From The University of New South Wales (AU) : “UNSW quantum scientists deliver world’s first integrated circuit at the atomic scale” and “Scientists emulate nature in quantum leap towards computers of the future”

From The University of New South Wales (AU)
23 Jun 2022
Larissa Baiocchi
The technical breakthrough, announced at an event at UNSW Sydney today, was published in the journal Nature.

Industry and Science Minister Ed Husic joined UNSW Professor Michelle Simmons and UNSW Vice-Chancellor and President Attila Brungs on a tour of the Silicon Quantum Computer labs. Prof Simmons and the SQC team announced a major breakthrough on its journey to build a commercial silicon computer.
Industry and Science Minister Ed Husic has touted the world-leading work of UNSW Sydney quantum scientists during a visit to the Kensington campus on Thursday.
Mr Husic, who was on campus for the announcement of a significant technical breakthrough by UNSW Professor Michelle Simmons and the team at Silicon Quantum Computing (SQC), said the latest development is evidence of Australia’s superiority in the space.
“I want to tell you how much what you do means to the country,” said Mr Husic, referring to the SQC team gathered at the event. “You are contributing over a long period of time to something that is a big deal not just for the country, but for the world.”
Mr Husic acknowledged the work of Prof. Simmons and the SQC researchers who announced the development of the world’s first integrated circuit manufactured at the atomic scale.
“Our quantum capabilities are clearly world-leading and building on the proud history of research excellence,” Mr Husic said. “It is a clear sign that our companies, our entrepreneurs and our researchers are some of the world’s best.”
Keeping quantum research in Australia
Mr Husic also highlighted the government’s commitment to keeping talent in Australia.
The government has announced an investment of $1 billion in the form of a Critical Technology Fund as part of the broader National Reconstruction Fund. This will help to support home-grown innovation and production in areas like engineering, data science, software development, AI, robotics, and quantum.
To ensure the continuous growth and supercharge the quantum computing industry, the government is providing $4 million for up to 20 PhDs in quantum research to support universities as they establish national research and education partnerships.
“I want the world to know what you are doing, and I want to fight every single day to stop anyone leaving this country that’s involved in quantum,” Mr Husic said. “I want the world to come here, instead of us going there.”
Mr Husic pointed to a range of statistics that show Australia punches well above its weight when it comes quantum research. Australia accounts for a third of 1 per cent of the world’s population, but it accounts for 4.2 per cent of global quantum research. Quantum technology research by Australian researchers is cited 60 per cent more than the global average. Eleven Australian universities rank above the global standard for quantum technology research.
A career high for Michelle Simmons
Prof. Simmons, founder and director of SQC, described the technical breakthrough as the biggest result of her career.
“This has never been done before and nobody else in the world can do it,” Prof Simmons said. “It is a hugely exciting result and what is even more exciting for us is having done that, we have seen that classical roadmap and that we know the commercial devices that are within the next five or six years.”
Prof Simmons and researchers from SQC used the integrated processor – known as an analogue quantum processor – to accurately model the quantum states of a small, organic polyacetylene molecule, proving a pathway to creating new materials that have never existed.
The advancement is a major step for SQC and its customers to construct quantum models for a range of new materials, from superconductors, materials for batteries, pharmaceuticals, or catalysts.
UNSW leads in quantum technology
UNSW Vice-Chancellor and President Professor Attila Brungs called the announcement history in the making.
“Today’s news puts SQC and UNSW researchers even closer to their goal and reinforces this University’s position at the forefront of quantum technology,” Prof Brungs said.
“It is the culmination of many years of hard work and is an exemplar of the power of collaboration.”
SQC is a private company formed in 2017 through a joint initiative with the Commonwealth government, UNSW Sydney, Telstra Corporation, the Commonwealth Bank of Australia, and the NSW government.
_____________________________________________________________
Scientists emulate nature in quantum leap towards computers of the future
23 Jun 2022
Lachlan Gilbert
Quantum computing hardware specialists at UNSW have built a quantum processor in silicon to simulate an organic molecule with astounding precision.

Lead researcher and former Australian of the Year, Scientia Professor Michelle Simmons. Photo: SQC.
A team of quantum computer physicists at UNSW Sydney have engineered a quantum processor at the atomic scale to simulate the behaviour of a small organic molecule, solving a challenge set some 60 years ago by theoretical physicist Richard Feynman.
The achievement, which occurred two years ahead of schedule, represents a major milestone in the race to build the world’s first quantum computer, and demonstrates the team’s ability to control the quantum states of electrons and atoms in silicon at an exquisite level not achieved before.
In a paper published today in the journal Nature, the researchers described how they were able to mimic the structure and energy states of the organic compound polyacetylene – a repeating chain of carbon and hydrogen atoms distinguished by alternating single and double bonds of carbon.
Lead researcher and former Australian of the Year, Scientia Professor Michelle Simmons, said the team at Silicon Quantum Computing, one of UNSW’s most exciting start-ups, built a quantum integrated circuit comprising a chain of 10 quantum dots to simulate the precise location of atoms in the polyacetylene chain.

An artist’s impression of inside the quantum integrated circuit modeling the carbon chain. The simulated carbon atoms are in red, while the blue depicts electrons exchanged between them. Image: SQC.
“If you go back to the 1950s, Richard Feynman said you can’t understand how nature works unless you can build matter at the same length scale,” Prof. Simmons said.
“And so that’s what we’re doing, we’re literally building it from the bottom up, where we are mimicking the polyacetylene molecule by putting atoms in silicon with the exact distances that represent the single and double carbon-carbon bonds.”
Chain reaction
The research relied on measuring the electric current through a deliberately engineered 10-quantum dot replica of the polyacetylene molecule as each new electron passed from the source outlet of the device to the drain – the other end of the circuit.
To be doubly sure, they simulated two different strands of the polymer chains.
In the first device they cut a snippet of the chain to leave double bonds at the end giving 10 peaks in the current. In the second device they cut a different snippet of the chain to leave single bonds at the end only giving rise to two peaks in the current. The current that passes through each chain was therefore dramatically different due to the different bond lengths of the atoms at the end of the chain.
Not only did the measurements match the theoretical predictions, they matched perfectly.
“What it’s showing is that you can literally mimic what actually happens in the real molecule. And that’s why it’s exciting because the signatures of the two chains are very different,” Prof. Simmons said.
“Most of the other quantum computing architectures out there haven’t got the ability to engineer atoms with sub-nanometer precision or allow the atoms to sit that close.
“And so that means that now we can start to understand more and more complicated molecules based on putting the atoms in place as if they’re mimicking the real physical system.”
Standing at the edge
According to Prof. Simmons, it was no accident that a carbon chain of 10 atoms was chosen because that sits within the size limit of what a classical computer is able to compute, with up to 1024 separate interactions of electrons in that system. Increasing it to a 20-dot chain would see the number of possible interactions rise exponentially, making it difficult for a classical computer to solve.
“We’re near the limit of what classical computers can do, so it’s like stepping off the edge into the unknown,” she says.
“And this is the thing that’s exciting, we can now make bigger devices that are beyond what a classical computer can model. So we can look at molecules that haven’t been simulated before. We’re going to be able to understand the world in a different way, addressing fundamental questions that we’ve never been able to solve before.”
One of the questions Prof. Simmons alluded to is about understanding and mimicking photosynthesis – how plants use light to create chemical energy for growth. Or understanding how to optimise the design of catalysts used for fertilisers, currently a high-energy, high-cost process.
“So there’re huge implications for fundamentally understanding how nature works,” she said.
Future quantum computers
Much has been written about quantum computers in the last three decades with the billion-dollar question always being ‘but when can we see one?’.
Prof. Simmons says that the development of quantum computers is on a comparable trajectory to how classical computers evolved – from a transistor in 1947 to an integrated circuit in 1958, and then small computing chips that went into commercial products like calculators approximately five years after that.
“And so we’re now replicating that roadmap for quantum computers,” Prof. Simmons says.

The authors of the Nature paper in the Silicon Quantum Computing laboratory.
“We started with a single atom transistor in 2012. And this latest result, realised in 2021 is the equivalent of the atom-scale quantum integrated circuit, two years ahead of time. If we map it to the evolution of classical computing, we’re predicting we should have some kind of commercial outcome from our technology five years from now.”
One of the advantages that the UNSW/SQC team’s research brings is that the technology is scalable because it manages to use fewer components in the circuit to control the qubits – the basic bits of quantum information.
“In quantum systems, you need something that creates the qubits, some kind of structure in the device that allows you to form the quantum state,” Prof. Simmons says.
“In our system, the atoms themselves create the qubits, requiring fewer elements in the circuits. We only needed six metallic gates to control the electrons in our 10-dot system – in other words, we have fewer gates than there are active device components. Whereas most quantum computing architectures need almost double the number or more of the control systems to move the electrons in the qubit architecture.”
Needing fewer components packed in tightly together minimises the amount of any interference with the quantum states, allowing devices to be scaled up to make more complex and powerful quantum systems.
“So that very low physical gate density is also very exciting for us, because it shows that we’ve got this nice clean system that we can manipulate, keeping coherence across long distances with minimal overhead in the gates. That’s why it’s valuable for scalable quantum computing.”
Looking ahead, Prof. Simmons and her colleagues will explore larger compounds that may have been predicted theoretically, but have never been simulated and fully understood before, such as high temperature superconductors.
See the full article UNSW quantum scientists deliver world’s first integrated circuit at the atomic scalehere .
See the full article Scientists emulate nature in quantum leap towards computers of the future here.

five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.

Stem Education Coalition

The The University of New South Wales is an Australian public university with its largest campus in the Sydney suburb of Kensington.
Established in 1949, UNSW is a research university, ranked 44th in the world in the 2021 QS World University Rankings and 67th in the world in the 2021 Times Higher Education World University Rankings. UNSW is one of the founding members of the Group of Eight, a coalition of Australian research-intensive universities, and of Universitas 21, a global network of research universities. It has international exchange and research partnerships with over 200 universities around the world.
According to the 2021 QS World University Rankings by Subject, UNSW is ranked top 20 in the world for Law, Accounting and Finance, and 1st in Australia for Mathematics, Engineering and Technology. UNSW also leads Australia in Medicine, where the median ATAR (Australian university entrance examination results) of its Medical School students is higher than any other Australian medical school. UNSW enrolls the highest number of Australia’s top 500 high school students academically, and produces more millionaire graduates than any other Australian university.
The university comprises seven faculties, through which it offers bachelor’s, master’s and doctoral degrees. The main campus is in the Sydney suburb of Kensington, 7 kilometres (4.3 mi) from the Sydney CBD. The creative arts faculty, UNSW Art & Design, is located in Paddington, and subcampuses are located in the Sydney CBD as well as several other suburbs, including Randwick and Coogee. Research stations are located throughout the state of New South Wales.
The university’s second largest campus, known as UNSW Canberra at ADFA (formerly known as UNSW at ADFA), is situated in Canberra, in the Australian Capital Territory (ACT). ADFA is the military academy of the Australian Defense Force, and UNSW Canberra is the only national academic institution with a defense focus.
Research centres
The university has a number of purpose-built research facilities, including:
UNSW Lowy Cancer Research Centre is Australia’s first facility bringing together researchers in childhood and adult cancers, as well as one of the country’s largest cancer-research facilities, housing up to 400 researchers.
The Mark Wainwright Analytical Centre is a centre for the faculties of science, medicine, and engineering. It is used to study the structure and composition of biological, chemical, and physical materials.
UNSW Canberra Cyber is a cyber-security research and teaching centre.
The Sino-Australian Research Centre for Coastal Management (SARCCM) has a multidisciplinary focus, and works collaboratively with the Ocean University of China [中國海洋大學](CN) in coastal management research.
University rankings
In the 2022 QS World University Rankings, UNSW is ranked 43rd globally (4th in Australia and 2nd in New South Wales). In addition, UNSW is ranked 13th in the World for Civil and Structural Engineering (1st in Australia), 20th in the World for Accounting and Finance (1st in Australia), 14th in the World for Law (2nd in Australia), and 23rd in the World for Engineering and Technology (1st in Australia), According to the 2022 QS World University Rankings by Subject.
In the 2022 SCImago Institutions Rankings UNSW is ranked 56th in the world overall and 47th in the world for research. Subject-wise, it is ranked 11th in the world for Business, Management and Accounting, 11th in the World for Law and 33rd in the world for Economics, Econometrics and Finance etc.
In The 2022 U.S. News & World Report Best Global University Ranking UNSW is ranked 41st best university in the world and 45th globally in Economics and Business.
The Times Higher Education World University Rankings 2022 placed UNSW 70th in the world, and 46th in the world (1st in Australia) for Engineering, 55th in the world for Business and Economics (4th in Australia), and 24th in the world (2nd in Australia) for Law according to the 2022 Times Higher Education World University Rankings by subject.
In the 2021 Academic Ranking of World Universities, UNSW is ranked 65th globally, 3rd in Australia and 1st in New South Wales. Also in 2021, UNSW had more subjects ranked in the Academic Ranking of World Universities than any other Australian university, with 19 subjects in the top 50 and 2 subjects in the top 10 in the world. UNSW had 12 subjects ranked first in Australia, including Water Resources (8th in the world), Civil Engineering (12th in the world), Library and Information Science (11th in the world), Remote Sensing (12th in the world), and Finance (21st in the world).
In the 2021 University Ranking by Academic Performance Field Rankings, UNSW is ranked 12th in the world for Commerce, Management, Tourism and Services and 21st Globally for Business. In the 2021 Performance Ranking of Scientific Papers for World Universities, UNSW is ranked 51st Globally and is also ranked 39th in the world in the Economics/Business category. According to the 2021 U-Multirank World University Rankings, UNSW is ranked 28th in the world for Research and also ranked 2nd in Australia across Teaching, Research, Knowledge Transfer, International Orientation and Regional Engagement.
In the 2021 Korea University Business School Worldwide Business Research Rankings UNSW is ranked 1st worldwide for Finance, 11th in the world for Accounting and 27th globally for management. According to the 2021 Washington University Olin Business School’s CFAR Rankings, UNSW is ranked 16th in the world for Finance and 9th in the world for Business, by total outcome indicator of research excellence.
Study abroad
The university has overseas exchange programs with over 250 overseas partner institutions. These include Princeton University, McGill University [Université McGill] (CA), University of Pennsylvania (inc. Wharton), Duke University, Johns Hopkins University, Brown University, Columbia University (summer law students only), The University of California-Berkeley, The University of California-Santa Cruz (inc. Baskin), The University of California-Los Angeles, The University of Michigan (inc. Ross), New York University (inc. Stern), The University of Virginia, The Mississippi State University, Cornell University, The University of Connecticut, The University of Texas-Austin (inc. McCombs), Maastricht University [Universiteit Maastricht](NL), The University of Padua [Università degli Studi di Padova](IT), The University College London (law students only), The University of Nottingham (UK), Imperial College London (UK), The London School of Economics (UK) and The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH).
In 2017, UNSW enrolled the highest number of Australia’s top 500 high school students academically.
UNSW has produced more millionaires than any other Australian university, according to the Spear’s Wealth Management Survey in 2016.
The Australian Good Universities Guide 2014 scored UNSW 5-star ratings across 10 categories, more than any other Australian university. Monash University ranked second with seven five stars, followed by The Australian National University (AU), Melbourne University (AU) and The University of Western Australia (AU) with six each.
Engineers Australia ranked UNSW as having the highest number of graduates in Australia’s Top 100 Influential Engineers 2013″ list at 23%, followed by Monash University at 8%, the University of Western Australia, The University of Sydney (AU) and The University of Queensland (AU) at 7%.
Like this:
Like Loading...
Reply