Tagged: Quantum Mechanics Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:34 pm on July 23, 2021 Permalink | Reply
    Tags: "Physicists Show That a Quantum Particle Made of Light and Matter Can Be Dragged by a Current of Electrons", A quasiparticle made of waves of photons and electrons—a plasmon polariton—has a similar ability to change speeds when immersed in an electrical current flowing through a sheet of graphene., , As soon as you can control the speed and direction of polaritons you can transmit information in nanoscale circuits on ultrafast timescales., , , , Polariton waves are minuscule; dozens can squeeze into the wavelength of one photon., Polaritons are compact but still quantum which means they can be manipulated on ultra-fast time scales., Quantum Mechanics, The finding is a big deal for "plasmonics"., The polaritons appear to more easily shift gears in one direction—to a slightly slower speed—when traveling against the flow of electrons.   

    From Columbia University (US) : “Physicists Show That a Quantum Particle Made of Light and Matter Can Be Dragged by a Current of Electrons” 

    Columbia U bloc

    From Columbia University (US)

    July 21, 2021
    Kim Martineau

    A pair of studies in Nature show that a quasiparticle, known as a plasmon polariton, can be pulled with and against a flow of electrons, a finding that could lead to more efficient ways of manipulating light at the nanoscale.

    1
    Columbia University graduate students Lin Xiong (left) and Yinan Dong image polaritons using a cryogenic microscope. Credit: Yinan Dong.

    Light was thought to move at a fixed rate until 1851, when a French physicist—the first to accurately clock the speed of light—showed it could also be slowed or accelerated simply by shining a light beam with or against the flow of moving water. Decades later, Einstein seized on Hippolyte Fizeau’s landmark water-pipe experiments in developing his theory of relativity.

    Now, new research in Nature shows that a quasiparticle made of waves of photons and electrons—a plasmon polariton—has a similar ability to change speeds when immersed in an electrical current flowing through a sheet of graphene. But there’s a hitch: the polaritons appear to more easily shift gears in one direction—to a slightly slower speed—when traveling against the flow of electrons.

    The finding is a big deal for plasmonics, a field with a rock-star name dedicated to finding new and efficient ways of controlling light down at the nearly invisible scale of individual atoms—for optical computing, nanolasers, and other applications, including imprinting patterns into semiconductors. Polaritons have two perks. Their relatively slow speed compared to photons makes them a good proxy for manipulating light. Polariton waves are also minuscule; dozens can squeeze into the wavelength of one photon.

    Dmitri Basov, a physics professor at Columbia, has devoted most of his lab to studying their behavior. “Polaritons possess the best virtues of electrons and photons,” he said. “They’re compact but still quantum which means they can be manipulated on ultra-fast time scales.”

    2
    In this illustration, a set of polariton waves (at left), interact with drifting electrons in a sheet of graphene. The warped fabric of space-time (upper left) represents the related concept of relativity. Credit: Yinan Dong, Denis Bandurin, and Ella Maru Studio.

    In the recent Nature study, Basov and his colleagues recreated Fizeau’s experiments on a speck of graphene made up of a single layer of carbon atoms. Hooking up the graphene to a battery, they created an electrical current reminiscent of Fizeau’s water streaming through a pipe. But instead of shining light on the moving water and measuring its speed in both directions, as Fizeau did, they generated an electromagnetic wave with a compressed wavelength—a polariton—by focusing infrared light on a gold nub in the graphene. The activated stream of polaritons look like light but are physically more compact due to their short wavelengths.

    The researchers clocked the polaritons’ speed in both directions. When they traveled with the flow of the electrical current, they maintained their original speed. But when launched against the current, they slowed by a few percentage points.

    An Unexpected Result

    “We were surprised when we saw it,” said study co-author Denis Bandurin, a physics researcher at Massachusetts Institute of Technology (US). “First, the device was still alive, despite the heavy current we passed through it—it hadn’t blown up. Then we noticed the one-way effect, which was different from Fizeau’s original experiments.”

    The researchers repeated the experiments over and over, led by the study’s first-author, Yinan Dong, a Columbia graduate student. Finally, it dawned on them. “Graphene is a material that turns electrons into relativistic particles,” Dong said. “We needed to account for their spectrum.”

    A group at DOE’s Lawrence Berkeley National Laboratory (US) found a similar result, published in the same issue of Nature. Beyond reproducing the Fizeau effect in graphene, both studies have practical applications. Most natural systems are symmetric, but here, researchers found an intriguing exception. Basov said he hopes to slow down, and ultimately, cut off the flow of polaritons in one direction. It’s not an easy task, but it could hold big rewards.

    “Engineering a system with a one-way flow of light is very difficult to achieve,” said Milan Delor, a physical chemist working on light-matter interactions at Columbia who was not involved in the research. “As soon as you can control the speed and direction of polaritons you can transmit information in nanoscale circuits on ultrafast timescales. It’s one of the ingredients currently missing in photon-based circuits.”

    Optical isolators are currently used to limit the bounce-back of light in everything from lasers to the fiber optic cables in broadband. But they’re bulky and incompatible with modern nanocircuits, making polaritons, with their potential to be shut off in one direction, so appealing.

    Plasmonics researchers are also excited about the detailed images to come out of the experiments. They show that polaritons can serve as nanoscale probes, they said, triggering and recording electron-electron interactions in a system. This information provides clues about how graphene and other quantum materials will behave in the real world.

    “The images are effectively a read-out of the material properties of graphene,” Delor said.

    The Enablers of “Nanoptics”

    “I like to call polaritons the enablers of nanoptics,” says James Schuck, a mechanical engineer and plasmonics researcher at Columbia Engineering who was not involved in the work. “They’re useful for probing all sorts of materials at the nanoscale.”

    Most of the experiments were done during the pandemic; the researchers wore masks and gloves and disinfected the lab after each visit. “There was no slow-down for quantum physics,” says Basov, with a laugh, evoking Fizeau.

    The French physicist’s name was later inscribed on the Eiffel Tower; not for the effect that bears his name, but for precisely measuring the speed of light. Fizeau’s work was popularized in a lecture series at Columbia in 1906, as Basov likes to remind students. Fizeau was also an early photographic experimenter. Some of his ghostly daguerreotype views of the rooftops of Paris are held by The Metropolitan Museum of Art, not far from the Columbia campus.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Columbia U Campus
    Columbia University (US) was founded in 1754 as King’s College by royal charter of King George II of England. It is the oldest institution of higher learning in the state of New York and the fifth oldest in the United States.

    University Mission Statement

    Columbia University is one of the world’s most important centers of research and at the same time a distinctive and distinguished learning environment for undergraduates and graduate students in many scholarly and professional fields. The University recognizes the importance of its location in New York City and seeks to link its research and teaching to the vast resources of a great metropolis. It seeks to attract a diverse and international faculty and student body, to support research and teaching on global issues, and to create academic relationships with many countries and regions. It expects all areas of the University to advance knowledge and learning at the highest level and to convey the products of its efforts to the world.

    Columbia University is a private Ivy League research university in New York City. Established in 1754 on the grounds of Trinity Church in Manhattan Columbia is the oldest institution of higher education in New York and the fifth-oldest institution of higher learning in the United States. It is one of nine colonial colleges founded prior to the Declaration of Independence, seven of which belong to the Ivy League. Columbia is ranked among the top universities in the world by major education publications.

    Columbia was established as King’s College by royal charter from King George II of Great Britain in reaction to the founding of Princeton College. It was renamed Columbia College in 1784 following the American Revolution, and in 1787 was placed under a private board of trustees headed by former students Alexander Hamilton and John Jay. In 1896, the campus was moved to its current location in Morningside Heights and renamed Columbia University.

    Columbia scientists and scholars have played an important role in scientific breakthroughs including brain-computer interface; the laser and maser; nuclear magnetic resonance; the first nuclear pile; the first nuclear fission reaction in the Americas; the first evidence for plate tectonics and continental drift; and much of the initial research and planning for the Manhattan Project during World War II. Columbia is organized into twenty schools, including four undergraduate schools and 15 graduate schools. The university’s research efforts include the Lamont–Doherty Earth Observatory, the Goddard Institute for Space Studies, and accelerator laboratories with major technology firms such as IBM. Columbia is a founding member of the Association of American Universities and was the first school in the United States to grant the M.D. degree. With over 14 million volumes, Columbia University Library is the third largest private research library in the United States.

    The university’s endowment stands at $11.26 billion in 2020, among the largest of any academic institution. As of October 2020, Columbia’s alumni, faculty, and staff have included: five Founding Fathers of the United States—among them a co-author of the United States Constitution and a co-author of the Declaration of Independence; three U.S. presidents; 29 foreign heads of state; ten justices of the United States Supreme Court, one of whom currently serves; 96 Nobel laureates; five Fields Medalists; 122 National Academy of Sciences members; 53 living billionaires; eleven Olympic medalists; 33 Academy Award winners; and 125 Pulitzer Prize recipients.

     
  • richardmitnick 4:00 pm on July 17, 2021 Permalink | Reply
    Tags: , , , , Quantum Mechanics, "Future information technologies- Topological materials for ultrafast spintronics", Helmholtz Center for Materials and Energy [Helmholtz-Zentrum Berlin für Materialien und Energie](HZB) (DE), The laws of quantum physics rule the microcosm., In so-called topological insulators only the electrons that can occupy some specific quantum states are free to move like massless particles on the surface., Many questions still need to be answered before spintronic devices can be developed.   

    From Helmholtz Center for Materials and Energy [Helmholtz-Zentrum Berlin für Materialien und Energie](HZB) (DE): “Future information technologies- Topological materials for ultrafast spintronics” 

    From Helmholtz Center for Materials and Energy [Helmholtz-Zentrum Berlin für Materialien und Energie](HZB) (DE)

    16.07.2021

    Dr. Jaime Sánchez-Barriga
    Tel-(030) 8062 – 15695
    Fax-(030) 8062 – 14673
    jaime.sanchez-barriga@helmholtz-berlin.de

    Dr. Oliver Jon Clark
    Tel-(030) 8062 – 15695
    Fax-(030) 8062 – 14673
    oliver.clark@helmholtz-berlin.de

    Press Officer:
    Dr. Antonia Rötger
    Tel-(030) 8062 – 43733
    Fax-(030) 8062 – 42998
    antonia.roetger@helmholtz-berlin.de

    A team led by HZB physicist Dr. Jaime Sánchez-Barriga has gained new insights into the ultrafast response of topological states of matter to femtosecond laser excitation. Using time- and spin-resolved methods at BESSY II, the physicists explored how, after optical excitation, the complex interplay in the behavior of excited electrons in the bulk and on the surface results in unusual spin dynamics.


    BESSY II Synchrotron at Helmholtz Center for Materials and Energy [Helmholtz-Zentrum Berlin für Materialien und Energie](DE)

    The work is an important step on the way to spintronic devices based on topological materials for ultrafast information processing.

    The laws of quantum physics rule the microcosm. They determine, for example, how easily electrons move through a crystal and thus whether the material is a metal, a semiconductor or an insulator. Quantum physics may lead to exotic properties in certain materials: In so-called topological insulators only the electrons that can occupy some specific quantum states are free to move like massless particles on the surface, while this mobility is completely absent for electrons in the bulk. What’s more, the conduction electrons in the “skin” of the material are necessarily spin polarized, and form robust, metallic surface states that could be utilized as channels in which to drive pure spin currents on femtosecond time scales (1 fs= 10^-15 s).

    Exploiting the spin

    These properties open up exciting opportunities to develop new information technologies based on topological materials, such as ultrafast spintronics, by exploiting the spin of the electrons on their surfaces rather than the charge. In particular, optical excitation by femtosecond laser pulses in these materials represents a promising alternative to realize highly efficient, lossless transfer of spin information. Spintronic devices utilizing these properties have the potential of a superior performance, as they would allow to increase the speed of information transport up to frequencies a thousand times faster than in modern electronics.

    However, many questions still need to be answered before spintronic devices can be developed. For example, the details of exactly how the bulk and surface electrons from a topological material respond to the external stimulus i.e., the laser pulse, and the degree of overlap in their collective behaviors on ultrashort time scales.

    The sample: a pure Antimony crystal

    A team led by HZB physicist Dr. Jaime Sánchez-Barriga has now brought new insights into such mechanisms. The team, which has also established a Helmholtz-RSF Joint Research Group in collaboration with colleagues from Lomonosova Moscow State University[Московский государственный университет имени](RU), Moscow, examined single crystals of elemental antimony (Sb), previously suggested to be a topological material. “It is a good strategy to study interesting physics in a simple system, because that’s where we can hope to understand the fundamental principles,” Sánchez-Barriga explains. “The experimental verification of the topological property of this material required us to directly observe its electronic structure in a highly excited state with time, spin, energy and momentum resolutions, and in this way we accessed an unusual electron dynamics,” adds Sánchez-Barriga.

    Probing the electronic structure

    The aim was to understand how fast excited electrons in the bulk and on the surface of Sb react to the external energy input, and to explore the mechanisms governing their response. “By controlling the time delay between the initial laser excitation and the second pulse that allows us to probe the electronic structure, we were able to build up a full time-resolved picture of how excited states leave and return to equilibrium on ultrafast time scales. The unique combination of time and spin-resolved capabilities also allowed us to directly probe the spin-polarization of excited states far out-of-equilibrium”, says Dr. Oliver J. Clark.

    Weight gain detected

    The data show a “kink” structure in transiently occupied energy-momentum dispersion of surface states, which can be interpreted as an increase in effective electron mass. The authors were able to show that this mass enhancement plays a decisive role in determining the complex interplay in the dynamical behaviors of electrons from the bulk and the surface, also depending on their spin, following the ultrafast optical excitation

    Key to control spin polarised currents

    “Our research reveals which essential properties of this class of materials are the key to systematically control the relevant time scales in which lossless spin-polarised currents could be generated and manipulated,” explains Sánchez-Barriga. These are important steps on the way to spintronic devices which based on topological materials possess advanced functionalities for ultrafast information processing.

    Science paper:
    Communications Physics

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Helmholtz-Zentrum Berlin für Materialien und Energie (Helmholtz Center for Materials and Energy, [HZB]) is part of the Helmholtz Association of German Research Centres [Helmholtz-Gemeinschaft Deutscher Forschungszentren] (DE). The institute studies the structure and dynamics of materials and investigates solar cell technology. It also runs the third-generation BESSY II synchrotron in Adlershof. Until the end of 2019 it ran the 10 megawatt BER II nuclear research reactor at the Lise Meitner campus in Wannsee.

    The Helmholtz-Zentrum Berlin was created on 1 January 2009 by the merger of Hahn-Meitner-Institut Berlin (HMI) and Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung (BESSY), thus bringing BESSY into the Helmholtz Association.[4]

    The Hahn-Meitner-Institut Berlin (HMI), named after Otto Hahn and Lise Meitner, was founded 14 March 1959 in Berlin-Wannsee to operate the BER I research reactor that began operation with 50 kW on 24 July 1958. Research originally focused on radiochemistry. In 1971, the federal government took over a 90% share in the HMI.

    The Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung (BESSY) was founded in 1979. The first synchrotron BESSY I in Berlin-Wilmersdorf began operations in 1982.

     
  • richardmitnick 7:27 pm on July 10, 2021 Permalink | Reply
    Tags: , , , Dark Matter is one of the most vexing known unknowns in nature., Dark Matter makes up about 85% of the mass in the universe., In addition to dark matter hidden dark forces may govern dark matter’s interactions., , Quantum Mechanics, University of California-Riverside (US)   

    From University of California-Riverside (US) : “A new dimension in the quest to understand dark matter” 

    UC Riverside bloc

    From University of California-Riverside (US)

    June 2, 2021 [Just now in social media.]
    Iqbal Pittalwala

    As its name suggests, Dark Matter — material which makes up about 85% of the mass in the universe — emits no light, eluding easy detection. Its properties, too, remain fairly obscure.

    Now, a theoretical particle physicist at the University of California, Riverside, and colleagues have published a research paper in the Journal of High Energy Physics that shows how theories positing the existence a new type of force could help explain dark matter’s properties.

    1
    Flip Tanedo

    “We live in an ocean of Dark Matter, yet we know very little about what it could be,” said Flip Tanedo, an assistant professor of physics and astronomy and the paper’s senior author. “It is one of the most vexing known unknowns in nature. We know it exists, but we do not know how to look for it or why it hasn’t shown up where we expected it.”

    2
    Photo shows Flip Tanedo (left), Sylvain Fichet (center), and Hai-Bo Yu. Credit: Flip Tanedo/UCR.

    Physicists have used telescopes, gigantic underground experiments, and colliders to learn more about dark matter for the last 30 years, though no positive evidence has materialized. The negative evidence, however, has forced theoretical physicists like Tanedo to think more creatively about what dark matter could be.

    The new research, which proposes the existence of an extra dimension in space-time to search for dark matter, is part of an ongoing research program at UC Riverside led by Tanedo. According to this theory, some of the dark matter particles don’t behave like particles. In effect, invisible particles interact with even more invisible particles in such a way that the latter cease to behave like particles.

    “The goal of my research program for the past two years is to extend the idea of dark matter ‘talking’ to dark forces,” Tanedo said. “Over the past decade, physicists have come to appreciate that, in addition to dark matter hidden dark forces may govern dark matter’s interactions. These could completely rewrite the rules for how one ought to look for dark matter.”

    If two particles of dark matter are attracted to, or repelled by, each other, then dark forces are operating. Tanedo explained that dark forces are described mathematically by a theory with extra dimensions and appear as a continuum of particles that could address puzzles seen in small galaxies.

    “Our ongoing research program at UCR is a further generalization of the dark force proposal,” he said. “Our observed universe has three dimensions of space. We propose that there may be a fourth dimension that only the dark forces know about. The extra dimension can explain why dark matter has hidden so well from our attempts to study it in a lab.”

    Tanedo explained that although extra dimensions may sound like an exotic idea, they are actually a mathematical trick to describe “conformal field theories” — ordinary three-dimensional theories that are highly quantum mechanical. These types of theories are mathematically rich, but do not contain conventional particles and so are typically not considered to be relevant for describing nature. The mathematical equivalence between these challenging three-dimensional theories and a more tractable extra dimensional theory is known as the holographic principle.

    “Since these conformal field theories were both intractable and unusual, they hadn’t really been systematically applied to dark matter,” Tanedo added. “Instead of using that language, we work with the holographic extra-dimensional theory.”

    The key feature of the extra-dimensional theory is that the force between dark matter particles is described by an infinite number of different particles with different masses called a continuum. In contrast, ordinary forces are described by a single type of particle with a fixed mass. This class of continuum-dark sectors is exciting to Tanedo because it does something “fresh and different.”

    According to Tanedo, past work on dark sectors focuses primarily on theories that mimic the behavior of visible particles. His research program is exploring the more extreme types of theories that most particle physicists found less interesting, perhaps because no analogs exist in the real world.

    In Tanedo’s theory, the force between dark matter particles is surprisingly different from the forces felt by ordinary matter.

    “For the gravitational force or electric force that I teach in my introductory physics course, when you double the distance between two particles you reduce the force by a factor of four. A continuum force, on the other hand, is reduced by a factor of up to eight.”

    What implications does this extra dimensional dark force have? Since ordinary matter may not interact with this dark force, Tanedo turned to the idea of self-interacting dark matter [Physical Review Letters], an idea pioneered by Hai-Bo Yu, an associate professor of physics and astronomy at UCR who is not a coauthor on the paper. Yu showed that even in the absence of any interactions with normal matter, the effects of these dark forces could be observed indirectly in dwarf spheroidal galaxies. Tanedo’s team found the continuum force can reproduce the observed stellar motions.

    “Our model goes further and makes it easier than the self-interacting dark matter model to explain the cosmic origin of dark matter,” Tanedo said.

    Next, Tanedo’s team will explore a continuum version of the “dark photon” model.

    “It’s a more realistic picture for a dark force,” Tanedo said. “Dark photons have been studied in great detail, but our extra-dimensional framework has a few surprises. We will also look into the cosmology of dark forces and the physics of black holes.”

    Tanedo has been working diligently on identifying “blind spots” in his team’s search for dark matter.

    “My research program targets one of the assumptions we make about particle physics: that the interaction of particles is well-described by the exchange of more particles,” he said. “While that is true for ordinary matter, there’s no reason to assume that for dark matter. Their interactions could be described by a continuum of exchanged particles rather than just exchanging a single type of force particle.”

    Tanedo was joined in the research by Ian Chaffey, a postdoctoral researcher working with Tanedo; and Sylvain Fichet, a postdoctoral researcher at the International Center for Theoretical Physics – South American Institute for Fundamental Research [Instituto sul-Americano de Pesquisa Fundamental](BR).

    The research was funded by the U.S. Department of Energy.

    ______________________________________________________________________________________________________________

    Dark Matter Background
    Fritz Zwicky discovered Dark Matter in the 1930s when observing the movement of the Coma Cluster., Vera Rubin a Woman in STEM denied the Nobel, some 30 years later, did most of the work on Dark Matter.

    Fritz Zwicky from http:// palomarskies.blogspot.com.


    Coma cluster via NASA/ESA Hubble.


    In modern times, it was astronomer Fritz Zwicky, in the 1930s, who made the first observations of what we now call dark matter. His 1933 observations of the Coma Cluster of galaxies seemed to indicated it has a mass 500 times more than that previously calculated by Edwin Hubble. Furthermore, this extra mass seemed to be completely invisible. Although Zwicky’s observations were initially met with much skepticism, they were later confirmed by other groups of astronomers.
    Thirty years later, astronomer Vera Rubin provided a huge piece of evidence for the existence of dark matter. She discovered that the centers of galaxies rotate at the same speed as their extremities, whereas, of course, they should rotate faster. Think of a vinyl LP on a record deck: its center rotates faster than its edge. That’s what logic dictates we should see in galaxies too. But we do not. The only way to explain this is if the whole galaxy is only the center of some much larger structure, as if it is only the label on the LP so to speak, causing the galaxy to have a consistent rotation speed from center to edge.
    Vera Rubin, following Zwicky, postulated that the missing structure in galaxies is dark matter. Her ideas were met with much resistance from the astronomical community, but her observations have been confirmed and are seen today as pivotal proof of the existence of dark matter.

    Astronomer Vera Rubin at the Lowell Observatory in 1965, worked on Dark Matter (The Carnegie Institution for Science).


    Vera Rubin measuring spectra, worked on Dark Matter (Emilio Segre Visual Archives AIP SPL).


    Vera Rubin, with Department of Terrestrial Magnetism (DTM) image tube spectrograph attached to the Kitt Peak 84-inch telescope, 1970

    Dark Matter Research

    Inside the Axion Dark Matter eXperiment U Washington (US) Credit : Mark Stone U. of Washington. Axion Dark Matter Experiment.
    _____________________________________________________________________________________

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    [caption id="attachment_33275" align="alignnone" width="632"] UC Riverside Campus

    The University of California-Riverside (US) is a public land-grant research university in Riverside, California. It is one of the 10 campuses of the University of California (US) system. The main campus sits on 1,900 acres (769 ha) in a suburban district of Riverside with a branch campus of 20 acres (8 ha) in Palm Desert. In 1907, the predecessor to UC-Riverside was founded as the UC Citrus Experiment Station, Riverside which pioneered research in biological pest control and the use of growth regulators responsible for extending the citrus growing season in California from four to nine months. Some of the world’s most important research collections on citrus diversity and entomology, as well as science fiction and photography, are located at Riverside.

    UC-Riverside’s undergraduate College of Letters and Science opened in 1954. The Regents of the University of California declared UC-Riverside a general campus of the system in 1959, and graduate students were admitted in 1961. To accommodate an enrollment of 21,000 students by 2015, more than $730 million has been invested in new construction projects since 1999. Preliminary accreditation of the UC-Riverside School of Medicine was granted in October 2012 and the first class of 50 students was enrolled in August 2013. It is the first new research-based public medical school in 40 years.

    UC-Riverside is classified among “R1: Doctoral Universities – Very high research activity.” The 2019 U.S. News & World Report Best Colleges rankings places UC-Riverside tied for 35th among top public universities and ranks 85th nationwide. Over 27 of UC- Riverside’s academic programs, including the Graduate School of Education and the Bourns College of Engineering, are highly ranked nationally based on peer assessment, student selectivity, financial resources, and other factors. Washington Monthly ranked UC Riverside 2nd in the United States in terms of social mobility, research and community service, while U.S. News ranks UC-Riverside as the fifth most ethnically diverse and, by the number of undergraduates receiving Pell Grants (42 percent), the 15th most economically diverse student body in the nation. Over 70% of all UC-Riverside students graduate within six years without regard to economic disparity. UC-Riverside’s extensive outreach and retention programs have contributed to its reputation as a “university of choice” for minority students. In 2005, UCR became the first public university campus in the nation to offer a gender-neutral housing option. UC-Riverside’s sports teams are known as the Highlanders and play in the Big West Conference of the National Collegiate Athletic Association (NCAA) Division I. Their nickname was inspired by the high altitude of the campus, which lies on the foothills of Box Springs Mountain. The UC-Riverside women’s basketball team won back-to-back Big West championships in 2006 and 2007. In 2007, the men’s baseball team won its first conference championship and advanced to the regionals for the second time since the university moved to Division I in 2001.

    History

    At the turn of the 20th century, Southern California was a major producer of citrus, the region’s primary agricultural export. The industry developed from the country’s first navel orange trees, planted in Riverside in 1873. Lobbied by the citrus industry, the UC Regents established the UC Citrus Experiment Station (CES) on February 14, 1907, on 23 acres (9 ha) of land on the east slope of Mount Rubidoux in Riverside. The station conducted experiments in fertilization, irrigation and crop improvement. In 1917, the station was moved to a larger site, 475 acres (192 ha) near Box Springs Mountain.

    The 1944 passage of the GI Bill during World War II set in motion a rise in college enrollments that necessitated an expansion of the state university system in California. A local group of citrus growers and civic leaders, including many University of California-Berkeley(US) alumni, lobbied aggressively for a UC-administered liberal arts college next to the CES. State Senator Nelson S. Dilworth authored Senate Bill 512 (1949) which former Assemblyman Philip L. Boyd and Assemblyman John Babbage (both of Riverside) were instrumental in shepherding through the State Legislature. Governor Earl Warren signed the bill in 1949, allocating $2 million for initial campus construction.

    Gordon S. Watkins, dean of the College of Letters and Science at University of California-Los Angeles, became the first provost of the new college at Riverside. Initially conceived of as a small college devoted to the liberal arts, he ordered the campus built for a maximum of 1,500 students and recruited many young junior faculty to fill teaching positions. He presided at its opening with 65 faculty and 127 students on February 14, 1954, remarking, “Never have so few been taught by so many.”

    UC-Riverside’s enrollment exceeded 1,000 students by the time Clark Kerr became president of the University of California system in 1958. Anticipating a “tidal wave” in enrollment growth required by the baby boom generation, Kerr developed the California Master Plan for Higher Education and the Regents designated Riverside a general university campus in 1959. UC-Riverside’s first chancellor, Herman Theodore Spieth, oversaw the beginnings of the school’s transition to a full university and its expansion to a capacity of 5,000 students. UC-Riverside’s second chancellor, Ivan Hinderaker led the campus through the era of the free speech movement and kept student protests peaceful in Riverside. According to a 1998 interview with Hinderaker, the city of Riverside received negative press coverage for smog after the mayor asked Governor Ronald Reagan to declare the South Coast Air Basin a disaster area in 1971; subsequent student enrollment declined by up to 25% through 1979. Hinderaker’s development of innovative programs in business administration and biomedical sciences created incentive for enough students to enroll at UC-Riverside to keep the campus open.

    In the 1990s, the UC-Riverside experienced a new surge of enrollment applications, now known as “Tidal Wave II”. The Regents targeted UC-Riverside for an annual growth rate of 6.3%, the fastest in the UC system, and anticipated 19,900 students at UC-Riverside by 2010. By 1995, African American, American Indian, and Latino student enrollments accounted for 30% of the UC-Riverside student body, the highest proportion of any UC campus at the time. The 1997 implementation of Proposition 209—which banned the use of affirmative action by state agencies—reduced the ethnic diversity at the more selective UC campuses but further increased it at UC-Riverside.

    With UC-Riverside scheduled for dramatic population growth, efforts have been made to increase its popular and academic recognition. The students voted for a fee increase to move UC-Riverside athletics into NCAA Division I standing in 1998. In the 1990s, proposals were made to establish a law school, a medical school, and a school of public policy at UC-Riverside, with the UC-Riverside School of Medicine and the School of Public Policy becoming reality in 2012. In June 2006, UC-Riverside received its largest gift, 15.5 million from two local couples, in trust towards building its medical school. The Regents formally approved UC-Riverside’s medical school proposal in 2006. Upon its completion in 2013, it was the first new medical school built in California in 40 years.

    Academics

    As a campus of the University of California(US) system, UC-Riverside is governed by a Board of Regents and administered by a president. UC-Riverside’s academic policies are set by its Academic Senate, a legislative body composed of all UC-Riverside faculty members.

    UC-Riverside is organized into three academic colleges, two professional schools, and two graduate schools. UC-Riverside’s liberal arts college, the College of Humanities, Arts and Social Sciences, was founded in 1954, and began accepting graduate students in 1960. The College of Natural and Agricultural Sciences, founded in 1960, incorporated the CES as part of the first research-oriented institution at UC-Riverside; it eventually also incorporated the natural science departments formerly associated with the liberal arts college to form its present structure in 1974. UC-Riverside’s newest academic unit, the Bourns College of Engineering, was founded in 1989. Comprising the professional schools are the Graduate School of Education, founded in 1968, and the UC-Riverside School of Business, founded in 1970. These units collectively provide 81 majors and 52 minors, 48 master’s degree programs, and 42 Doctor of Philosophy (PhD) programs. UC-Riverside is the only UC campus to offer undergraduate degrees in creative writing and public policy and one of three UCs (along with University of California-Berkeley (US) and University of California-Irvine (US)) to offer an undergraduate degree in business administration. Through its Division of Biomedical Sciences, founded in 1974, UC-Riverside offers the Thomas Haider medical degree program in collaboration with University of California-Los Angeles(US). UC-Riverside’s doctoral program in the emerging field of dance theory, founded in 1992, was the first program of its kind in the United States, and UC-Riverside’s minor in lesbian, gay and bisexual studies, established in 1996, was the first undergraduate program of its kind in the University of California system. A new BA program in bagpipes was inaugurated in 2007.

    Research and economic impact

    UC-Riverside operated under a $727 million budget in fiscal year 2014–15. The state government provided $214 million, student fees accounted for $224 million and $100 million came from contracts and grants. Private support and other sources accounted for the remaining $189 million. Overall, monies spent at UC-Riverside have an economic impact of nearly $1 billion in California. UC-Riverside research expenditure in FY 2018 totaled $167.8 million. Total research expenditures at UC-Riverside are significantly concentrated in agricultural science, accounting for 53% of total research expenditures spent by the university in 2002. Top research centers by expenditure, as measured in 2002, include the Agricultural Experiment Station; the Center for Environmental Research and Technology; the Center for Bibliographical Studies; the Air Pollution Research Center; and the Institute of Geophysics and Planetary Physics.

    Throughout UC-Riverside’s history, researchers have developed more than 40 new citrus varieties and invented new techniques to help the $960 million-a-year California citrus industry fight pests and diseases. In 1927, entomologists at the CES introduced two wasps from Australia as natural enemies of a major citrus pest, the citrophilus mealybug, saving growers in Orange County $1 million in annual losses. This event was pivotal in establishing biological control as a practical means of reducing pest populations. In 1963, plant physiologist Charles Coggins proved that application of gibberellic acid allows fruit to remain on citrus trees for extended periods. The ultimate result of his work, which continued through the 1980s, was the extension of the citrus-growing season in California from four to nine months. In 1980, UC-Riverside released the Oroblanco grapefruit, its first patented citrus variety. Since then, the citrus breeding program has released other varieties such as the Melogold grapefruit, the Gold Nugget mandarin (or tangerine), and others that have yet to be given trademark names.

    To assist entrepreneurs in developing new products, UC-Riverside is a primary partner in the Riverside Regional Technology Park, which includes the City of Riverside and the County of Riverside. It also administers six reserves of the University of California Natural Reserve System. UC-Riverside recently announced a partnership with China Agricultural University[中国农业大学](CN) to launch a new center in Beijing, which will study ways to respond to the country’s growing environmental issues. UC-Riverside can also boast the birthplace of two name reactions in organic chemistry, the Castro-Stephens coupling and the Midland Alpine Borane Reduction.

     
  • richardmitnick 11:12 pm on July 7, 2021 Permalink | Reply
    Tags: "Quantum particles- Pulled and compressed", , , , Quantum Mechanics, ,   

    From University of Vienna [Universität Wien] (AT) and From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) via phys.org : “Quantum particles- Pulled and compressed” 

    From University of Vienna [Universität Wien] (AT)

    and

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    via

    phys.org

    July 7, 2021

    1
    The quantum motion of a nanoparticle can be extended beyond the size of the particle using the new technique developed by. physicists in Austria. Credit: Marc Montagut.

    Very recently, researchers led by Markus Aspelmeyer at the University of Vienna and Lukas Novotny at ETH Zürich cooled a glass nanoparticle into the quantum regime for the first time. To do this, the particle is deprived of its kinetic energy with the help of lasers. What remains are movements, so-called quantum fluctuations, which no longer follow the laws of classical physics but those of quantum physics. The glass sphere with which this has been achieved is significantly smaller than a grain of sand, but still consists of several hundred million atoms. In contrast to the microscopic world of photons and atoms, nanoparticles provide an insight into the quantum nature of macroscopic objects. In collaboration with experimental physicist Markus Aspelmeyer, a team of theoretical physicists led by Oriol Romero-Isart of the University of Innsbruck [Leopold-Franzens-Universität Innsbruck] (AT) and the Institute of Quantum Optics and Quantum Information of the Austrian Academy of Sciences [Österreichische Akademie der Wissenschaften](AT) is now proposing a way to harness the quantum properties of nanoparticles for various applications.

    Briefly delocalized

    “While atoms in the motional ground state bounce around over distances larger than the size of the atom, the motion of macroscopic objects in the ground state is very, very small,” explain Talitha Weiss and Marc Roda-Llordes from the Innsbruck team. “The quantum fluctuations of nanoparticles are smaller than the diameter of an atom.” To take advantage of the quantum nature of nanoparticles, the wave function of the particles must be greatly expanded. In the Innsbruck quantum physicists’ scheme, nanoparticles are trapped in optical fields and cooled to the ground state. By rhythmically changing these fields, the particles now succeed in briefly delocalizing over exponentially larger distances. “Even the smallest perturbations may destroy the coherence of the particles, which is why by changing the optical potentials, we only briefly pull apart the wave function of the particles and then immediately compress it again,” explains Oriol Romero-Isart. By repeatedly changing the potential, the quantum properties of the nanoparticle can thus be harnessed.

    Many applications

    With the new technique, the macroscopic quantum properties can be studied in more detail. It also turns out that this state is very sensitive to static forces. Thus, the method could enable highly sensitive instruments that can be used to determine forces such as gravity very precisely. Using two particles expanded and compressed simultaneously by this method, it would also be possible to entangle them via a weak interaction and explore entirely new areas of the macroscopic quantum world.

    Together with other proposals, the new concept forms the basis for the ERC Synergy Grant project Q-Xtreme, which was granted last year. In this project, the research groups of Markus Aspelmeyer and Oriol Romero-Isart, together with Lukas Novotny and Romain Quidant of ETH Zürich, are pushing one of the most fundamental principles of quantum physics to the extreme limit by positioning a solid body of billions of atoms in two places at the same time.

    Science paper:
    Physical Review Letters

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education WorldUniversity Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK).

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

    Universität Wien Campus

    University of Vienna [Universität Wien](AT) is a public university located in Vienna, Austria.It was founded by Duke Rudolph IV in 1365 and is the oldest university in the German-speaking world. With its long and rich history, the University of Vienna has developed into one of the largest universities in Europe, and also one of the most renowned, especially in the Humanities. It is associated with 21 Nobel prize winners and has been the academic home to many scholars of historical as well as of academic importance.

    From the Middle Ages to the Enlightenment

    The University was founded on 12 March 1365 by Rudolf IV, Duke of Austria, and his two brothers, Dukes Albert III and Leopold III, hence the additional name “Alma Mater Rudolphina”. After the Charles University in Prague [Univerzita Karlova](CZ) and Jagiellonian University [Uniwersytet Jagielloński](PL), the University of Vienna is the third oldest university in Central Europe and the oldest university in the contemporary German-speaking world; it remains a question of definition as the Charles University in Prague [Univerzita Karlova](CZ) was German-speaking when founded, too.

    The University of Vienna was modelled after the University of Paris [Université de Paris](FR). However, Pope Urban V did not ratify the deed of foundation that had been sanctioned by Rudolf IV, specifically in relation to the department of theology. This was presumably due to pressure exerted by Charles IV, Holy Roman Emperor, who wished to avoid competition for the Charles University in Prague. Approval was finally received from the Pope in 1384 and the University of Vienna was granted the status of a full university, including the Faculty of Catholic Theology. The first university building opened in 1385. It grew into the biggest university of the Holy Roman Empire, and during the advent of Humanism in the mid-15th century was home to more than 6,000 students.

    In its early years, the university had a partly hierarchical, partly cooperative structure, in which the Rector was at the top, while the students had little say and were settled at the bottom. The Magister and Doctors constituted the four faculties and elected the academic officials from amidst their ranks. The students, but also all other Supposita (university members), were divided into four Academic Nations. Their elected board members, mostly graduates themselves, had the right to elect the Rector. He presided over the Consistory which included procurators of each of the nations and the faculty deans, as well as over the University Assembly, in which all university teachers participated. Complaints or appeals against decisions of faculty by the students had to be brought forward by a Magister or Doctor.

    Being considered a Papal Institution, the university suffered quite a setback during the Reformation. In addition, the first Siege of Vienna by Ottoman forces had devastating effects on the city, leading to a sharp decline, with only 30 students enrolled at the lowest point. For King Ferdinand I, this meant that the university should be tied to the church to an even stronger degree, and in 1551 he installed the Jesuit Order there. With the enacting of the Sanctio Pragmatica edict by emperor Ferdinand II in 1623, the Jesuits took over teaching at the theological and philosophical faculty, and thus the university became a stronghold of Catholicism for over 150 years. It was only in the Mid-18th century that Empress Maria Theresa forced the university back under control of the monarchy. Her successor Joseph II helped in the further reform of the university, allowing both Protestants and Jews to enroll as well as introducing German as the compulsory language of instruction.

    From the 19th Century Onwards

    Big changes were instituted in the wake of the Revolution in 1848, with the Philosophical Faculty being upgraded into equal status as Theology, Law and Medicine. Led by the reforms of Leopold, Count von Thun und Hohenstein, the university was able to achieve a larger degree of academic freedom. The current main building on the Ringstraße was built between 1877 and 1884 by Heinrich von Ferstel. The previous main building was located close to the Stuben Gate (Stubentor) on Iganz Seipel Square, current home of the old University Church (Universitätskirche) and the Austrian Academy of Sciences [Österreichische Akademie der Wissenschaften(AT). Women were admitted as full students from 1897, although their studies were limited to Philosophy. The remaining departments gradually followed suit, although with considerable delay: Medicine in 1900, Law in 1919, Protestant Theology in 1923 and finally Roman Catholic Theology in 1946. Ten years after the admission of the first female students, Elise Richter became the first woman to receive habilitation, becoming professor of Romance Languages in 1907; she was also the first female distinguished professor.

    In the late 1920s, the university was in steady turmoil because of anti-democratic and anti-Semitic activity by parts of the student body. Professor Moritz Schlick was killed by a former student while ascending the steps of the University for a class. His murderer was later released by the Nazi Regime. Following the Anschluss, the annexation of Austria into Greater Germany by the Nazi regime, in 1938 the University of Vienna was reformed under political aspects and a huge number of teachers and students were dismissed for political and “racial” reasons. In April 1945, the then 22-year-old Kurt Schubert, later acknowledged doyen of Judaic Studies at the University of Vienna, was permitted by the Soviet occupation forces to open the university again for teaching, which is why he is regarded as the unofficial first rector in the post-war period. On 25 April 1945, however, the constitutional lawyer Ludwig Adamovich senior was elected as official rector of the University of Vienna. A large degree of participation by students and university staff was realized in 1975, however the University Reforms of 1993 and 2002 largely re-established the professors as the main decision makers. However, also as part of the last reform, the university after more than 250 years being largely under governmental control, finally regained its full legal capacity. The number of faculties and centers was increased to 18, and the whole of the medical faculty separated into the new Medical University of Vienna [Medizinische Universität Wien](AT).

     
  • richardmitnick 4:38 pm on July 7, 2021 Permalink | Reply
    Tags: "Quantum Laser Turns Energy Loss into Gain​", , , , Parity-time reversal symmetry, Quantum Mechanics   

    From KAIST-Korea Advanced Institute of Science and Technology [한국과학기술원 카이스트] (KR): “Quantum Laser Turns Energy Loss into Gain​” 

    From KAIST-Korea Advanced Institute of Science and Technology [한국과학기술원 카이스트] (KR)

    2021-07-07

    A new laser that generates quantum particles can recycle lost energy for highly efficient, low threshold laser applications.

    1
    Exciton-polaritonic PT symmetry: Direct coupling between upward- and downward-polariton modes in a six-fold symmetric microcavity with loss manipulation leads to PT-symmetry breaking with low-threshold phase transition.

    Scientists at KAIST have fabricated a laser system that generates highly interactive quantum particles at room temperature. Their findings, published in the journal Nature Photonics, could lead to a single microcavity laser system that requires lower threshold energy as its energy loss increases.

    The system, developed by KAIST physicist Yong-Hoon Cho and colleagues, involves shining light through a single hexagonal-shaped microcavity treated with a loss-modulated silicon nitride substrate. The system design leads to the generation of a polariton laser at room temperature, which is exciting because this usually requires cryogenic temperatures.

    The researchers found another unique and counter-intuitive feature of this design. Normally, energy is lost during laser operation. But in this system, as energy loss increased, the amount of energy needed to induce lasing decreased. Exploiting this phenomenon could lead to the development of high efficiency, low threshold lasers for future quantum optical devices.

    “This system applies a concept of quantum physics known as parity-time reversal symmetry,” explains Professor Cho. “This is an important platform that allows energy loss to be used as gain. It can be used to reduce laser threshold energy for classical optical devices and sensors, as well as quantum devices and controlling the direction of light.”

    The key is the design and materials. The hexagonal microcavity divides light particles into two different modes: one that passes through the upward-facing triangle of the hexagon and another that passes through its downward-facing triangle. Both modes of light particles have the same energy and path but don’t interact with each other.

    However, the light particles do interact with other particles called excitons, provided by the hexagonal microcavity, which is made of semiconductors. This interaction leads to the generation of new quantum particles called polaritons that then interact with each other to generate the polariton laser. By controlling the degree of loss between the microcavity and the semiconductor substrate, an intriguing phenomenon arises, with the threshold energy becoming smaller as energy loss increases. This research was supported by the Samsung Science and Technology Foundation and Korea’s National Research Foundation.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    <a href="http:// KAIST-Korea Advanced Institute of Science and Technology [한국과학기술원 카이스트] (KR) is the first and top science and technology university in Korea. KAIST has been the gateway to advanced science and technology, innovation, and entrepreneurship, and our graduates have been key players behind Korea’ innovations. KAIST will continue to pursue advances in science and technology as well as the economic development of Korea and beyond.

    KAIST educates, researches, and takes the lead in innovations to serve the happiness and prosperity of humanity. KAIST fosters talents who exhibit creativity, embrace challenges, and possess caring minds in creating knowledge and translating it into transformative innovation.

     
  • richardmitnick 11:27 am on July 4, 2021 Permalink | Reply
    Tags: "Black Holes; Quantum Entanglement; and the No-Go Theorem", Machine learning-AI, , Quantum Mechanics,   

    From Scientific American (US) : “Black Holes; Quantum Entanglement; and the No-Go Theorem” 

    From Scientific American (US)

    July 4, 2021
    Zoë Holmes
    Andrew Sornborger

    1
    Credit: Getty Images.

    Suppose someone—let’s call her Alice—has a book of secrets she wants to destroy so she tosses it into a handy black hole. Given that black holes are nature’s fastest scramblers, acting like giant garbage shredders, Alice’s secrets must be pretty safe, right?

    Now suppose her nemesis, Bob, has a quantum computer that’s entangled with the black hole. (In entangled quantum systems, actions performed on one particle similarly affect their entangled partners, regardless of distance or even if some disappear into a black hole.)

    A famous thought experiment by Patrick Hayden and John Preskill says Bob can observe a few particles of light that leak from the edges of a black hole. Then Bob can run those photons as qubits (the basic processing unit of quantum computing) through the gates of his quantum computer to reveal the particular physics that jumbled Alice’s text. From that, he can reconstruct the book.

    But not so fast.

    Our recent work on quantum machine learning suggests Alice’s book might be gone forever, after all.

    QUANTUM COMPUTERS TO STUDY QUANTUM MECHANICS

    Alice might never have the chance to hide her secrets in a black hole. Still, our new no-go theorem about information scrambling has real-world application to understanding random and chaotic systems in the rapidly expanding fields of quantum machine learning, quantum thermodynamics, and quantum information science.

    Richard Feynman, one of the great physicists of the 20th century, launched the field of quantum computing in a 1981 speech, when he proposed developing quantum computers as the natural platform to simulate quantum systems. They are notoriously difficult to study otherwise.

    Our team at DOE’s Los Alamos National Laboratory (US), along with other collaborators, has focused on studying algorithms for quantum computers and, in particular, machine-learning algorithms—what some like to call artificial intelligence. The research sheds light on what sorts of algorithms will do real work on existing noisy, intermediate-scale quantum computers and on unresolved questions in quantum mechanics at large.

    In particular, we have been studying the training of variational quantum algorithms. They set up a problem-solving landscape where the peaks represent the high-energy (undesirable) points of the system, or problem, and the valleys are the low-energy (desirable) values. To find the solution, the algorithm works its way through a mathematical landscape, examining its features one at a time. The answer lies in the deepest valley.

    ENTANGLEMENT LEADS TO SCRAMBLING

    We wondered if we could apply quantum machine learning to understand scrambling. This quantum phenomenon happens when entanglement grows in a system made of many particles or atoms. Think of the initial conditions of this system as a kind of information—Alice’s book, for instance. As the entanglement among particles within the quantum system grows, the information spreads widely; this scrambling of information is key to understanding quantum chaos, quantum information science, random circuits and a range of other topics.

    A black hole is the ultimate scrambler. By exploring it with a variational quantum algorithm on a theoretical quantum computer entangled with the black hole, we could probe the scalability and applicability of quantum machine learning. We could also learn something new about quantum systems generally. Our idea was to use a variational quantum algorithm that would exploit the leaked photons to learn about the dynamics of the black hole. The approach would be an optimization procedure—again, searching through the mathematical landscape to find the lowest point.

    If we found it, we would reveal the dynamics inside the black hole. Bob could use that information to crack the scrambler’s code and reconstruct Alice’s book.

    Now here’s the rub. The Hayden-Preskill thought experiment assumes Bob can determine the black hole dynamics that are scrambling the information. Instead, we found that the very nature of scrambling prevents Bob from learning those dynamics.

    STALLED OUT ON A BARREN PLATEAU

    Here’s why: the algorithm stalled out on a barren plateau [Nature Communications], which, in machine learning, is as grim as it sounds. During machine-learning training, a barren plateau represents a problem-solving space that is entirely flat as far as the algorithm can see. In this featureless landscape, the algorithm can’t find the downward slope; there’s no clear path to the energy minimum. The algorithm just spins its wheels, unable to learn anything new. It fails to find the solution.

    Our resulting no-go theorem says that any quantum machine-learning strategy will encounter the dreaded barren plateau when applied to an unknown scrambling process.

    The good news is, most physical processes are not as complex as black holes, and we often will have prior knowledge of their dynamics, so the no-go theorem doesn’t condemn quantum machine learning. We just need to carefully pick the problems we apply it to. And we’re not likely to need quantum machine learning to peer inside a black hole to learn about Alice’s book—or anything else—anytime soon.

    So, Alice can rest assured that her secrets are safe, after all.

    See the full article here3 .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    Scientific American (US) , the oldest continuously published magazine in the U.S., has been bringing its readers unique insights about developments in science and technology for more than 160 years.

     
  • richardmitnick 10:52 am on June 21, 2021 Permalink | Reply
    Tags: "Klarman postdoc seeks ‘theory of everything’ by approximation", Attempting to unify gravity with other fundamental forces of physics., , , , , , Quantum Mechanics,   

    From Cornell Chronicle (US) : “Klarman postdoc seeks ‘theory of everything’ by approximation” 

    From Cornell Chronicle (US)

    June 21, 2021
    Kate Blackwood
    cunews@cornell.edu

    1
    Francesco Sgarlata.

    Two pillar theories in physics – general relativity and quantum mechanics – stand up well on their own, but are incompatible with each other.

    “These two theories describe two different regimes of phenomena,” said Francesco Sgarlata, a Klarman Postdoctoral Fellow in physics in the College of Arts and Sciences (A&S).

    2

    Quantum mechanics, he said, describes physical phenomena at atomic or sub-atomic scales; general relativity describes very large phenomena.

    “The two theories are both correct in that they both predict very well, and we don’t have any violation of these theories. However, the two theories are inconsistent with each other,” Sgarlata said, adding that the inconsistencies show up in processes at extremely small scales.

    A member of the first cohort of six Klarman Fellows, Sgarlata is using his three-year fellowship to join theoretical physicists at Cornell and around the world in trying to solve this inconsistency.

    Physicists have long sought a “theory of everything,” or theory of quantum gravity, that would unify quantum mechanics and general relativity. In recent decades, researchers have tried a top-down approach, trying to come up with a unifying theory, such as string theory.

    Sgarlata, in contrast, is taking a bottom-up approach to finding a theory of quantum gravity, which attempts to unify gravity with other fundamental forces of physics.

    “We seek an approximation,” he said. “We don’t know what this theory of everything is. [Instead,] we are trying to write down some theory which can be seen as an approximation of quantum gravity, and we study what conditions this theory will have in order to be a good approximation of quantum gravity.”

    Sgarlata is working with Cornell’s theoretical physics community, including his faculty host, Csaba Csaki, professor of physics (A&S), and Thomas Hartman, associate professor of physics (A&S), to “identify some hidden properties of quantum gravity,” one at a time – and then build from there.

    “Francesco’s research is on the fundamental properties of particles and forces,” Hartman said. “His goal is to understand what particles are consistent with basic principles of relativity and quantum mechanics, and how these particles can interact.”

    Sgarlata’s background is in particle physics, Hartman said, while his own background is in black hole physics and string theory.

    “There is a lot of overlap, but these are two different perspectives,” Hartman said, “so this is a great opportunity for us to collaborate on new ideas. We are working on joining forces and combining our approaches.”

    To find conditions necessary to support a theory of quantum gravity, Sgarlata and collaborators focus on “first principles” – those we experience in everyday life but are difficult to prove mathematically. One example is causality – the link between cause and effect.

    “If I punch you, you will start feeling pain after I punch you, not before,” Sgarlata said. “We assume that this theory of everything respects causality.”

    Other first principles the researchers consider are unitarity (probabilities must add up to 1); and locality (particles only interact with neighboring particles.)

    From a “swampland” of possible theories arise islands of probable theories, Sgarlata said, narrowing the scope. “We get some constraints on the parameters of the theory,” he said.

    Hartman said that Sgarlata uses methods from particle physics to develop and interpret theories of physics at high energies.

    “In some cases, his methods can even be used to understand some corners of the more mysterious theory of quantum gravity at ultrashort distances,” Hartman said. “Over the next couple years, I think Francesco’s research at Cornell will lead to better insight into fundamental particles and new connections between particles, gravity and black holes.”

    The Klarman Fellowship, Sgarlata said, offers independence to pursue research collaborations toward solving the biggest problems in physics.

    “We have the tools to understand features of quantum gravity,” he said. “Today we are reinterpreting these concepts in a more modern way, and we are discovering new concepts of physics just by our interpretations.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

    Cornell University (US) is a private, statutory, Ivy League and land-grant research university in Ithaca, New York. Founded in 1865 by Ezra Cornell and Andrew Dickson White, the university was intended to teach and make contributions in all fields of knowledge—from the classics to the sciences, and from the theoretical to the applied. These ideals, unconventional for the time, are captured in Cornell’s founding principle, a popular 1868 quotation from founder Ezra Cornell: “I would found an institution where any person can find instruction in any study.”

    The university is broadly organized into seven undergraduate colleges and seven graduate divisions at its main Ithaca campus, with each college and division defining its specific admission standards and academic programs in near autonomy. The university also administers two satellite medical campuses, one in New York City and one in Education City, Qatar, and Jacobs Technion-Cornell Institute(US) in New York City, a graduate program that incorporates technology, business, and creative thinking. The program moved from Google’s Chelsea Building in New York City to its permanent campus on Roosevelt Island in September 2017.

    Cornell is one of the few private land grant universities in the United States. Of its seven undergraduate colleges, three are state-supported statutory or contract colleges through the SUNY – The State University of New York (US) system, including its Agricultural and Human Ecology colleges as well as its Industrial Labor Relations school. Of Cornell’s graduate schools, only the veterinary college is state-supported. As a land grant college, Cornell operates a cooperative extension outreach program in every county of New York and receives annual funding from the State of New York for certain educational missions. The Cornell University Ithaca Campus comprises 745 acres, but is much larger when the Cornell Botanic Gardens (more than 4,300 acres) and the numerous university-owned lands in New York City are considered.

    Alumni and affiliates of Cornell have reached many notable and influential positions in politics, media, and science. As of January 2021, 61 Nobel laureates, four Turing Award winners and one Fields Medalist have been affiliated with Cornell. Cornell counts more than 250,000 living alumni, and its former and present faculty and alumni include 34 Marshall Scholars, 33 Rhodes Scholars, 29 Truman Scholars, 7 Gates Scholars, 55 Olympic Medalists, 10 current Fortune 500 CEOs, and 35 billionaire alumni. Since its founding, Cornell has been a co-educational, non-sectarian institution where admission has not been restricted by religion or race. The student body consists of more than 15,000 undergraduate and 9,000 graduate students from all 50 American states and 119 countries.

    History

    Cornell University was founded on April 27, 1865; the New York State (NYS) Senate authorized the university as the state’s land grant institution. Senator Ezra Cornell offered his farm in Ithaca, New York, as a site and $500,000 of his personal fortune as an initial endowment. Fellow senator and educator Andrew Dickson White agreed to be the first president. During the next three years, White oversaw the construction of the first two buildings and traveled to attract students and faculty. The university was inaugurated on October 7, 1868, and 412 men were enrolled the next day.

    Cornell developed as a technologically innovative institution, applying its research to its own campus and to outreach efforts. For example, in 1883 it was one of the first university campuses to use electricity from a water-powered dynamo to light the grounds. Since 1894, Cornell has included colleges that are state funded and fulfill statutory requirements; it has also administered research and extension activities that have been jointly funded by state and federal matching programs.

    Cornell has had active alumni since its earliest classes. It was one of the first universities to include alumni-elected representatives on its Board of Trustees. Cornell was also among the Ivies that had heightened student activism during the 1960s related to cultural issues; civil rights; and opposition to the Vietnam War, with protests and occupations resulting in the resignation of Cornell’s president and the restructuring of university governance. Today the university has more than 4,000 courses. Cornell is also known for the Residential Club Fire of 1967, a fire in the Residential Club building that killed eight students and one professor.

    Since 2000, Cornell has been expanding its international programs. In 2004, the university opened the Weill Cornell Medical College in Qatar. It has partnerships with institutions in India, Singapore, and the People’s Republic of China. Former president Jeffrey S. Lehman described the university, with its high international profile, a “transnational university”. On March 9, 2004, Cornell and Stanford University(US) laid the cornerstone for a new ‘Bridging the Rift Center’ to be built and jointly operated for education on the Israel–Jordan border.

    Research

    Cornell, a research university, is ranked fourth in the world in producing the largest number of graduates who go on to pursue PhDs in engineering or the natural sciences at American institutions, and fifth in the world in producing graduates who pursue PhDs at American institutions in any field. Research is a central element of the university’s mission; in 2009 Cornell spent $671 million on science and engineering research and development, the 16th highest in the United States. Cornell is classified among “R1: Doctoral Universities – Very high research activity”.

    For the 2016–17 fiscal year, the university spent $984.5 million on research. Federal sources constitute the largest source of research funding, with total federal investment of $438.2 million. The agencies contributing the largest share of that investment are the Department of Health and Human Services and the National Science Foundation(US), accounting for 49.6% and 24.4% of all federal investment, respectively. Cornell was on the top-ten list of U.S. universities receiving the most patents in 2003, and was one of the nation’s top five institutions in forming start-up companies. In 2004–05, Cornell received 200 invention disclosures; filed 203 U.S. patent applications; completed 77 commercial license agreements; and distributed royalties of more than $4.1 million to Cornell units and inventors.

    Since 1962, Cornell has been involved in unmanned missions to Mars. In the 21st century, Cornell had a hand in the Mars Exploration Rover Mission. Cornell’s Steve Squyres, Principal Investigator for the Athena Science Payload, led the selection of the landing zones and requested data collection features for the Spirit and Opportunity rovers. NASA-JPL/Caltech(US) engineers took those requests and designed the rovers to meet them. The rovers, both of which have operated long past their original life expectancies, are responsible for the discoveries that were awarded 2004 Breakthrough of the Year honors by Science. Control of the Mars rovers has shifted between National Aeronautics and Space Administration(US)’s JPL-Caltech (US) and Cornell’s Space Sciences Building.

    Further, Cornell researchers discovered the rings around the planet Uranus, and Cornell built and operated the telescope at Arecibo Observatory located in Arecibo, Puerto Rico(US) until 2011, when they transferred the operations to SRI International, the Universities Space Research Association (US) and the Metropolitan University of Puerto Rico [Universidad Metropolitana de Puerto Rico](US).

    The Automotive Crash Injury Research Project was begun in 1952. It pioneered the use of crash testing, originally using corpses rather than dummies. The project discovered that improved door locks; energy-absorbing steering wheels; padded dashboards; and seat belts could prevent an extraordinary percentage of injuries.

    In the early 1980s, Cornell deployed the first IBM 3090-400VF and coupled two IBM 3090-600E systems to investigate coarse-grained parallel computing. In 1984, the National Science Foundation began work on establishing five new supercomputer centers, including the Cornell Center for Advanced Computing, to provide high-speed computing resources for research within the United States. As an National Science Foundation (US) center, Cornell deployed the first IBM Scalable Parallel supercomputer.

    In the 1990s, Cornell developed scheduling software and deployed the first supercomputer built by Dell. Most recently, Cornell deployed Red Cloud, one of the first cloud computing services designed specifically for research. Today, the center is a partner on the National Science Foundation XSEDE-Extreme Science Engineering Discovery Environment supercomputing program, providing coordination for XSEDE architecture and design, systems reliability testing, and online training using the Cornell Virtual Workshop learning platform.

    Cornell scientists have researched the fundamental particles of nature for more than 70 years. Cornell physicists, such as Hans Bethe, contributed not only to the foundations of nuclear physics but also participated in the Manhattan Project. In the 1930s, Cornell built the second cyclotron in the United States. In the 1950s, Cornell physicists became the first to study synchrotron radiation.

    During the 1990s, the Cornell Electron Storage Ring, located beneath Alumni Field, was the world’s highest-luminosity electron-positron collider. After building the synchrotron at Cornell, Robert R. Wilson took a leave of absence to become the founding director of DOE’s Fermi National Accelerator Laboratory(US), which involved designing and building the largest accelerator in the United States.

    Cornell’s accelerator and high-energy physics groups are involved in the design of the proposed ILC-International Linear Collider(JP) and plan to participate in its construction and operation. The International Linear Collider(JP), to be completed in the late 2010s, will complement the CERN Large Hadron Collider(CH) and shed light on questions such as the identity of dark matter and the existence of extra dimensions.

    As part of its research work, Cornell has established several research collaborations with universities around the globe. For example, a partnership with the University of Sussex(UK) (including the Institute of Development Studies at Sussex) allows research and teaching collaboration between the two institutions.

     
  • richardmitnick 9:20 am on June 18, 2021 Permalink | Reply
    Tags: "Physicists Nearly Reach Elusive Quantum Ground State on The Largest 'Object' Yet", Achieving the quantum ground state of a cloud of atoms isn't easy. You need to cool the atom by applying just the right amount of force to stop its vibrations., , , , , , , , , Quantum Mechanics, , The work represents a new way to probe the quantum realm.   

    From Massachusetts Institute of Technology (US) via Science Alert (AU) : “Physicists Nearly Reach Elusive Quantum Ground State on The Largest ‘Object’ Yet” 

    MIT News

    From Massachusetts Institute of Technology (US)

    via

    http://www.sciencealert.com/”&gt; Science Alert (AU)

    17 JUNE 2021
    MICHELLE STARR

    1
    One of LIGO’s mirrors. Credit: Caltech/ MIT Advanced aLIGO (US).

    Very rarely is anything completely still. All normal matter in the Universe is made of humming particles, minding their own business and vibrating at their own frequencies.

    If we can get them to slow down as much as possible, the material enters what is known as the motional ground state. In this state, physicists can perform tests of quantum mechanics and quantum gravity, probing the boundary with classical physics to search for a way to unify the two.

    Previously, this has been performed in the nanoscale; but now, for the first time, it’s been done on a massive ‘object’ – the collective motions of the four mirrors of the LIGO gravitational wave interferometer, known as an optomechanical oscillator, with an effective mass of 10 kilograms (22 pounds).

    Caltech /MIT Advanced aLigo .

    The work represents a new way to probe the quantum realm.

    “Nobody has ever observed how gravity acts on massive quantum states,” said mechanical engineer Vivishek Sudhir of MIT.

    “We’ve demonstrated how to prepare kilogram-scale objects in quantum states. This finally opens the door to an experimental study of how gravity might affect large quantum objects, something hitherto only dreamed of.”

    Achieving the quantum ground state of a cloud of atoms isn’t easy. You need to cool the atom by applying just the right amount of force to stop its vibrations. If you don’t cool it enough, it merely slows; so you need to know the exact energy level and direction of the atom’s vibrations in order to apply the appropriate force to stop it.

    This is called ‘feedback cooling’, and on the nanoscale it’s simpler to do, because it’s easier to isolate the smaller groups of atoms and minimize interference. The larger you go, though, the harder it becomes to handle that interference.

    LIGO is one of the most precise instruments for measuring fine motion. It’s designed to detect tiny ripples in space-time generated by collisions between massive objects up to billions of light-years away.

    It consists of an L-shaped vacuum chamber, with laser lights beamed along its two 4-kilometer (2.5-mile) tunnels, and sent to a beam splitter to four mirrors, one at each end of each tunnel. When space-time ripples, the mirrors distort the light, producing an interference pattern that scientists can decode to determine the cause. And it’s so sensitive that it can detect a change just one ten-thousandth the width of a proton, or 10-19 meters.

    Each of LIGO’s four 40-kilogram mirrors is suspended, and it’s their collective motion that makes up the oscillator. The balance of the mirrors effectively reduces 160 kilograms of total weight to a single object of just 10 kilograms.

    “LIGO is designed to measure the joint motion of the four 40-kilogram mirrors,” Sudhir said. “It turns out you can map the joint motion of these masses mathematically, and think of them as the motion of a single 10-kilogram object.”

    By precisely measuring the motion of this oscillator, the team hoped to work out exactly the rate of feedback cooling required to induce the motional ground state… and then, obviously, apply it.

    Unfortunately the very act of measuring throws a degree of randomness into the equation, making it difficult to predict the kinds of nudges needed to sap the energy out of the mirror’s atoms.

    To correct for this, the team cleverly studied each photon to estimate the activity of previous collisions, continuously building a more accurate map of how to apply the correct forces and achieve cooling.

    Then, they applied the calculated force using electromagnets attached to the backs of the mirrors.

    It worked. The oscillator stopped moving, almost completely. Its remaining energy was equivalent to a temperature of 77 nanokelvin (-273.15 degrees Celsius, or -459.67 degrees Fahrenheit).

    Its motional ground state, 10 nanokelvin, is extremely close, especially considering the room temperature starting point. And 77 nanokelvin is also very close to the temperatures used in motional ground state studies on the nanoscale.

    Moreover, it opens the door to some exciting possibilities. Macro-scale demonstrations and measurements of quantum phenomena – and maybe even applications for the same.

    But quantum gravity is the big kicker. Kilogram-mass objects are more susceptible to gravity; the team’s work raises hope to use this mass regime to study the quantum realm.

    “Preparing something in the ground state is often the first step to putting it into exciting or exotic quantum states,” said physicist Chris Whittle of MIT and the LIGO collaboration.

    “So this work is exciting because it might let us study some of these other states, on a mass scale that’s never been done before.”

    The research has been published in Science.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    Massachusetts Institute of Technology (US) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory, the Bates Center, and the Haystack Observatory, as well as affiliated laboratories such as the Broad and Whitehead Institutes.

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology (US) adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with Massachusetts Institute of Technology (US) . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology (US) is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia (US), wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after Massachusetts Institute of Technology (US) was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst (US)). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    Massachusetts Institute of Technology (US) was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology (US) faculty and alumni rebuffed Harvard University (US) president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the Massachusetts Institute of Technology (US) administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology (US) catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities (US)in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at Massachusetts Institute of Technology (US) that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    Massachusetts Institute of Technology (US) ‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology (US) ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, Massachusetts Institute of Technology (US) became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected Massachusetts Institute of Technology (US) profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of Massachusetts Institute of Technology (US) between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, Massachusetts Institute of Technology (US) no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and Massachusetts Institute of Technology (US) ‘s defense research. In this period Massachusetts Institute of Technology (US) ‘s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. Massachusetts Institute of Technology (US) ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT (US) Lincoln Laboratoryfacility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology (US) students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at Massachusetts Institute of Technology (US) over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, Massachusetts Institute of Technology (US) ‘s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    Massachusetts Institute of Technology (US) has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology (US) classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    Massachusetts Institute of Technology (US) was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, Massachusetts Institute of Technology (US) launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, Massachusetts Institute of Technology (US) announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology (US) faculty adopted an open-access policy to make its scholarship publicly accessible online.

    Massachusetts Institute of Technology (US) has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology (US) community with thousands of police officers from the New England region and Canada. On November 25, 2013, Massachusetts Institute of Technology (US) announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the Massachusetts Institute of Technology (US) community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO (US) was designed and constructed by a team of scientists from California Institute of Technology (US), Massachusetts Institute of Technology (US) , and industrial contractors, and funded by the National Science Foundation (US) .

    MIT/Caltech Advanced aLigo .

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology (US) physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an Massachusetts Institute of Technology (US) graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of Massachusetts Institute of Technology (US) is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the Massachusetts Institute of Technology (US) community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 1:10 pm on June 4, 2021 Permalink | Reply
    Tags: "Quantum Computing with Holes", A missing negatively charged particle can physically be treated as if it were a positively charged particle., , Each hole is just the absence of an electron in a solid material., Institute of Science and Technology [Institut für Wissenschaft und Technologie Österreich] (AT), , Quantum Mechanics, The researchers created the qubit using the spin of so-called holes., To make this work the scientists needed to apply a magnetic field to the whole setup.   

    From Institute of Science and Technology [Institut für Wissenschaft und Technologie Österreich] (AT): “Quantum Computing with Holes” 

    From Institute of Science and Technology [Institut für Wissenschaft und Technologie Österreich] (AT)

    June 3, 2021

    Scientists found a new and promising qubit at a place where there is nothing.

    1
    Hole spin qubits in layered material. The two holes are confined to the germanium-rich layer just a few nanometers thick. On top, the electrical gates are formed by individual wires with voltages applied. The positively charged holes feel the push and pull from the wires and can therefore be moved around within their layer. © Daniel Jirovec.

    In the world of quantum mechanics, researchers can even make empty space, the lack of something, do their bidding. Scientists from the Katsaros group at the Institute of Science and Technology (IST) Austria together with an international team of researchers have now created a new setup to control the absence of electrons in a solid material. They want to use these holes as a basis for a quantum computer.

    Quantum computers with their promises of creating new materials and solving intractable mathematical problems are a dream of many physicists. Now, they are slowly approaching viable realizations in many laboratories all over the world. But there are still enormous challenges to master. A central one is the construction of stable quantum bits – the fundamental unit of quantum computation called qubit for short – that can be networked together.

    In a study published in Nature Materials and led by Daniel Jirovec from the Katsaros group at IST Austria in close collaboration with researchers from the L-NESS Inter-university Centre (IT), scientists now have created a new and promising candidate system for reliable qubits.

    Spinning Absence

    The researchers created the qubit using the spin of so-called holes. Each hole is just the absence of an electron in a solid material. Amazingly, a missing negatively charged particle can physically be treated as if it were a positively charged particle. It can even move around in the solid when a neighboring electron fills the hole. Thus, effectively the hole described as positively charged particle is moving forward.

    These holes even carry the quantum-mechanical property of spin and can interact if they come close to each other. “Our colleagues at L-NESS layered several different mixtures of silicon and germanium just a few nanometers thick on top of each other. That allows us to confine the holes to the germanium-rich layer in the middle,” Jirovec explains. “On top, we added tiny electrical wires – so-called gates – to control the movement of holes by applying voltage to them. The electrically positively charged holes react to the voltage and can be extremely precisely moved around within their layer.”

    Using this nano-scale control, the scientists moved two holes close to each other to create a qubit out of their interacting spins. But to make this work they needed to apply a magnetic field to the whole setup. Here, their innovative approach comes into play.

    Linking Qubits

    In their setup, Jirovec and his colleagues cannot only move holes around but also alter their properties. By engineering different hole properties, they created the qubit out of the two interacting hole spins using less than ten millitesla of magnetic field strength. This is a weak magnetic field compared to other similar qubit setups, which employ at least ten times stronger fields.

    But why is that relevant? “By using our layered germanium setup we can reduce the required magnetic field strength and therefore allow the combination of our qubit with superconductors, usually inhibited by strong magnetic fields,” Jirovec says. Superconductors – materials without any electrical resistance – support the linking of several qubits due to their quantum-mechanical nature. This could enable scientists to build new kinds of quantum computers combining semiconductors and superconductors.

    In addition to the new technical possibilities, these hole spin qubits look promising because of their processing speed. With up to one hundred million operations per second as well as their long lifetime of up to 150 microseconds they seem particularly viable for quantum computing. Usually, there is a tradeoff between these properties, but this new design brings both advantages together.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Institute of Science and Technology [Institut für Wissenschaft und Technologie Österreich] (AT) is a young international institute dedicated to basic research and graduate education in the natural and mathematical sciences, located in Klosterneuburg on the outskirts of Vienna. Established jointly by the federal government of Austria and the provincial government of Lower Austria, the Institute was inaugurated in 2009 and will grow to about 90 research groups by 2026.

    The governance and management structures of IST Austria guarantee its independence and freedom from political and commercial influences. The Institute is headed by the President, who is appointed by the Board of Trustees and advised by the Scientific Board. The first President of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor of the University of California-Berkeley (US) and the EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH) in Switzerland.

     
  • richardmitnick 4:12 pm on June 2, 2021 Permalink | Reply
    Tags: , , Extending the idea of dark matter ‘talking’ to dark forces., , If two particles of dark matter are attracted to or repelled by each other then dark forces are operating., It is proposed that there may be a fourth dimension that only the dark forces know about., , , Quantum Mechanics, The key feature of the extra-dimensional theory is that the force between dark matter particles is described by an infinite number of different particles with different masses called a continuum., The new research proposes the existence of an extra dimension in space-time., The team will explore a continuum version of the “dark photon” model., ,   

    From UC Riverside (US) : “A new dimension in the quest to understand dark matter” 

    UC Riverside bloc

    From UC Riverside (US)

    1
    Flip Tanedo.

    As its name suggests, Dark Matter — material which makes up about 85% of the mass in the universe — emits no light, eluding easy detection. Its properties, too, remain fairly obscure.

    _____________________________________________________________________________________

    Dark Matter Background
    Fritz Zwicky discovered Dark Matter in the 1930s when observing the movement of the Coma Cluster., Vera Rubin a Woman in STEM denied the Nobel, some 30 years later, did most of the work on Dark Matter.

    Fritz Zwicky from http:// palomarskies.blogspot.com.


    Coma cluster via NASA/ESA Hubble.


    In modern times, it was astronomer Fritz Zwicky, in the 1930s, who made the first observations of what we now call dark matter. His 1933 observations of the Coma Cluster of galaxies seemed to indicated it has a mass 500 times more than that previously calculated by Edwin Hubble. Furthermore, this extra mass seemed to be completely invisible. Although Zwicky’s observations were initially met with much skepticism, they were later confirmed by other groups of astronomers.
    Thirty years later, astronomer Vera Rubin provided a huge piece of evidence for the existence of dark matter. She discovered that the centers of galaxies rotate at the same speed as their extremities, whereas, of course, they should rotate faster. Think of a vinyl LP on a record deck: its center rotates faster than its edge. That’s what logic dictates we should see in galaxies too. But we do not. The only way to explain this is if the whole galaxy is only the center of some much larger structure, as if it is only the label on the LP so to speak, causing the galaxy to have a consistent rotation speed from center to edge.
    Vera Rubin, following Zwicky, postulated that the missing structure in galaxies is dark matter. Her ideas were met with much resistance from the astronomical community, but her observations have been confirmed and are seen today as pivotal proof of the existence of dark matter.

    Astronomer Vera Rubin at the Lowell Observatory in 1965, worked on Dark Matter (The Carnegie Institution for Science).


    Vera Rubin measuring spectra, worked on Dark Matter (Emilio Segre Visual Archives AIP SPL).


    Vera Rubin, with Department of Terrestrial Magnetism (DTM) image tube spectrograph attached to the Kitt Peak 84-inch telescope, 1970. https://home.dtm.ciw.edu.


    _____________________________________________________________________________________

    Now, a theoretical particle physicist at the University of California, Riverside, and colleagues have published a research paper in the Journal of High Energy Physics that shows how theories positing the existence a new type of force could help explain dark matter’s properties.

    2
    Photo shows Flip Tanedo (left), Sylvain Fichet (center), and Hai-Bo Yu. Credit: Flip Tanedo/UCR.

    “We live in an ocean of dark matter, yet we know very little about what it could be,” said Flip Tanedo, an assistant professor of physics and astronomy and the paper’s senior author. “It is one of the most vexing known unknowns in nature. We know it exists, but we do not know how to look for it or why it hasn’t shown up where we expected it.”

    Physicists have used telescopes, gigantic underground experiments, and colliders to learn more about dark matter for the last 30 years, though no positive evidence has materialized. The negative evidence, however, has forced theoretical physicists like Tanedo to think more creatively about what dark matter could be.

    The new research, which proposes the existence of an extra dimension in space-time to search for dark matter, is part of an ongoing research program at UC Riverside led by Tanedo. According to this theory, some of the dark matter particles don’t behave like particles. In effect, invisible particles interact with even more invisible particles in such a way that the latter cease to behave like particles.

    “The goal of my research program for the past two years is to extend the idea of dark matter ‘talking’ to dark forces,” Tanedo said. “Over the past decade, physicists have come to appreciate that, in addition to dark matter, hidden dark forces may govern dark matter’s interactions. These could completely rewrite the rules for how one ought to look for dark matter.”

    If two particles of dark matter are attracted to or repelled by each other then dark forces are operating. Tanedo explained that dark forces are described mathematically by a theory with extra dimensions and appear as a continuum of particles that could address puzzles seen in small galaxies.

    “Our ongoing research program at UCR is a further generalization of the dark force proposal,” he said. “Our observed universe has three dimensions of space. We propose that there may be a fourth dimension that only the dark forces know about. The extra dimension can explain why dark matter has hidden so well from our attempts to study it in a lab.”

    Tanedo explained that although extra dimensions may sound like an exotic idea, they are actually a mathematical trick to describe “conformal field theories” — ordinary three-dimensional theories that are highly quantum mechanical. These types of theories are mathematically rich, but do not contain conventional particles and so are typically not considered to be relevant for describing nature. The mathematical equivalence between these challenging three-dimensional theories and a more tractable extra dimensional theory is known as the holographic principle.

    “Since these conformal field theories were both intractable and unusual, they hadn’t really been systematically applied to dark matter,” Tanedo added. “Instead of using that language, we work with the holographic extra-dimensional theory.”

    The key feature of the extra-dimensional theory is that the force between dark matter particles is described by an infinite number of different particles with different masses called a continuum. In contrast, ordinary forces are described by a single type of particle with a fixed mass. This class of continuum-dark sectors is exciting to Tanedo because it does something “fresh and different.”

    According to Tanedo, past work on dark sectors focuses primarily on theories that mimic the behavior of visible particles. His research program is exploring the more extreme types of theories that most particle physicists found less interesting, perhaps because no analogs exist in the real world.

    In Tanedo’s theory, the force between dark matter particles is surprisingly different from the forces felt by ordinary matter.

    “For the gravitational force or electric force that I teach in my introductory physics course, when you double the distance between two particles you reduce the force by a factor of four. A continuum force, on the other hand, is reduced by a factor of up to eight.”

    What implications does this extra dimensional dark force have? Since ordinary matter may not interact with this dark force, Tanedo turned to the idea of self-interacting dark matter, an idea pioneered by Hai-Bo Yu, an associate professor of physics and astronomy at UCR who is not a coauthor on the paper. Yu showed that even in the absence of any interactions with normal matter, the effects of these dark forces could be observed indirectly in dwarf spheroidal galaxies. Tanedo’s team found the continuum force can reproduce the observed stellar motions.

    “Our model goes further and makes it easier than the self-interacting dark matter model to explain the cosmic origin of dark matter,” Tanedo said.

    Next, Tanedo’s team will explore a continuum version of the “dark photon” model.

    “It’s a more realistic picture for a dark force,” Tanedo said. “Dark photons have been studied in great detail, but our extra-dimensional framework has a few surprises. We will also look into the cosmology of dark forces and the physics of black holes.”

    Tanedo has been working diligently on identifying “blind spots” in his team’s search for dark matter.

    “My research program targets one of the assumptions we make about particle physics: that the interaction of particles is well-described by the exchange of more particles,” he said. “While that is true for ordinary matter, there’s no reason to assume that for dark matter. Their interactions could be described by a continuum of exchanged particles rather than just exchanging a single type of force particle.”

    Tanedo was joined in the research by Ian Chaffey, a postdoctoral researcher working with Tanedo; and Sylvain Fichet, a postdoctoral researcher at the International Center for Theoretical Physics – South American Institute for Fundamental Research in Brazil.

    The research was funded by the U.S. Department of Energy.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC Riverside Campus

    The University of California, Riverside (US) is a public land-grant research university in Riverside, California. It is one of the 10 campuses of the University of California (US) system. The main campus sits on 1,900 acres (769 ha) in a suburban district of Riverside with a branch campus of 20 acres (8 ha) in Palm Desert. In 1907, the predecessor to UC Riverside was founded as the UC Citrus Experiment Station, Riverside which pioneered research in biological pest control and the use of growth regulators responsible for extending the citrus growing season in California from four to nine months. Some of the world’s most important research collections on citrus diversity and entomology, as well as science fiction and photography, are located at Riverside.

    UC Riverside’s undergraduate College of Letters and Science opened in 1954. The Regents of the University of California declared UC Riverside a general campus of the system in 1959, and graduate students were admitted in 1961. To accommodate an enrollment of 21,000 students by 2015, more than $730 million has been invested in new construction projects since 1999. Preliminary accreditation of the UC Riverside School of Medicine was granted in October 2012 and the first class of 50 students was enrolled in August 2013. It is the first new research-based public medical school in 40 years.

    UC Riverside is classified among “R1: Doctoral Universities – Very high research activity.” The 2019 U.S. News & World Report Best Colleges rankings places UC Riverside tied for 35th among top public universities and ranks 85th nationwide. Over 27 of UC Riverside’s academic programs, including the Graduate School of Education and the Bourns College of Engineering, are highly ranked nationally based on peer assessment, student selectivity, financial resources, and other factors. Washington Monthly ranked UC Riverside 2nd in the United States in terms of social mobility, research and community service, while U.S. News ranks UC Riverside as the fifth most ethnically diverse and, by the number of undergraduates receiving Pell Grants (42 percent), the 15th most economically diverse student body in the nation. Over 70% of all UC Riverside students graduate within six years without regard to economic disparity. UC Riverside’s extensive outreach and retention programs have contributed to its reputation as a “university of choice” for minority students. In 2005, UCR became the first public university campus in the nation to offer a gender-neutral housing option.UC Riverside’s sports teams are known as the Highlanders and play in the Big West Conference of the National Collegiate Athletic Association (NCAA) Division I. Their nickname was inspired by the high altitude of the campus, which lies on the foothills of Box Springs Mountain. The UC Riverside women’s basketball team won back-to-back Big West championships in 2006 and 2007. In 2007, the men’s baseball team won its first conference championship and advanced to the regionals for the second time since the university moved to Division I in 2001.

    History

    At the turn of the 20th century, Southern California was a major producer of citrus, the region’s primary agricultural export. The industry developed from the country’s first navel orange trees, planted in Riverside in 1873. Lobbied by the citrus industry, the UC Regents established the UC Citrus Experiment Station (CES) on February 14, 1907, on 23 acres (9 ha) of land on the east slope of Mount Rubidoux in Riverside. The station conducted experiments in fertilization, irrigation and crop improvement. In 1917, the station was moved to a larger site, 475 acres (192 ha) near Box Springs Mountain.

    The 1944 passage of the GI Bill during World War II set in motion a rise in college enrollments that necessitated an expansion of the state university system in California. A local group of citrus growers and civic leaders, including many UC Berkeley(US) alumni, lobbied aggressively for a UC-administered liberal arts college next to the CES. State Senator Nelson S. Dilworth authored Senate Bill 512 (1949) which former Assemblyman Philip L. Boyd and Assemblyman John Babbage (both of Riverside) were instrumental in shepherding through the State Legislature. Governor Earl Warren signed the bill in 1949, allocating $2 million for initial campus construction.

    Gordon S. Watkins, dean of the College of Letters and Science at University of California at Los Angeles(US), became the first provost of the new college at Riverside. Initially conceived of as a small college devoted to the liberal arts, he ordered the campus built for a maximum of 1,500 students and recruited many young junior faculty to fill teaching positions. He presided at its opening with 65 faculty and 127 students on February 14, 1954, remarking, “Never have so few been taught by so many.”

    UC Riverside’s enrollment exceeded 1,000 students by the time Clark Kerr became president of the University of California(US) system in 1958. Anticipating a “tidal wave” in enrollment growth required by the baby boom generation, Kerr developed the California Master Plan for Higher Education and the Regents designated Riverside a general university campus in 1959. UC Riverside’s first chancellor, Herman Theodore Spieth, oversaw the beginnings of the school’s transition to a full university and its expansion to a capacity of 5,000 students. UC Riverside’s second chancellor, Ivan Hinderaker led the campus through the era of the free speech movement and kept student protests peaceful in Riverside. According to a 1998 interview with Hinderaker, the city of Riverside received negative press coverage for smog after the mayor asked Governor Ronald Reagan to declare the South Coast Air Basin a disaster area in 1971; subsequent student enrollment declined by up to 25% through 1979. Hinderaker’s development of innovative programs in business administration and biomedical sciences created incentive for enough students to enroll at Riverside to keep the campus open.

    In the 1990s, the UC Riverside experienced a new surge of enrollment applications, now known as “Tidal Wave II”. The Regents targeted UC Riverside for an annual growth rate of 6.3%, the fastest in the UC system, and anticipated 19,900 students at UC Riverside by 2010. By 1995, African American, American Indian, and Latino student enrollments accounted for 30% of the UC Riverside student body, the highest proportion of any UC campus at the time. The 1997 implementation of Proposition 209—which banned the use of affirmative action by state agencies—reduced the ethnic diversity at the more selective UC campuses but further increased it at UC Riverside.

    With UC Riverside scheduled for dramatic population growth, efforts have been made to increase its popular and academic recognition. The students voted for a fee increase to move UC Riverside athletics into NCAA Division I standing in 1998. In the 1990s, proposals were made to establish a law school, a medical school, and a school of public policy at UC Riverside, with the UC Riverside School of Medicine and the School of Public Policy becoming reality in 2012. In June 2006, UC Riverside received its largest gift, 15.5 million from two local couples, in trust towards building its medical school. The Regents formally approved UC Riverside’s medical school proposal in 2006. Upon its completion in 2013, it was the first new medical school built in California in 40 years.

    Academics

    As a campus of the University of California(US) system, UC Riverside is governed by a Board of Regents and administered by a president. The current president is Michael V. Drake, and the current chancellor of the university is Kim A. Wilcox. UC Riverside’s academic policies are set by its Academic Senate, a legislative body composed of all UC Riverside faculty members.

    UC Riverside is organized into three academic colleges, two professional schools, and two graduate schools. UC Riverside’s liberal arts college, the College of Humanities, Arts and Social Sciences, was founded in 1954, and began accepting graduate students in 1960. The College of Natural and Agricultural Sciences, founded in 1960, incorporated the CES as part of the first research-oriented institution at UC Riverside; it eventually also incorporated the natural science departments formerly associated with the liberal arts college to form its present structure in 1974. UC Riverside’s newest academic unit, the Bourns College of Engineering, was founded in 1989. Comprising the professional schools are the Graduate School of Education, founded in 1968, and the UCR School of Business, founded in 1970. These units collectively provide 81 majors and 52 minors, 48 master’s degree programs, and 42 Doctor of Philosophy (PhD) programs. UC Riverside is the only UC campus to offer undergraduate degrees in creative writing and public policy and one of three UCs (along with University of California-Berkeley (US) and University of California-Irvine (US)) to offer an undergraduate degree in business administration. Through its Division of Biomedical Sciences, founded in 1974, UC Riverside offers the Thomas Haider medical degree program in collaboration with University of California-Los Angeles(US). UC Riverside’s doctoral program in the emerging field of dance theory, founded in 1992, was the first program of its kind in the United States, and UC Riverside’s minor in lesbian, gay and bisexual studies, established in 1996, was the first undergraduate program of its kind in the UC system. A new BA program in bagpipes was inaugurated in 2007.

    Research and economic impact

    UC Riverside operated under a $727 million budget in fiscal year 2014–15. The state government provided $214 million, student fees accounted for $224 million and $100 million came from contracts and grants. Private support and other sources accounted for the remaining $189 million. Overall, monies spent at UC Riverside have an economic impact of nearly $1 billion in California. UC Riverside research expenditure in FY 2018 totaled $167.8 million. Total research expenditures at UC Riverside are significantly concentrated in agricultural science, accounting for 53% of total research expenditures spent by the university in 2002. Top research centers by expenditure, as measured in 2002, include the Agricultural Experiment Station; the Center for Environmental Research and Technology; the Center for Bibliographical Studies; the Air Pollution Research Center; and the Institute of Geophysics and Planetary Physics.

    Throughout UC Riverside’s history, researchers have developed more than 40 new citrus varieties and invented new techniques to help the $960 million-a-year California citrus industry fight pests and diseases. In 1927, entomologists at the CES introduced two wasps from Australia as natural enemies of a major citrus pest, the citrophilus mealybug, saving growers in Orange County $1 million in annual losses. This event was pivotal in establishing biological control as a practical means of reducing pest populations. In 1963, plant physiologist Charles Coggins proved that application of gibberellic acid allows fruit to remain on citrus trees for extended periods. The ultimate result of his work, which continued through the 1980s, was the extension of the citrus-growing season in California from four to nine months. In 1980, UC Riverside released the Oroblanco grapefruit, its first patented citrus variety. Since then, the citrus breeding program has released other varieties such as the Melogold grapefruit, the Gold Nugget mandarin (or tangerine), and others that have yet to be given trademark names.

    To assist entrepreneurs in developing new products, UC Riverside is a primary partner in the Riverside Regional Technology Park, which includes the City of Riverside and the County of Riverside. It also administers six reserves of the University of California Natural Reserve System. UC Riverside recently announced a partnership with China Agricultural University[中国农业大学](CN) to launch a new center in Beijing, which will study ways to respond to the country’s growing environmental issues. UC Riverside can also boast the birthplace of two name reactions in organic chemistry, the Castro-Stephens coupling and the Midland Alpine Borane Reduction.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: