Tagged: Quantum Mechanics Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:09 am on May 29, 2023 Permalink | Reply
    Tags: "The Quest to Use Quantum Mechanics to Pull Energy out of Nothing", A simple sequence of events could in fact induce the quantum vacuum to go negative—giving up energy it didn’t appear to have., , “Quantum vacuum”: a peculiar type of nothing that comes dangerously close to resembling a something., , Even a vacuum must always crackle with fluctuations in the quantum fields that fill it., For their latest magic trick physicists have done the quantum equivalent of conjuring energy out of thin air., In the past year researchers have teleported energy across microscopic distances in two separate quantum devices., , , Quantum Mechanics, ,   

    From “WIRED” : “The Quest to Use Quantum Mechanics to Pull Energy out of Nothing” 

    From “WIRED”

    5.28.23
    Charlie Wood

    1
    The new quantum protocol effectively borrows energy from a distant location and thus violates no sacred physical principles. Illustration: Kristina Armitage/Quanta Magazine.

    For their latest magic trick, physicists have done the quantum equivalent of conjuring energy out of thin air. It’s a feat that seems to fly in the face of physical law and common sense.

    “You can’t extract energy directly from the vacuum because there’s nothing there to give,” said William Unruh, a theoretical physicist at the University of British Columbia, describing the standard way of thinking.

    But 15 years ago, Masahiro Hotta, a theoretical physicist at Tohoku University in Japan, proposed that perhaps the vacuum could, in fact, be coaxed into giving something up.

    At first, many researchers ignored this work, suspicious that pulling energy from the vacuum was implausible, at best. Those who took a closer look, however, realized that Hotta was suggesting a subtly different quantum stunt. The energy wasn’t free; it had to be unlocked using knowledge purchased with energy in a far-off location. From this perspective, Hotta’s procedure looked less like creation and more like teleportation of energy from one place to another—a strange but less offensive idea.

    “That was a real surprise,” said Unruh, who has collaborated with Hotta but has not been involved in energy teleportation research. “It’s a really neat result that he discovered.”

    Now, in the past year, researchers have teleported energy across microscopic distances in two separate quantum devices, vindicating Hotta’s theory. The research leaves little room for doubt that energy teleportation is a genuine quantum phenomenon.

    “This really does test it,” said Seth Lloyd, a quantum physicist at the Massachusetts Institute of Technology who was not involved in the research. “You are actually teleporting. You are extracting energy.”

    Quantum Credit

    The first skeptic of quantum energy teleportation was Hotta himself. In 2008, he was searching for a way of measuring the strength of a peculiar quantum mechanical link known as entanglement, where two or more objects share a unified quantum state that makes them behave in related ways even when separated by vast distances. A defining feature of entanglement is that you must create it in one fell swoop. You can’t engineer the related behavior by messing around with one object and the other independently, even if you call up a friend at the other location and tell them what you did.

    While studying black holes, Hotta came to suspect that an exotic occurrence in quantum theory—negative energy—could be the key to measuring entanglement. Black holes shrink by emitting radiation entangled with their interiors, a process that can also be viewed as the black hole swallowing dollops of negative energy. Hotta noted that negative energy and entanglement appeared to be intimately related. To strengthen his case, he set out to prove that negative energy—like entanglement—could not be created through independent actions at distinct locations.

    Hotta found, to his surprise, that a simple sequence of events could, in fact, induce the quantum vacuum to go negative—giving up energy it didn’t appear to have. “First I thought I was wrong,” he said, “so I calculated again, and I checked my logic. But I could not find any flaw.”

    The trouble arises from the bizarre nature of the “quantum vacuum”, a peculiar type of nothing that comes dangerously close to resembling a something. The uncertainty principle forbids any quantum system from settling down into a perfectly quiet state of exactly zero energy. As a result, even a vacuum must always crackle with fluctuations in the quantum fields that fill it. These never-ending fluctuations imbue every field with some minimum amount of energy, known as the zero-point energy. Physicists say that a system with this minimal energy is in the ground state. A system in its ground state is a bit like a car parked on the streets of Denver. Even though it’s well above sea level, it can’t go any lower.

    And yet, Hotta seemed to have found an underground garage. To unlock the gate, he realized, he had only to exploit an intrinsic entanglement in the crackling of the quantum field.

    The incessant vacuum fluctuations cannot be used to power a perpetual motion machine, say, because the fluctuations at a given location are completely random. If you imagine hooking up a fanciful quantum battery to the vacuum, half the fluctuations would charge the device while the other half would drain it.

    But quantum fields are entangled—the fluctuations in one spot tend to match fluctuations in another spot. In 2008, Hotta published a paper [Physical Review D (below)] outlining how two physicists, Alice and Bob, might exploit these correlations to pull energy out of the ground state surrounding Bob. The scheme goes something like this:

    Bob finds himself in need of energy—he wants to charge that fanciful quantum battery—but all he has access to is empty space. Fortunately, his friend Alice has a fully equipped physics lab in a far-off location. Alice measures the field in her lab, injecting energy into it there and learning about its fluctuations. This experiment bumps the overall field out of the ground state, but as far as Bob can tell, his vacuum remains in the minimum-energy state, randomly fluctuating.

    But then Alice texts Bob her findings about the vacuum around her location, essentially telling Bob when to plug in his battery. After Bob reads her message, he can use the newfound knowledge to prepare an experiment that extracts energy from the vacuum—up to the amount injected by Alice.

    “That information allows Bob, if you want, to time the fluctuations,” said Eduardo Martín-Martínez, a theoretical physicist at the University of Waterloo and the Perimeter Institute who worked on one of the new experiments. (He added that the notion of timing is more metaphorical than literal, due to the abstract nature of quantum fields.)

    Bob can’t extract more energy than Alice put in, so energy is conserved. And he lacks the necessary knowledge to extract the energy until Alice’s text arrives, so no effect travels faster than light. The protocol doesn’t violate any sacred physical principles.

    Nevertheless, Hotta’s publication was met with crickets. Machines that exploit the zero-point energy of the vacuum are a mainstay of science fiction, and his procedure rankled physicists tired of fielding crackpot proposals for such devices. But Hotta felt certain he was onto something, and he continued to develop his idea and promote it in talks. He received further encouragement from Unruh, who had gained prominence for discovering another odd vacuum behavior.

    “This kind of stuff is almost second nature to me,” Unruh said, “that you can do strange things with quantum mechanics.”

    Hotta also sought a way to test it. He connected with Go Yusa, an experimentalist specializing in condensed matter at Tohoku University. They proposed an experiment in a semiconductor system with an entangled ground state analogous to that of the electromagnetic field.

    But their research has been repeatedly delayed by a different kind of fluctuation. Soon after their initial experiment was funded, the March 2011 Tohoku earthquake and tsunami devastated the eastern coast of Japan—including Tohoku University. In recent years, further tremors damaged their delicate lab equipment twice. Today they are once more starting essentially from scratch.

    Making the Jump

    In time, Hotta’s ideas also took root in a less earthquake-prone part of the globe. At Unruh’s suggestion, Hotta gave a lecture at a 2013 conference in Banff, Canada. The talk captured the imagination of Martín-Martínez. “His mind works differently from everybody else,” Martín-Martínez said. “He’s a person that has a lot of out-of-the-box ideas that are extremely creative.”

    2
    An experimental test of the teleportation protocol was run on one of IBM’s quantum computers, seen here at the Consumer Electronics Show in Las Vegas in 2020.Photograph: IBM/Quanta Magazine.

    Martín-Martínez, who half-seriously styles himself as a “space-time engineer,” has long felt drawn to physics at the edge of science fiction. He dreams of finding physically plausible ways of creating wormholes, warp drives, and time machines. Each of these exotic phenomena amounts to a bizarre shape of space-time that is permitted by the extremely accommodating equations of general relativity. But they are also forbidden by so-called energy conditions, a handful of restrictions that the renowned physicists Roger Penrose and Stephen Hawking slapped on top of general relativity to stop the theory from showing its wild side.

    Chief among the Hawking-Penrose commandments is that negative energy density is forbidden. But while listening to Hotta’s presentation, Martín-Martínez realized that dipping below the ground state smelled a bit like making energy negative. The concept was catnip to a fan of Star Trek technologies, and he dove into Hotta’s work.

    He soon realized that energy teleportation could help solve a problem faced by some of his colleagues in quantum information, including Raymond Laflamme, a physicist at Waterloo, and Nayeli Rodríguez-Briones, Laflamme’s student at the time. The pair had a more down-to-earth goal: to take qubits, the building blocks of quantum computers, and make them as cold as possible. Cold qubits are reliable qubits, but the group had run into a theoretical limit beyond which it seemed impossible to pull out any more heat—much as Bob confronted a vacuum from which energy extraction seemed impossible.

    In his first pitch to Laflamme’s group, Martín-Martínez faced a lot of skeptical questions. But as he addressed their doubts, they became more receptive. They started studying quantum energy teleportation, and in 2017 they proposed a method for spiriting energy away from qubits to leave them colder than any other known procedure could make them. Even so, “it was all theory,” Martín-Martínez said. “There was no experiment.”

    Martín-Martínez and Rodríguez-Briones, together with Laflamme and an experimentalist, Hemant Katiyar, set out to change that.

    They turned to a technology known as nuclear magnetic resonance, which uses mighty magnetic fields and radio pulses to manipulate the quantum states of atoms in a large molecule. The group spent a few years planning the experiment, and then over a couple of months in the midst of the pandemic, Katiyar arranged to teleport energy between two carbon atoms playing the roles of Alice and Bob.

    First, a finely tuned series of radio pulses put the carbon atoms into a particular minimum-energy ground state featuring entanglement between the two atoms. The zero-point energy for the system was defined by the initial combined energy of Alice, Bob, and the entanglement between them.

    Next, they fired a single radio pulse at Alice and a third atom, simultaneously making a measurement at Alice’s position and transferring the information to an atomic “text message.”

    Finally, another pulse aimed at both Bob and the intermediary atom simultaneously transmitted the message to Bob and made a measurement there, completing the energy chicanery.

    They repeated the process many times, making many measurements at each step in a way that allowed them to reconstruct the quantum properties of the three atoms throughout the procedure. In the end, they calculated that the energy of the Bob carbon atom had decreased on average, and thus that energy had been extracted and released into the environment. This happened despite the fact that the Bob atom always started out in its ground state. From start to finish, the protocol took no more than 37 milliseconds. But for energy to have traveled from one side of the molecule to the other, it normally would have taken more than 20 times longer—approaching a full second. The energy spent by Alice allowed Bob to unlock otherwise inaccessible energy.

    “It was very neat to see that with current technology it’s possible to observe the activation of energy,” said Rodríguez-Briones, who is now at the University of California-Berkeley.

    They described the first demonstration of quantum energy teleportation in a paper that they posted in March 2022 for publication in Physical Review Letters.

    The second demonstration would follow 10 months later.

    A few days before Christmas, Kazuki Ikeda, a quantum computation researcher at Stony Brook University, was watching a YouTube video that mentioned wireless energy transfer. He wondered if something similar could be done quantum mechanically. He then remembered Hotta’s work—Hotta had been one of his professors when he was an undergraduate at Tohoku University—and realized he could run a quantum energy teleportation protocol on IBM’s quantum computing platform.

    Over the next few days, he wrote and remotely executed just such a program. The experiments verified that the Bob qubit dropped below its ground-state energy. By January 7, he had posted his results for Applied Physics [below].

    Nearly 15 years after Hotta first described energy teleportation, two simple demonstrations less than a year apart had proved it was possible.

    “The experimental papers are nicely done,” Lloyd said. “I was kind of surprised that nobody did it sooner.”

    Sci-Fi Dreams

    And yet, Hotta is not yet completely satisfied.

    He praises the experiments as an important first step. But he views them as quantum simulations, in the sense that the entangled behavior is programmed into the ground state—either through radio pulses or through quantum operations in IBM’s devices. His ambition is to harvest zero-point energy from a system whose ground state naturally features entanglement in the same way that the fundamental quantum fields that permeate the universe do.

    To that end, he and Yusa are forging ahead with their original experiment. In the coming years, they hope to demonstrate quantum energy teleportation in a silicon surface featuring edge currents with an intrinsically entangled ground state—a system with behavior closer to that of the electromagnetic field.

    In the meantime, each physicist has their own vision of what energy teleportation might be good for. Rodríguez-Briones suspects that in addition to helping stabilize quantum computers, it will continue to play an important role in the study of heat, energy, and entanglement in quantum systems. In late January, Ikeda posted another paper that detailed how to build energy teleportation into the nascent quantum internet.

    Martín-Martínez continues to chase his sci-fi dreams. He has teamed up with Erik Schnetter, an expert in general relativity simulations at the Perimeter Institute, to calculate exactly how space-time would react to particular arrangements of negative energy.

    Some researchers find his quest intriguing. “That’s a laudable goal,” Lloyd said with a chuckle. “In some sense it would be scientifically irresponsible not to follow up on this. Negative energy density has very important consequences.”

    Others caution that the road from negative energies to exotic shapes of space-time is winding and uncertain. “Our intuition for quantum correlations is still being developed,” Unruh said. “One constantly gets surprised by what is actually the case once one is able to do the calculation.”

    Hotta, for his part, doesn’t spend too much time thinking about sculpting space-time. For now, he feels pleased that his quantum correlation calculation from 2008 has established a bona fide physical phenomenon.

    “This is real physics,” he said, “not science fiction.”

    Physical Review D 2008
    Physical Review Letters
    Applied Physics

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 9:28 am on May 25, 2023 Permalink | Reply
    Tags: "Western Pa. is set to 'level up' its quantum capabilities with an $11.6 million investment from The University of Pittsburgh", , , Quantum Mechanics,   

    From The University of Pittsburgh : “Western Pa. is set to ‘level up’ its quantum capabilities with an $11.6 million investment from The University of Pittsburgh” 

    U Pitt bloc

    From The University of Pittsburgh

    5.25.23
    Brandie Jefferson
    Photography by Aimee Obidzinski

    1

    Quantum physics can sometimes seem almost metaphysical, but even the field that introduced spooky action at a distance is grounded in the tangible world of computers, networks and sensors.

    To usher in the next era of quantum technology, researchers need specialized, made-to-spec equipment that can crunch data faster and bring the field farther.

    In a show of Pitt’s dedication to lead the way, the University’s Strategic Advancement Fund has approved its first loan, $11.6 million, to support the establishment of the Western Pennsylvania Quantum Information Core (WPQIC). This cross-disciplinary, multi-institution effort will position the University and its partners at the forefront of the field.

    More than 10 years ago, Pitt established the Pittsburgh Quantum Institute, a collaboration among faculty from Pitt, Carnegie Mellon University and Duquesne University. Last year the institute established its first agreements with industry partners in service of commercialization.

    “The core will allow the entire region to ‘level up’ to a more comprehensive and integrated platform for quantum experimentation across a range of fundamental physics and emerging applications,” said Rob A. Rutenbar, Pitt’s senior vice chancellor for research.

    Pitt is at the leading edge of quantum education, offering one of the first undergraduate degrees in the field. Now it will be a hub where students, researchers and industry partners come together to forge the underpinnings of a stronger quantum information science and engineering (QUISE) discipline.

    “The core is a natural progression for Pitt, which has been dedicated to cutting-edge quantum information science and engineering research,” said Rob Cunningham, vice chancellor for research infrastructure. “This is the natural next step.”

    To continue to lead, however, researchers need specialized equipment: correlated photon counters, machines that allow for work to be done in a vacuum and refrigerators that can keep temperatures just a touch above absolute zero.

    There are many ways to build quantum this hardware.

    “What unites all these disparate techniques is that they are hard,” said Michael Hatridge, a physics professor in the Kenneth P. Dietrich School of Arts and Sciences, a quantum-computer builder and the inaugural director of the WPQIC.

    “The core’s job is to make them merely ‘super tough.’ By bringing together these amazing, modern instruments, we should be able to make big strides in quantum research,” Hatridge said.

    The WPQIC will support faculty by providing this state-of-the-art instrumentation and adding staff. These expanded capabilities will allow Pitt to continue to grow its program offerings in many areas of QUISE, providing a unique opportunity for all students, researchers and faculty to use tools most researchers can’t regularly access.

    Quantum science is not solely an endeavor for the physicist, and so investments will be made in existing facilities in the departments of chemistry and physics in the Dietrich School, the Swanson School of Engineering and the School of Computing and Information. A new, central facility will enable even more collaborative research.

    The WPQIC embodies the core of the University’s purpose as outlined in its strategic initiative, the Plan for Pitt, by helping provide the best opportunities for students and staff while bringing to the region an industry that will only continue to grow. This vision — one of new industry ecosystems and the opportunities they bring — is shared by Mayor Ed Gainey.

    “Pittsburgh has been able to thrive in large part because of its ability to embrace cutting-edge technology,” said Gainey. “That’s why I support the Western Pennsylvania Quantum Information Core at the University of Pittsburgh. It will help develop a quantum-ready workforce primed to make novel discoveries and develop new industries that will benefit everyone in the region.”

    As more projects are supported, the University and the region will continue to see growth.

    “As the first initiative to receive [this strategic funding], the Western Pennsylvania Quantum Information Core reflects the University’s commitment to Pitt’s leadership in quantum information science,” said Senior Vice Chancellor and Chief Financial Officer Hari Sastry. “It is an excellent example of how the University can internally loan funds to invest in strategic initiatives that will enhance Pitt’s strong research reputation.”

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Pitt campus

    The University of Pittsburgh is a state-related research university, founded as the Pittsburgh Academy in 1787. Pitt is a member of The Association of American Universities, which comprises 62 preeminent doctorate-granting research institutions in North America.

    From research achievements to the quality of its academic programs, the University of Pittsburgh ranks among the best in higher education.

    Faculty members have expanded knowledge in the humanities and sciences, earning such prestigious honors as the National Medal of Science, the MacArthur Foundation’s “genius” grant, the Lasker-DeBakey Clinical Medical Research Award, and election to The National Academy of Sciences and The Institute of Medicine.
    Pitt students have earned Rhodes, Goldwater, Marshall, and Truman Scholarships, among other highly competitive national and international scholarship

    Alumni have pioneered MRI and TV, won Nobels and Pulitzers, led corporations and universities, served in government and the military, conquered Hollywood and The New York Times bestsellers list, and won Super Bowls and NBA championships.

     
  • richardmitnick 8:56 am on May 18, 2023 Permalink | Reply
    Tags: "HR-AFM": high-resolution non-contact atomic force microscopy, "Seeing Electron Orbital Signatures", , , , By directly observing the signatures of electron orbitals using techniques such as atomic force microscopy we can gain a better understanding of the behavior of individual atoms and molecules., By directly observing the signatures of electron orbitals using techniques such as atomic force microscopy we might learn how to design and engineer new materials with specific properties., , , , Despite Fe and Co being adjacent atoms on the periodic table which implies similarity the corresponding force spectra and their measured images show reproducible experimental differences., , , , , , Quantum Mechanics, Scientists using supercomputers and atomic resolution microscopes have imaged the signatures of electron orbitals which are defined by mathematical equations of quantum mechanics., , Supercomputing simulations on TACC's Stampede2 system spot electronic differences in adjacent transition-metal atoms.,   

    From The Texas Advanced Computing Center: “Seeing Electron Orbital Signatures” 

    From The Texas Advanced Computing Center

    At

    The University of Texas-Austin

    5.15.23
    Jorge Salazar

    Supercomputing simulations on TACC’s Stampede2 system [below] spot electronic differences in adjacent transition-metal atoms.

    1
    Supercomputer simulations and atomic resolution microscopes were used to directly observe the signatures of electron orbitals in two different transition-metal atoms, iron (Fe) and cobalt (Co). This new knowledge can help make advancements in fields such as materials science, nanotechnology, and catalysis. Credit: Chen, P., Fan, D., Selloni, A. et al.

    No one will ever be able to see a purely mathematical construct such as a perfect sphere. But now, scientists using supercomputer simulations and atomic resolution microscopes have imaged the signatures of electron orbitals, which are defined by mathematical equations of quantum mechanics and predict where an atom’s electron is most likely to be.

    Scientists at UT Austin, Princeton University, and ExxonMobil have directly observed the signatures of electron orbitals in two different transition-metal atoms, iron (Fe) and cobalt (Co) present in metal-phthalocyanines. Those signatures are apparent in the forces measured by atomic force microscopes, which often reflect the underlying orbitals and can be so interpreted.

    Their study was published in March 2023 as an Editors’ Highlight in the journal Nature Communications [below].

    3
    (a) Low-magnification STM image of FePc and CoPc molecules using a CO tip. Schematic side (b) and top (c) views of the relaxed FePc molecule adsorbed on a Cu(111) substrate. Blue: Fe, yellow: C, pink: N, white: H, dark purple: Cu. Credit: Chen, P., Fan, D., Selloni, A. et al.

    “Our collaborators at Princeton University found that despite Fe and Co being adjacent atoms on the periodic table, which implies similarity, the corresponding force spectra and their measured images show reproducible experimental differences,” said study co-author James R. Chelikowsky, the W.A. “Tex” Moncrief, Jr. Chair of Computational Materials and professor in the Departments of Physics, Chemical Engineering, and Chemistry in the College of Natural Sciences at UT Austin. Chelikowsky also serves as the director of the Center for Computational Materials at the Oden Institute for Computational Engineering and Sciences.

    Without a theoretical analysis, the Princeton scientists could not determine the source of the differences they spotted using high-resolution non-contact atomic force microscopy (HR-AFM) and spectroscopy that measured molecular-scale forces on the order of piconewtons (pN), one-trillionth of a Newton.

    “When we first observed the experimental images, our initial reaction was to marvel at how experiment could capture such subtle differences. These are very small forces,” Chelikowsky added.

    “By directly observing the signatures of electron orbitals using techniques such as atomic force microscopy we can gain a better understanding of the behavior of individual atoms and molecules, and potentially even how to design and engineer new materials with specific properties. This is especially important in fields such as materials science, nanotechnology, and catalysis,” Chelikowsky said.

    The required electronic structure calculations are based on density functional theory (DFT), which starts from basic quantum mechanical equations and serves as a practical approach for predicting the behavior of materials.

    “Our main contribution is that we validated through our real-space DFT calculations that the observed experimental differences primarily stem from the different electronic configurations in 3d electrons of Fe and Co near the Fermi level, the highest energy state an electron can occupy in the atom,” said study co-first author Dingxin Fan, a former graduate student working with Chelikowsky. Fan is now a postdoctoral research associate at the Princeton Materials Institute.

    4
    Dingxin Fan (L) of Princeton University; James R. Chelikowsky (R) of UT Austin.

    The DFT calculations included the copper substrate for the Fe and Co atoms, adding a few hundred atoms to the mix and calling for intense computation, for which they were awarded an allocation on the Stampede2 supercomputer at the Texas Advanced Computing Center (TACC), funded by the National Science Foundation.

    “In terms of our model, at a certain height, we moved the carbon monoxide tip of the AFM over the sample and computed the quantum forces at every single grid point in real space,” Fan said. “This entails hundreds of different computations. The built-in software packages on TACC’s Stampede2 helped us to perform data analysis much more easily. For example, the Visual Molecular Dynamics software expedites an analysis of our computational results.”

    “Stampede2 has provided excellent computational power and storage capacity to support various research projects we have,” Chelikowsky added.

    By demonstrating that the electron orbital signatures are indeed observable using AFM, the scientists assert that this new knowledge can extend the applicability of AFM into different areas.

    5
    AFM images of FePc and CoPc on a Cu(111) surface (a) Experimental constant-height AFM frequency-shift images. (b) Glow-edges filtered experimental AFM image (based on a). (c) Simulated AFM images. (d) Estimated width (in pm) of the central part of the spin-polarized DFT calculations. Credit: Chen, P., Fan, D., Selloni, A. et al.

    What’s more, their study, used an inert molecular probe tip to approach another molecule and accurately measured the interactions between the two molecules. This allowed the science team to study specific surface chemical reactions.

    For example, suppose that a catalyst can accelerate a certain chemical reaction, but it is unknown which molecular site is responsible for the catalysis. In this case, an AFM tip prepared with the reactant molecule can be used to measure the interactions at different sites, ultimately determining the chemically active site or sites.

    Moreover, since the orbital level information can be obtained, scientists can gain a much deeper understanding of what will happen when a chemical reaction occurs. As a result, other scientists could design more efficient catalysts based on this information.

    Said Chelikowsky: “Supercomputers, in many ways, allow us to control how atoms interact without having to go into the lab. Such work can guide the discovery of new materials without a laborious ‘trial and error’ procedure.”

    Nature Communications

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Texas Advanced Computing Center at The University of Texas-Austin is an advanced computing research center that provides comprehensive advanced computing resources and support services to researchers in Texas and across the USA. The mission of TACC is to enable discoveries that advance science and society through the application of advanced computing technologies. Specializing in high performance computing, scientific visualization, data analysis & storage systems, software, research & development and portal interfaces, TACC deploys and operates advanced computational infrastructure to enable computational research activities of faculty, staff, and students of UT Austin. TACC also provides consulting, technical documentation, and training to support researchers who use these resources. TACC staff members conduct research and development in applications and algorithms, computing systems design/architecture, and programming tools and environments.

    Founded in 2001, TACC is one of the centers of computational excellence in the United States. Through the National Science Foundation Extreme Science and Engineering Discovery Environment project, TACC’s resources and services are made available to the national academic research community. TACC is located on The University of Texas-Austin’s J. J. Pickle Research Campus.

    TACC collaborators include researchers in other University of Texas-Austin departments and centers, at Texas universities in the High Performance Computing Across Texas Consortium, and at other U.S. universities and government laboratories.

    TACC Maverick HP NVIDIA supercomputer

    TACC Lonestar Cray XC40 supercomputer

    Dell Poweredge U Texas Austin Stampede Supercomputer. Texas Advanced Computer Center 9.6 PF

    TACC HPE Apollo 8000 Hikari supercomputer

    TACC Ranch long-term mass data storage system

    TACC DELL EMC Stampede2 supercomputer


    Stampede2 Arrives!

    TACC Frontera Dell EMC supercomputer fastest at any university

    University Texas at Austin

    U Texas Austin campus

    The University of Texas-Austin is a public research university in Austin, Texas and the flagship institution of the University of Texas System. Founded in 1883, the University of Texas was inducted into the Association of American Universities in 1929, becoming only the third university in the American South to be elected. The institution has the nation’s seventh-largest single-campus enrollment, with over 50,000 undergraduate and graduate students and over 24,000 faculty and staff.

    A Public Ivy, it is a major center for academic research. The university houses seven museums and seventeen libraries, including the LBJ Presidential Library and the Blanton Museum of Art, and operates various auxiliary research facilities, such as the J. J. Pickle Research Campus and the McDonald Observatory. As of November 2020, 13 Nobel Prize winners, four Pulitzer Prize winners, two Turing Award winners, two Fields medalists, two Wolf Prize winners, and two Abel prize winners have been affiliated with the school as alumni, faculty members or researchers. The university has also been affiliated with three Primetime Emmy Award winners, and has produced a total of 143 Olympic medalists.

    Student-athletes compete as the Texas Longhorns and are members of the Big 12 Conference. Its Longhorn Network is the only sports network featuring the college sports of a single university. The Longhorns have won four NCAA Division I National Football Championships, six NCAA Division I National Baseball Championships, thirteen NCAA Division I National Men’s Swimming and Diving Championships, and has claimed more titles in men’s and women’s sports than any other school in the Big 12 since the league was founded in 1996.

    Establishment

    The first mention of a public university in Texas can be traced to the 1827 constitution for the Mexican state of Coahuila y Tejas. Although Title 6, Article 217 of the Constitution promised to establish public education in the arts and sciences, no action was taken by the Mexican government. After Texas obtained its independence from Mexico in 1836, the Texas Congress adopted the Constitution of the Republic, which, under Section 5 of its General Provisions, stated “It shall be the duty of Congress, as soon as circumstances will permit, to provide, by law, a general system of education.”

    On April 18, 1838, “An Act to Establish the University of Texas” was referred to a special committee of the Texas Congress, but was not reported back for further action. On January 26, 1839, the Texas Congress agreed to set aside fifty leagues of land—approximately 288,000 acres (117,000 ha)—towards the establishment of a publicly funded university. In addition, 40 acres (16 ha) in the new capital of Austin were reserved and designated “College Hill”. (The term “Forty Acres” is colloquially used to refer to the University as a whole. The original 40 acres is the area from Guadalupe to Speedway and 21st Street to 24th Street.)

    In 1845, Texas was annexed into the United States. The state’s Constitution of 1845 failed to mention higher education. On February 11, 1858, the Seventh Texas Legislature approved O.B. 102, an act to establish the University of Texas, which set aside $100,000 in United States bonds toward construction of the state’s first publicly funded university (the $100,000 was an allocation from the $10 million the state received pursuant to the Compromise of 1850 and Texas’s relinquishing claims to lands outside its present boundaries). The legislature also designated land reserved for the encouragement of railroad construction toward the university’s endowment. On January 31, 1860, the state legislature, wanting to avoid raising taxes, passed an act authorizing the money set aside for the University of Texas to be used for frontier defense in west Texas to protect settlers from Indian attacks.

    Texas’s secession from the Union and the American Civil War delayed repayment of the borrowed monies. At the end of the Civil War in 1865, The University of Texas’s endowment was just over $16,000 in warrants and nothing substantive had been done to organize the university’s operations. This effort to establish a University was again mandated by Article 7, Section 10 of the Texas Constitution of 1876 which directed the legislature to “establish, organize and provide for the maintenance, support and direction of a university of the first class, to be located by a vote of the people of this State, and styled “The University of Texas”.

    Additionally, Article 7, Section 11 of the 1876 Constitution established the Permanent University Fund, a sovereign wealth fund managed by the Board of Regents of the University of Texas and dedicated to the maintenance of the university. Because some state legislators perceived an extravagance in the construction of academic buildings of other universities, Article 7, Section 14 of the Constitution expressly prohibited the legislature from using the state’s general revenue to fund construction of university buildings. Funds for constructing university buildings had to come from the university’s endowment or from private gifts to the university, but the university’s operating expenses could come from the state’s general revenues.

    The 1876 Constitution also revoked the endowment of the railroad lands of the Act of 1858, but dedicated 1,000,000 acres (400,000 ha) of land, along with other property appropriated for the university, to the Permanent University Fund. This was greatly to the detriment of the university as the lands the Constitution of 1876 granted the university represented less than 5% of the value of the lands granted to the university under the Act of 1858 (the lands close to the railroads were quite valuable, while the lands granted the university were in far west Texas, distant from sources of transportation and water). The more valuable lands reverted to the fund to support general education in the state (the Special School Fund).

    On April 10, 1883, the legislature supplemented the Permanent University Fund with another 1,000,000 acres (400,000 ha) of land in west Texas granted to the Texas and Pacific Railroad but returned to the state as seemingly too worthless to even survey. The legislature additionally appropriated $256,272.57 to repay the funds taken from the university in 1860 to pay for frontier defense and for transfers to the state’s General Fund in 1861 and 1862. The 1883 grant of land increased the land in the Permanent University Fund to almost 2.2 million acres. Under the Act of 1858, the university was entitled to just over 1,000 acres (400 ha) of land for every mile of railroad built in the state. Had the 1876 Constitution not revoked the original 1858 grant of land, by 1883, the university lands would have totaled 3.2 million acres, so the 1883 grant was to restore lands taken from the university by the 1876 Constitution, not an act of munificence.

    On March 30, 1881, the legislature set forth the university’s structure and organization and called for an election to establish its location. By popular election on September 6, 1881, Austin (with 30,913 votes) was chosen as the site. Galveston, having come in second in the election (with 20,741 votes), was designated the location of the medical department (Houston was third with 12,586 votes). On November 17, 1882, on the original “College Hill,” an official ceremony commemorated the laying of the cornerstone of the Old Main building. University President Ashbel Smith, presiding over the ceremony, prophetically proclaimed “Texas holds embedded in its earth rocks and minerals which now lie idle because unknown, resources of incalculable industrial utility, of wealth and power. Smite the earth, smite the rocks with the rod of knowledge and fountains of unstinted wealth will gush forth.” The University of Texas officially opened its doors on September 15, 1883.

    Expansion and growth

    In 1890, George Washington Brackenridge donated $18,000 for the construction of a three-story brick mess hall known as Brackenridge Hall (affectionately known as “B.Hall”), one of the university’s most storied buildings and one that played an important place in university life until its demolition in 1952.

    The old Victorian-Gothic Main Building served as the central point of the campus’s 40-acre (16 ha) site, and was used for nearly all purposes. But by the 1930s, discussions arose about the need for new library space, and the Main Building was razed in 1934 over the objections of many students and faculty. The modern-day tower and Main Building were constructed in its place.

    In 1910, George Washington Brackenridge again displayed his philanthropy, this time donating 500 acres (200 ha) on the Colorado River to the university. A vote by the regents to move the campus to the donated land was met with outrage, and the land has only been used for auxiliary purposes such as graduate student housing. Part of the tract was sold in the late-1990s for luxury housing, and there are controversial proposals to sell the remainder of the tract. The Brackenridge Field Laboratory was established on 82 acres (33 ha) of the land in 1967.

    In 1916, Gov. James E. Ferguson became involved in a serious quarrel with the University of Texas. The controversy grew out of the board of regents’ refusal to remove certain faculty members whom the governor found objectionable. When Ferguson found he could not have his way, he vetoed practically the entire appropriation for the university. Without sufficient funding, the university would have been forced to close its doors. In the middle of the controversy, Ferguson’s critics brought to light a number of irregularities on the part of the governor. Eventually, the Texas House of Representatives prepared 21 charges against Ferguson, and the Senate convicted him on 10 of them, including misapplication of public funds and receiving $156,000 from an unnamed source. The Texas Senate removed Ferguson as governor and declared him ineligible to hold office.

    In 1921, the legislature appropriated $1.35 million for the purchase of land next to the main campus. However, expansion was hampered by the restriction against using state revenues to fund construction of university buildings as set forth in Article 7, Section 14 of the Constitution. With the completion of Santa Rita No. 1 well and the discovery of oil on university-owned lands in 1923, the university added significantly to its Permanent University Fund. The additional income from Permanent University Fund investments allowed for bond issues in 1931 and 1947, which allowed the legislature to address funding for the university along with the Agricultural and Mechanical College (now known as Texas A&M University). With sufficient funds to finance construction on both campuses, on April 8, 1931, the Forty Second Legislature passed H.B. 368. which dedicated the Agricultural and Mechanical College a 1/3 interest in the Available University Fund, the annual income from Permanent University Fund investments.

    The University of Texas was inducted into The Association of American Universities in 1929. During World War II, the University of Texas was one of 131 colleges and universities nationally that took part in the V-12 Navy College Training Program which offered students a path to a Navy commission.

    In 1950, following Sweatt v. Painter, the University of Texas was the first major university in the South to accept an African-American student. John S. Chase went on to become the first licensed African-American architect in Texas.

    In the fall of 1956, the first black students entered the university’s undergraduate class. Black students were permitted to live in campus dorms, but were barred from campus cafeterias. The University of Texas integrated its facilities and desegregated its dorms in 1965. UT, which had had an open admissions policy, adopted standardized testing for admissions in the mid-1950s at least in part as a conscious strategy to minimize the number of Black undergraduates, given that they were no longer able to simply bar their entry after the Brown decision.

    Following growth in enrollment after World War II, the university unveiled an ambitious master plan in 1960 designed for “10 years of growth” that was intended to “boost the University of Texas into the ranks of the top state universities in the nation.” In 1965, the Texas Legislature granted the university Board of Regents to use eminent domain to purchase additional properties surrounding the original 40 acres (160,000 m^2). The university began buying parcels of land to the north, south, and east of the existing campus, particularly in the Blackland neighborhood to the east and the Brackenridge tract to the southeast, in hopes of using the land to relocate the university’s intramural fields, baseball field, tennis courts, and parking lots.

    On March 6, 1967, the Sixtieth Texas Legislature changed the university’s official name from “The University of Texas” to “The University of Texas at Austin” to reflect the growth of the University of Texas System.

    Recent history

    The first presidential library on a university campus was dedicated on May 22, 1971, with former President Johnson, Lady Bird Johnson and then-President Richard Nixon in attendance. Constructed on the eastern side of the main campus, the Lyndon Baines Johnson Library and Museum is one of 13 presidential libraries administered by the National Archives and Records Administration.

    A statue of Martin Luther King Jr. was unveiled on campus in 1999 and subsequently vandalized. By 2004, John Butler, a professor at the McCombs School of Business suggested moving it to Morehouse College, a historically black college, “a place where he is loved”.

    The University of Texas at Austin has experienced a wave of new construction recently with several significant buildings. On April 30, 2006, the school opened the Blanton Museum of Art. In August 2008, the AT&T Executive Education and Conference Center opened, with the hotel and conference center forming part of a new gateway to the university. Also in 2008, Darrell K Royal-Texas Memorial Stadium was expanded to a seating capacity of 100,119, making it the largest stadium (by capacity) in the state of Texas at the time.

    On January 19, 2011, the university announced the creation of a 24-hour television network in partnership with ESPN, dubbed the Longhorn Network. ESPN agreed to pay a $300 million guaranteed rights fee over 20 years to the university and to IMG College, the school’s multimedia rights partner. The network covers the university’s intercollegiate athletics, music, cultural arts, and academics programs. The channel first aired in September 2011.

     
  • richardmitnick 3:48 pm on May 17, 2023 Permalink | Reply
    Tags: "Quantum physics proposes a new way to study biology – and the results could revolutionize our understanding of how life works", , Quantum biology is one of the most interdisciplinary fields to ever emerge., Quantum effects are phenomena that occur between atoms and molecules that can’t be explained by classical physics., Quantum Mechanics, , The existence of quantum biology as a discipline implies that traditional understanding of life processes is incomplete., The rules of Classical Mechanics like Newton’s laws of motion break down at atomic scales.   

    From “The Conversation (AU)” : “Quantum physics proposes a new way to study biology – and the results could revolutionize our understanding of how life works” 

    From “The Conversation (AU)”

    5.15.23
    Clarice D. Aiello

    1
    Looking at life at the atomic scale offers a more comprehensive understanding of the macroscopic world. theasis/E+ via Getty Images.

    “Imagine using your cellphone to control the activity of your own cells to treat injuries and disease. It sounds like something from the imagination of an overly optimistic science fiction writer. But this may one day be a possibility through the emerging field of quantum biology.

    Over the past few decades, scientists have made incredible progress in understanding and manipulating biological systems at increasingly small scales, from protein folding to genetic engineering. And yet, the extent to which quantum effects influence living systems remains barely understood.

    Quantum effects are phenomena that occur between atoms and molecules that can’t be explained by classical physics. It has been known for more than a century that the rules of Classical Mechanics, like Newton’s laws of motion, break down at atomic scales. Instead, tiny objects behave according to a different set of laws known as Quantum Mechanics.


    Quantum Mechanics – Part 1: Crash Course Physics #43

    For humans, who can only perceive the macroscopic world, or what’s visible to the naked eye, quantum mechanics can seem counterintuitive and somewhat magical. Things you might not expect happen in the quantum world, like electrons “tunneling” through tiny energy barriers and appearing on the other side unscathed, or being in two different places at the same time in a phenomenon called superposition.

    I am trained as a quantum engineer. Research in quantum mechanics is usually geared toward technology. However, and somewhat surprisingly, there is increasing evidence that nature – an engineer with billions of years of practice – has learned how to use quantum mechanics to function optimally. If this is indeed true, it means that our understanding of biology is radically incomplete. It also means that we could possibly control physiological processes by using the quantum properties of biological matter.

    Quantumness in biology is probably real

    Researchers can manipulate quantum phenomena to build better technology. In fact, you already live in a quantum-powered world: from laser pointers to GPS, magnetic resonance imaging and the transistors in your computer – all these technologies rely on quantum effects.

    In general, quantum effects only manifest at very small length and mass scales, or when temperatures approach absolute zero. This is because quantum objects like atoms and molecules lose their “quantumness” when they uncontrollably interact with each other and their environment. In other words, a macroscopic collection of quantum objects is better described by the laws of classical mechanics. Everything that starts quantum dies classical. For example, an electron can be manipulated to be in two places at the same time, but it will end up in only one place after a short while – exactly what would be expected classically.


    The uncertain location of electrons – George Zaidan and Charles Morton.
    Electrons can be in two places at the same time, but will end up in one location eventually.

    In a complicated, noisy biological system, it is thus expected that most quantum effects will rapidly disappear, washed out in what the physicist Erwin Schrödinger called the “warm, wet environment of the cell.” To most physicists, the fact that the living world operates at elevated temperatures and in complex environments implies that biology can be adequately and fully described by classical physics: no funky barrier crossing, no being in multiple locations simultaneously.

    Chemists, however, have for a long time begged to differ. Research on basic chemical reactions at room temperature unambiguously shows that processes occurring within biomolecules like proteins and genetic material are the result of quantum effects. Importantly, such nanoscopic, short-lived quantum effects are consistent with driving some macroscopic physiological processes that biologists have measured in living cells and organisms. Research suggests that quantum effects influence biological functions, including regulating enzyme activity, sensing magnetic fields, cell metabolism and electron transport in biomolecules.

    How to study quantum biology

    The tantalizing possibility that subtle quantum effects can tweak biological processes presents both an exciting frontier and a challenge to scientists. Studying quantum mechanical effects in biology requires tools that can measure the short time scales, small length scales and subtle differences in quantum states that give rise to physiological changes – all integrated within a traditional wet lab environment.

    In my work, I build instruments to study and control the quantum properties of small things like electrons. In the same way that electrons have mass and charge, they also have a quantum property called spin. Spin defines how the electrons interact with a magnetic field, in the same way that charge defines how electrons interact with an electric field. The quantum experiments I have been building since graduate school, and now in my own lab, aim to apply tailored magnetic fields to change the spins of particular electrons.

    Research has demonstrated that many physiological processes are influenced by weak magnetic fields. These processes include stem cell development and maturation, cell proliferation rates, genetic material repair and countless others. These physiological responses to magnetic fields are consistent with chemical reactions that depend on the spin of particular electrons within molecules. Applying a weak magnetic field to change electron spins can thus effectively control a chemical reaction’s final products, with important physiological consequences.


    How quantum mechanics help birds find their way
    Birds use quantum effects in navigation.

    Currently, a lack of understanding of how such processes work at the nanoscale level prevents researchers from determining exactly what strength and frequency of magnetic fields cause specific chemical reactions in cells. Current cellphone, wearable and miniaturization technologies are already sufficient to produce tailored, weak magnetic fields that change physiology, both for good and for bad. The missing piece of the puzzle is, hence, a “deterministic codebook” of how to map quantum causes to physiological outcomes.

    In the future, fine-tuning nature’s quantum properties could enable researchers to develop therapeutic devices that are noninvasive, remotely controlled and accessible with a mobile phone. Electromagnetic treatments could potentially be used to prevent and treat disease, such as brain tumors, as well as in biomanufacturing, such as increasing lab-grown meat production.

    A whole new way of doing science

    Quantum biology is one of the most interdisciplinary fields to ever emerge. How do you build community and train scientists to work in this area?

    Since the pandemic, my lab at the University of California-Los Angeles and the University of Surrey’s (UK) Quantum Biology Doctoral Training Centre have organized Big Quantum Biology meetings to provide an informal weekly forum for researchers to meet and share their expertise in fields like mainstream quantum physics, biophysics, medicine, chemistry and biology.

    Research with potentially transformative implications for biology, medicine and the physical sciences will require working within an equally transformative model of collaboration. Working in one unified lab would allow scientists from disciplines that take very different approaches to research to conduct experiments that meet the breadth of quantum biology from the quantum to the molecular, the cellular and the organismal.

    The existence of quantum biology as a discipline implies that traditional understanding of life processes is incomplete. Further research will lead to new insights into the age-old question of what life is, how it can be controlled and how to learn with nature to build better quantum technologies.”

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Conversation (AU) launched as a pilot project in October 2014. It is an independent source of news and views from the academic and research community, delivered direct to the public.
    Our team of professional editors work with university and research institute experts to unlock their knowledge for use by the wider public.
    Access to independent, high quality, authenticated, explanatory journalism underpins a functioning democracy. Our aim is to promote better understanding of current affairs and complex issues. And hopefully allow for a better quality of public discourse and conversation.

     
  • richardmitnick 8:11 pm on May 15, 2023 Permalink | Reply
    Tags: , "Physicists Create Elusive Particles That Remember Their Pasts", , , In 1982 Frank Wilczek helped open physicists’ minds to the menagerie of particles that could exist in two dimensions., Last fall researchers with Google celebrated the first clear intertwining of non-abelian objects., , , , Quantum Mechanics, Quantum processors are changing the hunt for anyons., , Researchers have spent millions of dollars over the past three decades or so trying to capture and tame the particle-like objects which go by the cryptic moniker of "non-abelian anyons"., The next milestone will be real error correction which neither Google nor Quantinuum attempted., The shared memory of non-abelian anyons could serve as an ideal qubit.,   

    From “Quanta Magazine” : “Physicists Create Elusive Particles That Remember Their Pasts” 

    From “Quanta Magazine”

    5.9.23
    Charlie Wood

    1
    By “braiding” particles around each other, quantum computers could store and manipulate information in a way that protects against errors.
    Merrill Sherman/Quanta Magazine.

    Forty years ago, Frank Wilczek was mulling over a bizarre type of particle that could live only in a flat universe. Had he put pen to paper and done the calculations, Wilczek would have found that these then-theoretical particles held an otherworldly memory of their past, one woven too thoroughly into the fabric of reality for any one disturbance to erase it.

    However, seeing no reason that nature should allow such strange beasts to exist, the future Nobel prize-winning physicist chose not to follow his thought experiments to their most outlandish conclusions — despite the objections of his collaborator Anthony Zee, a renowned theoretical physicist at the University of California-Santa Barbara.

    “I said, ‘Come on, Tony, people are going to make fun of us,’” said Wilczek, now a professor at the Massachusetts Institute of Technology.

    Others weren’t so reluctant. Researchers have spent millions of dollars over the past three decades or so trying to capture and tame the particlelike objects, which go by the cryptic moniker of “non-abelian anyons”.

    Now two landmark experiments have finally succeeded, and no one is laughing. “This has been a target, and now it’s hit,” Wilczek said.

    Physicists working with the company Quantinuum announced today that they had used the company’s newly unveiled, next-generation H2 processor to synthesize and manipulate non-abelian anyons in a novel phase of quantum matter.

    2
    Researchers used Quantinuum’s new H2 processor to simulate a novel state of matter in which non-abelian anyons can be created and manipulated.
    Credit: Quantinuum.

    Their work follows a paper posted last fall in which researchers with Google celebrated the first clear intertwining of non-abelian objects, a proof of concept that information can be stored and manipulated in their shared memory. Together, the experiments flex the growing muscle of quantum devices while offering a potential glimpse into the future of computing: By maintaining nearly indestructible records of their journeys through space and time, non-abelian anyons could offer the most promising platform for building error-tolerant quantum computers.

    “As pure science, it’s just, wow,” said Ady Stern, a condensed matter theorist at the Weizmann Institute of Science in Israel who has spent his career studying the objects. “This brings you closer [to topological quantum computing]. But if there’s one thing the last few decades have shown us, it’s a long and winding road.”

    Flatland Computing

    In 1982, Wilczek helped open physicists’ minds to the menagerie of particles that could exist in two dimensions. He worked out the consequences of confining quantum laws to a hypothetical, entirely flat universe, and found that it would contain strange particles with fractional spins and charges. Moreover, swapping otherwise indistinguishable particles could change them in ways that were impossible for their three-dimensional counterparts. Wilczek cheekily named these two-dimensional particles anyons, since they seemed to be capable of nearly anything.

    Wilczek focused on the simplest “abelian” anyons, particles that, when swapped, change in subtle ways that are not directly detectable.

    He stopped short of exploring the wilder option — non-abelian anyons, particles that share a memory. Swapping the positions of two non-abelian anyons produces a directly observable effect. It switches the state of their shared wave function, a quantity that describes a system’s quantum nature. If you stumble upon two identical non-abelian anyons, by measuring which state they are in, you can tell whether they have always been in those positions or whether they’ve crossed paths — a power no other particle can claim.

    To Wilczek, that notion seemed too fantastical to develop into a formal theory. “What kinds of states of matter support those?” he recalled thinking.

    But in 1991, two physicists identified those states [Nuclear Physics B (below)]. They predicted that, when subjected to strong enough magnetic fields and cold enough temperatures, electrons stuck to a surface would swirl together in just the right way to form non-abelian anyons. The anyons would not be fundamental particles — our 3D world forbids that — but “quasiparticles.” These are collections of particles, but they are best thought of as individual units. Quasiparticles have precise locations and behaviors, just as collections of water molecules produce waves and whirlpools.

    In 1997, Alexei Kitaev, a theorist at the California Institute of Technology, pointed out that such quasiparticles could lay the perfect foundation for quantum computers. Physicists have long salivated at the possibility of harnessing the quantum world to perform calculations beyond the reach of typical computers and their binary bits. But qubits, the atom-like building blocks of quantum computers, are fragile. Their wave functions collapse at the lightest touch, erasing their memories and their ability to perform quantum calculations. This flimsiness has complicated ambitions to control qubits long enough for them to finish lengthy calculations.

    Kitaev realized that the shared memory of non-abelian anyons could serve as an ideal qubit. For starters, it was malleable. You could change the state of the qubit — flipping a zero to a one — by exchanging the positions of the anyons in a manner known as “braiding.”

    You could also read out the state of the qubit. When the simplest non-abelian anyons are brought together and “fused,” for instance, they will emit another quasiparticle only if they have been braided. This quasiparticle serves as a physical record of their crisscrossed journey through space and time.

    And crucially, the memory is also nigh incorruptible. As long as the anyons are kept far apart, poking at any individual particle won’t change the state the pair is in — whether zero or one. In this way, their collective memory is effectively cut off from the cacophony of the universe.

    “This would be the perfect place to hide information,” said Maissam Barkeshli, a condensed matter theorist at the University of Maryland.

    Unruly Electrons

    Kitaev’s proposal came to be known as “topological” quantum computing because it relied on the topology of the braids. The term refers to broad features of the braid — for example, the number of turns — that aren’t affected by any specific deformation of their path. Most researchers now believe that braids are the future of quantum computing, in one form or another. Microsoft, for instance, has researchers trying to persuade electrons to form non-abelian anyons directly. Already, the company has invested millions of dollars into building tiny wires that — at sufficiently frigid temperatures — should host the simplest species of braidable quasiparticles at their tips. The expectation is that at these low temperatures, electrons will naturally gather to form anyons, which in turn can be braided into reliable qubits.

    After a decade of effort, though, those researchers are still struggling to prove that their approach will work. A splashy 2018 claim that they had finally detected the simplest type of non-abelian quasiparticle, known as “Majorana zero modes,” was followed by a similarly high-profile retraction in 2021. The company reported new progress in a 2022 paper, but few independent researchers expect to see successful braiding soon.

    Similar efforts to turn electrons into non-abelian anyons have also stalled. Bob Willett of Nokia Bell Labs has probably come the closest [Physical Review X] in his attempts to corral electrons in gallium arsenide, where promising but subtle signs of braiding exist. The data is messy, however, and the ultracold temperature, ultrapure materials, and ultrastrong magnetic fields make the experiment tough to reproduce.

    “There has been a long history of not observing anything,” said Eun-Ah Kim of Cornell University.

    Wrangling electrons, however, is not the only way to make non-abelian quasiparticles.

    “I had given up on all of this,” said Kim, who spent years coming up with ways to detect anyons as a graduate student and now collaborates with Google. “Then came the quantum simulators.”

    Compliant Qubits

    Quantum processors are changing the hunt for anyons. Instead of trying to coax hordes of electrons to fall into line, in recent years researchers have begun using the devices to bend individual qubits to their will. Some physicists consider these efforts simulations, because the qubits inside the processor are abstractions of particles (while their physical nature varies from lab to lab, you can visualize them as particles spinning around an axis). But the quantum nature of the qubits is real, so — simulations or not — the processors have become playgrounds for topological experiments.

    “It breathes new life” into the field, said Fiona Burnell, a condensed matter theorist at the University of Minnesota, “because it’s been so hard to make solid-state systems.”

    Synthesizing anyons on quantum processors is an alternate way to leverage the power of Kitaev’s braids: Accept that your qubits are mediocre, and correct their errors. Today’s shoddy qubits don’t work for very long, so anyons built from them would also have short lifetimes. The dream is to quickly and repeatedly measure groups of qubits and correct errors as they crop up, thereby extending the life span of the anyons. Measurement erases an individual qubit’s quantum information by collapsing its wave function and turning it into a classical bit. That would happen here too, but the important information would remain untouchable — hidden in the collective state of many anyons. In this way, Google and other companies hope to shore up qubits with fast measurements and swift corrections (as opposed to low temperatures).

    “Ever since Kitaev,” said Mike Zaletel, a condensed matter physicist at the University of California-Berkeley, “this has been the way people think quantum error correction will likely work.”

    Google took a major step toward quantum error correction in the spring of 2021, when researchers assembled about two dozen qubits into the simplest grid capable of quantum error correction, a phase of matter known as the toric code.

    Creating the toric code on Google’s processor amounts to forcing each qubit to strictly cooperate with its neighbors by gently nudging them with microwave pulses. Left unmeasured, a qubit points in a superposition of many possible directions. Google’s processor effectively cut down on those options by making each qubit coordinate its spin axis with its four neighbors in specific ways. While the toric code has topological properties that can be used for quantum error correction, it doesn’t natively host non-abelian quasiparticles. For that, Google had to turn to a strange trick long known [Physical Review Letters(below)] to theorists: certain imperfections in the grid of qubits, dubbed “twist defects,” can acquire non-abelian magic.

    Last fall, Kim and Yuri Lensky, a theorist at Cornell, along with Google researchers, posted a recipe for easily making and braiding pairs of defects in the toric code. In a preprint posted shortly after, experimentalists at Google reported implementing that idea, which involved severing connections between neighboring qubits. The resulting flaws in the qubit grid acted just like the simplest species of non-abelian quasiparticle, Microsoft’s Majorana zero modes.

    “My initial reaction was ‘Wow, Google just simulated what Microsoft is trying to build. It was a real flexing moment,” said Tyler Ellison, a physicist at Yale University.

    4
    Merrill Sherman/Quanta Magazine.

    By tweaking which connections they cut, the researchers could move the deformations. They made two pairs of non-abelian defects, and by sliding them around a five-by-five-qubit chessboard, they just barely eked out a braid. The researchers declined to comment on their experiment, which is being prepared for publication, but other experts praised the achievement.

    “In a lot of my work, I’ve been doodling similar-looking pictures,” Ellison said. “It’s amazing to see that they actually demonstrated this.”

    Paint by Measurement

    All the while, a group of theorists headed up by Ashvin Vishwanath at Harvard University was quietly pursuing what many consider an even loftier goal: creating a more complicated phase of quantum matter where true non-abelian anyons — as opposed to defects — arise natively in a pristine phase of matter. “[Google’s] defect is kind of a baby non-abelian thing,” said Burnell, who was not involved in either effort.

    Anyons of both types live in phases of matter with a topological nature defined by intricate tapestries of gossamer threads, quantum connections known as entanglement. Entangled particles behave in a coordinated way, and when trillions of particles become entangled, they can ripple in complicated phases sometimes likened to dances. In phases with topological order, entanglement organizes particles into loops of aligned spins. When a loop is cut, each end is an anyon.

    Topological order comes in two flavors. Simple phases such as the toric code have “abelian order.” There, loose ends are abelian anyons. But researchers seeking true non-abelian anyons have their sights set on a completely different and much more complicated tapestry with non-abelian order.

    Vishwanath’s group helped cook up a phase with abelian order in 2021. They dreamt of going further, but stitching qubits into non-abelian entanglement patterns proved too intricate for today’s unstable processors. So the crew scoured the literature for fresh ideas.

    They found a clue in a pair of papers [ https://arxiv.org/pdf/quant-ph/0108118.pdf and https://arxiv.org/pdf/quant-ph/0407255.pdf ] decades before. Most quantum devices compute by massaging their qubits much as one might fluff a pillow, in a gentle way where no stuffing flies out through the seams. Carefully knitting entanglement through these “unitary” operations takes time. But in the early 2000s Robert Raussendorf, a physicist now at the University of British Columbia, hit on a shortcut. The secret was to hack away chunks of the wave function using measurement — the process that normally kills quantum states.from decades before. Most quantum devices compute by massaging their qubits much as one might fluff a pillow, in a gentle way where no stuffing flies out through the seams. Carefully knitting entanglement through these “unitary” operations takes time. But in the early 2000s Robert Raussendorf, a physicist now at the University of British Columbia, hit on a shortcut. The secret was to hack away chunks of the wave function using measurement — the process that normally kills quantum states.

    “It’s a really violent operation,” said Ruben Verresen, one of Vishwanath’s collaborators at Harvard.

    Raussendorf and his collaborators detailed how selective measurements on certain qubits could take an unentangled state and intentionally put it into an entangled state, a process Verresen likens to cutting away marble to sculpt a statue.

    The technique had a dark side that initially doomed researchers’ attempts to make non-abelian phases: Measurement produces random outcomes. When the theorists targeted a particular phase, measurements left non-abelian anyons speckled randomly about, as if the researchers were trying to paint the Mona Lisa by splattering paint onto a canvas. “It seemed like a complete headache,” Verresen said.

    Toward the end of 2021, Vishwanath’s group hit on a solution: sculpting the wave function of a qubit grid with multiple rounds of measurement. With the first round, they turned a boring phase of matter into a simple abelian phase. Then they fed that phase forward into a second round of measurements, further chiseling it into a more complicated phase. By playing this game of topological cat’s cradle, they realized they could address randomness while moving step by step, climbing a ladder of increasingly complicated phases to reach a phase with non-abelian order.

    “Instead of randomly trying measurements and seeing what you get, you want to hop across the landscape of phases of matter,” Verresen said. It’s a topological landscape that theorists have only recently begun to understand.

    Last summer, the group put their theory to the test on Quantinuum’s H1 trapped-ion processor, one of the only quantum devices that can perform measurements on the fly. Replicating parts of Google’s experiment, they made the abelian toric code and created a stationary non-abelian defect in it. They tried for a non-abelian phase but couldn’t get there with only 20 qubits.

    But then a researcher at Quantinuum, Henrik Dreyer, took Verresen aside. After swearing him to secrecy with a nondisclosure agreement, he told Verresen that the company had a second-generation device. Crucially, the H2 had a whopping 32 qubits. It took substantial finagling, but the team managed to set up the simplest non-abelian phase on 27 of those qubits. “If we had one or two fewer qubits, I don’t think we could have done it,” Vishwanath said.

    Their experiments marked the first unassailable detection of a non-abelian phase of matter. “To realize a non-abelian topological order is something people have wanted to do for a long time,” Burnell said. “That’s definitely an important landmark.”

    Their work culminated in the braiding of three pairs of non-abelian anyons such that their trajectories through space and time formed a pattern known as Borromean rings, the first braiding of non-abelian anyons. Three Borromean rings are inseparable when together, but if you cut one the other two will fall apart.

    “There’s a kind of gee-whiz factor,” Wilczek said. “It takes enormous control of the quantum world to produce these quantum objects.”

    The Big Chill

    As other physicists celebrate these milestones, they also emphasize that Google and Quantinuum are running a different race than the likes of Microsoft and Willett. Creating topological phases on a quantum processor is like making the world’s tiniest ice cube by stacking a few dozen water molecules — impressive, they say, but not nearly as satisfying as watching a slab of ice form naturally.

    “The underlying math is extremely beautiful, and being able to validate that is definitely worthwhile,” said Chetan Nayak, a researcher at Microsoft who has done pioneering work on non-abelian systems. But for his part, he said, he’s still hoping to see a system settle into a state with this sort of intricate entanglement pattern on its own when cooled.

    “If this was unambiguously seen in [Willett’s experiments], our minds would be blown,” Barkeshli said. Seeing it in a quantum processor “is cool, but no one’s getting blown away.”

    The most exciting aspect of these experiments, according to Barkeshli, is their significance for quantum computation: Researchers have finally shown that they can make the necessary ingredients, 26 years after Kitaev’s initial proposal. Now they just need to figure out how to really put them to work.

    One snag is that like Pokémon, anyons come in a tremendous number of different species, each with its own strengths and weaknesses. Some, for example, have richer memories of their pasts, making their braids more computationally powerful. But coaxing them into existence is harder. Any specific scheme will have to weigh such trade-offs, many of which aren’t yet understood.

    “Now that we have the ability to make different kinds of topological order, these things become real, and you can talk about these trade-offs in more concrete terms,” Vishwanath said.

    The next milestone will be real error correction, which neither Google nor Quantinuum attempted. Their braided qubits were hidden but not protected, which would have required measuring the crummy underlying qubits and quickly fixing their errors in real time. That demonstration would be a watershed moment in quantum computation, but it’s years away — if it’s even possible.

    Until then, optimists hope these recent experiments will launch a cycle where more advanced quantum computers lead to a better command over non-abelian quasiparticles, and that control in turn helps physicists develop more capable quantum devices.

    “Just bringing out the power of measurement,” Wilczek said, “that’s something that might be a game-changer.”

    Nuclear Physics B 1991
    Physical Review X
    Physical Review Letters 2010

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Formerly known as Simons Science News, Quanta Magazine is an editorially independent online publication launched by the Simons Foundation to enhance public understanding of science. Why Quanta? Albert Einstein called photons “quanta of light.” Our goal is to “illuminate science.” At Quanta Magazine, scientific accuracy is every bit as important as telling a good story. All of our articles are meticulously researched, reported, edited, copy-edited and fact-checked.

     
  • richardmitnick 8:41 am on May 15, 2023 Permalink | Reply
    Tags: "Cornell and Google first to detect key to quantum computing future", , , , “Braid”, , , Error correction systems based on qubits will be necessary for quantum computing as the field develops., Google Quantum AI experimentalists created and moved non-Abelian anyons physically on a 2D grid of qubits resembling a checkerboard., , , Quantum Mechanics, Scientists demonstrated how braiding non-Abelian anyons might be used in quantum computations creating a well-known quantum entangled state by braiding several non-Abelian anyons together., The "Greenberger-Horne-Zeilinger (GHZ)" state created by braiding several non-Abelian anyons together., , The particles remember the history.   

    From The College of Arts and Sciences At Cornell University Via “The Chronicle”: “Cornell and Google first to detect key to quantum computing future” 

    From The College of Arts and Sciences

    At

    Cornell University

    Via

    “The Chronicle”

    5.12.23
    Kate Blackwood | College of Arts and Sciences

    Eun-Ah Kim, professor of physics in the College of Arts and Sciences, and Google researchers report the first demonstration of two-dimensional particles, called “non-Abelian anyons”, that are the key ingredient for realizing topological quantum computing, a promising method of introducing fault resistance to quantum computing.

    The scientists published May 11 in Nature [below]. The experiment with Google Quantum AI published [Annals of Physics (below)] in March by Kim and co-author Yuri Lensky, a former postdoctoral researcher in the Laboratory of Atomic and Solid State Physics.

    Theorized about for 40 years but not realized in theory or experiment until 2022 by Kim and collaborators, non-Abelian anyons can, in certain 2D systems, produce a measurable record of their movement when two of them exchange positions. They retain a sort of memory, making it possible to tell when two of them have been exchanged, despite being completely identical.

    The resulting trail through space-time – known as a “braid” – could protect bits of quantum information by storing them nonlocally and could be used in a platform for protected quantum bits (qubits), Kim said.

    Google experimentalists used one of their superconducting quantum processors to observe the peculiar behavior of non-Abelian anyons for the first time and demonstrated how this phenomenon could be used to perform quantum computations. Error correction systems based on qubits will be necessary for quantum computing as the field develops.

    Following the protocol laid out in Kim and Lensky’s theoretical work, Google Quantum AI experimentalists created and moved non-Abelian anyons physically on a 2D grid of qubits resembling a checkerboard. To realize non-Abelian anyons, they stretched and squashed the quantum state of qubits laid out on the grid, letting the qubits form more general graphs.

    Although backed by robust mathematics, Kim said, a simple geometric and creative insight is at the heart of both theory and experiment realizing non-Abelian anyons in the physical world.

    “We needed to introduce a new theoretical framework relying on the mathematics of gauge theories,” Kim said, “to implement the edge-swinging moves on the device and predict quantum measurement outcomes.

    “It looks simple, but the particles remember the history,” Kim said. “If you want this to be the technology of the future, you want it to be simple and straightforward.”

    In a series of experiments, the Google researchers observed the behavior of these non-Abelian anyons and how they interacted with the more mundane particles in the setup. Weaving the two types of particles around each other led to bizarre phenomena; particles disappeared, reappeared and shapeshifted from one type to another, Google researchers said.

    Most importantly, the researchers observed the hallmark behavior of non-Abelian anyons researchers have been seeking for years: Swapping two of them caused a measurable change in the quantum state of their system. Finally, they demonstrated how braiding non-Abelian anyons might be used in quantum computations, creating a well-known quantum entangled state called the “Greenberger-Horne-Zeilinger (GHZ)” state by braiding several non-Abelian anyons together.

    Kim, co-chair of Cornell’s Quantum Science and Technology Radical Collaboration initiative, called this work a major advance in both condensed matter physics and quantum information science.

    “Our observations represent an important milestone in the study of topological systems, and present a new platform for exploring the rich physics of non-Abelian anyons,” Kim said. “Moreover, through the future inclusion of error correction, it opens a new path towards fault-tolerant quantum computing.”

    Nature

    Fig. 1: Deformations of the surface code.
    1
    a, Stabilizer codes are conveniently described in a graph framework. Through deformations of the surface code graph, a square grid of qubits (crosses) can be used to realize more generalized graphs. Plaquette violations (red) correspond to stabilizers with sp = −1 and are created by local Pauli operations. In the absence of deformations, plaquette violations are constrained to move on one of the two sublattices of the dual graph in the surface code, hence the two shades of blue. b, A pair of D3Vs (yellow triangles) appears by removing an edge between two neighbouring stabilizers, S^1 and S^2, and introducing the new stabilizer, S^=S^1S^2. A D3V is moved by applying a two-qubit entangling gate, exp(π8[S^′,S^]). In the presence of bulk D3Vs, there is no consistent way of chequerboard colouring, hence the (arbitrarily chosen) grey regions. The top right shows that in a general stabilizer graph, S^p can be found from a constraint at each vertex, where {τ1, τ2} = 0.

    Annals of Physics

    See the full article here .

    See also a previous blog post on this topic from Cornell here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The College of Arts and Sciences is a division of Cornell University. It has been part of the university since its founding, although its name has changed over time. It grants bachelor’s degrees, and masters and doctorates through affiliation with the Cornell University Graduate School. Its major academic buildings are located on the Arts Quad and include some of the university’s oldest buildings. The college offers courses in many fields of study and is the largest college at Cornell by undergraduate enrollment.

    Originally, the university’s faculty was undifferentiated, but with the founding of the Cornell Law School in 1886 and the concomitant self-segregation of the school’s lawyers, different departments and colleges formed.

    Initially, the division that would become the College of Arts and Sciences was known as the Academic Department, but it was formally renamed in 1903. The College endowed the first professorships in American history, musicology, and American literature. Currently, the college teaches 4,100 undergraduates, with 600 full-time faculty members (and an unspecified number of lecturers) teaching 2,200 courses.

    The Arts Quad is the site of Cornell’s original academic buildings and is home to many of the college’s programs. On the western side of the quad, at the top of Libe Slope, are Morrill Hall (completed in 1866), McGraw Hall (1872) and White Hall (1868). These simple but elegant buildings, built with native Cayuga bluestone, reflect Ezra Cornell’s utilitarianism and are known as Stone Row. The statue of Ezra Cornell, dating back to 1919, stands between Morrill and McGraw Halls. Across from this statue, in front of Goldwin Smith Hall, sits the statue of Andrew Dickson White, Cornell’s other co-founder and its first president.

    Lincoln Hall (1888) also stands on the eastern face of the quad next to Goldwin Smith Hall. On the northern face are the domed Sibley Hall and Tjaden Hall (1883). Just off of the quad on the Slope, next to Tjaden, stands the Herbert F. Johnson Museum of Art, designed by I. M. Pei. Stimson Hall (1902), Olin Library (1959) and Uris Library (1892), with Cornell’s landmark clocktower, McGraw Tower, stand on the southern end of the quad.

    Olin Library replaced Boardman Hall (1892), the original location of the Cornell Law School. In 1992, an underground addition was made to the quad with Kroch Library, an extension of Olin Library that houses several special collections of the Cornell University Library, including the Division of Rare and Manuscript Collections.

    Klarman Hall, the first new humanities building at Cornell in over 100 years, opened in 2016. Klarman houses the offices of Comparative Literature and Romance Studies. The building is connected to, and surrounded on three sides by, Goldwin Smith Hall and fronts East Avenue.

    Legends and lore about the Arts Quad and its statues can be found at Cornelliana.

    The College of Arts and Sciences offers both undergraduate and graduate (through the Graduate School) degrees. The only undergraduate degree is the Bachelor of Arts. However, students may enroll in the dual-degree program, which allows them to pursue programs of study in two colleges and receive two different degrees. The faculties within the college are:

    Africana Studies and Research Center*
    American Studies
    Anthropology
    Archaeology
    Asian-American Studies
    Asian Studies
    Astronomy/Astrophysics
    Biology (with the College of Agriculture and Life Sciences)
    Biology & Society Major (with the Colleges of Agriculture and Life Sciences and Human Ecology)
    Chemistry and Chemical Biology
    China and Asia-pacific Studies
    Classics
    Cognitive Studies
    College Scholar Program (frees up to 40 selected students in each class from all degree requirements and allows them to fashion a plan of study conducive to achieving their ultimate intellectual goals; a senior thesis is required)
    Comparative Literature
    Computer Science (with the College of Engineering)
    Earth and Atmospheric Sciences (with the Colleges of Agriculture and Life Sciences and Engineering)
    Economics
    English
    Feminist, Gender, and Sexuality Studies
    German Studies
    Government
    History
    History of Art
    Human Biology
    Independent Major
    Information Science (with the College of Agriculture and Life Sciences and College of Engineering)
    Jewish Studies
    John S. Knight Institute for Writing in the Disciplines
    Latin American Studies
    Latino Studies
    Lesbian, Gay, Bisexual, and Transgender Studies
    Linguistics
    Mathematics
    Medieval Studies
    Modern European Studies Concentration
    Music
    Near Eastern Studies
    Philosophy
    Physics
    Psychology
    Religious Studies
    Romance Studies
    Russian
    Science and Technology Studies
    Society for the Humanities
    Sociology
    Theatre, Film, and Dance
    Visual Studies Undergraduate Concentration

    *Africana Studies was an independent center reporting directly to the Provost until July 1, 2011.

    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

    Cornell University is a private, statutory, Ivy League and land-grant research university in Ithaca, New York. Founded in 1865 by Ezra Cornell and Andrew Dickson White, the university was intended to teach and make contributions in all fields of knowledge—from the classics to the sciences, and from the theoretical to the applied. These ideals, unconventional for the time, are captured in Cornell’s founding principle, a popular 1868 quotation from founder Ezra Cornell: “I would found an institution where any person can find instruction in any study.”

    The university is broadly organized into seven undergraduate colleges and seven graduate divisions at its main Ithaca campus, with each college and division defining its specific admission standards and academic programs in near autonomy. The university also administers two satellite medical campuses, one in New York City and one in Education City, Qatar, and The Jacobs Technion-Cornell Institute in New York City, a graduate program that incorporates technology, business, and creative thinking. The program moved from Google’s Chelsea Building in New York City to its permanent campus on Roosevelt Island in September 2017.

    Cornell is one of the few private land-grant universities in the United States. Of its seven undergraduate colleges, three are state-supported statutory or contract colleges through The State University of New York (SUNY) system, including its Agricultural and Human Ecology colleges as well as its Industrial Labor Relations school. Of Cornell’s graduate schools, only the veterinary college is state-supported. As a land grant college, Cornell operates a cooperative extension outreach program in every county of New York and receives annual funding from the State of New York for certain educational missions. The Cornell University Ithaca Campus comprises 745 acres, but is much larger when the Cornell Botanic Gardens (more than 4,300 acres) and the numerous university-owned lands in New York City are considered.

    Alumni and affiliates of Cornell have reached many notable and influential positions in politics, media, and science. As of January 2021, 61 Nobel laureates, four Turing Award winners and one Fields Medalist have been affiliated with Cornell. Cornell counts more than 250,000 living alumni, and its former and present faculty and alumni include 34 Marshall Scholars, 33 Rhodes Scholars, 29 Truman Scholars, 7 Gates Scholars, 55 Olympic Medalists, 10 current Fortune 500 CEOs, and 35 billionaire alumni. Since its founding, Cornell has been a co-educational, non-sectarian institution where admission has not been restricted by religion or race. The student body consists of more than 15,000 undergraduate and 9,000 graduate students from all 50 American states and 119 countries.

    History

    Cornell University was founded on April 27, 1865; the New York State (NYS) Senate authorized the university as the state’s land grant institution. Senator Ezra Cornell offered his farm in Ithaca, New York, as a site and $500,000 of his personal fortune as an initial endowment. Fellow senator and educator Andrew Dickson White agreed to be the first president. During the next three years, White oversaw the construction of the first two buildings and traveled to attract students and faculty. The university was inaugurated on October 7, 1868, and 412 men were enrolled the next day.

    Cornell developed as a technologically innovative institution, applying its research to its own campus and to outreach efforts. For example, in 1883 it was one of the first university campuses to use electricity from a water-powered dynamo to light the grounds. Since 1894, Cornell has included colleges that are state funded and fulfill statutory requirements; it has also administered research and extension activities that have been jointly funded by state and federal matching programs.

    Cornell has had active alumni since its earliest classes. It was one of the first universities to include alumni-elected representatives on its Board of Trustees. Cornell was also among the Ivies that had heightened student activism during the 1960s related to cultural issues; civil rights; and opposition to the Vietnam War, with protests and occupations resulting in the resignation of Cornell’s president and the restructuring of university governance. Today the university has more than 4,000 courses. Cornell is also known for the Residential Club Fire of 1967, a fire in the Residential Club building that killed eight students and one professor.

    Since 2000, Cornell has been expanding its international programs. In 2004, the university opened the Weill Cornell Medical College in Qatar. It has partnerships with institutions in India, Singapore, and the People’s Republic of China. Former president Jeffrey S. Lehman described the university, with its high international profile, a “transnational university”. On March 9, 2004, Cornell and Stanford University laid the cornerstone for a new ‘Bridging the Rift Center’ to be built and jointly operated for education on the Israel–Jordan border.

    Research

    Cornell, a research university, is ranked fourth in the world in producing the largest number of graduates who go on to pursue PhDs in engineering or the natural sciences at American institutions, and fifth in the world in producing graduates who pursue PhDs at American institutions in any field. Research is a central element of the university’s mission; in 2009 Cornell spent $671 million on science and engineering research and development, the 16th highest in the United States.

    Cornell is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”.

    For the 2016–17 fiscal year, the university spent $984.5 million on research. Federal sources constitute the largest source of research funding, with total federal investment of $438.2 million. The agencies contributing the largest share of that investment are The Department of Health and Human Services and the National Science Foundation, accounting for 49.6% and 24.4% of all federal investment, respectively. Cornell was on the top-ten list of U.S. universities receiving the most patents in 2003, and was one of the nation’s top five institutions in forming start-up companies. In 2004–05, Cornell received 200 invention disclosures; filed 203 U.S. patent applications; completed 77 commercial license agreements; and distributed royalties of more than $4.1 million to Cornell units and inventors.

    Since 1962, Cornell has been involved in unmanned missions to Mars. In the 21st century, Cornell had a hand in the Mars Exploration Rover Mission. Cornell’s Steve Squyres, Principal Investigator for the Athena Science Payload, led the selection of the landing zones and requested data collection features for the Spirit and Opportunity rovers. NASA-JPL/Caltech engineers took those requests and designed the rovers to meet them. The rovers, both of which have operated long past their original life expectancies, are responsible for the discoveries that were awarded 2004 Breakthrough of the Year honors by Science. Control of the Mars rovers has shifted between National Aeronautics and Space Administration ’s Jet Propulsion Laboratory at The California Institute of Technology and Cornell’s Space Sciences Building.

    Further, Cornell researchers discovered the rings around the planet Uranus, and Cornell built and operated the telescope at Arecibo Observatory located in Arecibo, Puerto Rico until 2011, when they transferred the operations to SRI International, the Universities Space Research Association and the Metropolitan University of Puerto Rico [Universidad Metropolitana de Puerto Rico].

    The Automotive Crash Injury Research Project was begun in 1952. It pioneered the use of crash testing, originally using corpses rather than dummies. The project discovered that improved door locks; energy-absorbing steering wheels; padded dashboards; and seat belts could prevent an extraordinary percentage of injuries.

    In the early 1980s, Cornell deployed the first IBM 3090-400VF and coupled two IBM 3090-600E systems to investigate coarse-grained parallel computing. In 1984, the National Science Foundation began work on establishing five new supercomputer centers, including the Cornell Center for Advanced Computing, to provide high-speed computing resources for research within the United States. As a National Science Foundation center, Cornell deployed the first IBM Scalable Parallel supercomputer.

    In the 1990s, Cornell developed scheduling software and deployed the first supercomputer built by Dell. Most recently, Cornell deployed Red Cloud, one of the first cloud computing services designed specifically for research. Today, the center is a partner on the National Science Foundation XSEDE-Extreme Science Engineering Discovery Environment supercomputing program, providing coordination for XSEDE architecture and design, systems reliability testing, and online training using the Cornell Virtual Workshop learning platform.

    Cornell scientists have researched the fundamental particles of nature for more than 70 years. Cornell physicists, such as Hans Bethe, contributed not only to the foundations of nuclear physics but also participated in the Manhattan Project. In the 1930s, Cornell built the second cyclotron in the United States. In the 1950s, Cornell physicists became the first to study synchrotron radiation.

    During the 1990s, the Cornell Electron Storage Ring, located beneath Alumni Field, was the world’s highest-luminosity electron-positron collider. After building the synchrotron at Cornell, Robert R. Wilson took a leave of absence to become the founding director of DOE’s Fermi National Accelerator Laboratory, which involved designing and building the largest accelerator in the United States.

    Cornell’s accelerator and high-energy physics groups are involved in the design of the proposed ILC-International Linear Collider(JP) and plan to participate in its construction and operation. The International Linear Collider(JP), to be completed in the late 2010s, will complement the CERN Large Hadron Collider(CH) and shed light on questions such as the identity of dark matter and the existence of extra dimensions.
    As part of its research work, Cornell has established several research collaborations with universities around the globe. For example, a partnership with the University of Sussex(UK) (including the Institute of Development Studies at Sussex) allows research and teaching collaboration between the two institutions.

     
  • richardmitnick 10:57 am on May 12, 2023 Permalink | Reply
    Tags: "The University of Connecticut and Yale University Push Connecticut to Quantum Reality", , , , Connecticut is making progress to become the nation’s leading accelerator of quantum technologies., Quantum Mechanics, The NSF designed the awards to benefit states and regions that have not fully benefited from the technology boom of the last few decades., The project entitled “Quantum-CT”, The state’s two premiere research universities are answering The National Science Foundation’s call to catalyze regional economic and societal well-being through technological innovation., ,   

    From The University of Connecticut And Yale University: “The University of Connecticut and Yale University Push Connecticut to Quantum Reality” 

    From The University of Connecticut

    And

    Yale University

    5.11.23
    Matt Engelhardt | The University of Connecticut

    The state’s two premiere research universities are answering The National Science Foundation’s call to catalyze regional economic and societal well-being through technological innovation.

    1
    NSF

    Connecticut is making progress to become the nation’s leading accelerator of quantum technologies, with UConn and Yale leading the way.

    The state’s two premiere research universities are heading a massive coalition seeking funds to help establish the state as a quantum leader. This week, the project entitled “Quantum-CT” took an important step towards its goal with a $1 million National Science Foundation Engines Development award.

    NSF Regional Innovations Engines awarded more than 40 of the prestigious, first-ever awards to collaborations formed to create economic, societal, and technological opportunities for their regions.

    The UConn-Yale partnership recruited an expansive coalition of public, private, and state officials that aims to establish Connecticut as an innovation engine powered by quantum technologies. The award funds a two-year development effort that will help position Connecticut to become the nation’s accelerator for quantum technologies and compete for an NSF Engines award of up to $160 million over 10 years.

    “Quantum science and technologies hold so many keys to the future of Connecticut and the nation,” said Pamir Alpay, UConn’s interim vice president for research, innovation, and entrepreneurship. “Bringing together the expertise and research excellence of UConn, Yale, and many partners, “Quantum-CT” has the potential to be transformative for science, our economy, and workforce. This program extends opportunities to communities and sectors left behind by recent economic downturn and promotes equitability across the state.”

    Alpay is one of the lead investigators on the project. “Quantum-CT” seeks to make Connecticut the nation’s accelerator for quantum technologies, which is tech developed through quantum mechanical principles that govern the atomic and subatomic world. Quantum technologies are poised to influence hundreds of applications, including smartphones, navigation systems, advanced computers, and hundreds of other applications impacting many of Connecticut’s key manufacturing, energy, and infrastructure industries.

    “Connecticut is a microcosm of the challenges and opportunities facing our nation,” said UConn President Radenka Maric. “Our proud industrial base has stayed strong in the face of international competition, offshore manufacturing, and the mass retirement of skilled workers. Likewise, our cities and towns have persevered through tremendous adversity. UConn is honored to join Yale as leaders in the effort to make Connecticut America’s accelerator by transforming a diverse, compact region into an economic development powerhouse using quantum tech.”

    With its versatility and potential to change lives for the better, quantum technology research and development has generated dozens of partners for the “Quantum-CT” initiative. Collaborators on the grant include the Governor’s office, the cities of Hartford, New Haven, Stamford, and Waterbury, the Connecticut State Colleges and Universities (CSCU), the Connecticut Conference of Independent Colleges, and the CT Business and Industry Association, among others. Innovation and venture partners, including Connecticut Innovations, CT Next, Advance CT, Yale Ventures, and UConn’s Technology Innovation Program, will work to together ensure that emerging quantum technologies are quickly transferred to real-world applications.

    “Quantum technology represents the future of computers and science, and through a partnership fused between UConn and Yale, Connecticut is ready, determined, and eager to become the nationwide hub and central force of this technological revolution,” Governor Ned Lamont said. “Our workforce in Connecticut is the best educated and most talented in the nation, trained with the modern skills needed to make the United States an international leader in the research and development of the emerging field of quantum technology. Our workforce, our businesses, our schools, our research institutions, and our state government are aligned in the effort to create the pipeline needed to grow this field.”

    The NSF designed the awards to benefit states and regions that have not fully benefited from the technology boom of the last few decades. “Quantum-CT” is officially award number 2302908.

    “These NSF Engines Development Awards lay the foundation for emerging hubs of innovation and potential future NSF Engines,” said NSF Director Sethuraman Panchanathan, who visited UConn in 2022 and announced the Engines program. “These awardees are part of the fabric of NSF’s vision to create opportunities everywhere and enable innovation anywhere. They will build robust regional partnerships rooted in scientific and technological innovation in every part of our nation. Through these planning awards, NSF is seeding the future for in-place innovation in communities and to grow their regional economies through research and partnerships. This will unleash ideas, talent, pathways and resources to create vibrant innovation ecosystems all across our nation.”

    The “Quantum-CT” planning initiative is complex, incorporating all sectors that stand to be impacted by the economic revitalization spurred through quantum technology translation. In addition to state offices and the network of universities, technology adopters in the pharmaceutical, defense, financial services, and computing sectors all stand to benefit.

    “Yale has a stellar reputation in quantum science and a blossoming start-up community in quantum technologies,” said Michael Crair, Yale’s vice provost for research and co-principal investigator for the NSF grant. “This will be a multi-billion-dollar industry, and we’d love for Yale and UConn, with partners around the state, to nucleate a national quantum corridor in Connecticut.”

    UConn’s involvement includes more than a dozen researchers spanning several schools, colleges, and services, including the School of Engineering, College of Liberal Arts and Sciences, and the Technology Commercialization Services wing of the University’s research enterprise. Quantum technology is applicable to many of UConn’s research priorities, including sensing, cryptography, artificial intelligence, infrastructure optimization, drug and therapy development, software, and cybersecurity.

    “The complexity and vastness of “Quantum-CT” will draw out the best of UConn and utilize our full physical infrastructure and intellectual capital,” Alpay said. “Together with Yale and the support of our partners, we have the resources and expertise necessary to make Connecticut the nation’s quantum technology accelerator.”

    More information about Quantum-CT is available at quantumct.org. To learn more about the NSF Regional Innovation Engines, visit new.nsf.gov/funding/initiatives/regional-innovation-engines.

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Yale University is a private Ivy League research university in New Haven, Connecticut. Founded in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and one of the nine Colonial Colleges chartered before the American Revolution. The Collegiate School was renamed Yale College in 1718 to honor the school’s largest private benefactor for the first century of its existence, Elihu Yale. Yale University is consistently ranked as one of the top universities and is considered one of the most prestigious in the nation.

    Chartered by Connecticut Colony, the Collegiate School was established in 1701 by clergy to educate Congregational ministers before moving to New Haven in 1716. Originally restricted to theology and sacred languages, the curriculum began to incorporate humanities and sciences by the time of the American Revolution. In the 19th century, the college expanded into graduate and professional instruction, awarding the first PhD in the United States in 1861 and organizing as a university in 1887. Yale’s faculty and student populations grew after 1890 with rapid expansion of the physical campus and scientific research.

    Yale is organized into fourteen constituent schools: the original undergraduate college, the Yale Graduate School of Arts and Sciences and twelve professional schools. While the university is governed by the Yale Corporation, each school’s faculty oversees its curriculum and degree programs. In addition to a central campus in downtown New Haven, the university owns athletic facilities in western New Haven, a campus in West Haven, Connecticut, and forests and nature preserves throughout New England. As of June 2020, the university’s endowment was valued at $31.1 billion, the second largest of any educational institution. The Yale University Library, serving all constituent schools, holds more than 15 million volumes and is the third-largest academic library in the United States. Students compete in intercollegiate sports as the Yale Bulldogs in the NCAA Division I – Ivy League.

    As of October 2020, 65 Nobel laureates, five Fields Medalists, four Abel Prize laureates, and three Turing award winners have been affiliated with Yale University. In addition, Yale has graduated many notable alumni, including five U.S. Presidents, 19 U.S. Supreme Court Justices, 31 living billionaires, and many heads of state. Hundreds of members of Congress and many U.S. diplomats, 78 MacArthur Fellows, 252 Rhodes Scholars, 123 Marshall Scholars, and nine Mitchell Scholars have been affiliated with the university.

    Research

    Yale is a member of the Association of American Universities (AAU) and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation , Yale spent $990 million on research and development in 2018, ranking it 15th in the nation.

    Yale’s faculty include 61 members of the National Academy of Sciences , 7 members of the National Academy of Engineering and 49 members of the American Academy of Arts and Sciences . The college is, after normalization for institution size, the tenth-largest baccalaureate source of doctoral degree recipients in the United States, and the largest such source within the Ivy League.

    Yale’s English and Comparative Literature departments were part of the New Criticism movement. Of the New Critics, Robert Penn Warren, W.K. Wimsatt, and Cleanth Brooks were all Yale faculty. Later, the Yale Comparative literature department became a center of American deconstruction. Jacques Derrida, the father of deconstruction, taught at the Department of Comparative Literature from the late seventies to mid-1980s. Several other Yale faculty members were also associated with deconstruction, forming the so-called “Yale School”. These included Paul de Man who taught in the Departments of Comparative Literature and French, J. Hillis Miller, Geoffrey Hartman (both taught in the Departments of English and Comparative Literature), and Harold Bloom (English), whose theoretical position was always somewhat specific, and who ultimately took a very different path from the rest of this group. Yale’s history department has also originated important intellectual trends. Historians C. Vann Woodward and David Brion Davis are credited with beginning in the 1960s and 1970s an important stream of southern historians; likewise, David Montgomery, a labor historian, advised many of the current generation of labor historians in the country. Yale’s Music School and Department fostered the growth of Music Theory in the latter half of the 20th century. The Journal of Music Theory was founded there in 1957; Allen Forte and David Lewin were influential teachers and scholars.

    In addition to eminent faculty members, Yale research relies heavily on the presence of roughly 1200 Postdocs from various national and international origin working in the multiple laboratories in the sciences, social sciences, humanities, and professional schools of the university. The university progressively recognized this working force with the recent creation of the Office for Postdoctoral Affairs and the Yale Postdoctoral Association.

    Notable alumni

    Over its history, Yale has produced many distinguished alumni in a variety of fields, ranging from the public to private sector. According to 2020 data, around 71% of undergraduates join the workforce, while the next largest majority of 16.6% go on to attend graduate or professional schools. Yale graduates have been recipients of 252 Rhodes Scholarships, 123 Marshall Scholarships, 67 Truman Scholarships, 21 Churchill Scholarships, and 9 Mitchell Scholarships. The university is also the second largest producer of Fulbright Scholars, with a total of 1,199 in its history and has produced 89 MacArthur Fellows. The U.S. Department of State Bureau of Educational and Cultural Affairs ranked Yale fifth among research institutions producing the most 2020–2021 Fulbright Scholars. Additionally, 31 living billionaires are Yale alumni.

    At Yale, one of the most popular undergraduate majors among Juniors and Seniors is political science, with many students going on to serve careers in government and politics. Former presidents who attended Yale for undergrad include William Howard Taft, George H. W. Bush, and George W. Bush while former presidents Gerald Ford and Bill Clinton attended Yale Law School. Former vice-president and influential antebellum era politician John C. Calhoun also graduated from Yale. Former world leaders include Italian prime minister Mario Monti, Turkish prime minister Tansu Çiller, Mexican president Ernesto Zedillo, German president Karl Carstens, Philippine president José Paciano Laurel, Latvian president Valdis Zatlers, Taiwanese premier Jiang Yi-huah, and Malawian president Peter Mutharika, among others. Prominent royals who graduated are Crown Princess Victoria of Sweden, and Olympia Bonaparte, Princess Napoléon.

    Yale alumni have had considerable presence in U.S. government in all three branches. On the U.S. Supreme Court, 19 justices have been Yale alumni, including current Associate Justices Sonia Sotomayor, Samuel Alito, Clarence Thomas, and Brett Kavanaugh. Numerous Yale alumni have been U.S. Senators, including current Senators Michael Bennet, Richard Blumenthal, Cory Booker, Sherrod Brown, Chris Coons, Amy Klobuchar, Ben Sasse, and Sheldon Whitehouse. Current and former cabinet members include Secretaries of State John Kerry, Hillary Clinton, Cyrus Vance, and Dean Acheson; U.S. Secretaries of the Treasury Oliver Wolcott, Robert Rubin, Nicholas F. Brady, Steven Mnuchin, and Janet Yellen; U.S. Attorneys General Nicholas Katzenbach, John Ashcroft, and Edward H. Levi; and many others. Peace Corps founder and American diplomat Sargent Shriver and public official and urban planner Robert Moses are Yale alumni.

    Yale has produced numerous award-winning authors and influential writers, like Nobel Prize in Literature laureate Sinclair Lewis and Pulitzer Prize winners Stephen Vincent Benét, Thornton Wilder, Doug Wright, and David McCullough. Academy Award winning actors, actresses, and directors include Jodie Foster, Paul Newman, Meryl Streep, Elia Kazan, George Roy Hill, Lupita Nyong’o, Oliver Stone, and Frances McDormand. Alumni from Yale have also made notable contributions to both music and the arts. Leading American composer from the 20th century Charles Ives, Broadway composer Cole Porter, Grammy award winner David Lang, and award-winning jazz pianist and composer Vijay Iyer all hail from Yale. Hugo Boss Prize winner Matthew Barney, famed American sculptor Richard Serra, President Barack Obama presidential portrait painter Kehinde Wiley, MacArthur Fellow and contemporary artist Sarah Sze, Pulitzer Prize winning cartoonist Garry Trudeau, and National Medal of Arts photorealist painter Chuck Close all graduated from Yale. Additional alumni include architect and Presidential Medal of Freedom winner Maya Lin, Pritzker Prize winner Norman Foster, and Gateway Arch designer Eero Saarinen. Journalists and pundits include Dick Cavett, Chris Cuomo, Anderson Cooper, William F. Buckley, Jr., and Fareed Zakaria.

    In business, Yale has had numerous alumni and former students go on to become founders of influential business, like William Boeing (Boeing, United Airlines), Briton Hadden and Henry Luce (Time Magazine), Stephen A. Schwarzman (Blackstone Group), Frederick W. Smith (FedEx), Juan Trippe (Pan Am), Harold Stanley (Morgan Stanley), Bing Gordon (Electronic Arts), and Ben Silbermann (Pinterest). Other business people from Yale include former chairman and CEO of Sears Holdings Edward Lampert, former Time Warner president Jeffrey Bewkes, former PepsiCo chairperson and CEO Indra Nooyi, sports agent Donald Dell, and investor/philanthropist Sir John Templeton.

    Yale alumni distinguished in academia include literary critic and historian Henry Louis Gates, economists Irving Fischer, Mahbub ul Haq, and Nobel Prize laureate Paul Krugman; Nobel Prize in Physics laureates Ernest Lawrence and Murray Gell-Mann; Fields Medalist John G. Thompson; Human Genome Project leader and National Institutes of Health director Francis S. Collins; brain surgery pioneer Harvey Cushing; pioneering computer scientist Grace Hopper; influential mathematician and chemist Josiah Willard Gibbs; National Women’s Hall of Fame inductee and biochemist Florence B. Seibert; Turing Award recipient Ron Rivest; inventors Samuel F.B. Morse and Eli Whitney; Nobel Prize in Chemistry laureate John B. Goodenough; lexicographer Noah Webster; and theologians Jonathan Edwards and Reinhold Niebuhr.

    In the sporting arena, Yale alumni include baseball players Ron Darling and Craig Breslow and baseball executives Theo Epstein and George Weiss; football players Calvin Hill, Gary Fenick, Amos Alonzo Stagg, and “the Father of American Football” Walter Camp; ice hockey players Chris Higgins and Olympian Helen Resor; Olympic figure skaters Sarah Hughes and Nathan Chen; nine-time U.S. Squash men’s champion Julian Illingworth; Olympic swimmer Don Schollander; Olympic rowers Josh West and Rusty Wailes; Olympic sailor Stuart McNay; Olympic runner Frank Shorter; and others.

    The University of Connecticut is a public land-grant research university in Storrs, Connecticut. It was founded in 1881.

    The primary 4,400-acre (17.8 km^2) campus is in Storrs, Connecticut, approximately a half hour’s drive from Hartford and 90 minutes from Boston. It is a flagship university that is ranked as the best public national university in New England and is tied for 23rd in “top public schools” and tied for 63rd best national university in the 2021 U.S. News & World Report rankings. University of Connecticut has been ranked by Money Magazine and Princeton Review top 18th in value. The university is classified among “R1: Doctoral Universities – Very high research activity”. The university has been recognized as a “Public Ivy”, defined as a select group of publicly funded universities considered to provide a quality of education comparable to those of the Ivy League.

    The University of Connecticut is one of the founding institutions of the Hartford, Connecticut/Springfield, Massachusetts regional economic and cultural partnership alliance known as “New England’s Knowledge Corridor”. The University of Connecticut was the second U.S. university invited into Universitas 21, an elite international network of 24 research-intensive universities, who work together to foster global citizenship. The University of Connecticut is accredited by the New England Association of Schools and Colleges . The University of Connecticut was founded in 1881 as the Storrs Agricultural School, named after two brothers who donated the land for the school. In 1893, the school became a land grant college. In 1939, the name was changed to The University of Connecticut. Over the next decade, social work, nursing and graduate programs were established, while the schools of law and pharmacy were also absorbed into the university. During the 1960s, The University of Connecticut Health was established for new medical and dental schools. John Dempsey Hospital opened in Farmington in 1975.

    Competing in the Big East Conference as the Huskies, University of Connecticut has been particularly successful in their men’s and women’s basketball programs. The Huskies have won 21 NCAA championships. The University of Connecticut Huskies are the most successful women’s basketball program in the nation, having won a record 11 NCAA Division I National Championships (tied with the UCLA Bruins men’s basketball team) and a women’s record four in a row (2013–2016), plus over 40 conference regular season and tournament championships. University of Connecticut also owns the two longest winning streaks of any gender in college basketball history.

     
  • richardmitnick 12:32 pm on May 10, 2023 Permalink | Reply
    Tags: "Entangled quantum circuits", A loophole-​free Bell test, , , In 2015 various groups succeeded in conducting the first truly loophole-​free Bell tests thus finally settling the old dispute., Quantum Mechanics, Quantum mechanics vs General Relativity, , , Using superconducting circuitry for the first time to show that quantum mechanical objects far apart can be much more strongly correlated with each other than is possible in conventional systems.   

    From The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “Entangled quantum circuits” 

    From The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    5.10.23
    Felix Würsten

    ETH Zürich researchers have succeeding in demonstrating that quantum mechanical objects that are far apart can be much more strongly correlated with each other than is possible in conventional systems. For this experiment, they used superconducting circuits for the first time.

    1
    Partial section of the 30-​metre-long quantum connection between two superconducting circuits. The vacuum tube (centre) contains a microwave waveguide that is cooled to around –273°C and connects the two quantum circuits. (Photograph: ETH Zürich / Daniel Winkler)

    A group of researchers led by Andreas Wallraff, Professor of Solid State Physics at ETH Zürich, has performed a loophole-​free Bell test to disprove the concept of “local causality” formulated by Albert Einstein in response to quantum mechanics. By showing that quantum mechanical objects that are far apart can be much more strongly correlated with each other than is possible in conventional systems, the researchers have provided further confirmation for quantum mechanics. What’s special about this experiment is that the researchers were able for the first time to perform it using superconducting circuits, which are considered to be promising candidates for building powerful quantum computers.

    An old dispute

    A Bell test is based on an experimental setup that was initially devised as a thought experiment by British physicist John Bell in the 1960s. Bell wanted to settle a question that the greats of physics had already argued about in the 1930s: Are the predictions of quantum mechanics, which run completely counter to everyday intuition, correct, or do the conventional concepts of causality also apply in the atomic microcosm, as Albert Einstein believed?

    To answer this question, Bell proposed to perform a random measurement on two entangled particles at the same time and check it against Bell’s inequality. If Einstein’s concept of local causality is true, these experiments will always satisfy Bell’s inequality. By contrast, quantum mechanics predicts that they will violate it.

    The last doubts dispelled

    In the early 1970s, John Francis Clauser, who was awarded the Nobel Prize in Physics last year, and Stuart Freedman carried out a first practical Bell test. In their experiments, the two researchers were able to prove that Bell’s inequality is indeed violated. But they had to make certain assumptions in their experiments to be able to conduct them in the first place. So, theoretically, it might still have been the case that Einstein was correct to be sceptical of quantum mechanics.

    Over time, however, more and more of these loopholes could be closed. Finally, in 2015, various groups succeeded in conducting the first truly loophole-​free Bell tests, thus finally settling the old dispute.

    Promising applications

    Wallraff’s group can now confirm these results with a novel experiment. The work by the ETH researchers published in the renowned scientific journal Nature [below] shows that research on this topic is not concluded, despite the initial confirmation seven years ago. There are several reasons for this. For one thing, the ETH researchers’ experiment confirms that superconducting circuits operate according to the laws of quantum mechanics too, even though they are much bigger than microscopic quantum objects such as photons or ions. The several hundred micrometre-​sized electronic circuits made of superconducting materials and operated at microwave frequencies are referred to as macroscopic quantum objects.

    For another thing, Bell tests also have a practical significance. “Modified Bell tests can be used in cryptography, for example, to demonstrate that information is actually transmitted in encrypted form,” explains Simon Storz, a doctoral student in Wallraff’s group. “With our approach, we can prove much more efficiently than is possible in other experimental setups that Bell’s inequality is violated. That makes it particularly interesting for practical applications.”

    1
    The core team at ETH Anatoly Kulikov and Simon Storz and Andreas Wallraff and Josuar Schär and Janis Lütolf. Credit Daniel Winkler.

    3
    View inside. Credit Daniel Winkler.

    3
    The groups cryostat. Credit Daniel Winkler.

    The search for a compromise

    However, the researchers need a sophisticated test facility for this. Because for the Bell test to be truly loophole-​free, they must ensure that no information can be exchanged between the two entangled circuits before the quantum measurements are complete. Since the fastest that information can be transmitted is at the speed of light, the measurement must take less time than it takes a light particle to travel from one circuit to another.

    So, when setting up the experiment, it’s important to strike a balance: the greater the distance between the two superconducting circuits, the more time is available for the measurement – and the more complex the experimental setup becomes. This is because the entire experiment must be conducted in a vacuum near absolute zero.

    The ETH researchers have determined the shortest distance over which to perform a successful loophole-​free Bell test to be around 33 metres, as it takes a light particle about 110 nanoseconds to travel this distance in a vacuum. That’s a few nanoseconds more than it took the researchers to perform the experiment.

    Thirty-​metre vacuum

    Wallraff’s team has built an impressive facility in the underground passageways of the ETH campus. At each of its two ends is a cryostat containing a superconducting circuit. These two cooling apparatuses are connected by a 30-​metre-long tube whose interior is cooled to a temperature just above absolute zero (–273.15°C).

    Before the start of each measurement, a microwave photon is transmitted from one of the two superconducting circuits to the other so that the two circuits become entangled. Random number generators then decide which measurements are made on the two circuits as part of the Bell test. Next, the measurement results on both sides are compared.

    Large-​scale entanglement

    After evaluating more than one million measurements, the researchers have shown with very high statistical certainty that Bell’s inequality is violated in this experimental setup. In other words, they have confirmed that quantum mechanics also allows for non-​local correlations in macroscopic electrical circuits and consequently that superconducting circuits can be entangled over a large distance. This opens up interesting possible applications in the field of distributed quantum computing and quantum cryptography.

    Building the facility and carrying out the test was a challenge, Wallraff says. “We were able to finance the project over a period of six years with funding from an ERC Advanced Grant.” Just cooling the entire experimental setup to a temperature close to absolute zero takes considerable effort. “There are 1.3 tonnes of copper and 14,000 screws in our machine, as well as a great deal of physics knowledge and engineering know-​how,” Wallraff says. He believes that it would in principle be possible to build facilities that overcome even greater distances in the same way. This technology could, for instance, be used to connect superconducting quantum computers over great distances.

    Nature

    Fig. 1: Schematic of the Bell test experiment.

    Two parties A and B choose random-input bits (a, b) at the space–time locations indicated by stars and perform measurements on a pair of entangled quantum systems (in this work, superconducting circuit qubits) yielding output bits (x, y) at space–time locations indicated by crosses. The shaded areas indicate the forwards light cones originating at the space–time location of the random-input-bit-generation events. The inset in the middle indicates the offset angle θ between the measurement bases of the two qubits (main text).

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus

    The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of The Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the The Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas The University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology, Stanford University and University of Cambridge (UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology, Stanford University, California Institute of Technology, Princeton University, University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE Excellence Ranking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London (UK) and the University of Cambridge (UK), respectively.

     
  • richardmitnick 7:34 am on May 9, 2023 Permalink | Reply
    Tags: "Electron dynamics in real time", A research team from the University of Zurich has developed a method making the dynamics of an excited molecule visible., , Following how the wave function of the electrons changed over time after the laser pulse., How do electrons behave in a molecule when it is excited with a laser pulse and made to oscillate?, , , , Quantum Mechanics, , Take "detailed pictures" of the molecule at any point in the experiment., The science team employed “Piz Daint” to model the excited molecules’ dynamics including the quantum mechanical states., ,   

    From The University of Zürich (Universität Zürich) (CH): “Electron dynamics in real time” 

    From The University of Zürich (Universität Zürich) (CH)

    5.9.23
    Simone Ulmer

    Making the dynamics of an excited molecule visible is only possible using computationally intensive simulations. Recently, a research team led by Sandra Luber from the University of Zurich has developed a method that speeds up these complex simulations.

    1
    Visual representation of filtering processes as performed by the researcher’s algorithm. (Image adobe stock.)

    Theoretical chemist Sandra Luber wants to know exactly what is going on: How do electrons behave in a molecule when it is excited with a laser pulse and made to oscillate? In experimental setups, researchers measure the energy spectra of the excited electrons with a detector and thereby obtain an electronic adsorption spectrum of the molecule, for example. But what happens to the electrons in the time between the laser pulse and the resulting spectrogram remains hidden — only supercomputers like “Piz Daint” can make that visible.

    Calculating such dynamic processes in spectroscopy is time-consuming and cost-intensive, which means that even world-class supercomputers can only simulate small systems. However, Luber, a professor of theoretical chemistry at the University of Zurich, together with her PhD student Ruocheng Han and postdoc Johann Mattiat, recently presented an algorithm in Nature Communications [below] that works ten times faster, and without sacrificing accuracy.

    Supercomputer “Piz Daint”

    Luber and her team employed “Piz Daint” to model the excited molecules’ dynamics, including the quantum mechanical states. To do this, they used software packages such as CP2K that contain methods for calculating the quantum mechanical states in the atom or molecule in real time. This enabled them to follow how the wave function of the electrons changed over time after the laser pulse. Most importantly, they could see how the higher energy levels induced by the laser are occupied by the electrons and could take “detailed pictures” of the molecule at any point in the experiment. “This helps us analyze the structure and dynamics of a molecule,” said Luber.

    In order to avoid trial and error, the researchers ideally wanted to develop an automated method for speeding up these calculations. Specifically, the algorithm that the team created now optimizes the so-called basis sets of functions that then CP2K, for example, uses for the calculations. The team achieved this by identifying two indicators: one indicator that can be used to capture the importance of each basis function for calculating the spectrum; and another indicator that provides information about how important they are for correctly tracking the quantum mechanical states over time.

    Using “Piz Daint”, the researchers tested their new algorithm on various molecules, ranging from molecular hydrogen and water to a silver cluster and zinc phthalocyanine among other important molecules for industry. With the new algorithm, the researchers reached their goal faster and with the same precision, as comparisons of the simulated absorption spectra with conventionally modelled spectra showed. All other quantum mechanical programmes besides CP2K that also use atom-centered basis sets could use the new procedure, Luber said.

    What is going on in the excited molecules

    Optimized basis sets already exist for calculations of molecules mainly in the ground state. “However, such special basis sets for the simulation of excited molecular states did not exist until now,” Luber emphasized. “What’s more, our newly generated basis sets are even system and environment specific.” The researchers made this surprising discovery during test simulations of silver atoms within silver clusters, which have different chemical properties depending on the symmetry and environment in the cluster. “We could observe that our algorithm even finds different basis sets for these different silver atoms,” said Luber.

    This means that the algorithm distinguishes the environments in the molecule: If, for instance, the polarization of the electron density is important, the algorithm adds polarization functions; for larger distances from the atom it adds diffuse functions. “We can see which type of function is important in which area of the atom or molecule. This gives us a lot of additional information about the molecule’s chemistry.” Luber and her team have thus come a lot closer to their goal of knowing exactly what is going on in the excited molecules.

    Nature Communications
    See the science paper for instructive material with images.

    Fig. 1: Schematic diagram of the basis set truncation process.

    First, a real-time propagation run of 1% (e.g., 100 steps) of the total simulation time is performed. Then the information of AO density matrix PAO(t) and MO coefficient C(t) at every step, and overlap matrix S, is collected. Basis functions to be truncated are selected based on the low standard deviation (std. in the figure) of Oμ(t) and Cμj(t). Eventually, one can directly modify the basis set file for a complete RT-TDHF/TDDFT calculation or a LR-TDHF/TDDFT calculation.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Zürich (Universität Zürich) (CH), located in the city of Zürich, is the largest university in Switzerland, with over 26,000 students. It was founded in 1833 from the existing colleges of theology, law, medicine and a new faculty of philosophy.

    Currently, the university has seven faculties: Philosophy, Human Medicine, Economic Sciences, Law, Mathematics and Natural Sciences, Theology and Veterinary Medicine. The university offers the widest range of subjects and courses of any Swiss higher education institutions.

    As a member of the League of European Research Universities (EU) (LERU) and Universitas 21 (U21) network, a global network of 27 research universities from around the world, promoting research collaboration and exchange of knowledge.

    Numerous distinctions highlight the University’s international renown in the fields of medicine, immunology, genetics, neuroscience and structural biology as well as in economics. To date, the Nobel Prize has been conferred on twelve UZH scholars.

    Sharing Knowledge

    The academic excellence of the University of Zürich brings benefits to both the public and the private sectors not only in the Canton of Zürich, but throughout Switzerland. Knowledge is shared in a variety of ways: in addition to granting the general public access to its twelve museums and many of its libraries, the University makes findings from cutting-edge research available to the public in accessible and engaging lecture series and panel discussions.

    1. Identity of the University of Zürich

    Scholarship

    The University of Zürich (UZH) is an institution with a strong commitment to the free and open pursuit of scholarship.

    Scholarship is the acquisition, the advancement and the dissemination of knowledge in a methodological and critical manner.

    Academic freedom and responsibility

    To flourish, scholarship must be free from external influences, constraints and ideological pressures. The University of Zürich is committed to unrestricted freedom in research and teaching.

    Academic freedom calls for a high degree of responsibility, including reflection on the ethical implications of research activities for humans, animals and the environment.

    Universitas

    Work in all disciplines at the University is based on a scholarly inquiry into the realities of our world

    As Switzerland’s largest university, the University of Zürich promotes wide diversity in both scholarship and in the fields of study offered. The University fosters free dialogue, respects the individual characteristics of the disciplines, and advances interdisciplinary work.

    2. The University of Zurich’s goals and responsibilities

    Basic principles

    UZH pursues scholarly research and teaching, and provides services for the benefit of the public.

    UZH has successfully positioned itself among the world’s foremost universities. The University attracts the best researchers and students, and promotes junior scholars at all levels of their academic career.

    UZH sets priorities in research and teaching by considering academic requirements and the needs of society. These priorities presuppose basic research and interdisciplinary methods.

    UZH strives to uphold the highest quality in all its activities.
    To secure and improve quality, the University regularly monitors and evaluates its performance.

    Research

    UZH contributes to the increase of knowledge through the pursuit of cutting-edge research.

    UZH is primarily a research institution. As such, it enables and expects its members to conduct research, and supports them in doing so.

    While basic research is the core focus at UZH, the University also pursues applied research.

     
  • richardmitnick 12:18 pm on May 8, 2023 Permalink | Reply
    Tags: "Strings of magnetic energy shown to flex and wiggle and reconnect", "Topological behavior", A geometry called "Santa Fe spin ice", A well-known phenomenon called "superparamagnetism", , , , Nanomagnetics, , , Quantum Mechanics, , Topological physics has raised much recent interest mostly in the quantum domain., Video clips of the nanomagnets in space and in time,   

    From The School of Engineering and Applied Science At Yale University: “Strings of magnetic energy shown to flex and wiggle and reconnect” 

    Yale SEAS

    From The School of Engineering and Applied Science

    At

    Yale University

    5.4.23

    A multi-institutional team exploring the physics of collective behavior has developed and measured a model nanomagnetic array in which the behavior can be best understood as that of a set of wiggling strings. The strings, which are composed of connected points of high energy among the lattice, can stretch and shrink, but also reconnect. What makes these strings special is that they are limited to certain endpoints and must connect to those endpoints in particular ways. These constraints on the strings’ behavior are an example of what physicists call “topological behavior”, which is related to a wide range of topics from the shape of a donut to how electrons travel through certain cutting-edge semiconductors. The results were recently published in a paper in Science [below].

    “Topological physics has raised much recent interest, mostly in the quantum domain,” said DOE Los Alamos National Laboratory researcher Cristiano Nisoli, one of the authors of the work. “We had already demonstrated a few times, theoretically and experimentally, that features once believed to be inherently quantum can be reproduced by systems of classical interacting nanomagnets.”

    According to co-author, Yale applied physics professor Peter Schiffer, “This system is an instance in which topologically driven features appear in a purely classical material system—that makes them easier to study and characterize.”

    2
    A microscopy snapshot of a lattice of frustrated nanomagnets. The red lines connect dynamic points of high energy at the vertices of the lattice, which are indicated by the yellow dots. (Image courtesy Los Alamos National Laboratory)

    The work is in the context of an ongoing collaboration between Nisoli’s group in the Los Alamos Theoretical division and the experimental work of Schiffer and his team at Yale University. Starting in 2006, together with others, the two had introduced the idea of bottom-up fabrication of “artificial spin ice” structures made of interacting magnetic nano-islands. The team for this study also included Yale researchers Xiaoyu Zhang, Grant Fitez ’25, Shayaan Subzwari ’23, Ioan-Augustin Chioar, Hilal Saglam, and Nicholas Bingham (now at the University of Maine), as well as Justin Ramberger and Chris Leighton at the University of Minnesota.

    “Initially, we concentrated on simple geometries and models, sometimes mimicking existing natural materials,” Nisoli said. “But since the beginning, the idea was more ambitious: instead of finding serendipitously exotic or useful phenomena in natural materials, we sought to produce artificial ones where new phenomena could be designed-in, and checked in highly controllable ways, perhaps in view of future functionalities, such as memory storage or computation.”

    The teams developed, first theoretically at Los Alamos, and then experimentally at Yale and the Advanced Light Source at the DOE’s Lawrence Berkeley National Laboratory, a geometry called “Santa Fe spin ice”, inspired by the shapes in a brick floor in Santa Fe, New Mexico.

    “The interesting fact about Santa Fe spin ice is that, although it is made of a bunch of binary magnets, it can also be completely described as a set of continuous strings,” Nisoli noted.

    In a previous work, the authors fabricated the Santa Fe spin ice and demonstrated the existence of these strings and their properties. In the present work, they studied how the strings move. Using the “photoemission electron microscopy” characterization done at Berkeley, Schiffer of Yale said, was especially valuable in that “it effectively provides video clips of the nanomagnets in space and in time, so we could watch them as they spontaneously switched their north and south poles. The nano-islands are fabricated to be very thin, just a few nanometers, so that they flip their poles just from being at finite temperature, in a well-known phenomenon called ‘superparamagnetism’.”

    At high temperatures, the researchers observed the merging and reconnecting of strings, resulting in the system transitioning between topologically distinct configurations. But below a crossover temperature, the string motion was limited to simple changes in length and shape. Therefore, the work shows that there is a dynamical crossover: below a certain temperature those topologically non-trivial moves become suppressed, and only the topologically trivial (wiggling, extending, contracting) remain.

    “Here, we have shown a real system, artificially fabricated, that experimentally demonstrates a kinetic crossover that breaks the rule of randomness, or ergodicity, because below a certain temperature it suppresses the kinetic pathways that are topologically non-trivial, and remains confined into a topological class,” Nisoli said. “With the measurements we could perform, we were able to literally watch these nano-scale strings go through their motions and make an unexpected transition in behavior.”

    “This level of insight is unusual for any system, and it sets the stage for other topological studies in the future,” said Schiffer.

    Science

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Yale School of Engineering and Applied Science Daniel L Malone Engineering Center
    The Yale School of Engineering & Applied Science is the engineering school of Yale University. When the first professor of civil engineering was hired in 1852, a Yale School of Engineering was established within the Yale Scientific School, and in 1932 the engineering faculty organized as a separate, constituent school of the university. The school currently offers undergraduate and graduate classes and degrees in electrical engineering, chemical engineering, computer science, applied physics, environmental engineering, biomedical engineering, and mechanical engineering and materials science.

    Yale University is a private Ivy League research university in New Haven, Connecticut. Founded in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and one of the nine Colonial Colleges chartered before the American Revolution. The Collegiate School was renamed Yale College in 1718 to honor the school’s largest private benefactor for the first century of its existence, Elihu Yale. Yale University is consistently ranked as one of the top universities and is considered one of the most prestigious in the nation.

    Chartered by Connecticut Colony, the Collegiate School was established in 1701 by clergy to educate Congregational ministers before moving to New Haven in 1716. Originally restricted to theology and sacred languages, the curriculum began to incorporate humanities and sciences by the time of the American Revolution. In the 19th century, the college expanded into graduate and professional instruction, awarding the first PhD in the United States in 1861 and organizing as a university in 1887. Yale’s faculty and student populations grew after 1890 with rapid expansion of the physical campus and scientific research.

    Yale is organized into fourteen constituent schools: the original undergraduate college, the Yale Graduate School of Arts and Sciences and twelve professional schools. While the university is governed by the Yale Corporation, each school’s faculty oversees its curriculum and degree programs. In addition to a central campus in downtown New Haven, the university owns athletic facilities in western New Haven, a campus in West Haven, Connecticut, and forests and nature preserves throughout New England. As of June 2020, the university’s endowment was valued at $31.1 billion, the second largest of any educational institution. The Yale University Library, serving all constituent schools, holds more than 15 million volumes and is the third-largest academic library in the United States. Students compete in intercollegiate sports as the Yale Bulldogs in the NCAA Division I – Ivy League.

    As of October 2020, 65 Nobel laureates, five Fields Medalists, four Abel Prize laureates, and three Turing award winners have been affiliated with Yale University. In addition, Yale has graduated many notable alumni, including five U.S. Presidents, 19 U.S. Supreme Court Justices, 31 living billionaires, and many heads of state. Hundreds of members of Congress and many U.S. diplomats, 78 MacArthur Fellows, 252 Rhodes Scholars, 123 Marshall Scholars, and nine Mitchell Scholars have been affiliated with the university.

    Research

    Yale is a member of the Association of American Universities (AAU) and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, Yale spent $990 million on research and development in 2018, ranking it 15th in the nation.

    Yale’s faculty include 61 members of the National Academy of Sciences , 7 members of the National Academy of Engineering and 49 members of the American Academy of Arts and Sciences. The college is, after normalization for institution size, the tenth-largest baccalaureate source of doctoral degree recipients in the United States, and the largest such source within the Ivy League.

    Yale’s English and Comparative Literature departments were part of the New Criticism movement. Of the New Critics, Robert Penn Warren, W.K. Wimsatt, and Cleanth Brooks were all Yale faculty. Later, the Yale Comparative literature department became a center of American deconstruction. Jacques Derrida, the father of deconstruction, taught at the Department of Comparative Literature from the late seventies to mid-1980s. Several other Yale faculty members were also associated with deconstruction, forming the so-called “Yale School”. These included Paul de Man who taught in the Departments of Comparative Literature and French, J. Hillis Miller, Geoffrey Hartman (both taught in the Departments of English and Comparative Literature), and Harold Bloom (English), whose theoretical position was always somewhat specific, and who ultimately took a very different path from the rest of this group. Yale’s history department has also originated important intellectual trends. Historians C. Vann Woodward and David Brion Davis are credited with beginning in the 1960s and 1970s an important stream of southern historians; likewise, David Montgomery, a labor historian, advised many of the current generation of labor historians in the country. Yale’s Music School and Department fostered the growth of Music Theory in the latter half of the 20th century. The Journal of Music Theory was founded there in 1957; Allen Forte and David Lewin were influential teachers and scholars.

    In addition to eminent faculty members, Yale research relies heavily on the presence of roughly 1200 Postdocs from various national and international origin working in the multiple laboratories in the sciences, social sciences, humanities, and professional schools of the university. The university progressively recognized this working force with the recent creation of the Office for Postdoctoral Affairs and the Yale Postdoctoral Association.

    Notable alumni

    Over its history, Yale has produced many distinguished alumni in a variety of fields, ranging from the public to private sector. According to 2020 data, around 71% of undergraduates join the workforce, while the next largest majority of 16.6% go on to attend graduate or professional schools. Yale graduates have been recipients of 252 Rhodes Scholarships, 123 Marshall Scholarships, 67 Truman Scholarships, 21 Churchill Scholarships, and 9 Mitchell Scholarships. The university is also the second largest producer of Fulbright Scholars, with a total of 1,199 in its history and has produced 89 MacArthur Fellows. The U.S. Department of State Bureau of Educational and Cultural Affairs ranked Yale fifth among research institutions producing the most 2020–2021 Fulbright Scholars. Additionally, 31 living billionaires are Yale alumni.

    At Yale, one of the most popular undergraduate majors among Juniors and Seniors is political science, with many students going on to serve careers in government and politics. Former presidents who attended Yale for undergrad include William Howard Taft, George H. W. Bush, and George W. Bush while former presidents Gerald Ford and Bill Clinton attended Yale Law School. Former vice-president and influential antebellum era politician John C. Calhoun also graduated from Yale. Former world leaders include Italian prime minister Mario Monti, Turkish prime minister Tansu Çiller, Mexican president Ernesto Zedillo, German president Karl Carstens, Philippine president José Paciano Laurel, Latvian president Valdis Zatlers, Taiwanese premier Jiang Yi-huah, and Malawian president Peter Mutharika, among others. Prominent royals who graduated are Crown Princess Victoria of Sweden, and Olympia Bonaparte, Princess Napoléon.

    Yale alumni have had considerable presence in U.S. government in all three branches. On the U.S. Supreme Court, 19 justices have been Yale alumni, including current Associate Justices Sonia Sotomayor, Samuel Alito, Clarence Thomas, and Brett Kavanaugh. Numerous Yale alumni have been U.S. Senators, including current Senators Michael Bennet, Richard Blumenthal, Cory Booker, Sherrod Brown, Chris Coons, Amy Klobuchar, Ben Sasse, and Sheldon Whitehouse. Current and former cabinet members include Secretaries of State John Kerry, Hillary Clinton, Cyrus Vance, and Dean Acheson; U.S. Secretaries of the Treasury Oliver Wolcott, Robert Rubin, Nicholas F. Brady, Steven Mnuchin, and Janet Yellen; U.S. Attorneys General Nicholas Katzenbach, John Ashcroft, and Edward H. Levi; and many others. Peace Corps founder and American diplomat Sargent Shriver and public official and urban planner Robert Moses are Yale alumni.

    Yale has produced numerous award-winning authors and influential writers, like Nobel Prize in Literature laureate Sinclair Lewis and Pulitzer Prize winners Stephen Vincent Benét, Thornton Wilder, Doug Wright, and David McCullough. Academy Award winning actors, actresses, and directors include Jodie Foster, Paul Newman, Meryl Streep, Elia Kazan, George Roy Hill, Lupita Nyong’o, Oliver Stone, and Frances McDormand. Alumni from Yale have also made notable contributions to both music and the arts. Leading American composer from the 20th century Charles Ives, Broadway composer Cole Porter, Grammy award winner David Lang, and award-winning jazz pianist and composer Vijay Iyer all hail from Yale. Hugo Boss Prize winner Matthew Barney, famed American sculptor Richard Serra, President Barack Obama presidential portrait painter Kehinde Wiley, MacArthur Fellow and contemporary artist Sarah Sze, Pulitzer Prize winning cartoonist Garry Trudeau, and National Medal of Arts photorealist painter Chuck Close all graduated from Yale. Additional alumni include architect and Presidential Medal of Freedom winner Maya Lin, Pritzker Prize winner Norman Foster, and Gateway Arch designer Eero Saarinen. Journalists and pundits include Dick Cavett, Chris Cuomo, Anderson Cooper, William F. Buckley, Jr., and Fareed Zakaria.

    In business, Yale has had numerous alumni and former students go on to become founders of influential business, like William Boeing (Boeing, United Airlines), Briton Hadden and Henry Luce (Time Magazine), Stephen A. Schwarzman (Blackstone Group), Frederick W. Smith (FedEx), Juan Trippe (Pan Am), Harold Stanley (Morgan Stanley), Bing Gordon (Electronic Arts), and Ben Silbermann (Pinterest). Other business people from Yale include former chairman and CEO of Sears Holdings Edward Lampert, former Time Warner president Jeffrey Bewkes, former PepsiCo chairperson and CEO Indra Nooyi, sports agent Donald Dell, and investor/philanthropist Sir John Templeton,

    Yale alumni distinguished in academia include literary critic and historian Henry Louis Gates, economists Irving Fischer, Mahbub ul Haq, and Nobel Prize laureate Paul Krugman; Nobel Prize in Physics laureates Ernest Lawrence and Murray Gell-Mann; Fields Medalist John G. Thompson; Human Genome Project leader and National Institutes of Health director Francis S. Collins; brain surgery pioneer Harvey Cushing; pioneering computer scientist Grace Hopper; influential mathematician and chemist Josiah Willard Gibbs; National Women’s Hall of Fame inductee and biochemist Florence B. Seibert; Turing Award recipient Ron Rivest; inventors Samuel F.B. Morse and Eli Whitney; Nobel Prize in Chemistry laureate John B. Goodenough; lexicographer Noah Webster; and theologians Jonathan Edwards and Reinhold Niebuhr.

    In the sporting arena, Yale alumni include baseball players Ron Darling and Craig Breslow and baseball executives Theo Epstein and George Weiss; football players Calvin Hill, Gary Fenick, Amos Alonzo Stagg, and “the Father of American Football” Walter Camp; ice hockey players Chris Higgins and Olympian Helen Resor; Olympic figure skaters Sarah Hughes and Nathan Chen; nine-time U.S. Squash men’s champion Julian Illingworth; Olympic swimmer Don Schollander; Olympic rowers Josh West and Rusty Wailes; Olympic sailor Stuart McNay; Olympic runner Frank Shorter; and others.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: