Tagged: QCN Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:06 am on February 7, 2018 Permalink | Reply
    Tags: Buildings collapse in coastal Taiwan M=6.4 quake, , QCN, ,   

    From temblor: “Buildings collapse in coastal Taiwan M=6.4 quake” 

    1

    temblor

    February 6, 2018
    David Jacobson

    1
    This picture shows the 270 Marshal Hotel, whose lower floors collapsed in today’s M=6.4 earthquake. (Photo from: KULAS_TW)

    A second large earthquake in 2 days strikes Eastern Taiwan

    Just before midnight local time, a M=6.4 earthquake struck Eastern Taiwan, toppling buildings, collapsing ground floors, and buckling streets. The quake, which comes just two days after a M=6.1 approximately 20 km to the southeast, occurred at a depth of 10 km and registered very strong shaking in the city of Hualien according to the Taiwan Central Weather Bureau. Hualien is home to over 100,000 people. Yesterday, when we wrote about the M=6.1 over the weekend, we pointed out that its location marks the intersection of the Longitudinal Valley Fault and the Ryukyu Trench. Because of this, the area is prone to experiencing large magnitude earthquakes, meaning this quake should not be considered surprising. Further, earthquakes at fault junctions and tips are slightly more likely to trigger still larger shocks than others.

    2
    This Google Earth image shows the location of today’s M=6.4 earthquake near the city of Hualien, which is home to over 100,000 people.

    3
    This picture shows a partially-collapsed building in the city of Hualien, on Taiwan’s eastern coast. The earthquake which caused this damage was a M=6.4 quake which struck just two days after a M=6.1 just 15 km to the southeast.

    4
    This picture from The Guardian shows a building which suffered at least a first story collapse in today’s M=6.4 earthquake north of Taiwan’s city of Hualien.

    Based on early reports and pictures, there is significant damage in Hualien, at least two people are confirmed to have been killed, and over 200 people were injured, 27 of them seriously according to the New York Times. Additionally, NPR announced that seven buildings had collapsed and while people remain trapped beneath the collapsed buildings, the National Fire Agency announced that they had rescued 149 people trapped in the rubble. However, people remain trapped in a partially-collapsed hotel. The photos above show some of the major damage sustained in the earthquake.

    The reported damage is higher than forecast by the USGS PAGER system, which anticipated less than $1 million in damage. This is likely due to an underestimation of the amount of shaking around Hualien. The ShakeMap produced by Taiwan’s Central Weather Bureau can be seen below.

    5
    This figure shows the ShakeMap produced by Taiwan’s Central Weather Bureau. In the city of Hualien, shaking reached Intensity Level 7.

    A yet-larger earthquake could still occur

    6
    This Temblor map shows the location of the recent earthquake on Taiwan’s eastern coast. Both of the recent M=6+ quakes occurred at the northern tip of the Longitudinal Valley Fault, Taiwan’s longest and most active fault.

    While the earthquake over the weekend was predominantly compressional in nature, today’s event was nearly pure strike-slip, according to both the USGS and GFZ-Potsdam. Because of this, today’s quake may have struck at the northern tip of the Longitudinal Valley Fault, which is known to have both compressional and left-lateral motion. As we said yesterday, 30% of all earthquakes in Taiwan occur on or near this fault. It also has the highest slip rate of all faults in Taiwan.

    Domino Theory?

    While the M=6.4 shock occurred offshore at the northern tip of the Longitudinal Valley Fault, several of its large aftershocks occurred 20 km (12 miles) to the south, beneath Hualien, also on or near the Longitudinal Valley Fault. So, there appears to be a seismic propagation of aftershocks along the Longitudinal Valley Fault. This raises concerns that these events themselves could be foreshocks to still larger earthquakes that could rupture south along Taiwan’s longest, and most active fault.

    Today’s shock should not come as a surprise. The Taiwan Earthquake Model, a university, government, and industry consortium that uses the tools and libraries of the Global Earthquake Model (GEM Foundation), is shown below. The area around the recent earthquakes has one of the highest hazards in the entire country. Therefore, residents of Eastern Taiwan should be prepared for potentially larger, more damaging earthquakes, perhaps propagating to the south.

    7
    This figure shows the Taiwan Earthquake Model. What is evident in this figure is that the location of today’s earthquake is in a location of extremely high hazard. (Figure from Cheng et al)

    References [sorry, no links]
    Taiwan’s Central Weather Bureau
    EMSC
    Taiwan Earthquake Model from, Thomas (Chin-Tung) Cheng et al., Disaster Prevention Technology Research Center, Sinotech Engineering Consultants, Inc. – Link
    Kate Huihsuan Chen, Shinji Toda, and Ruey-Juin Rau, A leaping, triggered sequence along a segmented fault: The 1951 ML 7.3 Hualien-Taitung earthquake sequence in eastern Taiwan, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, B02304, doi:10.1029/2007JB005048, 2008
    USGS
    BBC
    New York Times
    The Guardian
    NPR

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    You can help many citizen scientists in detecting earthquakes and getting the data to emergency services people in affected area.
    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    BOINCLarge

    BOINC WallPaper

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    Earthquake country is beautiful and enticing

    Almost everything we love about areas like the San Francisco bay area, the California Southland, Salt Lake City against the Wasatch range, Seattle on Puget Sound, and Portland, is brought to us by the faults. The faults have sculpted the ridges and valleys, and down-dropped the bays, and lifted the mountains which draw us to these western U.S. cities. So, we enjoy the fruits of the faults every day. That means we must learn to live with their occasional spoils: large but infrequent earthquakes. Becoming quake resilient is a small price to pay for living in such a great part of the world, and it is achievable at modest cost.

    A personal solution to a global problem

    Half of the world’s population lives near active faults, but most of us are unaware of this. You can learn if you are at risk and protect your home, land, and family.

    Temblor enables everyone in the continental United States, and many parts of the world, to learn their seismic, landslide, tsunami, and flood hazard. We help you determine the best way to reduce the risk to your home with proactive solutions.

    Earthquake maps, soil liquefaction, landslide zones, cost of earthquake damage

    In our iPhone and Android and web app, Temblor estimates the likelihood of seismic shaking and home damage. We show how the damage and its costs can be decreased by buying or renting a seismically safe home or retrofitting an older home.

    Please share Temblor with your friends and family to help them, and everyone, live well in earthquake country.

    Temblor is free and ad-free, and is a 2017 recipient of a highly competitive Small Business Innovation Research (‘SBIR’) grant from the U.S. National Science Foundation.

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    Advertisements
     
  • richardmitnick 9:57 pm on June 5, 2017 Permalink | Reply
    Tags: , , , M=5.6 earthquake struck Ecuador’s southern border with Peru, QCN,   

    From temblor: “M=5.6 earthquake strikes Ecuador-Peru border” 

    1

    temblor

    June 5, 2017
    David Jacobson

    1
    Guayaquil, Ecuador’s largest city experienced weak shaking from today’s M=5.6 earthquake to the south. (Photo from: nextstoplatinamerica.com)

    At 4:34 p.m. local time, a M=5.6 earthquake struck Ecuador’s southern border with Peru. While this part of South America is not heavily populated, shaking was felt in the city of Guayaquil, which is home to 3.5 million people. According to the USGS, only light shaking was felt close to the epicenter, while weak shaking was felt in Guayaquil. The USGS also estimates that damage from this quake should remain minimal, and that fatalities are unlikely. Based on reports coming in from South America, two people are reported to have been injured, and minor damage has been noted. Should more information come in, we will update this post.

    2
    This Temblor map shows the location of today’s M=5.6 earthquake near the Ecuador-Peru border. Also shown in this figure is the city of Guayaquil, which is Ecuador’s largest city. This city of 3.5 million people experienced weak shaking in the earthquake.

    Based on the reported depth from both the USGS (52 km) and the EMSC (60 km), and the thrust focal mechanism, this earthquake likely occurred on the subducting slab where the Nazca Plate slides beneath the South American. By examining the Slab 1.0 model from the USGS’ Gavin Hayes (which is also visible in Temblor as ‘Megathrust Zones’), the subducting slab should be between 50 and 60 km depth in the location of today’s earthquake. Therefore, a minor slip event on the subduction zone is the likely cause of the quake.

    While this was a small earthquake, this location, and nearly the entire western margin of South America is prone to large, damaging earthquakes. The Peru-Chile Trench, which marks where the Nazca Plate begins subducting beneath the South American Plate, lies only 20-60 km offshore. It should also be pointed out that even though western South America is at risk of large earthquakes, the behavior of the subducting slab varies greatly. In much of southern Peru, northern Chile, and southern Chile, the slab dips at angles of 25° to 30°. However, in southern Ecuador, and central Chile, the slab dips at 10° or less. In these areas of “flat-slab” subduction, crustal earthquakes within the overlying South American Plate are common. In fact, in 1970, a M=7.2 earthquake just to the west of today’s quake killed at least 80 people and caused liquefaction. This quake occurred at a depth of 25 km, suggesting it was likely an upper crustal event.

    3
    This Temblor map shows recent large magnitude subduction zone earthquakes around the location of today’s M=5.6 quake. What is evident is that there have been earthquakes several hundred kilometers to the north and south of today’s event, but none in southern Ecuador. This could mean that the area has built up a significant amount of stress, which could be released in a large subduction zone earthquake, or that the geometry of the subduction zone prevents large events from happening.

    Based on the Global Earthquake Activity Rate (GEAR) model, which is available in Temblor, today’s M=5.6 earthquake should not be considered surprising. This model uses global strain rates and seismicity since 1977 to forecast what the likely earthquake magnitude is in your lifetime anywhere on earth. From the Temblor map below, one can see that around the location of today’s event, a M=6.75+ is likely. Therefore, while the moderate event today may not have caused damage or loss of life, this region of South America, like the rest of the continent is prone to experiencing large and damaging earthquakes.

    4
    This Temblor map shows the Global Earthquake Activity Rate (GEAR) model for the area around today’s M=5.6 map. This model uses global strain rates and seismicity since 1977 to forecast the likely earthquake magnitude in your lifetime anywhere on earth. What this figure shows is that in the location of today’s earthquake, a M=6.75+ is likely. Therefore, today’s quake should not be considered surprising.

    References
    USGS
    European Mediterranean Seismological Centre

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    You can help many citizen scientists in detecting earthquakes and getting the data to emergency services people in affected area.
    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    BOINCLarge

    BOINC WallPaper

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

     
  • richardmitnick 8:25 am on December 6, 2016 Permalink | Reply
    Tags: , , QCN,   

    From Stanford: “Number of manmade earthquakes in Oklahoma declining, but risk remains high” 

    Stanford University Name
    Stanford University

    November 30, 2016
    Ker Than

    1
    Clusters of earthquakes in Oklahoma have been linked to wastewater injection from oil and gas drilling. (Image credit: Courtesy Cornelius Langenbruch)

    The number of manmade, or “induced,” earthquakes in Oklahoma has risen dramatically since 2009, due largely to wastewater amassed during oil and gas recovery operations being injected deep underground into seismically active areas.

    But new state regulations that call for reductions in wastewater injection should significantly decrease the rate of induced earthquakes in Oklahoma in the coming years, Stanford scientists say in an article in Science Advances.

    “Over the past few years, Oklahoma tried a number of measures aimed at reducing the rising number of induced quakes in the state, but none of those actions were effective,” said Mark Zoback, the Benjamin M. Page Professor at Stanford’s School of Earth, Energy & Environmental Sciences.

    While wastewater produced during oil and gas drilling has been disposed of by underground injection in this area for many decades, induced seismicity was not a problem until the volumes being injected were massively increased, beginning around 2009. In the past six years, billions of barrels of wastewater were injected into the Arbuckle formation, a highly permeable rock unit sitting directly atop billion-year-old rocks containing numerous faults.

    Research by Zoback and his graduate student Rall Walsh published last year established the correlation in space and time between the areas where the massive injection was occurring and the induced earthquakes. The pair showed how pressure buildup resulting from the wastewater injection can spread over large areas and trigger earthquakes tens of miles from the injection wells.

    In light of these findings, the state’s public utilities commission – the Oklahoma Corporation Commission – last spring called for a 40 percent reduction in the volume of wastewater being injected. The bulk of that wastewater comes from oil production in several water-bearing rock formations that had not been extensively drilled until a few years ago.

    A new physics-based statistical model developed by Stanford postdoctoral fellow Cornelius Langenbruch and Zoback, detailed online this week in the journal Science Advances, predicts that the continued reduction of injected wastewater will lead to a significant decline in the rate of widely felt earthquakes – defined as quakes measuring magnitude 3.0 or above – and a return to the historic background level in about five years.

    When the volume of wastewater injection peaked in 2015, Oklahoma was experiencing two or more magnitude 3.0 earthquakes per day. Before 2009, when wastewater injection really started ramping up, the rate was about one per year.

    “Several months after wastewater injection began decreasing in mid-2015, the earthquake rate started to decline,” Langenbruch said. “There is no question that there is a significantly lower seismicity rate than there was a year ago.”

    Unfortunately, even though the rate of induced quakes will continue declining, the probability of potentially damaging earthquakes like the magnitude 5.8 earthquake that struck the town of Pawnee in September — the largest recorded earthquake to strike Oklahoma — will remain elevated for a number of years, the Stanford scientists say.

    “As long as elevated pressure persists throughout this region,” Zoback said, “there will be an increased risk of triggering damaging earthquakes.”

    Mark Zoback is also a senior fellow at Stanford’s Precourt Institute for Energy, an affiliate of the Stanford Woods Institute for the Environment, and the director of the Stanford Natural Gas Initiative. Funding for this study was provided by the Stanford Center for Induced and Triggered Seismicity.

    Media Contacts

    Mark Zoback, School of Earth, Energy & Environmental Sciences:
    (650) 725-9295
    zoback@stanford.edu

    Cornelius Langenbruch, School of Earth, Energy & Environmental Sciences:
    (415)-818-5738,
    langenbr@stanford.edu

    Ker Than, School of Earth, Energy & Environmental Sciences:
    (650) 723-9820,
    kerthan@stanford.edu

    See the full article here .

    You can help many citizen scientists in detecting earthquakes and getting the data to emergency services people in affected area.

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    BOINCLarge

    BOINC WallPaper

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 5:10 am on November 23, 2016 Permalink | Reply
    Tags: , , QCN,   

    From COSMOS: “Gravity shifts could sound early earthquake alarm” 

    Cosmos Magazine bloc

    COSMOS

    23 November 2016
    No writer credit found

    1
    The 2011 Tohoku-Oki earthquake generated tsunamis that devastated large swathes of Japan, including the Fukushima Nuclear Power Plant. A new earthquake detection technique might help give residents a few minutes’ extra warning. XINHUA / Gamma-Rapho / Getty Images

    As deep rock shuffles around, an area’s gravitational pull changes too. Detecting these blips could provide precious minutes when it comes to tsunami warnings.

    Earthquakes can shuffle around huge chunks of the deep Earth. But picking up these signs by measuring the associated transient gravity change might help provide early warnings, new research shows.

    Jean-Paul Montagner from the Paris Institute of Earth Physics in France and colleagues examined data collected during the devastating 2011 Tohoku-Oki earthquake off the coast of Japan, and detected a distinct gravity signal that arose before the arrival of the seismic waves. They published their work in Nature Communications.

    And while the technology to employ their system is not yet set up, they say the technique may herald new developments in early warning systems for earthquake hazards such as tsunamis.

    Earthquakes are notoriously hard to predict. When a fault line ruptures, seismic waves travel through and around the Earth and these are usually the first sign that at earthquake has hit.

    And even though these waves travel quickly – the fastest, P-wave or primary waves, can barrel through the Earth at 13 kilometres per second – they still mean precious seconds or minutes before the waves arrive at a seismic station.

    Montagner and his crew thought there could be a way to detect an earthquake before the waves appeared.

    Seismologists have known for more than a decade that there are static gravity changes following a rupture. This happens because as a fault line moves around, mass is redistributed below the surface. This means some areas suddenly become less dense while others pack on mass – and so their gravitational pull changes too.

    Such changes are measured with gravimeters. The problem is there’s background noise when it comes to gravity changes – the dynamic Earth constantly shifts and wriggles. Could the sudden gravity signal associated with an earthquake be teased out from the underlying noise?

    To find out, the researchers needed to examine a large earthquake that happened close enough to a sensitive gravimeter, so small changes in the gravity field could be picked up, but far enough away so the P-waves didn’t immediately reach seismic sensors.

    They found an ideal example in the 11 March Tohoku-Oki earthquake that led to the Fukushima Nuclear Power Plant disaster.

    Some 500 kilometres from the earthquake’s epicentre was a gravimeter at the Kamioka Observatory. The observatory was surrounded by five seismic stations. P-waves from the earthquake took around 65 seconds to reach the stations.

    Montagner and his colleagues first “calibrated” their statistical technique with 60 days of background gravity measurements – from 1 March 2011 to 5.46am on 11 March (21 seconds before the earthquake rumbled), then from 12 March to 30 April.

    They compared this background with measurements taken during the earthquake and shortly thereafter, and found a distinct blip at the time of the earthquake. It was small, but strong enough to be distinguished from the background with 99% confidence.

    So can this prediction technique be implemented today? Unfortunately not – it would require building a substantial network of exceptionally sensitive gravimeters which don’t yet exist. But, the researchers write, they could have the potential to let seismologists estimate earthquake magnitude quickly – a process that currently takes up to several minutes.

    See the full article here .

    You, too, can help with earthquake knowledge and research.

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    BOINCLarge

    BOINC WallPaper

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 3:11 pm on October 19, 2016 Permalink | Reply
    Tags: , , EEW: Earthquake Early Warning at UC Berkeley, , QCN, Why San Francisco’s next quake could be much bigger than feared   

    From New Scientist: “Why San Francisco’s next quake could be much bigger than feared” 

    NewScientist

    New Scientist

    19 October 2016
    Chelsea Whyte

    1
    Geological faults lie beneath the San Francisco Bay Area. USGS/ESA

    By Chelsea Whyte

    Since reports hit last year that a potentially massive earthquake could destroy vast tracts of the west coast of the United States, my phone has rung regularly with concerned family members from the Pacific coast asking one question: how big could it possibly be?

    In the San Francisco Bay Area, new findings now show a connection between two fault lines that could result in a major earthquake clocking in at magnitude 7.4.

    At that magnitude, it would radiate five times more energy than the 1989 Loma Prieta earthquake that killed dozens, injured thousands, and cost billions of dollars in direct damage.

    .“The concerning thing with the Hayward and Rodgers Creek faults is that they’ve accumulated enough stress to be released in a major earthquake. They’re, in a sense, primed,” says Janet Watt, a geophysicist at the US Geological Survey who led the study.

    The Hayward fault’s average time between quakes is 140 years, and the last one was 148 years ago.

    “In the next 30 years, there’s a 33 per cent chance of a magnitude 6.7 or greater,” she says. These two faults combined cover 190 kilometres running parallel to their famous neighbour, the San Andreas fault, from Santa Rosa in the north down through San Pablo Bay and south right under Berkeley stadium.

    Sweeping the bay

    To map the faults, Watt and her team scanned back and forth across the bay for magnetic anomalies that crop up near fault lines. They also swept the bay with a high-frequency acoustic instrument called a chirp to image the faults’ relationship below the sea floor using radar and sonar, in a similar way to how a bat uses echolocation to “see” the shape of a cave.

    “A direct connection makes it easier for a larger earthquake to occur that ruptures both faults,” says Roland Bürgmann at the University of California, Berkeley, who studies faults in the area.

    The Hayward and Rodgers Creek faults [Science Advances] combined could produce an earthquake releasing five times more energy than the Hayward fault alone.

    “It doesn’t mean the two faults couldn’t rupture together without the connection,” says Burgmann. “And it doesn’t mean that smaller earthquakes couldn’t occur on one or the other of the two faults most of the time.”

    But it makes the scenario of the larger, linked quake more likely, he says.

    Be prepared

    Bürgmann and his colleagues have found a similar connection between the southern end of the Hayward fault and the Calaveras fault, suggesting that they ought to be treated as one continuous fault. This new work follows that fault even farther north.

    So what do I tell my mom next time she calls?

    “Most important continues to be improving preparedness at all levels,” says Bürgmann. That includes better construction, personal readiness supplies, and the implementation of earthquake early warning systems, which include sensors triggered by the first signs of a quake and send out alerts ahead of the most violent shaking.

    The state and federal governments support building such a warning system in California, an effort led by Berkeley’s Seismological Laboratory.

    See the full article here.

    QCN bloc

    Quake-Catcher Network

    IF YOU LIVE IN AN EARTHQUAKE PRONE AREA, ESPECIALLY IN CALIFORNIA, YOU CAN EASILY JOIN THE QUAKE-CATCHER NETWORK

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    BOINCLarge

    BOINC WallPaper

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 5:10 pm on October 7, 2016 Permalink | Reply
    Tags: , , , QCN   

    From Caltech via phys.org: “California earthquakes discovered much deeper than originally believed” 

    Caltech Logo
    Caltech

    phys.org

    phys.org

    October 7, 2016
    Rong-Gong Lin Ii, Los Angeles Times

    1
    Seismogram being recorded by a seismograph at the Weston Observatory in Massachusetts, USA. Credit: Wikipedia

    Scientists in California have found that earthquakes can occur much deeper below the Earth’s surface than originally believed, a discovery that alters their understanding of seismic behavior and potential risks.

    Seismologists have long believed that earthquakes occur less than 12 to 15 miles underground. But the new research found evidence of quakes deeper than 15 miles, below the Earth’s crust and in the mantle.

    Three scientists at the California Institute of Technology in Pasadena studied data from state-of-the-art sensors installed in Long Beach atop the Newport-Inglewood fault, one of the most dangerous in the Los Angeles Basin and which caused the magnitude 6.4 Long Beach earthquake of 1933.

    After analyzing the data collected over six months by 5,000 sensors, scientists found quakes were occurring deep into the upper mantle, an area where the rock is so hot that it is no longer brittle like it is at the surface, but creeps, moving around like an extremely hard honey.

    It appeared that the Newport-Inglewood fault extended even into the mantle – past the uppermost layer of the Earth, the crust, where earthquakes long have been observed. Until now, researchers didn’t think earthquakes were possible there, said Caltech seismology professor Jean Paul Ampuero, one of three authors of the study, published Thursday in the journal Science.

    Ampuero said the research raised the possibility that the Newport-Inglewood and others, like the San Andreas, could see even more powerful earthquakes than expected. The earthquakes he and his colleagues studied were so deep that they were not felt at the surface by conventional seismic sensors.

    The new study [Science] indicates that a quake much closer to the surface could travel much deeper into the Earth, producing a stronger, more damaging, rupture than previously believed was possible.

    “That got us thinking – that if earthquakes want to get big, one way of achieving that is by penetrating deep,” Ampuero said. “The big question is: If the next, larger earthquake happens, if it manages to penetrate deeper than we think, it may be bigger than we expect.”

    It’s an idea that was first raised in 2012, also by Ampuero and several colleagues in the journal Science, when a magnitude 8.6 earthquake struck the Indian Ocean.

    That was the largest quake of its kind “that has ever happened,” Ampuero said. It happened on a fault known as a “strike-slip,” the same kind of fault as Newport-Inglewood and California’s mighty San Andreas, the state’s longest fault.

    But that Indian Ocean earthquake was so large, it was impossible to explain how it happened with existing science.

    So answering the question of how an 8.6 earthquake occurred required a new explanation – that perhaps the quake centered on a fault that not only ruptured the crust, but went deeper into the mantle.

    If deep earthquakes can occur on the Newport-Inglewood fault, then it’s possible Southern Californians could see earthquakes along this fault at an even greater magnitude than what is projected. According to Caltech, the probable magnitude of a large quake on the Newport-Inglewood fault ranges from 6.0 to 7.4.

    But there’s a lot more study that needs to be done.

    The deep quakes Caltech scientists detected were only microquakes – topping out at about a magnitude 2.

    Therefore, one alternate – and more comforting – possibility is that these deep earthquakes remain small and don’t help a large earthquake become stronger. With this theory, earthquakes in this deep zone occur in small pockets far away from each other and don’t link in a way that forces a big earthquake to get stronger.

    “This could be good news, in a way, because if they never break together, that means they can break in tiny earthquakes, but they cannot break in large ones,” Ampuero said. “So several questions are still open. I wouldn’t say that this is cause for alarm at this point. These are very interesting questions that we need to pursue.”

    Another thing to consider: The deep earthquakes were found in a 9-square-mile area underneath Long Beach, recorded over six months. When researchers looked farther northwest – over a shorter time period, only four weeks – they did not find deep earthquakes there.

    So it’s possible that deep earthquakes don’t exist everywhere on the Newport-Inglewood fault. But it’s also possible that scientists didn’t record any, and could catch some if they continue monitoring the area for a longer period.

    There’s a possibility that Long Beach is simply peculiar, and what’s found there isn’t found elsewhere. In Long Beach, scientists found evidence that there are some liquids flowing from the mantle up to the surface – an observation that was not found in another location on the Newport-Inglewood fault.

    The scientists obtained the data from a group who installed sensors to better understand the oil fields of the area. Once they collected it, the scientists had to design a program to process the massive amounts of data collected to understand what was going on miles underground, and invisible to conventional seismic sensing equipment.

    In addition to Ampuero, the other authors of the study are Asaf Inbal and Robert Clayton.

    See the full article here .

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    BOINCLarge

    BOINC WallPaper

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About Phys.org in 100 Words

    Phys.org™ (formerly Physorg.com) is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004, Phys.org’s readership has grown steadily to include 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page.

    Caltech campus

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”

     
  • richardmitnick 7:20 am on September 20, 2016 Permalink | Reply
    Tags: , , QCN, Tulsa World   

    From Tulsa World via QCN: “Tulsa Geoscience Center participating in earthquake data collection” 

    QCN bloc

    Quake-Catcher Network

    1

    Tulsa World

    September 19, 2016
    Paighten Harkins

    1
    https://outrageousminds.wordpress.com/2014/03/07/515/

    With no signs earthquakes will stop rumbling in the state anytime soon, Oklahoma museums and schools are being targeted to participate in a nationwide citizen science project that tracks — or catches — seismic activity to learn more about quakes and also promote earthquake safety.

    About a month ago, the Tulsa Geoscience Center, located at 600 S. Main St., received a sensor from The Quake-Catcher Network. It is the first one in the Tulsa area, the center’s administrative director Broc Randall said.

    Including that sensor, the Tulsa area now has three: two in Tulsa and one in Broken Arrow, according to the network’s sensor map. A handful of sensors are scattered through the Oklahoma City area. There’s one each in Stillwater and Seminole.

    The detector is a small box that connects to a computer through a USB drive and measures the motion of the ground from every dimension.

    “So up and down, side to side and forward and back,” the network’s program manager Robert de Groot said.

    The sensors detect that motion and can gauge whether or not an earthquake occurred and its magnitude, and all that data is sent to the network, which is based at the University of Southern California, de Groot said.

    Though de Groot did contend earthquakes can occur pretty much everywhere, because of limited resources, the Quake-Catcher Network primarily targets states known for seismic activity, such as California (where the network is based), Oregon, Washington, North Dakota and Oklahoma.

    Those with the network hope schools will use the data to teach students about earthquakes — a phenomenon many have felt in real life.

    “It’s not something that’s contrived. It’s actually something that’s happened. It happened in your own front yard in Oklahoma,” de Groot said.

    On Sept. 3, the largest earthquake ever recorded in Oklahoma — a 5.8 temblor recorded near Pawnee — shook the state. Since then, more than 70 quakes above a 2.5 magnitude have hit Oklahoma, according to United States Geological Society data.

    The geoscience center in Tulsa also has a separate seismograph specifically to track the movements of its visitors. They encourage children to jump around to see what effect they have on the detector, Randall said.

    The network’s seismograph, which is taped to the floor, also detects those vibrations, but has been calibrated to recognize that those aren’t earthquakes, Randall said.

    De Groot said one of the motivations for teaching people about earthquakes and getting them involved in that education is to promote earthquake safety so people know how to protect themselves and their belongings from temblors.

    It also gives them a sense of what’s going on around them.

    “Oklahoma is earthquake country. So understanding what earthquake country is doing is a key thing for everybody,” de Groot said.

    See the full article here .

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 8:31 am on September 2, 2016 Permalink | Reply
    Tags: , , QCN,   

    From UCLA: “UCLA civil engineer to lead Italy earthquake research team” 

    UCLA bloc

    UCLA

    September 01, 2016
    Matthew Chin

    1
    Earthquake destruction in central Italy. AP

    The chair of the UCLA civil and environmental engineering department is leading a U.S. team traveling to Italy this weekend to work with Italian scientists on research into the destructive earthquakes that hit in August.

    Jonathan P. Stewart, professor in the UCLA Henry Samueli School of Engineering and Applied Science, leaves Saturday for central Italy to lead the research team from the Geotechnical Extreme Events Reconnaissance Association. The team will investigate geotechnical and geological aspects of the earthquake sequence that occurred between August 24 and August 29.

    1
    Jonathan P. Stewart

    The team will work in close collaboration with Italian engineers and scientists, some of whom have already deployed to the affected region and are collecting perishable data. After the field investigation is complete, observations and findings will be posted on the GEER website.

    Stewart answered some questions before traveling to Italy with the team.

    What will the team be looking for, and why is it important to go now, as opposed to a month from now?

    Earthquake engineering as a profession is driven by post-event observations of how the earth and structures respond to earthquakes. We seek perishable data, which means the information would disappear over time due to recovery, clean up, and weathering.

    One example of what we will look for is the rupture of the ground surface from the faulting. Data of this sort help to guide engineering models for how much displacement to expect from future earthquakes, and the distribution around faults.

    Obviously, the massive structural damage [in Italy] is another notable feature of this event. We will attempt to learn about the levels of ground shaking that do and do not cause these tragic collapses, so as to better understand the vulnerability of masonry structures in future earthquakes. These structures are abundant in Italy, but occur in some portions of California as well.

    What will that field data be used for? For example, what have past GEER teams found from previous destructive earthquakes? And, what kinds of instruments will be used?

    We will look for evidence of ground failure, which is permanent displacement of the ground caused by the earthquake. Examples that we expect to find in this event include landslides, surface fault rupture, and settlement of artificial fill soils. We have seen effects of this type in past earthquakes too, although many of those events have also produced soil liquefaction, which we do not expect to see in this area of Italy.

    We will map patterns of damage to building structures, and also record the performance of other structures such as dams and bridges.

    Several instruments are used, including:

    Ground motion accelerographs – these were actually deployed prior to the earthquake. We will retrieve the data through Italian collaborators, and study the patterns of ground shaking and what they reveal about earthquake hazards in a normal fault environment.
    Lidar (surveying technology that uses lasers) to map ground deformations. Further information on Lidar.
    Unmanned aerial vehicles to image sites from above, and as a platform for Lidar.

    Most of the worst hit areas seemed to be in towns with many buildings that are hundreds of years old. How would any data collected be applied to the U.S.?

    Most of the affected structures in these towns are unreinforced masonry. While these structures are older than those we find in California, in some cases similar structural typologies are found here as well. It is important to understand levels of ground shaking that do and do not cause collapse, and to study the effectiveness of different retrofit strategies. My team is not focused specifically on these structural engineering aspects, although we will be working in collaboration with others who will look at these issues.

    Is there an area of the U.S. with similar faults to the one that caused this quake?

    The central Italy earthquake involved normal faulting, which is a slip type that accommodates crustal extension. Much of the western US has similar faults, especially from the eastern Sierra to Colorado. The ground motion information from this and other earthquakes in Italy help us to better understand what we can expect from future earthquakes in these parts of the U.S.

    See the full article here .

    EARTHQUAKES CAN BE A PROBLEM IN MANY PLACES IN THE WORLD. HERE IS HOW YOU CAN PARTICIPATE IN EARTHQUAKE SENSING.

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    BOINCLarge

    BOINC WallPaper

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UC LA Campus

    For nearly 100 years, UCLA has been a pioneer, persevering through impossibility, turning the futile into the attainable.

    We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

    This can-do perspective has brought us 12 Nobel Prizes, 12 Rhodes Scholarships, more NCAA titles than any university and more Olympic medals than most nations. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

     
  • richardmitnick 5:52 pm on July 18, 2016 Permalink | Reply
    Tags: , , QCN,   

    From UCR: “Better Understanding Post-Earthquake Fault Movement” 

    UC Riverside bloc

    UC Riverside

    July 18, 2016
    Sean Nealon
    Tel: (951) 827-1287
    sean.nealon@ucr.edu

    1
    Schematic summary of research findings showing the sequence of slip behavior.

    Preparation and good timing enabled Gareth Funning and a team of researchers to collect a unique data set following the 2014 South Napa earthquake that showed different parts of the fault, sometimes only a few kilometers apart, moved at different speeds and at different times.

    Aided by GPS measurements made just weeks before the earthquake and data from a new radar satellite, the team found post-earthquake fault movement, known as afterslip, was concentrated in areas of loosely packed sediment. Areas where the fault passed through bedrock tended to slip more during the actual earthquake.

    Sections of Highway 12, which runs through the earthquake zone, were broken during the initial 6.0 magnitude earthquake and were further damaged in the coming days due to afterslip. In some areas the afterslip damage exceeded the initial damage from the earthquake.

    “No one has seen variability in afterslip like we saw,” said Funning, an associate professor of earth sciences at the University of California, Riverside. “This helps us address a big question: Can we use geology as a proxy for fault behavior? Our findings suggest there is a relationship between those two things.”

    The findings could have significant implications for earthquake hazard models, and also for planning earthquake response. If geological information can give a guide to the likely extent of future earthquakes, better forecasts of earthquake damage will be possible. And if areas likely to experience afterslip can be identified in advance, it can be taken into account when building or repairing infrastructure that crosses those faults.

    California, in particular the Hayward and Calaveras Faults, which run along the east side of the San Francisco Bay, seems more susceptible to afterslip than other earthquake-prone regions throughout the world, Funning said.

    The findings on the South Napa earthquake were recently published in paper, Spatial variations in fault friction related to lithology from rupture and afterslip of the 2014 South Napa, California, earthquake, in the journal Geophysical Research Letters.

    Funning’s work in the region just north of San Francisco dates back to 2006, when he was a post-doctoral researcher at UC Berkeley and noticed the area wasn’t that well studied, at least compared to the central Bay Area.

    He continued the research after he was hired at UC Riverside and received funding from the United States Geological Survey to conduct surveys using GPS sensors in earthquake prone areas throughout Marin, Napa, Sonoma, Mendocino and Lake counties.

    He began the most recent survey in July 2014. When the South Napa earthquake struck on Aug. 24, 2014, he and three other researchers were in Upper Lake, CA in Lake County, about 70 miles north of the earthquake’s epicenter, making additional measurements.

    The earthquake occurred at 3:20 a.m. By noon, Funning and the other researchers, Michael Floyd (a former post-doctoral researcher with Funning who is now a research scientist at the Massachusetts Institute of Technology), Jerlyn Swiatlowski (a graduate student working with Funning) and Kathryn Materna (a graduate student at UC Berkeley), had deployed additional GPS sensors in the earthquake zone in locations that they had, fortuitously, measured just seven weeks earlier.

    In total, there were more than 20 GPS sensors set up by Funning’s team and scientists from the United States Geological Survey. They left the equipment out for four weeks following the earthquake.

    They then combined the GPS sensor data with remote sensing data. The South Napa earthquake was the first major earthquake to be imaged by Sentinel-1A, a European radar imaging satellite launched in 2014 that provides higher resolution information than was previously available.

    In addition to Funning, authors of the paper are: Floyd, Richard J. Walters, John R. Elliott, Jerry L. Svarc, Jessica R. Murray, Andy J. Hooper, Yngvar Larsen, Petar Marinkovic, Roland Bürgmann, Ingrid A. Johanson and Tim J. Wright.

    See the full article here .

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    BOINCLarge

    BOINC WallPaper

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UC Riverside Campus

    The University of California, Riverside is one of 10 universities within the prestigious University of California system, and the only UC located in Inland Southern California.

    Widely recognized as one of the most ethnically diverse research universities in the nation, UCR’s current enrollment is more than 21,000 students, with a goal of 25,000 students by 2020. The campus is in the midst of a tremendous growth spurt with new and remodeled facilities coming on-line on a regular basis.

    We are located approximately 50 miles east of downtown Los Angeles. UCR is also within easy driving distance of dozens of major cultural and recreational sites, as well as desert, mountain and coastal destinations.

     
  • richardmitnick 7:48 am on July 18, 2016 Permalink | Reply
    Tags: , , , QCN, Scientists warn of Bangladesh earthquake time bomb   

    From COSMOS: “Scientists warn of Bangladesh earthquake time bomb” 

    Cosmos Magazine bloc

    COSMOS

    12 July 2016
    Bill Condie

    1
    Dhaka, the capital of Bangladesh, is a hive of multistory buildings housing around 17 million people in the greater Dhaka area. But can it survive a ‘megathrust’ earthquake beneath the Indo-Burman Ranges? Inkiad Hasin / Getty Images

    Bangladesh is sitting on a time bomb, with scientists warning that increasing strain at the meeting of two tectonic plates beneath the country could lead to a catastrophic earthquake.

    The area is a subduction zone where the Indian plate is slowly thrusting under the Sunda plate.

    It is an extension of the tectonic boundary that ruptured under the Indian Ocean in 2004, setting off the tsunami that killed more than 230,000 people.

    2
    Bangladesh, Myanmar and eastern India (all near top) are bisected by an extension of the tectonic boundary that ruptured under the Indian Ocean in 2004, killing some 230,000 people. Known quakes along the boundary’s southern end are shown in different colours; the black sections nearer the top have not ruptured in historic times, but new research suggests they could. Michael Steckler / Lamont-Doherty Earth Observatory

    While the plate boundary in Bangladesh is well-known, it has previously been thought of as relatively harmless with movement close to the surface.

    But new research published this week in Nature Geoscience suggests subduction is taking place deep below the surface, with huge stresses building up where the plates meet.

    Since 2003, American and Bangladeshi researchers have been tracking tiny ground movements using GPS devices linked to satellites. That has shown eastern Bangladesh and part of eastern India pushing diagonally into western Myanmar at around 46 millimetres a year.

    The authors say it is an “underappreciated hazard.”

    “Now we have the data and a model, and we can estimate the size.”“Some of us have long suspected this hazard, but we didn’t have the data and a model,” lead author Michael Steckler, a geophysicist from Columbia University is quoted as saying.

    And that could be huge. It has been at least 400 years with no quake, suggesting the strain has been building all that time.

    Steckler says the quake, when and if it comes, could be larger than 8.2, and reach a magnitude of 9.

    “We don’t know how long it will take to build up steam because we don’t know how long it was since the last one,” he said.

    Bangladesh lies on the far eastern edge of the giant Indian plate, that comprises the subcontinent and much of the Indian Ocean. It has been thrusting northeasterly into Asia for tens of millions of years. It is responsible for the creation of the Himalayas as well as the devastating earthquake that hit Nepal in April 2015.

    The region around Bangladesh has been subject to many earthquakes over the years but geologists assumed there was no subduction under Bangladesh itself.

    But the current researchers say the signs have been there all along in the form of parallel north-south ranges of mountains “draping the landscape, like a carpet being shoved against a wall”.

    Bangladesh is unprepared for such a disaster with poorly enforced building codes and a huge densely packed population.

    Scientists say they will continue to monitor the situation, with New Mexico State University planning to deploy 70 seismometers across Myanmar in 2017, to get a better image of the subducting slab.

    See the full article here .

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    BOINCLarge

    BOINC WallPaper

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: