the fields of quantum optics and metamaterials as a promising direction toward quantum edge detection and image processing with a remarkable signal-to-noise ratio.

    Combining quantum entanglement and edge detection

    Photonic metasurfaces are two-dimensional (2-D) ultrathin arrays of engineered metallic or dielectric structures that can facilitate electromagnetic field manipulation of the local phase, amplitude and polarization. Researchers generally develop such capabilities for a variety of applications in classical optics. Quantum entanglement is essential in quantum optics for many applications including quantum cryptography, teleportation, superresolving metrology and quantum imaging. Recent efforts show a trend to combine the metasurface with entangled photons for potential applications in quantum optics. Edge detection is another factor that contributes to image processing to define the boundaries between regions in an image. It is a basic tool in computer vision to pre-process automations in medical imaging and forms a critical component of autonomous vehicles. Metasurface-enabled edge detection can be used in quantum optics to offer possibilities of remote-controlled image processing and cryptography. In this work, Zhou et al. therefore realized a polarization-entangled photon source and high-efficiency metasurface enabled switchable optical edge detection method. The combined strategy showed a high signal-to-noise (SNR) ratio at the same photon flux level (the number of photons per second per unit area).

    2
    Experimental setup and sample characterization. (A) Experimental setup of metasurface enabled quantum edge detection. BDM, broadband dielectric mirror; PBS, polarization beam splitter; DM, dichromatic mirror; FC, fiber coupler; BPF, band-pass filter; ICCD, intensified charge coupled device. By pumping a nonlinear crystal (type II phase-matched bulk PPKTP crystal) with a 405-nm laser, pairs of orthogonally polarized photons with 810-nm wavelength are generated through the spontaneously parametric down-conversion process. The blue (red) light path presents the 405-nm (810 nm) light. Edge detection switch is on the heralding arm. An edge detection imaging system is on the imaging arm. (B) Photograph of the partial metasurface sample. Scale bar, 4 mm. (C) Polariscopic analysis characterized by crossed linear polarizers of the sample area marked in 2a. The blue bars indicate the orientation of rotated nanostructures in one period, which represents the Pancharatnam-Berry phase induced by the laser writing dielectric metasurface. Scale bar, 50 μm. (D) The scanning electron microscopy image of the sample area marked in (C). Scale bar, 1 μm. Photo credit: Junxiao Zhou, University of California, San Diego. Credit: Science Advances [above].

    Using the “Schrödinger’s cat” concept

    Zhou et al. used the Schrödinger’s cat concept to illustrate the expected performance of the switchable quantum edge detection scheme. They reviewed the basic principle of edge detection based on classical continuous wave (CW) light-illumination. In the experimental setup, the edge detection imaging arm was independent of the entangled source and the heralding arm, as well as the coincidence measurement components. When the incident photons achieved a horizontal polarization state, the beam of illuminated light passed through a cat-shaped aperture and an engineered metasurface to separate into a left- and right-handed overlapped polarized image with a horizontal shift. The overlapped components then passed through a horizontally oriented analyzer to form a ‘solid cat’ image. If, however, the incident photons were vertically polarized, the overlapped components recombined to a linear polarized component that is completely blocked by the analyzer to only form an outline of a cat. The researchers therefore used polarization-entangled photons as a source of illumination to develop quantum switchable edge detection in this way.

    The experimental setup and polarization-entangled photon pairs

    3
    Characterizations of the entangled source. (A) Coincidence counts as a function of the HWP angle θ2 at one output port in 2 s. The red (blue) color of count data and interference corresponds to horizontal (diagonal) projection bases. The solid lines are sinusoidal fits to the data, error bars are estimated by assuming Poisson photon statistics in photon counting. Error bars are obtained from multiple measurements. (B and C) The real and imaginary parts of the reconstructed density matrix ρ of the two-photon states, respectively. Credit: Science Advances [above].

    The researchers generated polarization entangled photons using a spontaneous parametric down-conversion process in a 20-mm-long type II phase-matched periodically poled potassium titanyl phosphate (KTiOPO4/PPKTP) crystal embedded in a Sagnac interferometer. They set the temperature of the crystal to 17 degrees Celsius and used two broadband dielectric mirrors and a dual-wavelength polarization beam splitter to form the self-stable Sagnac interferometer. They then used a continuous wave single-frequency diode laser at 405 nm to generate the pump beam focused by a pair of lenses with optimized focal lengths to attain a beam waist approximating 40 microns at the center of the crystal. To balance the power in the clockwise and counter-clockwise-directions, Zhou et al. used a quarter-wave plate (QWP) and a half-wave plate (HWP) in front to the Sagnac loop.

    Using a dual-wavelength polarization beam splitter, they separated the down-converted photon pairs pumped by two counter-propagating beams, to send one into the imaging arm and the other to heralding arms, respectively. Zhou et al. also designed the metasurface employed in the setup using the Pancharatnam-Berry phase and fabricated it by scanning a femtosecond pulse laser within a silica slab. Then using scanning electron microscopy, they observed self-assembled nanostructures in the silica slab and showed their origin under intense laser irradiation to generate the metasurface. The team briefly described the quantum state preparation for the polarization entangled degenerate photon pairs generated from the Signac loop. They used the Bell state (the simplest example of nonseparable quantum entanglement) for this work by adjusting the experimental setup. Zhou et al. quantified the entanglement quality of the two-photon state using quantum tomography and reconstructed two-photon density matrix measurements.

    4
    The switchable edge detection demonstration. (A to D) The metasurface sample orientation, which is aligned with the xy plane. The inset yellow arrows indicate the phase gradient direction of the metasurface. (E to H) The images of the whole object comprising the separated LCP and RCP components, which is the OFF state of the edge detection mode. (I to L) The images reveal edges along different directions, which is the ON state of the edge detection mode. Photo credit: Junxiao Zhou, University of California, San Diego. Credit: Science Advances [above].

    Quantum-entanglement enabled quantum edge detection

    After confirming the quality of generated polarization-entangled photon pairs, they demonstrated switchable quantum edge detection. To accomplish this, they prepared the photons in horizontal or vertical linear polarizations states using the setup and coupled the photons into the fiber and sent them to the edge detection image system to capture the final alternative image via an intensified charge-coupled device camera (ICCD). For instance, Zhou et al. obtained two overlapped images with a tiny shift, where the shift direction aligned with the phase gradient direction of the metasurface. When they increased the period of the metasurface structure, they decreased the shift between the two overlapped images to achieve high-resolution edge detection. The quantum edge detection scheme had another advantage due to its high signal-to-noise (SNR) ratio, where the team could significantly reduce the ambient noise in the setup, where noise only accumulated in a very short timeframe. By contrast, in classical optics, the noise would continue to accumulate. As proof of concept, they acquired an edge image with remarkable SNR for improved entanglement-enabled experimental quantum edge detection.

    Outlook

    In this way, Junxiao Zhou, Shikai Liu and colleagues combined quantum entanglement-enabled quantum edge detection using a metasurface filter combined with a polarization-entangled source. The metasurfaces provided ultrathin and lightweight optical elements with precisely engineered phase profiles to obtain a variety of functions to form a more compact and integrated system. The setup will assist the conception of security applications including image encryption and steganography. The method also offers an appealing signal-to-noise (SNR) ratio suited for a variety of photon-hungry imaging and sensing applications in biomedicine, including tracking enzymatic reactions and observing living organisms or photosensitive cells.

    More information:

    Flat optics with designer metasurfaces
    Nature Materials

    Experimental quantum teleportation
    Nature

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    About Science X in 100 words
    Science X™ is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004 (Physorg.com), Science X’s readership has grown steadily to include 5 million scientists, researchers, and engineers every month. Science X publishes approximately 200 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Science X community members enjoy access to many personalized features such as social networking, a personal home page set-up, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.
    Mission 12 reasons for reading daily news on Science X Organization Key editors and writersinclude 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

     
  • richardmitnick 10:54 am on December 10, 2020 Permalink | Reply
    Tags: "Researchers demonstrate nondestructive mid-infrared imaging using entangled photons", , Demonstrating a proof-of-concept experiment for mid-infrared OCT based on ultra-broadband entangled photon pairs., Eliminating the need for broadband mid-infrared sources or detectors., Imaging with less light., Optical coherence tomography (OCT), , , , Quantum optics, Tapping into quantum mechanics., This approach can produce high quality 2-D and 3-D images of highly scattering samples using a relatively compact straightforward optical setup.   

    From The Optical Society via phys.org: “Researchers demonstrate nondestructive mid-infrared imaging using entangled photons” 

    From The Optical Society

    via


    phys.org

    December 10, 2020

    1
    Researchers used entangled photons to increase the penetration depth of OCT for scattering materials. They demonstrated the technique by analyzing two alumina ceramic stacks containing laser-milled microchannels. The mid-infrared illumination allowed the researchers to capture depth information and to create a full 3D reconstruction of the channel structures (pictured). Credit: Aron Vanselow and Sven Ramelow, Humboldt-Universität zu Berlin.

    Researchers have shown that entangled photons can be used to improve the penetration depth of optical coherence tomography (OCT) in highly scattering materials. The method represents a way to perform OCT with mid-infrared wavelengths and could be useful for non-destructive testing and analysis of materials such as ceramics and paint samples.

    OCT is a nondestructive imaging method that provides detailed 3-D images of subsurface structures. OCT is typically performed using visible or near-infrared wavelengths because light sources and detectors for these wavelengths are readily available. However, these wavelengths don’t penetrate very deeply into highly scattering or very porous materials.

    In Optica, The Optical Society’s (OSA) journal for high-impact research, Aron Vanselow and colleagues from Humboldt-Universität zu Berlin (DE), together with collaborators at the Research Center for Non-Destructive Testing GmbH in Austria, demonstrate a proof-of-concept experiment for mid-infrared OCT based on ultra-broadband entangled photon pairs. They show that this approach can produce high quality 2-D and 3-D images of highly scattering samples using a relatively compact, straightforward optical setup.

    “Our method eliminates the need for broadband mid-infrared sources or detectors, which have made it challenging to develop practical OCT systems that work at these wavelengths,” said Vanselow. “It represents one of the first real-world applications in which entangled photons are competitive with conventional technology.”

    The technique could be useful for many applications including analyzing the complex paint layers used on airplanes and cars or monitoring the coatings used on pharmaceuticals. It can also provide detailed 3-D images that would be useful for art conservation.

    Tapping into quantum mechanics

    When photons are entangled, they behave as if they can instantly affect each other. This quantum mechanical phenomenon is essential to many quantum technology applications under development, such as quantum sensing, quantum communications or quantum computing.

    For this technique, the researchers developed and patented a nonlinear crystal that creates broadband photon pairs with very different wavelengths. One of the photons has a wavelength that can be easily detected with standard equipment while the other photon is in the mid-infrared range, making it difficult to detect. When the hard-to-detect photons illuminate a sample, they change the signal in a way that can be measured using only the easy-to-detect photons.

    “Our technique makes it easy to acquire useful measurements at what is a traditionally hard-to-handle wavelength range due to technology challenges,” said Sven Ramelow, who conceived and guided the research. “Moreover, the lasers and optics we used are not complex and are also more compact, robust and cost-effective than those used in current mid-infrared OCT systems.”

    Imaging with less light

    To demonstrate the technique, the researchers first confirmed that the performance of their optical setup matched theoretical predictions. They found that they could use six orders of magnitude less light to achieve the same signal-to-noise ratio as the few conventional mid-infrared OCT systems that have been recently developed.

    “We were positively surprised that we did not see any noise in the measurements beyond the intrinsic quantum noise of the light itself,” said Ramelow. “This also explained why we can achieve a good signal-to-noise ratio with so little light.”

    The researchers tested their setup on a range of real-world samples, including highly scattering paint samples. They also analyzed two 900-micron thick alumina ceramic stacks containing laser-milled microchannels. The mid-infrared illumination allowed the researchers to capture depth information and to create a full 3-D reconstruction of the channel structures. The pores in alumina ceramics make this material useful for drug testing and DNA detection but also highly scattering at the wavelengths traditionally used for OCT.

    The researchers have already begun to engage with partners from industry and other research institutes to develop a compact OCT sensor head and full system for a pilot commercial application.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Optical Society (OSA) is a professional association of individuals and companies with an interest in optics and photonics. It publishes journals, and organizes conferences and exhibitions. In 2019 it had about 22,000 members in more than 100 different countries, including some 300 companies

     
  • richardmitnick 3:05 pm on November 3, 2020 Permalink | Reply
    Tags: "Building a quantum network one node at a time", An important step toward developing a communications network that exchanges information across long distances by using photons., , , New research demonstrates a way to use quantum properties of light to transmit information., Quantum optics, , , Van der Waals heterostructures   

    From University of Rochester: “Building a quantum network one node at a time” 

    From University of Rochester

    November 3, 2020
    Bob Marcotte
    bmarcotte@ur.rochester.edu

    1
    This illustration of a nanoscale node created by the lab of Nick Vamivakas, professor of quantum optics and quantum physics, shows a closeup of one of an array pillars, each a mere 120 nanometers high. Each pillar serves as a location marker for a quantum state that can interact with photons. A novel alignment of tungsten diselenide (WSe2) is draped over the pillars with an underlying, highly reactive layer of chromium triiodide (CrI3). Where the atomically thin, 12-micron area layers touch, the CrI3 imparts an electric charge to the WSe2, creating a “hole” alongside each of the pillars. Credit: University of Rochester Michael Osadciw.

    New research demonstrates a way to use quantum properties of light to transmit information, a key step on the path to the next generation of computing and communications systems.

    Researchers at the University of Rochester and Cornell University have taken an important step toward developing a communications network that exchanges information across long distances by using photons, mass-less measures of light that are key elements of quantum computing and quantum communications systems.

    The research team has designed a nanoscale node made out of magnetic and semiconducting materials that could interact with other nodes, using laser light to emit and accept photons.

    The development of such a quantum network—designed to take advantage of the physical properties of light and matter characterized by quantum mechanics—promises faster, more efficient ways to communicate, compute, and detect objects and materials as compared to networks currently used for computing and communications.

    Described in the journal Nature Communications, the node consists of an array of pillars a mere 120 nanometers high. The pillars are part of a platform containing atomically thin layers of semiconductor and magnetic materials.

    The array is engineered so that each pillar serves as a location marker for a quantum state that can interact with photons and the associated photons can potentially interact with other locations across the device—and with similar arrays at other locations. This potential to connect quantum nodes across a remote network capitalizes on the concept of entanglement, a phenomenon of quantum mechanics that, at its very basic level, describes how the properties of particles are connected at the subatomic level.

    “This is the beginnings of having a kind of register, if you like, where different spatial locations can store information and interact with photons,” says Nick Vamivakas, professor of quantum optics and quantum physics at Rochester.

    Toward ‘miniaturizing a quantum computer’

    The project builds on work the Vamivakas Lab has conducted in recent years using tungsten diselenide (WSe2) in so-called Van der Waals heterostructures. That work uses layers of atomically thin materials on top of each other to create or capture single photons.

    The new device uses a novel alignment of WSe2 draped over the pillars with an underlying, highly reactive layer of chromium triiodide (CrI3). Where the atomically thin, 12-micron area layers touch, the CrI3 imparts an electric charge to the WSe2, creating a “hole” alongside each of the pillars.

    In quantum physics, a hole is characterized by the absence of an electron. Each positively charged hole also has a binary north/south magnetic property associated with it, so that each is also a nanomagnet

    When the device is bathed in laser light, further reactions occur, turning the nanomagnets into individual optically active spin arrays that emit and interact with photons. Whereas classical information processing deals in bits that have values of either 0 or 1, spin states can encode both 0 and 1 at the same time, expanding the possibilities for information processing.

    “Being able to control hole spin orientation using ultrathin and 12-micron large CrI3, replaces the need for using external magnetic fields from gigantic magnetic coils akin to those used in MRI systems,“ says lead author and graduate student Arunabh Mukherjee. “This will go a long way in miniaturizing a quantum computer based on single hole spins. “

    Still to come: Entanglement at a distance?

    Two major challenges confronted the researchers in creating the device.

    One was creating an inert environment in which to work with the highly reactive CrI3. This was where the collaboration with Cornell University came into play. “They have a lot of expertise with the chromium triiodide and since we were working with that for the first time, we coordinated with them on that aspect of it,” Vamivakas says. For example, fabrication of the CrI3 was done in nitrogen-filled glove boxes to avoid oxygen and moisture degradation.

    The other challenge was determining just the right configuration of pillars to ensure that the holes and spin valleys associated with each pillar could be properly registered to eventually link to other nodes.

    And therein lies the next major challenge: finding a way to send photons long distances through an optical fiber to other nodes, while preserving their properties of entanglement.

    “We haven’t yet engineered the device to promote that kind of behavior,” Vamivakas says. “That’s down the road.”

    In addition to Vamivakas and Mukherjee, other coauthors of the paper include lead authors Kamran Shayan of Vamivakas’ lab and Lizhong Li, Jie Shan, and Kin Fai Mak at Cornell University.

    The National Science Foundation, the Air Force Office of Scientific Research, and the Department of Energy supported the project with funding.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Rochester

    The University of Rochester is one of the country’s top-tier research universities. Our 158 buildings house more than 200 academic majors, more than 2,000 faculty and instructional staff, and some 10,500 students—approximately half of whom are women.

    Learning at the University of Rochester is also on a very personal scale. Rochester remains one of the smallest and most collegiate among top research universities, with smaller classes, a low 10:1 student to teacher ratio, and increased interactions with faculty.

     
  • richardmitnick 2:48 pm on October 1, 2020 Permalink | Reply
    Tags: "Photon turnstile brings order to light", , How photons are affected when they meet clouds of atoms., , , Quantum optics, Using of tweezers of laser lights 150 is the magic number.   

    From Niels Bohr Institute DK: “Photon turnstile brings order to light” 


    University of Copenhagen DK

    Niels Bohr Institute bloc

    From Niels Bohr Institute DK

    1 October 2020
    Anders Søndberg Sørensen, Professor
    anders.sorensen@nbi.ku.dk


    Light particles pass through a glass fiber and meet a cloud of atoms. Like a turnstile, the atoms ensure that light particles only pass through one by one. Photo: Humboldt University.

    QUANTUM OPTICS: With the creation of a turnstile for light in glass fibers, quantum optics researchers from Germany, Denmark and Austria have succeeded in directly converting laser light in optical fibers into a single file of isolated photons. According to Anders Søndberg Sørensen from the Niels Bohr Institute at the University of Copenhagen, who was involved in the theoretical phase of the experiment, this creation of isolated photons can prove essential in the exploration of quantum communication. The results of the experiment are published in Nature Photonics this week.

    Physicists have long studied the interaction of light and matter and the way in which light particles, so called photons, are affected when they meet clouds of atoms. Quantum optics researchers are particularly interested in this because it can help them find more secure ways to process information, for example by sending information in the form of single photons.

    Until now, the challenge has been how to ‘feed’ emitted photons in a glass fiber in such a way that they come out in an sorted manner, one after the other. “This is crucial in making quantum technologies where we encode information in individual photons and atoms”, explains Professor Anders Søndberg Sørensen, leader of the Theoretical Quantum Optics groups at the Niels Bohr Institute at Copenhagen University. To send encoded information in an undistorted way, you need to be able to send the photons in an isolated way. “If you can do that, you work towards dramatic new ways of processing information. Single photons can be for instance be used to send encrypted messages which cannot be eavesdropped” Søndberg Sørensen adds.

    150 is the magic number

    In their experiment, the researchers explored how many atoms a photon should meet for it to come out isolated at the other end by precisely controlling the number of atoms along the laser beam in the glass fiber. The proposal for the experiment came from Søndberg Sørensen and theoretical physicists at the Leibniz University Hannover. The research group of Prof. Dr. Arno Rauschenbeutel at Humboldt University of Berlin then carried out the experiment using a powerful atom-light interface in which atoms are trapped near a so-called optical nanofiber, which is one hundred times thinner than a human hair.

    With the use of tweezers of laser lights, the atoms were held in place at precisely 0.2 micrometers from the glass fiber surface, while laser lights were cooling the atoms down to a temperature of a few millionths of a degree above absolute zero. The researchers found that when there were about 150 atoms trapped near the nanofiber, the photons would come out one by one. If they would use less atoms, the photons would be unaffected by the atoms; if they would use more, the photons would come out in pairs.

    An unexpected result

    Søndberg Sørensen is excited about the results of the experiment. Not only was it unexpected that the researchers found the exact interval that leads to the transmission of single photons, but also that it was possible to make it work on weakly coupled atoms. “The beauty of this interface is that it’s fairly simple and that it works with weakly coupled atoms, which means it could also be applied to for example x-rays in the future”, Søndberg Sørensen explains.

    What this could mean for the future is an open question. “Such sources have never been available before, so we do not yet understand the full range of applications for them,” says Søndberg Sørensen. “But potentially, they could be used for ultra-precise sensing and allow for much broader exploration of quantum technologies.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings


    Stem Education Coalition

    Niels Bohr Institute Campus

    Niels Bohr Institute DK (Danish: Niels Bohr Institutet) is a research institute of the University of Copenhagen DK. The research of the institute spans astronomy, geophysics, nanotechnology, particle physics, quantum mechanics and biophysics.

    The Institute was founded in 1921, as the Institute for Theoretical Physics of the University of Copenhagen DK, by the Danish theoretical physicist Niels Bohr, who had been on the staff of the University of Copenhagen since 1914, and who had been lobbying for its creation since his appointment as professor in 1916. On the 80th anniversary of Niels Bohr’s birth – October 7, 1965 – the Institute officially became The Niels Bohr Institute. Much of its original funding came from the charitable foundation of the Carlsberg brewery, and later from the Rockefeller Foundation.

    During the 1920s, and 1930s, the Institute was the center of the developing disciplines of atomic physics and quantum physics. Physicists from across Europe (and sometimes further abroad) often visited the Institute to confer with Bohr on new theories and discoveries. The Copenhagen interpretation of quantum mechanics is named after work done at the Institute during this time.

    On January 1, 1993 the institute was fused with the Astronomic Observatory, the Ørsted Laboratory and the Geophysical Institute. The new resulting institute retained the name Niels Bohr Institute DK.

    The University of Copenhagen (UCPH) DK (Danish: Københavns Universitet) is the oldest university and research institution in Denmark. Founded in 1479 as a studium generale, it is the second oldest institution for higher education in Scandinavia after Uppsala University (1477). The university has 23,473 undergraduate students, 17,398 postgraduate students, 2,968 doctoral students and over 9,000 employees. The university has four campuses located in and around Copenhagen, with the headquarters located in central Copenhagen. Most courses are taught in Danish; however, many courses are also offered in English and a few in German. The university has several thousands of foreign students, about half of whom come from Nordic countries.

    The university is a member of the International Alliance of Research Universities (IARU), along with University of Cambridge, Yale University, The Australian National University, and UC Berkeley, amongst others. The 2016 Academic Ranking of World Universities ranks the University of Copenhagen as the best university in Scandinavia and 30th in the world, the 2016-2017 Times Higher Education World University Rankings as 120th in the world, and the 2016-2017 QS World University Rankings as 68th in the world. The university has had 9 alumni become Nobel laureates and has produced one Turing Award recipient.

     
  • richardmitnick 5:01 pm on February 27, 2020 Permalink | Reply
    Tags: "Quantum researchers able to split one photon into three", , Quantum optics,   

    From University of Waterloo: “Quantum researchers able to split one photon into three” 

    U Waterloo bloc

    From University of Waterloo

    February 27, 2020

    Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo report the first occurrence of directly splitting one photon into three.

    The occurrence, the first of its kind, used the spontaneous parametric down-conversion method (SPDC) in quantum optics and created what quantum optics researchers call a non-Gaussian state of light. A non-Gaussian state of light is considered a critical ingredient to gain a quantum advantage.

    “It was understood that there were limits to the type of entanglement generated with the two-photon version, but these results form the basis of an exciting new paradigm of three-photon quantum optics,” said Chris Wilson, a principal investigator at IQC faculty member and a professor of Electrical and Computer Engineering at Waterloo.

    “Given that this research brings us past the known ability to split one photon into two entangled daughter photons, we’re optimistic that we’ve opened up a new area of exploration.”

    1
    Lab of Chris Wilson

    “The two-photon version has been a workhorse for quantum research for over 30 years,” said Wilson. “We think three photons will overcome the limits and will encourage further theoretical research and experimental applications and hopefully the development of optical quantum computing using superconducting units.”

    Wilson used microwave photons to stretch the known limits of SPDC. The experimental implementation used a superconducting parametric resonator. The result clearly showed the strong correlation among three photons generated at different frequencies. Ongoing work aims to show that the photons are entangled.

    “Non-Gaussian states and operations are a critical ingredient for obtaining the quantum advantage,” said Wilson. “They are very difficult to simulate and model classically, which has resulted in a dearth of theoretical work for this application.”

    Science paper:
    “Observation of Three-Photon Spontaneous Parametric Down-Conversion in a Superconducting Parametric Cavity”
    Physical Review X

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Waterloo campus

    In just half a century, the Waterloo, located at the heart of Canada’s technology hub, has become a leading comprehensive university with nearly 36,000 full- and part-time students in undergraduate and graduate programs.

    Consistently ranked Canada’s most innovative university, Waterloo is home to advanced research and teaching in science and engineering, mathematics and computer science, health, environment, arts and social sciences. From quantum computing and nanotechnology to clinical psychology and health sciences research, Waterloo brings ideas and brilliant minds together, inspiring innovations with real impact today and in the future.

    As home to the world’s largest post-secondary co-operative education program, Waterloo embraces its connections to the world and encourages enterprising partnerships in learning, research, and commercialization. With campuses and education centres on four continents, and academic partnerships spanning the globe, Waterloo is shaping the future of the planet.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: