Tagged: Quantum Computing Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:47 pm on May 11, 2020 Permalink | Reply
    Tags: "NIST Scientists Create New Recipe for Single-Atom Transistors", , Quantum Computing,   

    From NIST: “NIST Scientists Create New Recipe for Single-Atom Transistors” 

    From NIST

    May 11, 2020

    Media Contact
    Ben P. Stein
    (301) 975-2763

    Technical Contact
    Richard M. Silver
    (301) 975-5609

    Credit: S. Kelley/NIST

    Once unimaginable, transistors consisting only of several-atom clusters or even single atoms promise to become the building blocks of a new generation of computers with unparalleled memory and processing power. But to realize the full potential of these tiny transistors — miniature electrical on-off switches — researchers must find a way to make many copies of these notoriously difficult-to-fabricate components.

    Now, researchers at the National Institute of Standards and Technology (NIST) and their colleagues at the University of Maryland have developed a step-by-step recipe to produce the atomic-scale devices. Using these instructions, the NIST-led team has become only the second in the world to construct a single-atom transistor and the first to fabricate a series of single electron transistors with atom-scale control over the devices’ geometry.

    The scientists demonstrated that they could precisely adjust the rate at which individual electrons flow through a physical gap or electrical barrier in their transistor — even though classical physics would forbid the electrons from doing so because they lack enough energy. That strictly quantum phenomenon, known as quantum tunneling, only becomes important when gaps are extremely tiny, such as in the miniature transistors. Precise control over quantum tunneling is key because it enables the transistors to become “entangled” or interlinked in a way only possible through quantum mechanics and opens new possibilities for creating quantum bits (qubits) that could be used in quantum computing.

    To fabricate single-atom and few-atom transistors, the team relied on a known technique in which a silicon chip is covered with a layer of hydrogen atoms, which readily bind to silicon. The fine tip of a scanning tunneling microscope then removed hydrogen atoms at selected sites. The remaining hydrogen acted as a barrier so that when the team directed phosphine gas (PH3) at the silicon surface, individual PH3 molecules attached only to the locations where the hydrogen had been removed (see animation). The researchers then heated the silicon surface. The heat ejected hydrogen atoms from the PH3 and caused the phosphorus atom that was left behind to embed itself in the surface. With additional processing, bound phosphorous atoms created the foundation of a series of highly stable single- or few-atom devices that have the potential to serve as qubits.

    Two of the steps in the method devised by the NIST teams — sealing the phosphorus atoms with protective layers of silicon and then making electrical contact with the embedded atoms — appear to have been essential to reliably fabricate many copies of atomically precise devices, NIST researcher Richard Silver said.

    In the past, researchers have typically applied heat as all the silicon layers are grown, in order to remove defects and ensure that the silicon has the pure crystalline structure required to integrate the single-atom devices with conventional silicon-chip electrical components. But the NIST scientists found that such heating could dislodge the bound phosphorus atoms and potentially disrupt the structure of the atomic-scale devices. Instead, the team deposited the first several silicon layers at room temperature, allowing the phosphorus atoms to stay put. Only when subsequent layers were deposited did the team apply heat.

    “We believe our method of applying the layers provides more stable and precise atomic-scale devices,“ said Silver. Having even a single atom out of place can alter the conductivity and other properties of electrical components that feature single or small clusters of atoms.

    The team also developed a novel technique for the crucial step of making electrical contact with the buried atoms so that they can operate as part of a circuit. The NIST scientists gently heated a layer of palladium metal applied to specific regions on the silicon surface that resided directly above selected components of the silicon-embedded device. The heated palladium reacted with the silicon to form an electrically conducting alloy called palladium silicide, which naturally penetrated through the silicon and made contact with the phosphorus atoms.

    In a recent edition of Advanced Functional Materials, Silver and his colleagues, who include Xiqiao Wang, Jonathan Wyrick, Michael Stewart Jr. and Curt Richter, emphasized that their contact method has a nearly 100% success rate. That’s a key achievement, noted Wyrick. “You can have the best single-atom-transistor device in the world, but if you can’t make contact with it, it’s useless,” he said.

    Fabricating single-atom transistors “is a difficult and complicated process that maybe everyone has to cut their teeth on, but we’ve laid out the steps so that other teams don’t have to proceed by trial and error,” said Richter.

    In related work published today in Communications Physics, Silver and his colleagues demonstrated that they could precisely control the rate at which individual electrons tunnel through atomically precise tunnel barriers in single-electron transistors. The NIST researchers and their colleagues fabricated a series of single-electron transistors identical in every way except for differences in the size of the tunneling gap. Measurements of current flow indicated that by increasing or decreasing the gap between transistor components by less than a nanometer (billionth of a meter), the team could precisely control the flow of a single electron through the transistor in a predictable manner.

    “Because quantum tunneling is so fundamental to any quantum device, including the construction of qubits, the ability to control the flow of one electron at a time is a significant achievement,” Wyrick said. In addition, as engineers pack more and more circuitry on a tiny computer chip and the gap between components continues to shrink, understanding and controlling the effects of quantum tunneling will become even more critical, Richter said.

    See the full article here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD, USA

    NIST Mission, Vision, Core Competencies, and Core Values

    NIST’s mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.
    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.
    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

  • richardmitnick 11:10 am on April 15, 2020 Permalink | Reply
    Tags: "First sighting of mysterious Majorana fermion on a common metal", Majorana fermions would be ideal as qubits., , , Quantum Computing, The next push will be to take these objects and make them into qubits which would be huge progress toward practical quantum computing.   

    From MIT News: “First sighting of mysterious Majorana fermion on a common metal” 

    MIT News

    From MIT News

    April 10, 2020
    Jennifer Chu

    MIT researchers have observed mysterious Majorana fermions in islands of gold. The discovery could lead to new family of robust qubits for quantum computing. Image: stock image

    Physicists’ discovery could lead to a new family of robust qubits for quantum computing.

    Physicists at MIT and elsewhere have observed evidence of Majorana fermions — particles that are theorized to also be their own antiparticle — on the surface of a common metal: gold. This is the first sighting of Majorana fermions on a platform that can potentially be scaled up. The results, published in the Proceedings of the National Academy of Sciences, are a major step toward isolating the particles as stable, error-proof qubits for quantum computing.

    In particle physics, fermions are a class of elementary particles that includes electrons, protons, neutrons, and quarks, all of which make up the building blocks of matter. For the most part, these particles are considered Dirac fermions, after the English physicist Paul Dirac, who first predicted that all fermionic fundamental particles should have a counterpart, somewhere in the universe, in the form of an antiparticle — essentially, an identical twin of opposite charge.

    In 1937, the Italian theoretical physicist Ettore Majorana extended Dirac’s theory, predicting that among fermions, there should be some particles, since named Majorana fermions, that are indistinguishable from their antiparticles. Mysteriously, the physicist disappeared during a ferry trip off the Italian coast just a year after making his prediction. Scientists have been looking for Majorana’s enigmatic particle ever since. It has been suggested, but not proven, that the neutrino may be a Majorana particle. On the other hand, theorists have predicted that Majorana fermions may also exist in solids under special conditions.

    Now the MIT-led team has observed evidence of Majorana fermions in a material system they designed and fabricated, which consists of nanowires of gold grown atop a superconducting material, vanadium, and dotted with small, ferromagnetic “islands” of europium sulfide. When the researchers scanned the surface near the islands, they saw signature signal spikes near zero energy on the very top surface of gold that, according to theory, should only be generated by pairs of Majorana fermions.

    “Majorana ferminons are these exotic things, that have long been a dream to see, and we now see them in a very simple material — gold,” says Jagadeesh Moodera, a senior research scientist in MIT’s Department of Physics, and a member of MIT’s Plasma Science and Fusion Center. “We’ve shown they are there, and stable, and easily scalable.”

    “The next push will be to take these objects and make them into qubits, which would be huge progress toward practical quantum computing,” adds co-author Patrick Lee, the William and Emma Rogers Professor of Physics at MIT.

    Lee and Moodera’s coauthors include former MIT postdoc and first author Sujit Manna (currently on the faculty at the Indian Institute of Technology at Delhi), and former MIT postdoc Peng Wei of University of California at Riverside, along with Yingming Xie and Kam Tuen Law of the Hong Kong University of Science and Technology.

    High risk

    If they could be harnessed, Majorana fermions would be ideal as qubits, or individual computational units for quantum computers. The idea is that a qubit would be made of combinations of pairs of Majorana fermions, each of which would be separated from its partner. If noise errors affect one member of the pair, the other should remain unaffected, thereby preserving the integrity of the qubit and enabling it to correctly carry out a computation.

    Scientists have looked for Majorana fermions in semiconductors, the materials used in conventional, transistor-based computing. In their experiments, researchers have combined semiconductors with superconductors — materials through which electrons can travel without resistance. This combination imparts superconductive properties to conventional semiconductors, which physicists believe should induce particles in the semiconductor to split , forming the pair of Majorana fermions.

    “There are several material platforms where people believe they’ve seen Majorana particles,” Lee says. “The evidence is stronger and stronger, but it’s still not 100 percent proven.”

    What’s more, the semiconductor-based setups to date have been difficult to scale up to produce the thousands or millions of qubits needed for a practical quantum computer, because they require growing very precise crystals of semiconducting material and it is very challenging to turn these into high-quality superconductors.

    About a decade ago, Lee, working with his graduate student Andrew Potter, had an idea: Perhaps physicists might be able to observe Majorana fermions in metal, a material that readily becomes superconductive in proximity with a superconductor. Scientists routinely make metals, including gold, into superconductors. Lee’s idea was to see if gold’s surface state — its very top layer of atoms — could be made to be superconductive. If this could be achieved, then gold could serve as a clean, atomically precise system in which researchers could observe Majorana fermions.

    Lee proposed, based on Moodera’s prior work with ferromagnetic insulators, that if it were placed atop a superconductive surface state of gold, then researchers should have a good chance of clearly seeing signatures of Majorana fermions.

    “When we first proposed this, I couldn’t convince a lot of experimentalists to try it, because the technology was daunting,” says Lee who eventually partnered with Moodera’s experimental group to to secure crucial funding from the Templeton Foundation to realize the design. “Jagadeesh and Peng really had to reinvent the wheel. It was extremely courageous to jump into this, because it’s really a high-risk, but we think a high-payoff, thing.”

    “Finding Majorana”

    Over the last few years, the researchers have characterized gold’s surface state and proved that it could work as a platform for observing Majorana fermions, after which the group began fabricating the setup that Lee envisioned years ago.

    They first grew a sheet of superconducting vanadium, on top of which they overlaid nanowires of gold layer, measuring about 4 nanometers thick. They tested the conductivity of gold’s very top layer, and found that it did, in fact, become superconductive in proximity with the vanadium. They then deposited over the gold nanowires “islands” of europium sulfide, a ferromagnetic material that is able to provide the needed internal magnetic fields to create the Majorana fermions.

    The team then applied a tiny voltage and used scanning tunneling microscopy, a specialized technique that enabled the researchers to scan the energy spectrum around each island on gold’s surface.

    Moodera and his colleagues then looked for a very specific energy signature that only Majorana fermions should produce, if they exist. In any superconducting material, electrons travel through at certain energy ranges. There is however a desert, or “energy gap” where there should be no electrons. If there is a spike inside this gap, it is very likely a signature of Majorana fermions.

    Looking through their data, the researchers observed spikes inside this energy gap on opposite ends of several islands along the the direction of the magnetic field, that were clear signatures of pairs of Majorana fermions.

    “We only see this spike on opposite sides of the island, as theory predicted,” Moodera says. “Anywhere else, you don’t see it.”

    “In my talks, I like to say that we are finding Majorana, on an island in a sea of gold,” Lee adds.

    Moodera says the team’s setup, requiring just three layers — gold sandwiched between a ferromagnet and a superconductor — is an “easily achievable, stable system” that should also be economically scalable compared to conventional, semiconductor-based approaches to generate qubits.

    “Seeing a pair of Majorana fermions is an important step toward making a qubit,” Wei says. “The next step is to make a qubit from these particles, and we now have some ideas for how to go about doing this.”

    This research was funded, in part, by the John Templeton Foundation, the U.S. Office of Naval Research, the National Science Foundation, and the U.S. Department of Energy.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    MIT Campus

  • richardmitnick 9:22 am on April 13, 2020 Permalink | Reply
    Tags: "New 'refrigerator' super-cools molecules to nanokelvin temperatures", Collisional cooling, , Quantum Computing, The team used precise control of magnetic fields and an intricate system of lasers to choreograph the spin and the rotational motion of the molecules., While scientists have super-cooled atoms doing the same for molecules which are more complex in their behavior and structure has proven to be a much bigger challenge.   

    From MIT News: “New ‘refrigerator’ super-cools molecules to nanokelvin temperatures” 

    MIT News

    From MIT News

    April 8, 2020
    Jennifer Chu

    Technique may enable molecule-based quantum computing.

    A new “refrigerator” super-cools molecules to nanokelvin temperatures. The technique may enable more complex, molecule-based quantum computing. Image: José-Luis Olivares, MIT

    A new refrigerator for molecules. Sodium atoms (yellow spheres) collide with sodium-lithium molecules (combined-yellow-red-spheres). The atom-molecule mixture is trapped in an optical trap whose effective edge is shown as a white rim. As the trap is loosened (depicted as a dimmer rim), the most energetic sodium atoms leave the trap, providing evaporative cooling. The cooling is transferred to the molecules via elastic collisions. The frost on the molecules indicates that they have reached a temperature of 200 billionths of a degree Kelvin. Figure credit: Pilsu Heo at Micropicture (South Korea)

    (left to right) MIT physics graduate students Yukun Lu and Juliana Park, Alan Jamison (professor of physics at Univ. of Waterloo and visiting scientist in the Research Laboratory of Electronics at MIT), Wolfgang Ketterle (principal investigator, professor of physics at MIT) and Hyungmok Son (Harvard physics graduate student, the lead author of the publication). Photo credit: Pierre Barral (MIT)

    For years, scientists have looked for ways to cool molecules down to ultracold temperatures, at which point the molecules should slow to a crawl, allowing scientists to precisely control their quantum behavior. This could enable researchers to use molecules as complex bits for quantum computing, tuning individual molecules like tiny knobs to carry out multiple streams of calculations at a time.

    While scientists have super-cooled atoms, doing the same for molecules, which are more complex in their behavior and structure, has proven to be a much bigger challenge.

    Now MIT physicists have found a way to cool molecules of sodium lithium down to 200 billionths of a Kelvin, just a hair above absolute zero. They did so by applying a technique called collisional cooling, in which they immersed molecules of cold sodium lithium in a cloud of even colder sodium atoms. The ultracold atoms acted as a refrigerant to cool the molecules even further.

    Collisional cooling is a standard technique used to cool down atoms using other, colder atoms. And for more than a decade, researchers have attempted to supercool a number of different molecules using collisional cooling, only to find that when molecules collided with atoms, they exchanged energy in such a way that the molecules were heated or destroyed in the process, called “bad” collisions.

    In their own experiments, the MIT researchers found that if sodium lithium molecules and sodium atoms were made to spin in the same way, they could avoid self-destructing, and instead engaged in “good” collisions, where the atoms took away the molecules’ energy, in the form of heat. The team used precise control of magnetic fields and an intricate system of lasers to choreograph the spin and the rotational motion of the molecules. As result, the atom-molecule mixture had a high ratio of good-to-bad collisions and was cooled down from 2 microkelvins to 220 nanokelvins.

    “Collisional cooling has been the workhorse for cooling atoms,” adds Nobel Prize laureate Wolfgang Ketterle, the John D. Arthur professor of physics at MIT. “I wasn’t convinced that our scheme would work, but since we didn’t know for sure, we had to try it. We know now that it works for cooling sodium lithium molecules. Whether it will work for other classes of molecules remains to be seen.”

    Their findings, published today in the journal Nature, mark the first time researchers have successfully used collisional cooling to cool molecules down to nanokelvin temperatures.

    Ketterle’s coauthors on the paper are lead author Hyungmok Son, a graduate student in Harvard University’s Department of Physics, along with MIT physics graduate student Juliana Park, and Alan Jamison, a professor of physics and member of the Institute for Quantum Computing at the University of Waterloo and visiting scientist in MIT’s Research Laboratory of Electronics.

    Reaching ultralow temperatures

    In the past, scientists found that when they tried to cool molecules down to ultracold temperatures by surrounding them with even colder atoms, the particles collided such that the atoms imparted extra energy or rotation to the molecules, sending them flying out of the trap, or self-destructing all together by chemical reactions.

    The MIT researchers wondered whether molecules and atoms, having the same spin, could avoid this effect, and remain ultracold and stable as a result. They looked to test their idea with sodium lithium, a “diatomic” molecule that Ketterle’s group experiments with regularly, consisting of one lithium and one sodium atom.

    “Sodium lithium molecules are quite different from other molecules people have tried,” Jamison says. “Many folks expected those differences would make cooling even less likely to work. However, we had a feeling these differences could be an advantage instead of a detriment.”

    The researchers fine-tuned a system of more than 20 laser beams and various magnetic fields to trap and cool atoms of sodium and lithium in a vacuum chamber, down to about 2 microkelvins — a temperature Son says is optimal for the atoms to bond together as sodium lithium molecules.

    Once the researchers were able to produce enough molecules, they shone laser beams of specific frequencies and polarizations to control the quantum state of the molecules and carefully tuned microwave fields to make atoms spin in the same way as the molecules. “Then we make the refrigerator colder and colder,” says Son, referring to the sodium atoms that surround the cloud of the newly formed molecules. “We lower the power of the trapping laser, making the optical trap looser and looser, which brings the temperature of sodium atoms down, and further cools the molecules, to 200 billionths of a kelvin.”

    The group observed that the molecules were able to remain at these ultracold temperatures for up to one second. “In our world, a second is very long,” Ketterle says. “What you want to do with these molecules is quantum computation and exploring new materials, which all can be done in small fractions of a second.”

    If the team can get sodium lithium molecules to be about five times colder than what they have so far achieved, they will have reached a so-called quantum degenerate regime where individual molecules become indistinguishable and their collective behavior is controlled by quantum mechanics. Son and his colleagues have some ideas for how to achieve this, which will involve months of work in optimizing their setup, as well as acquiring a new laser to integrate into their setup.

    “Our work will lead to discussion in our community why collisional cooling has worked for us but not for others,” Son says “Perhaps we will soon have predictions how other molecules could be cooled in this way.”

    This research was funded, in part, by the National Science Foundation, NASA, and the Samsung Scholarship.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    MIT Campus

  • richardmitnick 3:45 pm on March 11, 2020 Permalink | Reply
    Tags: Quantum Computing, That a nuclear spin can be controlled with electric instead of magnetic fields has far-reaching consequences., The discovery: controlling the nucleus of a single atom using only electric fields.,   

    From University of New South Wales: “Engineers crack 58-year-old puzzle on way to quantum breakthrough” 

    U NSW bloc

    From University of New South Wales

    12 Mar 2020
    Lachlan Gilbert

    A mishap during an experiment led UNSW quantum computing researchers to crack a mystery that had stood since 1961.

    Professor Andrea Morello, Dr Vincent Mourik and Dr Serwan Asaad. Picture: UNSW

    A happy accident in the laboratory has led to a breakthrough discovery that not only solved a problem that stood for more than half a century, but has major implications for the development of quantum computers and sensors.

    In a study published today in Nature, a team of engineers at UNSW Sydney has done what a celebrated scientist first suggested in 1961 was possible, but has eluded everyone since: controlling the nucleus of a single atom using only electric fields.

    “This discovery means that we now have a pathway to build quantum computers using single-atom spins without the need for any oscillating magnetic field for their operation,” says UNSW’s Scientia Professor of Quantum Engineering Andrea Morello. “Moreover, we can use these nuclei as exquisitely precise sensors of electric and magnetic fields, or to answer fundamental questions in quantum science.”

    That a nuclear spin can be controlled with electric, instead of magnetic fields, has far-reaching consequences. Generating magnetic fields requires large coils and high currents, while the laws of physics dictate that it is difficult to confine magnetic fields to very small spaces – they tend to have a wide area of influence. Electric fields, on the other hand, can be produced at the tip of a tiny electrode, and they fall off very sharply away from the tip. This will make control of individual atoms placed in nanoelectronic devices much easier.

    A new paradigm

    Professor Morello says the discovery shakes up the paradigm of nuclear magnetic resonance, a widely used technique in fields as disparate as medicine, chemistry, or mining.

    “Nuclear magnetic resonance is one of the most widespread techniques in modern physics, chemistry, and even medicine or mining,” he says. “Doctors use it to see inside a patient’s body in great detail while mining companies use it to analyse rock samples. This all works extremely well, but for certain applications, the need to use magnetic fields to control and detect the nuclei can be a disadvantage.”

    Professor Morello uses the analogy of a billiard table to explain the difference between controlling nuclear spins with magnetic and electric fields.

    “Performing magnetic resonance is like trying to move a particular ball on a billiard table by lifting and shaking the whole table,” he says. “We’ll move the intended ball, but we’ll also move all the others.

    “The breakthrough of electric resonance is like being handed an actual billiards stick to hit the ball exactly where you want it.”

    Amazingly, Professor Morello was completely unaware that his team had cracked the longstanding problem of finding a way to control nuclear spins with electric fields, first suggested in 1961 by a pioneer of magnetic resonance and Nobel Laureate, Nicolaas Bloembergen.

    “I have worked on spin resonance for 20 years of my life, but honestly, I had never heard of this idea of nuclear electric resonance,” Professor Morello says. “We ‘rediscovered’ this effect by complete accident – it would never have occurred to me to look for it. The whole field of nuclear electric resonance has been almost dormant for more than half a century, after the first attempts to demonstrate it proved too challenging.”

    Out of curiosity

    The researchers had originally set out to perform nuclear magnetic resonance on a single atom of antimony – an element that possesses a large nuclear spin. One of the lead authors of the work, Dr Serwan Asaad, explains: “Our original goal was to explore the boundary between the quantum world and the classical world, set by the chaotic behaviour of the nuclear spin. This was purely a curiosity-driven project, with no application in mind.”

    “However, once we started the experiment, we realised that something was wrong. The nucleus behaved very strangely, refusing to respond at certain frequencies, but showing a strong response at others,” recalls Dr Vincent Mourik, also a lead author on the paper.

    “This puzzled us for a while, until we had a ‘eureka moment’ and realised that we were doing electric resonance instead of magnetic resonance.”

    Dr Asaad continued: “What happened is that we fabricated a device containing an antimony atom and a special antenna, optimized to create a high-frequency magnetic field to control the nucleus of the atom. Our experiment demands this magnetic field to be quite strong, so we applied a lot of power to the antenna, and we blew it up!”

    Game on

    “Normally, with smaller nuclei like phosphorus, when you blow up the antenna it’s ‘game over’ and you have to throw away the device,” says Dr Mourik.

    “But with the antimony nucleus, the experiment continued to work. It turns out that after the damage, the antenna was creating a strong electric field instead of a magnetic field. So we ‘rediscovered’ nuclear electric resonance.”

    After demonstrating the ability to control the nucleus with electric fields, the researchers used sophisticated computer modelling to understand how exactly the electric field influences the spin of the nucleus. This effort highlighted that nuclear electric resonance is a truly local, microscopic phenomenon: the electric field distorts the atomic bonds around the nucleus, causing it to reorient itself.

    “This landmark result will open up a treasure trove of discoveries and applications,” says Professor Morello. “The system we created has enough complexity to study how the classical world we experience every day emerges from the quantum realm. Moreover, we can use its quantum complexity to build sensors of electromagnetic fields with vastly improved sensitivity. And all this, in a simple electronic device made in silicon, controlled with small voltages applied to a metal electrode.”

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    U NSW Campus

    Welcome to UNSW Australia (The University of New South Wales), one of Australia’s leading research and teaching universities. At UNSW, we take pride in the broad range and high quality of our teaching programs. Our teaching gains strength and currency from our research activities, strong industry links and our international nature; UNSW has a strong regional and global engagement.

    In developing new ideas and promoting lasting knowledge we are creating an academic environment where outstanding students and scholars from around the world can be inspired to excel in their programs of study and research. Partnerships with both local and global communities allow UNSW to share knowledge, debate and research outcomes. UNSW’s public events include concert performances, open days and public forums on issues such as the environment, healthcare and global politics. We encourage you to explore the UNSW website so you can find out more about what we do.

  • richardmitnick 12:59 pm on March 11, 2020 Permalink | Reply
    Tags: , , , , , , , Quantum Computing   

    From MIT News: “Novel method for easier scaling of quantum devices” 

    MIT News

    From MIT News

    March 5, 2020
    Rob Matheson

    An MIT team found a way to “recruit” normally disruptive quantum bits (qubits) in diamond to, instead, help carry out quantum operations. This approach could be used to help scale up quantum computing systems. Image: Christine Daniloff, MIT.

    System “recruits” defects that usually cause disruptions, using them to instead carry out quantum operations.

    In an advance that may help researchers scale up quantum devices, an MIT team has developed a method to “recruit” neighboring quantum bits made of nanoscale defects in diamond, so that instead of causing disruptions they help carry out quantum operations.

    Quantum devices perform operations using quantum bits, called “qubits,” that can represent the two states corresponding to classic binary bits — a 0 or 1 — or a “quantum superposition” of both states simultaneously. The unique superposition state can enable quantum computers to solve problems that are practically impossible for classical computers, potentially spurring breakthroughs in biosensing, neuroimaging, machine learning, and other applications.

    One promising qubit candidate is a defect in diamond, called a nitrogen-vacancy (NV) center, which holds electrons that can be manipulated by light and microwaves. In response, the defect emits photons that can carry quantum information. Because of their solid-state environments, however, NV centers are always surrounded by many other unknown defects with different spin properties, called “spin defects.” When the measurable NV-center qubit interacts with those spin defects, the qubit loses its coherent quantum state — “decoheres”— and operations fall apart. Traditional solutions try to identify these disrupting defects to protect the qubit from them.

    In a paper published Feb. 25 in Physical Review Letters, the researchers describe a method that uses an NV center to probe its environment and uncover the existence of several nearby spin defects. Then, the researchers can pinpoint the defects’ locations and control them to achieve a coherent quantum state — essentially leveraging them as additional qubits.

    In experiments, the team generated and detected quantum coherence among three electronic spins — scaling up the size of the quantum system from a single qubit (the NV center) to three qubits (adding two nearby spin defects). The findings demonstrate a step forward in scaling up quantum devices using NV centers, the researchers say.

    “You always have unknown spin defects in the environment that interact with an NV center. We say, ‘Let’s not ignore these spin defects, which [if left alone] could cause faster decoherence. Let’s learn about them, characterize their spins, learn to control them, and ‘recruit’ them to be part of the quantum system,’” says the lead co-author Won Kyu Calvin Sun, a graduate student in the Department of Nuclear Science and Engineering and a member of the Quantum Engineering group. “Then, instead of using a single NV center [or just] one qubit, we can then use two, three, or four qubits.”

    Joining Sun on the paper are lead author Alexandre Cooper ’16 of Caltech; Jean-Christophe Jaskula, a research scientist in the MIT Research Laboratory of Electronics (RLE) and member of the Quantum Engineering group at MIT; and Paola Cappellaro, a professor in the Department of Nuclear Science and Engineering, a member of RLE, and head of the Quantum Engineering group at MIT.

    Characterizing defects

    NV centers occur where carbon atoms in two adjacent places in a diamond’s lattice structure are missing — one atom is replaced by a nitrogen atom, and the other space is an empty “vacancy.” The NV center essentially functions as an atom, with a nucleus and surrounding electrons that are extremely sensitive to tiny variations in surrounding electrical, magnetic, and optical fields. Sweeping microwaves across the center, for instance, makes it change, and thus control, the spin states of the nucleus and electrons.

    Spins are measured using a type of magnetic resonance spectroscopy. This method plots the frequencies of electron and nucleus spins in megahertz as a “resonance spectrum” that can dip and spike, like a heart monitor. Spins of an NV center under certain conditions are well-known. But the surrounding spin defects are unknown and difficult to characterize.

    In their work, the researchers identified, located, and controlled two electron-nuclear spin defects near an NV center. They first sent microwave pulses at specific frequencies to control the NV center. Simultaneously, they pulse another microwave that probes the surrounding environment for other spins. They then observed the resonance spectrum of the spin defects interacting with the NV center.

    The spectrum dipped in several spots when the probing pulse interacted with nearby electron-nuclear spins, indicating their presence. The researchers then swept a magnetic field across the area at different orientations. For each orientation, the defect would “spin” at different energies, causing different dips in the spectrum. Basically, this allowed them to measure each defect’s spin in relation to each magnetic orientation. They then plugged the energy measurements into a model equation with unknown parameters. This equation is used to describe the quantum interactions of an electron-nuclear spin defect under a magnetic field. Then, they could solve the equation to successfully characterize each defect.

    Locating and controlling

    After characterizing the defects, the next step was to characterize the interaction between the defects and the NV, which would simultaneously pinpoint their locations. To do so, they again swept the magnetic field at different orientations, but this time looked for changes in energies describing the interactions between the two defects and the NV center. The stronger the interaction, the closer they were to one another. They then used those interaction strengths to determine where the defects were located, in relation to the NV center and to each other. That generated a good map of the locations of all three defects in the diamond.

    Characterizing the defects and their interaction with the NV center allow for full control, which involves a few more steps to demonstrate. First, they pump the NV center and surrounding environment with a sequence of pulses of green light and microwaves that help put the three qubits in a well-known quantum state. Then, they use another sequence of pulses that ideally entangles the three qubits briefly, and then disentangles them, which enables them to detect the three-spin coherence of the qubits.

    The researchers verified the three-spin coherence by measuring a major spike in the resonance spectrum. The measurement of the spike recorded was essentially the sum of the frequencies of the three qubits. If the three qubits for instance had little or no entanglement, there would have been four separate spikes of smaller height.

    “We come into a black box [environment with each NV center]. But when we probe the NV environment, we start seeing dips and wonder which types of spins give us those dips. Once we [figure out] the spin of the unknown defects, and their interactions with the NV center, we can start controlling their coherence,” Sun says. “Then, we have full universal control of our quantum system.”

    Next, the researchers hope to better understand other environmental noise surrounding qubits. That will help them develop more robust error-correcting codes for quantum circuits. Furthermore, because on average the process of NV center creation in diamond creates numerous other spin defects, the researchers say they could potentially scale up the system to control even more qubits. “It gets more complex with scale. But if we can start finding NV centers with more resonance spikes, you can imagine starting to control larger and larger quantum systems,” Sun says.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    MIT Campus

  • richardmitnick 3:06 pm on March 4, 2020 Permalink | Reply
    Tags: Honeywell, Quantum Computing   

    From The Register: “Honeywell, I blew up the qubits: Thermostat maker to offer cloud access to ‘world’s most powerful quantum computer’ within months” 

    From The Register

    3 Mar 2020
    Thomas Claburn

    Honeywell International, a business known to most folks mainly for its thermostats, claims to have achieved a breakthrough in quantum computing.

    On Tuesday, the American mega-manufacturer plans to announce that within three months, it will offer cloud-based access to the world’s most powerful quantum computer, as measured by Quantum Volume.

    Quantum Volume is a benchmarking scheme developed by IBM [PDF] to assess quantum computers. Makers of quantum computers have been fond of citing quantum bit (qubit) counts to suggest overall performance, but different architectural approaches make such comparisons unreliable.

    Quantum Volume takes multiple factors – coherence, calibration errors, crosstalk, spectator errors, gate fidelity, measurement fidelity, initialization fidelity – and then turduckens them to a single number, so quantum kit can be more easily evaluated.

    Honeywell’s unnamed machine is based on its quantum charge coupled device (QCCD) architecture, described in a research paper titled, “Demonstration of the QCCD trapped-ion quantum computer architecture.” The paper will be made available through e-print service arXiv.

    The contraption uses electromagnetic fields to trap ions so they can be manipulated with laser pulses. This approach, the company claims, produces more predictable errors than other qubit technologies that don’t use atoms directly.

    Honeywell says its quantum computer exhibits a Quantum Volume of 64. A year ago, IBM said that its Q System One quantum computer, with a 20-qubit processor, had a Quantum Volume of 16.

    That doesn’t mean quantum computers will be any more meaningful to the general public or businesses than they are now. Despite Google’s recent claim to have achieved Quantum Supremacy – the ad-slinger said its 54-qubit quantum computer could perform a specific calculation in 200 seconds that would require 10,000 years on a classical computer, or 2.5 days by IBM’s adversarial calculation – quantum devices are still mainly for academic research and government money.

    A US National Academies of Sciences, Engineering, and Medicine report on quantum computing from December 2018 said it is “highly unexpected” a quantum computer will be able to crack RSA 2048-bit encryption within the next decade, for instance.

    It’s tempting to suggest that with Quantum Supremacy unlocked, we’ve reached Quantum Recumbency, during which we recline and await the Quantum Coming to arrive.

    But in a phone interview with The Register, Tony Uttley, president of Honeywell’s Quantum Solutions group, argued that businesses should start experimenting, to understand how they can utilize quantum computing and train their workers.

    “This is not a science project,” he said. “We are doing this to be able to demonstrate true value creation for the organizations we’re working with.”

    Testing, testing…

    Honeywell, he said, is testing the technology for molecular development its chemical catalyst business and for route problems in its aerospace business.

    By advancing the state of the art and committing to increasing its hardware’s Quantum Volume by an order of magnitude every year for the next five years, Honeywell is making it clear it wants to help shape this nascent market.

    The biz, which operates groups focused on aerospace, building technologies, safety and productivity, and materials tech, publicly entered the quantum market in 2018 and partnered with Microsoft in 2019 to be part of its Azure Quantum stack.

    In conjunction with the introduction of Honeywell’s quantum computer, the corporation’s VC arm, Honeywell Ventures, has invested in software vendors Cambridge Quantum Computing and Zapata Computing, which offer a quantum development platform and enterprise applications related to chemistry, machine learning, cybersecurity, and optimization problems. Honeywell also intends to work with financial services biz JPMorgan Chase to develop quantum algorithms useful for finance.

    Uttley explained he gets asked about thermostats a lot, which he attributes to people not understanding the breadth of Honeywell’s business and the expertise required to construct a quantum computer.

    “To build any quantum computer takes expertise in vacuum systems, magnetic field systems, lasers, phonics, and the like,” he explained. “These are all underlying technologies that Honeywell has had for decades through its aerospace and materials science businesses.”

    About a decade ago, he explained, Honeywell recognized it had the tech required to create a quantum computer and set a series of milestones to make that happen.

    Uttley said Honeywell’s quantum computer doesn’t have a catchy name. That’s perhaps because it isn’t something customers will purchase. They’ll access it through Microsoft Azure Quantum as a service. No price has yet been determined.

    In an email to The Register, Thomas Schenkel, interim director of accelerator technology and applied physics division at Lawrence Berkeley National Laboratory, said that while getting more qubits to work together will eventually lead to solving certain kinds of problems faster than a classical computer, the number of qubits alone is not everything.

    “Gate fidelity (how precise the operations are conducted), coherence time (how long a calculation can run before the precious quantum states couple too much to the environment) and connectivity (how qubits are linked up, e. g. nearest neighbor of higher levels of connectivity) also matter a lot,” he said. “This is an intense race now and there will very likely be many winning technologies because they can be adapted to special problem areas.”

    Schenkel said there’s a lot of debate about how to move forward.

    “Silicon-based qubits, like quantum dots or donor atoms with qubits based on electrons and their spins, have long been hailed as highly scalable due to the fabrication finesse of the semiconductor industry,” he said. “But scaling has proven very tricky and slower than expected following basic demos with one or two qubits over the last decade.”

    The recent entrance of experts in high-end semiconductor fabrication, said Schenkel, could help the field advance more quickly, though he sees many challenges that have yet to be overcome, like noisy interfaces and too many wires. The major challenge ahead, he said, is making error correction work with thousands of qubits and that doesn’t look likely soon.

    Schenkel however expressed optimism that industry investment is moving things forward.

    “When Intel pioneered IC’s some 50 years ago that did not mark the end of R&D in silicon electronics, au contraire,” he said. “Having market success with early technologies will likely stimulate basic R&D and we very likely have not found the best way to build a quantum computer yet (likely far from it).” ®

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

  • richardmitnick 9:25 am on February 28, 2020 Permalink | Reply
    Tags: "Particle accelerator technology could solve one of the most vexing problems in building quantum computers", , , Quantum Computing, Quantum parallelism, Superconducting radio-frequency cavities, The decoherence of qubits   

    From Fermi National Accelerator Lab: “Particle accelerator technology could solve one of the most vexing problems in building quantum computers” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.

    February 26, 2020
    Jerald Pinson

    Superconducting radio-frequency cavities, such as the one seen here, are used in particle accelerators. They can also solve one of the biggest problems facing the successful development of a quantum computer: the decoherence of qubits. Photo: Reidar Hahn, Fermilab.

    Last year, researchers at Fermilab received over $3.5 million for projects that delve into the burgeoning field of quantum information science. Research funded by the grant runs the gamut, from building and modeling devices for possible use in the development of quantum computers to using ultracold atoms to look for dark matter.

    For their quantum computer project, Fermilab particle physicist Adam Lyon and computer scientist Jim Kowalkowski are collaborating with researchers at Argonne National Laboratory, where they’ll be running simulations on high-performance computers.

    Their work will help determine whether instruments called superconducting radio-frequency cavities, also used in particle accelerators, can solve one of the biggest problems facing the successful development of a quantum computer: the decoherence of qubits.

    “Fermilab has pioneered making superconducting cavities that can accelerate particles to an extremely high degree in a short amount of space,” said Lyon, one of the lead scientists on the project. “It turns out this is directly applicable to a qubit.”

    Researchers in the field have worked on developing successful quantum computing devices for the last several decades; so far, it’s been difficult. This is primarily because quantum computers have to maintain very stable conditions to keep qubits in a quantum state called superposition.


    Classical computers use a binary system of 0s and 1s – called bits – to store and analyze data. Eight bits combined make one byte of data, which can be strung together to encode even more information. (There are about 31.8 million bytes in the average three-minute digital song.) In contrast, quantum computers aren’t constrained by a strict binary system. Rather, they operate on a system of qubits, each of which can take on a continuous range of states during computation. Just as an electron orbiting an atomic nucleus doesn’t have a discrete location but rather occupies all positions in its orbit at once in an electron cloud, a qubit can be maintained in a superposition of both 0 and 1

    Since there are two possible states for any given qubit, a pair doubles the amount of information that can be manipulated: 22 = 4. Use four qubits, and that amount of information grows to 24 = 16. With this exponential increase, it would take only 300 entangled qubits to encode more information than there is matter in the universe.

    Qubits can be in a superposition of 0 and 1, while classical bits can be only one or the other. Image: Jerald Pinson.

    Parallel positions

    Qubits don’t represent data in the same way as bits. Because qubits in superposition are both 0 and 1 at the same time, they can similarly represent all possible answers to a given problem simultaneously. This is called quantum parallelism, and it’s one of the properties that makes quantum computers so much faster than classical systems.

    The difference between classical computers and their quantum counterparts could be compared to a situation in which there is a book with some pages randomly printed in blue ink instead of black. The two computers are given the task of determining how many pages were printed in each color.

    “A classical computer would go through every page,” Lyon said. Each page would be marked, one at a time, as either being printed in black or in blue. “A quantum computer, instead of going through the pages sequentially, would go through them all at once.”

    Once the computation was complete, a classical computer would give you a definite, discrete answer. If the book had three pages printed in blue, that’s the answer you’d get.

    “But a quantum computer is inherently probabilistic,” Kowalkowski said.

    This means the data you get back isn’t definite. In a book with 100 pages, the data from a quantum computer wouldn’t be just three. It also could give you, for example, a 1 percent chance of having three blue pages or a 1 percent chance of 50 blue pages.

    An obvious problem arises when trying to interpret this data. A quantum computer can perform incredibly fast calculations using parallel qubits, but it spits out only probabilities, which, of course, isn’t very helpful – unless, that is, the right answer could somehow be given a higher probability.


    Consider two water waves that approach each other. As they meet, they may constructively interfere, producing one wave with a higher crest. Or they may destructively interfere, canceling each other so that there’s no longer any wave to speak of. Qubit states can also act as waves, exhibiting the same patterns of interference, a property researchers can exploit to identify the most likely answer to the problem they’re given.

    “If you can set up interference between the right answers and the wrong answers, you can increase the likelihood that the right answers pop up more than the wrong answers,” Lyon said. “You’re trying to find a quantum way to make the correct answers constructively interfere and the wrong answers destructively interfere.”

    When a calculation is run on a quantum computer, the same calculation is run multiple times, and the qubits are allowed to interfere with one another. The result is a distribution curve in which the correct answer is the most frequent response.

    When waves meet, they may constructively interfere, producing one wave with a higher crest. Image: Jerald Pinson.

    Waves may also destructively interfere, canceling each other so that there’s no longer any wave to speak of. Image: Jerald Pinson.

    Listening for signals above the noise

    In the last five years, researchers at universities, government facilities and large companies have made encouraging advancements toward the development of a useful quantum computer. Last year, Google announced that it had performed calculations on their quantum processor called Sycamore in a fraction of the time it would have taken the world’s largest supercomputer to complete the same task.

    Yet the quantum devices that we have today are still prototypes, akin to the first large vacuum tube computers of the 1940s.

    “The machines we have now don’t scale up much at all,” Lyon said.

    There’s still a few hurdles researchers have to overcome before quantum computers become viable and competitive. One of the largest is finding a way to keep delicate qubit states isolated long enough for them to perform calculations.

    If a stray photon — a particle of light — from outside the system were to interact with a qubit, its wave would interfere with the qubit’s superposition, essentially turning the calculations into a jumbled mess – a process called decoherence. While the refrigerators do a moderately good job at keeping unwanted interactions to a minimum, they can do so only for a fraction of a second.

    “Quantum systems like to be isolated,” Lyon said, “and there’s just no easy way to do that.”

    When a quantum computer is operating, it needs to be placed in a large refrigerator, like the one pictured here, to cool the device to less than a degree above absolute zero. This is done to keep energy from the surrounding environment from entering the machine. Photo: Reidar Hahn, Fermilab.

    Which is where Lyon and Kowalkowski’s simulation work comes in. If the qubits can’t be kept cold enough to maintain an entangled superposition of states, perhaps the devices themselves can be constructed in a way that makes them less susceptible to noise.

    It turns out that superconducting cavities made of niobium, normally used to propel particle beams in accelerators, could be the solution. These cavities need to be constructed very precisely and operate at very low temperatures to efficiently propagate the radio waves that accelerate particle beams. Researchers theorize that by placing quantum processors in these cavities, the qubits will be able to interact undisturbed for seconds rather than the current record of milliseconds, giving them enough time to perform complex calculations.

    Qubits come in several different varieties. They can be created by trapping ions within a magnetic field or by using nitrogen atoms surrounded by the carbon lattice formed naturally in crystals. The research at Fermilab and Argonne will be focused on qubits made from photons.

    Lyon and his team have taken on the job of simulating how well radio-frequency cavities are expected to perform. By carrying out their simulations on high-performance computers, known as HPCs, at Argonne National Laboratory, they can predict how long photon qubits can interact in this ultralow-noise environment and account for any unexpected interactions.

    Researchers around the world have used open-source software for desktop computers to simulate different applications of quantum mechanics, providing developers with blueprints for how to incorporate the results into technology. The scope of these programs, however, is limited by the amount of memory available on personal computers. In order to simulate the exponential scaling of multiple qubits, researchers have to use HPCs.

    “Going from one desktop to an HPC, you might be 10,000 times faster,” said Matthew Otten, a fellow at Argonne National Laboratory and collaborator on the project.

    Once the team has completed their simulations, the results will be used by Fermilab researchers to help improve and test the cavities for acting as computational devices.

    “If we set up a simulation framework, we can ask very targeted questions on the best way to store quantum information and the best way to manipulate it,” said Eric Holland, the deputy head of quantum technology at Fermilab. “We can use that to guide what we develop for quantum technologies.”

    This work is supported by the Department of Energy Office of Science.

    See the full here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

  • richardmitnick 9:54 am on February 24, 2020 Permalink | Reply
    Tags: "Correcting the “jitters” in quantum devices", “Noise” — random fluctuations that can eradicate the data stored in such devices., , Quantum Computing,   

    From MIT News: “Correcting the “jitters” in quantum devices” 

    MIT News

    From MIT News

    February 18, 2020
    David L. Chandler

    In a diamond crystal, three carbon atom nuclei (shown in blue) surround an empty spot called a nitrogen vacancy center, which behaves much like a single electron (shown in red). The carbon nuclei act as quantum bits, or qubits, and it turns out the primary source of noise that disturbs them comes from the jittery “electron” in the middle. By understanding the single source of that noise, it becomes easier to compensate for it, the researchers found. Image: David Layden.

    A new study suggests a path to more efficient error correction, which may help make quantum computers and sensors more practical.

    Labs around the world are racing to develop new computing and sensing devices that operate on the principles of quantum mechanics and could offer dramatic advantages over their classical counterparts. But these technologies still face several challenges, and one of the most significant is how to deal with “noise” — random fluctuations that can eradicate the data stored in such devices.

    A new approach developed by researchers at MIT could provide a significant step forward in quantum error correction. The method involves fine-tuning the system to address the kinds of noise that are the most likely, rather than casting a broad net to try to catch all possible sources of disturbance.

    The analysis is described in the journal Physical Review Letters, in a paper by MIT graduate student David Layden, postdoc Mo Chen, and professor of nuclear science and engineering Paola Cappellaro.

    “The main issues we now face in developing quantum technologies are that current systems are small and noisy,” says Layden. Noise, meaning unwanted disturbance of any kind, is especially vexing because many quantum systems are inherently highly sensitive, a feature underlying some of their potential applications.

    And there’s another issue, Layden says, which is that quantum systems are affected by any observation. So, while one can detect that a classical system is drifting and apply a correction to nudge it back, things are more complicated in the quantum world. “What’s really tricky about quantum systems is that when you look at them, you tend to collapse them,” he says.

    Classical error correction schemes are based on redundancy. For example, in a communication system subject to noise, instead of sending a single bit (1 or 0), one might send three copies of each (111 or 000). Then, if the three bits don’t match, that shows there was an error. The more copies of each bit get sent, the more effective the error correction can be.

    The same essential principle could be applied to adding redundancy in quantum bits, or “qubits.” But, Layden says, “If I want to have a high degree of protection, I need to devote a large part of my system to doing these sorts of checks. And this is a nonstarter right now because we have fairly small systems; we just don’t have the resources to do particularly useful quantum error correction in the usual way.” So instead, the researchers found a way to target the error correction very narrowly at the specific kinds of noise that were most prevalent.

    The quantum system they’re working with consists of carbon nuclei near a particular kind of defect in a diamond crystal called a nitrogen vacancy center. These defects behave like single, isolated electrons, and their presence enables the control of the nearby carbon nuclei.

    But the team found that the overwhelming majority of the noise affecting these nuclei came from one single source: random fluctuations in the nearby defects themselves. This noise source can be accurately modeled, and suppressing its effects could have a major impact, as other sources of noise are relatively insignificant.

    “We actually understand quite well the main source of noise in these systems,” Layden says. “So we don’t have to cast a wide net to catch every hypothetical type of noise.”

    The team came up with a different error correction strategy, tailored to counter this particular, dominant source of noise. As Layden describes it, the noise comes from “this one central defect, or this one central ‘electron,’ which has a tendency to hop around at random. It jitters.”

    That jitter, in turn, is felt by all those nearby nuclei, in a predictable way that can be corrected.

    “The upshot of our approach is that we’re able to get a fixed level of protection using far fewer resources than would otherwise be needed,” he says. “We can use a much smaller system with this targeted approach.”

    The work so far is theoretical, and the team is actively working on a lab demonstration of this principle in action. If it works as expected, this could make up an important component of future quantum-based technologies of various kinds, the researchers say, including quantum computers that could potentially solve previously unsolvable problems, or quantum communications systems that could be immune to snooping, or highly sensitive sensor systems.

    “This is a component that could be used in a number of ways,” Layden says. “It’s as though we’re developing a key part of an engine. We’re still a ways from building a full car, but we’ve made progress on a critical part.”

    “Quantum error correction is the next challenge for the field,” says Alexandre Blais, a professor of physics at the University of Sherbrooke, in Canada, who was not associated with this work. “The complexity of current quantum error correcting codes is, however, daunting as they require a very large number of qubits to robustly encode quantum information.”

    Blais adds, “We have now come to realize that exploiting our understanding of the devices in which quantum error correction is to be implemented can be very advantageous. This work makes an important contribution in this direction by showing that a common type of error can be corrected for in a much more efficient manner than expected. For quantum computers to become practical we need more ideas like this.​”

    The research was supported by the U.S. Army Research Office and the National Science Foundation.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    MIT Campus

  • richardmitnick 2:48 pm on February 10, 2020 Permalink | Reply
    Tags: "Quantum technologies: New insights into superconducting processes", , Carsten Schuck's research group at Münster University has been working for several years on developing such single-photon detectors based on superconductors., Forschungszentrum Jülich, High temperature superconducting microbridge, , Quantum Computing, , University of Münster   

    From University of Münster: “Quantum technologies: New insights into superconducting processes” 


    From University of Münster

    10. February 2020

    Measurement setup for the characterization of microbridges in a cryostat

    Physicists demonstrate energy quantization in high-temperature superconductors / Study in “Nature Communications”

    The development of a quantum computer that can solve problems, which classical computers can only solve with great effort or not at all – this is the goal currently being pursued by an ever-growing number of research teams worldwide. The reason: Quantum effects, which originate from the world of the smallest particles and structures, enable many new technological applications. So-called superconductors, which allow for processing information and signals according to the laws of quantum mechanics, are considered to be promising components for realizing quantum computers. A sticking point of superconducting nanostructures, however, is that they only function at very low temperatures and are therefore difficult to bring into practical applications.

    Researchers at the University of Münster and Forschungszentrum Jülich now, for the first time, demonstrated what is known as energy quantization in nanowires made of high-temperature superconductors – i. e. superconductors, in which the temperature is elevated below which quantum mechanical effects predominate. The superconducting nanowire then assumes only selected energy states that could be used to encode information. In the high-temperature superconductors, the researchers were also able to observe for the first time the absorption of a single photon, a light particle that serves to transmit information.

    “On the one hand, our results can contribute to the use of considerably simplified cooling technology in quantum technologies in the future, and on the other hand, they offer us completely new insights into the processes governing superconducting states and their dynamics, which are still not understood,” emphasizes study leader Jun. Prof. Carsten Schuck from the Institute of Physics at Münster University. The results may therefore be relevant for the development of new types of computer technology. The study has been published in the journal Nature Communications.

    Background and methods:

    High temperature superconducting microbridge (pink) in gold contacts (yellow)
    © M. Lyatti et al./ Nature Communications

    The scientists used superconductors made of the elements yttrium, barium, copper oxide and oxygen, or YBCO for short, from which they fabricated a few nanometer thin wires. When these structures conduct electrical current physical dynamics called phase slips occur. In the case of YBCO nanowires fluctuations of the charge carrier density cause variations in the supercurrent. The researchers investigated the processes in the nanowires at temperatures below 20 Kelvin, which corresponds to minus 253 degrees Celsius. In combination with model calculations, they demonstrated a quantization of energy states in the nanowires. The temperature at which the wires entered the quantum state was found at 12 to 13 Kelvin – a temperature several hundred times higher than the temperature required for the materials normally used. This enabled the scientists to produce resonators, i.e. oscillating systems tuned to specific frequencies, with much longer lifetimes and to maintain the quantum mechanical states for longer. This is a prerequisite for the long-term development of ever larger quantum computers.

    Absorption of a single photon in high-temperature superconductors

    Further important components for the development of quantum technologies, but potentially also for medical diagnostics, are detectors that can register even single-photons. Carsten Schuck’s research group at Münster University has been working for several years on developing such single-photon detectors based on superconductors. What already works well at low temperatures, scientists all over the world have been trying to achieve with high-temperature superconductors for more than a decade. In the YBCO nanowires used for the study, this attempt has now succeeded for the first time. “Our new findings pave the way for new experimentally verifiable theoretical descriptions and technological developments,” says co-author Martin Wolff from the Schuck research group.

    Participating institutions and funding:

    The superconducting films produced at Forschungszentrum Jülich were nanostructured in Jülich and at the University of Münster, where also the experimental characterization was carried out. The study received financial support from the Ministry of Economics, Innovation, Digitization and Energy of the State of North Rhine-Westphalia and the Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) of the Forschungszentrum Jülich.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Sitz der WWU
    Foto: MünsterView/Tronquet

    The University of Münster (German: Westfälische Wilhelms-Universität Münster, WWU) is a public university located in the city of Münster, North Rhine-Westphalia in Germany.

    With more than 43,000 students and over 120 fields of study in 15 departments, it is Germany’s fifth largest university and one of the foremost centers of German intellectual life. The university offers a wide range of subjects across the sciences, social sciences and the humanities. Several courses are also taught in English, including PhD programmes as well as postgraduate courses in geoinformatics, geospational technologies or information systems.

    Professors and former students have won ten Leibniz Prizes, the most prestigious as well as the best-funded prize in Europe, and one Fields Medal. The WWU has also been successful in the German government’s Excellence Initiative.

  • richardmitnick 8:24 am on January 15, 2020 Permalink | Reply
    Tags: "How to verify that quantum chips are computing correctly", , , Quantum Computing   

    From MIT News: “How to verify that quantum chips are computing correctly” 

    MIT News

    From MIT News

    January 13, 2020
    Rob Matheson

    Researchers from MIT, Google, and elsewhere have designed a novel method for verifying when quantum processors have accurately performed complex computations that classical computers can’t. They validate their method on a custom system (pictured) that’s able to capture how accurately a photonic chip (“PNP”) computed a notoriously difficult quantum problem. Image: Mihika Prabhu

    A new method determines whether circuits are accurately executing complex operations that classical computers can’t tackle.

    In a step toward practical quantum computing, researchers from MIT, Google, and elsewhere have designed a system that can verify when quantum chips have accurately performed complex computations that classical computers can’t.

    Quantum chips perform computations using quantum bits, called “qubits,” that can represent the two states corresponding to classic binary bits — a 0 or 1 — or a “quantum superposition” of both states simultaneously. The unique superposition state can enable quantum computers to solve problems that are practically impossible for classical computers, potentially spurring breakthroughs in material design, drug discovery, and machine learning, among other applications.

    Full-scale quantum computers will require millions of qubits, which isn’t yet feasible. In the past few years, researchers have started developing “Noisy Intermediate Scale Quantum” (NISQ) chips, which contain around 50 to 100 qubits. That’s just enough to demonstrate “quantum advantage,” meaning the NISQ chip can solve certain algorithms that are intractable for classical computers. Verifying that the chips performed operations as expected, however, can be very inefficient. The chip’s outputs can look entirely random, so it takes a long time to simulate steps to determine if everything went according to plan.

    In a paper published today in Nature Physics, the researchers describe a novel protocol to efficiently verify that an NISQ chip has performed all the right quantum operations. They validated their protocol on a notoriously difficult quantum problem running on custom quantum photonic chip.

    “As rapid advances in industry and academia bring us to the cusp of quantum machines that can outperform classical machines, the task of quantum verification becomes time critical,” says first author Jacques Carolan, a postdoc in the Department of Electrical Engineering and Computer Science (EECS) and the Research Laboratory of Electronics (RLE). “Our technique provides an important tool for verifying a broad class of quantum systems. Because if I invest billions of dollars to build a quantum chip, it sure better do something interesting.”

    Joining Carolan on the paper are researchers from EECS and RLE at MIT, as well from the Google Quantum AI Laboratory, Elenion Technologies, Lightmatter, and Zapata Computing.

    Divide and conquer

    The researchers’ work essentially traces an output quantum state generated by the quantum circuit back to a known input state. Doing so reveals which circuit operations were performed on the input to produce the output. Those operations should always match what researchers programmed. If not, the researchers can use the information to pinpoint where things went wrong on the chip.

    At the core of the new protocol, called “Variational Quantum Unsampling,” lies a “divide and conquer” approach, Carolan says, that breaks the output quantum state into chunks. “Instead of doing the whole thing in one shot, which takes a very long time, we do this unscrambling layer by layer. This allows us to break the problem up to tackle it in a more efficient way,” Carolan says.

    For this, the researchers took inspiration from neural networks — which solve problems through many layers of computation — to build a novel “quantum neural network” (QNN), where each layer represents a set of quantum operations.

    To run the QNN, they used traditional silicon fabrication techniques to build a 2-by-5-millimeter NISQ chip with more than 170 control parameters — tunable circuit components that make manipulating the photon path easier. Pairs of photons are generated at specific wavelengths from an external component and injected into the chip. The photons travel through the chip’s phase shifters — which change the path of the photons — interfering with each other. This produces a random quantum output state — which represents what would happen during computation. The output is measured by an array of external photodetector sensors.

    That output is sent to the QNN. The first layer uses complex optimization techniques to dig through the noisy output to pinpoint the signature of a single photon among all those scrambled together. Then, it “unscrambles” that single photon from the group to identify what circuit operations return it to its known input state. Those operations should match exactly the circuit’s specific design for the task. All subsequent layers do the same computation — removing from the equation any previously unscrambled photons — until all photons are unscrambled.

    As an example, say the input state of qubits fed into the processor was all zeroes. The NISQ chip executes a bunch of operations on the qubits to generate a massive, seemingly randomly changing number as output. (An output number will constantly be changing as it’s in a quantum superposition.) The QNN selects chunks of that massive number. Then, layer by layer, it determines which operations revert each qubit back down to its input state of zero. If any operations are different from the original planned operations, then something has gone awry. Researchers can inspect any mismatches between the expected output to input states, and use that information to tweak the circuit design.

    Boson “unsampling”

    In experiments, the team successfully ran a popular computational task used to demonstrate quantum advantage, called “boson sampling,” which is usually performed on photonic chips. In this exercise, phase shifters and other optical components will manipulate and convert a set of input photons into a different quantum superposition of output photons. Ultimately, the task is to calculate the probability that a certain input state will match a certain output state. That will essentially be a sample from some probability distribution.

    But it’s nearly impossible for classical computers to compute those samples, due to the unpredictable behavior of photons. It’s been theorized that NISQ chips can compute them fairly quickly. Until now, however, there’s been no way to verify that quickly and easily, because of the complexity involved with the NISQ operations and the task itself.

    “The very same properties which give these chips quantum computational power makes them nearly impossible to verify,” Carolan says.

    In experiments, the researchers were able to “unsample” two photons that had run through the boson sampling problem on their custom NISQ chip — and in a fraction of time it would take traditional verification approaches.

    “This is an excellent paper that employs a nonlinear quantum neural network to learn the unknown unitary operation performed by a black box,” says Stefano Pirandola, a professor of computer science who specializes in quantum technologies at the University of York. “It is clear that this scheme could be very useful to verify the actual gates that are performed by a quantum circuit — [for example] by a NISQ processor. From this point of view, the scheme serves as an important benchmarking tool for future quantum engineers. The idea was remarkably implemented on a photonic quantum chip.”

    While the method was designed for quantum verification purposes, it could also help capture useful physical properties, Carolan says. For instance, certain molecules when excited will vibrate, then emit photons based on these vibrations. By injecting these photons into a photonic chip, Carolan says, the unscrambling technique could be used to discover information about the quantum dynamics of those molecules to aid in bioengineering molecular design. It could also be used to unscramble photons carrying quantum information that have accumulated noise by passing through turbulent spaces or materials.

    “The dream is to apply this to interesting problems in the physical world,” Carolan says.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    MIT Campus

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: