Tagged: Quake-Catcher Network Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:22 pm on February 3, 2016 Permalink | Reply
    Tags: , , , EEW earthquake early-warning, Quake-Catcher Network   

    From Caltech: “White House Puts Spotlight on Earthquake Early-Warning System” 

    Caltech Logo
    Caltech

    02/03/2016
    Katie Neith
    Contact:
    Tom Waldman
    (626) 395-5832
    twaldman@caltech.edu

    Since the late 1970s, Caltech seismologist Tom Heaton, professor of engineering seismology, has been working to develop earthquake early-warning (EEW) systems—networks of ground-based sensors that can send data to users when the earth begins to tremble nearby, giving them seconds to potentially minutes to prepare before the shaking reaches them. In fact, Heaton wrote the first paper published on the concept in 1985. EEW systems have been implemented in countries like Japan, Mexico, and Turkey. However, the Unites States has been slow to regard EEW systems as a priority for the West Coast.

    Earthquake early warning EEW  UserDisplay
    The earthquake early warning (EEW) UserDisplay in action for a scenario M7.8 earthquake. The most intense colors correspond to very strong ground shaking. The banner on top shows expected shaking at the user site. The number “14” on the left indicates warning time, and the expected intensity at the user site is shown in roman numerals, VII. Other information indicates the epicenter and date/time of the earthquake.

    But on February 2, 2016, the White House held the Earthquake Resilience Summit, signaling a new focus on earthquake safety and EEW systems. There, stakeholders—including Caltech’s Heaton and Egill Hauksson, research professor in geophysics; and U.S. Geological Survey (USGS) seismologist Lucy Jones, a visiting associate in geophysics at Caltech and seismic risk advisor to the mayor of Los Angeles—discussed the need for earthquake early warning and explored steps that can be taken to make such systems a reality.

    At the summit, the Gordon and Betty Moore Foundation announced $3.6 million in grants to advance a West Coast EEW system called ShakeAlert, which received an initial $6 million in funding from foundation in 2011. The new grants will go to researchers working on the system at Caltech, the USGS, UC Berkeley, and the University of Washington.

    “We have been successfully operating a demonstration system for several years, and we know that it works for the events that have happened in the test period,” says Heaton. “However, there is still significant development that is required to ensure that the system will work reliably in very large earthquakes similar to the great 1906 San Francisco earthquake. This new funding allows us to accelerate the rate at which we develop this critical system.”

    In addition, the Obama Administration outlined new federal commitments to support greater earthquake safety including an executive order to ensure that new construction of federal buildings is up to code and that federal assets are available for recovery efforts after a large earthquake.

    The commitments follow a December announcement from Congressman Adam Schiff (D-Burbank) that Congress has included $8.2 million in the fiscal year 2016 funding bill specifically designated for a West Coast earthquake early warning system.

    “By increasing the funding for the West Coast earthquake early-warning system, Congress is sending a message to the Western states that it supports this life-saving system. But the federal government cannot do it alone and will need local stakeholders, both public and private, to get behind the effort with their own resources,” said Schiff, in a press release. “The early warning system will give us critical time for trains to be slowed and surgeries to be stopped before shaking hits—saving lives and protecting infrastructure. This early warning system is an investment we need to make now, not after the ‘big one’ hits.”

    ShakeAlert utilizes a network of seismometers—instruments that measure ground motion—widely scattered across the Western states. In California, that network of sensors is called the California Integrated Seismic Network (CISN) and is made up of computerized seismometers that send ground-motion data back to research centers like the Seismological Laboratory at Caltech.

    Here’s how the current ShakeAlert works: a user display opens in a pop-up window on a recipient’s computer as soon as a significant earthquake occurs in California. The screen lists the quake’s estimated location and magnitude based on the sensor data received to that point, along with an estimate of how much time will pass before the shaking reaches the user’s location. The program also gives an approximation of how intense that shaking will be. Since ShakeAlert uses information from a seismic event in progress, people living near the epicenter do not get much—if any—warning, but those farther away could have seconds or even tens of seconds’ notice.

    The goal is an improved version of ShakeAlert that will eventually give schools, utilities, industries, and the general public a heads-up in the event of a major temblor.

    Read more about how ShakeAlert works and about Caltech’s development of EEW systems in a feature that ran in the Summer 2013 issue of E&S magazine called Can We Predict Earthquakes?

    See the full article here .

    [If you live in an earthquake prone area, you can help with identification and notification by joing the Quake-Catcher Network, a project based at Caltech and running on software from BOINC, Berkeley Open Infrastructure for Network Computing. Please visit Quake-Catcher Network and see what it is all about.]

    BOINC WallPaper

    BOINC

    QCN Quake Catcher Network map
    Quake-Catcher Network map

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”
    Caltech buildings

     
  • richardmitnick 11:58 am on January 3, 2016 Permalink | Reply
    Tags: , , , Quake-Catcher Network   

    From Nature: “The 24/7 search for killer quakes” July 2015 Just Found 

    Nature Mag
    Nature

    08 July 2015 [a golden oldie]
    Alexandra Witze

    Temp 1
    Seismologists at the National Earthquake Information Centre are on duty 24/7 to monitor quake activity.

    At 17 minutes past midnight on Saturday 25 April, Rob Sanders’s computer started chiming with alerts. On his screen, squiggly recordings poured in from seismometers in Tibet, Afghanistan and nearby areas that were feeling the first vibrations from a tremendous earthquake.

    Sanders was part way through his shift as an on-duty seismologist at the US Geological Survey’s National Earthquake Information Center (NEIC) in Golden, Colorado. It was his job to work out what was happening — and fast. Within 30 seconds, he began analysing the seismic data and realized it was time to call his boss.

    When the phone rang, Paul Earle was dozing in the room of his four-year-old son, where he had nodded off earlier that evening. Earle rolled out of bed and logged onto his home computer. As chief of 24/7 operations at the NEIC, Earle knew that time was short. For any major earthquake in the world, the US Geological Survey (USGS) is committed to publishing the shock’s magnitude and location online within 20 minutes. The team also puts out rapid estimates for how many people may have been hurt. Various nations issue alerts for quakes in their vicinity, but Earle’s crew is the only one that analyses tremors around the globe.

    The NEIC information helps governments and humanitarian groups to decide how to respond in times of crisis. It determines whether search-and-rescue teams pack their bags, and whether financial markets begin responding to a catastrophic natural disaster. When minutes count, hundreds of key responders — from the White House to the United Nations — rely on the NEIC team to tell them exactly how bad an earthquake was. On 25 April, the work that began on Sanders’s screen ended up with the US government dispatching a response team to the quake’s epicentre in Nepal within hours.

    The NEIC seismologists do not always get it right. Sometimes, deceived by the rawness of the data, they put out an alert containing the wrong quake location or size, before quickly retracting the information. But they are continually refining their techniques to speed up response times while maintaining accuracy. “Being reliable is more important than pure speed,” says Earle.

    The night shift

    The NEIC takes up the fifth floor of a blocky building on the campus of the Colorado School of Mines in Golden, not far from the original Coors brewery and bronze sculptures of the miners who shaped this region of Colorado. A decade ago, television satellite trucks regularly clogged the car park after any large earthquake. Now, most of the journalists stay at home — they can get information from the centre faster over the Internet.

    Computer monitors have replaced the slowly rotating paper drums that once displayed the vibrations measured at seismic stations around the world. But the centre has kept one relic on display: a large wooden globe that often appeared in television reports. Patches of its coloured surface are worn away from decades of seismologists jabbing their fingers at earthquake locations. Southern California has basically disappeared. So has Japan.

    Established in 1966, the NEIC originally operated during normal business hours, with seismologists on call at other times. But in 2004, a magnitude-9.1 earthquake hit Sumatra, triggering a ruinous tsunami that killed almost a quarter of a million people around the Indian Ocean. In an effort to improve its response times in major disasters, the earthquake centre moved to operating around the clock. Fourteen seismologists now cover three shifts, with at least two people on duty at any given time (coordinating their toilet and meal breaks).

    The NEIC analyses more than 20,000 earthquakes a year, everything from imperceptible ones in California to the monsters that occasionally shake the globe. It reports on any earthquake of magnitude 5 or greater worldwide, and down to magnitude 3 in parts of the United States.

    On 25 April, the only earthquake that mattered began beneath Nepal. The jolt started 15 kilometres underground, on the huge Himalayan fault where the tectonic plate carrying India rams into Asia. At 11:56 a.m. local time (11 minutes past midnight in Colorado), the stress of that geological collision ruptured a 120-kilometre-long segment of Earth’s crust beneath the Nepalese district of Gorkha. Waves of seismic energy raced outwards in all directions.

    Within 16 seconds they reached Kathmandu, almost 80 kilometres to the southeast, and began toppling thousands of buildings. Just over a minute later they passed Lhasa, 600 kilometres northeast of the epicentre, and shook seismometers bolted into granite in a hillside tunnel. Those machines, part of the Global Seismographic Network, immediately relayed their data to the NEIC.

    At the Colorado centre, an alert dinged and a window popped up on Sanders’s screen, which filled with information from stations around Asia. Sanders started sorting through the data, choosing the best seismic records to include in his analysis.

    A second seismologist on duty that night called and woke Earle, who began to work on the seismic data from home. As the minutes ticked away, the three of them faced a crucial task — deciding on the quake’s magnitude. The USGS measures eight types of magnitude, each of which conveys different information about the strength of an earthquake’s vibrations and the amount of energy it releases. Certain magnitude scales are most accurate for smaller quakes, whereas others are better at describing long-lasting, larger shocks.

    At 12:29:42 a.m. — 18 minutes and 16 seconds after the earthquake began — the NEIC released its first answer. Location: 77 kilometres northwest of Kathmandu. Size: 7.5 on the moment magnitude scale. This particular scale relies on computer modelling of a certain type of seismic wave, and Earle chose it because of a gut feeling for what he thought would represent the most meaningful magnitude.

    But as is often the case with large quakes, the first official magnitude was not the last. The team had only just started its analyses. Earle called and woke up two more colleagues — Harley Benz and Gavin Hayes — then jogged the two blocks from his home into work. Even as news agencies began broadcasting alerts of a magnitude-7.5 earthquake in Nepal, the NEIC researchers were sifting through fresh data.

    From his home, Hayes ran a separate set of model calculations, which use data on longer-period seismic waves that arrive at stations later but are more appropriate for the world’s largest quakes. At 1:04 a.m., on the basis of this ‘W-phase’ analysis, the NEIC updated the Nepal quake’s magnitude to 7.9.

    Temp 4
    Paul Earle and the team at the earthquake centre issue alerts for major quakes within 20 minutes. Barry Gutierrez

    “None of those numbers are wrong,” says Earle. “They’re all right for that particular magnitude scale.” (Three hours later, the centre would announce a final magnitude of 7.8, also based on the W-phase approach but incorporating more-detailed modelling with newer data.)

    Even as Earle was wrestling with the quake’s magnitude, he called NEIC seismologist David Wald, who happened to be awake. Wald runs a set of programs that take the initial magnitudes and estimate possible fatalities and economic losses. The system, called PAGER (Prompt Assessment of Global Earthquakes for Response), relies on databases of where people live, the types of building in the region of an earthquake and how many people had been killed in similar quakes in the area before.

    If a quake is big enough, PAGER sends out alerts automatically. At 12:34 a.m., the system used the initial magnitude of 7.5 to predict between 100 and 1,000 deaths, and damages between US$10 million and $100 million. That ranked it an ‘orange’, the second-highest alert on the PAGER colour-coded system. “That’s when we knew it was going to be deadly,” Wald says.

    As the minutes crept by, aftershocks kept pummelling Kathmandu. PAGER automatically updated three more times at the orange level, the last at 2:16 a.m.. Then Wald took some data on how much the ground had moved and how widespread the aftershocks were, and manually fed the fresh information into PAGER. The alert immediately escalated to red, estimating between 1,000 and 10,000 deaths. It was 4:14 a.m..

    Global response

    In Washington DC, Gari Mayberry’s mobile phone woke her up with the first NEIC alert. Mayberry, a USGS volcanologist, advises the US Agency for International Development on natural hazards. The agency funded PAGER’s development, precisely to simplify split-second decisions after earthquakes. “Do I need to call my boss at 3 a.m.?” asks Mayberry. “That’s what people want to know.”

    For Nepal, the answer was yes. As the Colorado team released its analyses, Mayberry quickly fed information to her bosses, who help to coordinate search-and-rescue teams for international disasters. In such situations, she says, every minute counts. Within hours, the US government had a team on the way to Nepal.

    Other groups also rolled into action. Gisli Olafsson in Reykjavik, who directs emergency response for a consortium of 43 humanitarian groups called NetHope, says: “I always look at PAGER once it becomes available.” Studying the USGS information, he was relieved to see that the shock had originated relatively far from Kathmandu. But he also learned that the quake had struck in mountainous terrain on a fault close to Earth’s surface, which meant that it had probably destroyed roads. NetHope immediately started preparing for the complicated logistics of getting in and out of rural areas with limited access, and Olafsson flew to Kathmandu to coordinate its response.

    Even the financial world got involved: the Inter-American Development Bank uses PAGER numbers to trigger payouts on catastrophe bonds, a type of insurance against natural disasters such as earthquakes.

    The most recent estimates suggest that the 25 April earthquake and its aftershocks, including a magnitude 7.3 on 12 May, killed roughly 8,700 people — close to the PAGER estimates of around 10,000 deaths. Other catastrophe experts had estimated 50,000 dead or more, using independent assessments of population exposure and building vulnerability.

    One factor that may have saved lives in Kathmandu was how buildings were constructed, says Kishor Jaiswal, a civil engineer at the NEIC. Many of the newer buildings in the city have concrete frames reinforced with steel bars, which kept a lot of them from collapsing. Jaiswal had previously analysed this construction, and his work was one reason that the PAGER fatality estimates were relatively low. Although the toll was great, he knew that much of the city would survive.

    Need for speed

    Most of the NEIC’s work is much calmer than on the night of the Nepalese disaster. Of the thousands of earthquakes that the team tracks every month, the vast majority do not kill anyone. Earle, Benz and Hayes spend their time developing ways to analyse earthquake ruptures as quickly and accurately as possible. Hayes, for instance, specializes in ‘moment tensor’ and ‘finite fault’ calculations, both of which convey information about exactly how a fault has ruptured.

    One of Earle’s top priorities for the earthquake centre is to avoid making major mistakes, although his team sometimes does err. Notable bloopers include issuing an alert on Christmas Day 2013 for a magnitude-22 earthquake. It was supposed to say magnitude 2.2; the typo caused the NEIC to remove all human typing from the real-time system.

    And in May this year, the USGS reported several phantom quakes in California — in reality, they were vibrations from more-distant shocks in Alaska and Japan. An on-duty seismologist had caught the problem, but the software that distributes the alerts had not responded to the correction.

    Cutting back on false alerts while making sure that the real ones get out in time takes a nuanced mix of skill and speed. The NEIC gets data from nearly 1,800 stations worldwide, but there are gaps that slow the seismic analyses. China’s national seismological alerting network puts a 30-minute delay on much of the information, so Earle’s team can rarely use it. And India does not release its seismic data. Nepal, where seismologists have long warned about the earthquake risk, did not have a single station feeding real-time data into the USGS system. Had the agency received more real-time data from locations closer to the epicentre, seismologists could have accurately located the Nepal quake faster than they did, says Thorne Lay, a seismologist at the University of California, Santa Cruz.

    Even with all its speed, the NEIC is not the fastest earthquake-alert system in the United States. That title goes to the National Oceanic and Atmospheric Administration’s two tsunami-warning centres. Drawing on the same seismic network, they release rougher magnitudes and locations within 3 minutes of an earthquake striking, but they handle only shocks in oceans near US territory.

    The NEIC keeps pushing to shave as many seconds off its own notifications as possible. One ongoing project involves Twitter. Earle has set up an automated system that hunts for words such as ‘earthquake’ in various languages in tweets from around the world (P. Earle Nature Geosci. 3, 221–222; 2010). He has to filter out unrelated instances, including references to the video game Quake, but once that is done he can get a heads-up that something big is beginning. When someone in Indonesia tweets ‘gempa’, or earthquake, “it’s on our server in five seconds,” he says.

    Tweets can arrive at the NEIC faster than seismic waves can reach recording stations. In 2012, a magnitude-4.0 jolt in Maine set off a stream of tweets from the region around the epicentre. Earle got an automatic text notification before the shaking spread across New England. “I was at Safeway buying groceries, and I knew about the quake, from nothing but Twitter data, before other people felt it,” he says.

    The Twitter experiment is most useful in places where the USGS does not receive a lot of real-time data, such as parts of South America or Indonesia. Although it will never replace the NEIC’s conventional methods, it can alert the seismologists there to keep a lookout for incoming data.

    The earthquakes never stop coming. Towards the end of a long Friday afternoon in May, Earle is at his standing desk when his iPhone buzzes with a report of a magnitude-6.9 quake in the Solomon Islands. “That one isn’t going to be near a populated area, but it’s a big quake,” he says. “I’m gonna get someone.” He is heading out of the door nearly before he finishes the sentence.

    Earle speed-walks down the hallway, past the row of display monitors set up for television cameras, and pokes his head into the office of seismologist Jana Pursley. “Jana, have you got that?” he asks. “No, Sean does,” she says, waving her hand at the on-duty seismologist down the hall. “OK,” says Earle. “Sean will release it, and then I’ll have Bruce review the moment tensors for it, and then we’ll be done.”

    With that earthquake sorted, Earle heads back to his office. He switches on the electric kettle that sits next to two containers of freeze-dried, generic-brand coffee. “I get the cheapest possible coffee because I don’t even taste it anymore,” he says. “I just drink it.”

    And he turns back to his monitor, to wait for the next one.

    Nature 523, 142–144 (09 July 2015) doi:10.1038/523142a

    See the full article here .

    You can help in earthquake response. You can join Quake-Catcher Network, a project at Caltech running on home computer laptops with software from BOINC, Berkeley Open Infrastructure for Network Computing. You visit the BOINC website, download and install the software, attach to the project. BOINC software uses the unused CPU cycles of your laptop computer to record the data, and send it back to the home base at Caltech. The area effected is then notified, literally in seconds, so that disaster relief agencies are alerted.

    BOINC WallPaper

    The Quake-Catcher Network (QCN) is a research project that uses Internet-connected computers to do research, education, and outreach in seismology. You can participate by downloading and running a free program on your computer. Currently only certain Mac (OS X) PPC and Intel laptops are supported — recent ones which have a built-in accelerometer. You can also buy an external USB accelerometer.

    Temp 3
    A map of the Quake-Catcher installed base

    QCN is based at the CalTech Division of Geological and Planetary Sciences (GPS). From 2007 to 2015 QCN was based at the Stanford University School of Earth Sciences.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Nature is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest, timeliness, accessibility, elegance and surprising conclusions. Nature also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public.

     
  • richardmitnick 4:07 pm on May 23, 2012 Permalink | Reply
    Tags: , , Quake-Catcher Network   

    From Livermore Lab: “Lab seismic research on display at California Academy of Sciences” 

    Lawrence Livermore National Laboratory

    “Lawrence Livermore National Laboratory seismologists will be on hand Wednesday at the media premiere of the California Academy of Sciences’ new show, Earthquake: Evidence of a Restless Planet.

    cal
    Simulation of a possible M 7.05 Hayward Fault earthquake on the scale of the Bay Area.

    Earthquake is a new planetarium show and major exhibit that will open to the public on May 26. The show will launch visitors on a tour through space and time — flying over the San Andreas fault before diving into the planet’s interior, traveling back in time to witness both the 1906 San Francisco earthquake and the breakup of Pangaea (the supercontinent) 200 million years ago.

    With an emphasis on scientifically accurate data, the show draws heavily from the expertise of key partners. Lawrence Livermore provided accurate ground motion simulations for the 1906 earthquake, ground motions for a hypothetical earthquake on the Hayward Fault, visualizations of seismic waves traveling through the Earth, and a temperature map of Earth’s interior based on imaging with seismic waves.

    ‘The LLNL team is happy to have contributed data to the show and thrilled to see the results in such a stunning visual form,’ said Arthur Rodgers, a seismologist at LLNL. “It’s also satisfying to know that many people might learn something they didn’t know about earthquakes or plate tectonics through work done at LLNL.”

    See the full article here.

    If you are interested in seismology and live in the right place, you can participate in the work of the Quake-Catcher Network.

    map

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC). The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    Overview

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Two Types of Sensors

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    Apply for a USB Sensor

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    Livermore Lab is operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration

    i2

    nnsa

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 554 other followers

%d bloggers like this: