Tagged: QCN Quake-Catcher Network Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:38 pm on June 25, 2019 Permalink | Reply
    Tags: "Large earthquake on Japan’s west coast points to a profound shortcoming in the national seismic hazard model", , QCN Quake-Catcher Network, ,   

    From temblor: “Large earthquake on Japan’s west coast points to a profound shortcoming in the national seismic hazard model” 

    1

    From temblor

    June 24, 2019
    Sara E. Pratt, M.A., M.S.
    @Geosciencesara

    On Tuesday, June 18, 2019, a magnitude-6.4 quake struck the west coast of Honshu along the eastern Sea of Japan. The quake was shallow — 12 kilometers (7.5 miles) deep — and only 6 kilometers (3.7 kilometers) offshore, according to the U.S. Geological Survey. Its proximity to the cities of Tsuruoka and Sakata, both of which have populations of about 100,000, meant many were exposed to shaking. No one was killed, 21 people were injured, and despite the shallow depth, infrastructure damage was minimal. But the quake was a reminder that this region has experienced several large inland quakes over the last 15 years, and could again. In fact, two magnitude-6.8 earthquakes struck near the hypocenter of this week’s quake in Niigata in 2004 and 2007. The 2004 Niigata-Chuetsu quake killed 40 people, injured 3,000 and damaged more than 6,000 homes, and the 2007 Niigata quake killed seven people, injured more than 830 and destroyed 500 houses.

    1
    In the hours that followed the June 18 Tsuruoka quake, aftershocks ranging from magnitude-2.7 to magnitude-4.1 were recorded around Yamagata and Niigata. Credit: HI-Net/NIED

    “The tectonic situation, epicenter offshore near the coast, and the size of the quakes are quite similar,” says Prof. Shinji Toda, a geophysicist at the International Research Institute of Disaster Science at Tohoku University who studies inland quakes.

    Crucially, the hazard of large earthquakes striking off the coasts of Yamagata and Niigata prefectures is being underestimated by Japan’s national earthquake hazard models, according to some seismologists.

    “The government is underestimating the probability of magnitude-7.5 to -7.8 events along the eastern Sea of Japan,” says Prof. Toda. “It misleads the general public [that] we will not have any large events near the coast of Yamagata and Niigata.”

    The June 18 thrust fault rupture (where the crust is being compressed horizontally) occurred on the eastern margin of the Sea of Japan in a seismic zone where numerous active faults accommodate the strain of east-west crustal shortening transmitted from the subduction of the Pacific Plate, says Prof. Toda.

    During the past 5-25 million years (the Miocene epoch), this region underwent ‘backarc’ extension (stretching), opening what is now the eastern Sea of Japan. Those tensional faults have now been reactivated, with their sense of slip reversed, as thrust faults. Thus, “the hazard of inland large quakes is always high,” Prof. Toda says.

    Although the country’s east coast, where the Pacific Plate subducts beneath the North American and Eurasian plates in the Japan Trench, is more prone to large thrust quakes like the March 2011 magnitude-9 Tohoku megathrust quake, the west coast of Japan also is quite seismically active, a fact that is not being adequately accounted for in Japan’s earthquake hazard model, says geophysicist and Temblor CEO Ross Stein.

    2
    When compared to Japan’s national earthquake model, the GEAR model indicates a higher rate of earthquake activity on the eastern margin of the Sea of Japan, with a significant lifetime likelihood of experiencing a magnitude-7 or -7.5 quake.

    Japan’s earthquake hazard models are released by the Japan Seismic Hazard Information Station (J-SHIS). The J-SHIS model uses inputs based on known faults, historical quakes and assumes fairly regular recurrence intervals. It has been criticized for underestimating the hazard of future the Tohoku quake, whose tsunami killed more than 18,000 people.

    Scientists and officials in “Japan have done their very best to create a model that they think reflects future earthquake occurrence based on the expectation of regularity in the size and recurrence behavior of earthquakes. They have also built in the expectation that the longer it’s been since the last large earthquake, the more likely the next one is,” Stein says.

    The J-SHIS model thus anticipates a strong likelihood that the next megaquake will occur in the Nankai Trough, off the southeast coast of Honshu, where two deadly magnitude-8.1 quakes struck in the 1940s. The 1944 Tōnankai and the 1946 Nankaidō quakes both triggered tsunamis and killed more than 1,200 and 1,400 people, respectively. “The Japanese model is putting all of its weight on this area, southeast of Tokyo and Nagoya,” Stein says.

    Another model, the Global Earthquake Activity Rate (GEAR) forecast, that was developed by a team from UCLA, University of Nevada Reno, and Temblor, and is used in the Temblor app, indicates that quakes on the west coast of Honshu could likely reach magnitude-7 or magnitude-7.5 in the typical resident’s lifetime.

    Unlike traditional earthquake hazard models, GEAR does not include active faults or historical earthquakes, which are not uniformly available around the globe. Instead, GEAR takes a global approach that uses only two factors: the stress that drives quakes (measured by GPS) and the events that release that stress, represented in the model by a complete global record of all quakes greater than magnitude-5.7 that have occurred over the past 40 years (from the Global CMT catalog).

    “What the GEAR model says is that the Tohoku coast is a lot more likely to produce a large earthquake than the Japan Sea side, but the Japan Sea side is still quite active,” Stein says. “It should produce large earthquakes and has.”

    Significant historical earthquakes in the shear zone along the eastern Sea of Japan include the 1964 magnitude-7.5 Niigata earthquake, the 1983 magnitude-7.7 Nihonkai-Chubu earthquake and the 1993 magnitude-7.8 Hokkaido-Nansei-Oki earthquake.

    References

    USGS Event Pages – https://earthquake.usgs.gov/earthquakes/eventpage/us600042fx/executive

    https://earthquake.usgs.gov/earthquakes/eventpage/us600042fx/pager

    Bird, P., D. D. Jackson, Y. Y. Kagan, C. Kreemer, and R. S. Stein (2015). GEAR1: A global earthquake activity rate model constructed from geodetic strain rates and smoothed seismicity, Bull. Seismol. Soc. Am. 105, no. 5, 2538–2554.

    Toda and Enescu, (2011). Rate/state Coulomb stress transfer model for the CSEP Japan seismicity forecast. Earth, Planetary and Science, 63: 2. https://doi.org/10.5047/eps.2011.01.004 https://link.springer.com/article/10.5047/eps.2011.01.004

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 10:42 am on May 24, 2019 Permalink | Reply
    Tags: "Monitoring Haiti’s Quakes with Raspberry Shake", , , , , QCN Quake-Catcher Network,   

    From Eos: “Monitoring Haiti’s Quakes with Raspberry Shake” 

    From AGU
    Eos news bloc

    From Eos

    17 May 2019
    By Eric Calais, Dominique Boisson, Steeve Symithe, Roberte Momplaisir, Claude Prépetit, Sophia Ulysse, Guy Philippe Etienne, Françoise Courboulex, Anne Deschamps, Tony Monfret, Jean-Paul Ampuero, Bernard Mercier de Lépinay, Valérie Clouard, Rémy Bossu, Laure Fallou, and Etienne Bertrand

    1
    A woman displays a Raspberry Shake seismometer. Poor-quality construction, typical of many neighborhoods in Haiti, is visible in the background. A pilot project to create a network of these personal seismometers across Haiti aims not only to provide earthquake data but also to involve citizens in earthquake awareness and hazard mitigation efforts. Credit: E. Calais

    On 12 January 2010, a devastating earthquake put Haiti on the map for many of us who were unaware of the recurrent difficulties that the country has endured over the past decades. The earthquake claimed more than 200,000 lives, and the damage amounted to about $11 billion, close to 100% of the country’s gross domestic product.

    Before the earthquake, Haiti had no seismic network, no in-country seismologist, no active fault map, no seismic hazard map, no microzonation, and no building code. The national seismic network that has emerged since then currently consists of 10 broadband stations (Figure 1) [Seismological Research Letters ], operated and maintained by Haiti’s Bureau of Mines and Energy (BME). Although this network was a significant step in the right direction, it has not proved to be a panacea.

    2
    Fig. 1. Seismic stations in Haiti (symbols) and seismic activity as reported by the U.S. Geological Survey (white circles) from August 1946 to 14 January 2019. Natural Resources Canada (NRCan) broadband station PAPH (red circle), based in Port-au-Prince, is usually operational. The nine Raspberry Shake stations shown on this map (with their code names) were installed in January 2019 and were operational as of 15 February. The yellow star east of Port-au-Prince indicates the location of the M3.1 earthquake shown in Figure 3. Stations RE7D0, RE87E, and R2ABA, which use Wi-Fi to connect to the Internet, are not observing the radio frequency interference noted by some RS hosts elsewhere who also use Wi-Fi to connect to the Internet. BME is Haiti’s Bureau of Mines and Energy, which operates seismic instruments from two manufacturing companies.

    On 6 October 2018, a magnitude 5.9 earthquake struck northwestern Haiti, causing 17 fatalities and significant damage in the larger cities of the epicentral area. Only one seismic station was operating at the time, a situation that has persisted for several years now. In spite of its continued efforts, it is difficult for the BME to overcome the chronic lack of resources—financial and human—necessary to maintain such a high-technology system.

    This is where Raspberry Shake (RS) comes into play [Anthony et al., 2018 (Seismological Research Letters)]. This organization, founded using a Kickstarter campaign in 2016, provides affordable “personal seismometers” powered by small Raspberry Pi computers. The low cost of an RS station and the ease of installation and maintenance make it possible to imagine a situation in which perhaps as many as 100 citizens, businesses, or schools throughout Haiti would host an RS station.

    To do more than just imagine, we began a pilot project last January, purchasing and deploying nine one-component vertical velocimeters (RS1D) throughout Haiti (Figure 1), four of them additionally equipped with 3-D accelerometers (RS4D). Except for one station located at the BME, all RS hosts are private homes or hotels. We selected these hosts from people whom we knew had quasi-continuous Internet access and electricity, the latter being a major issue in Haiti. This initiative is similar to the Quake Catcher Network [see below] [Cochran et al., 2009 (Seismological Research Letters)], although the latter uses only accelerometers.

    Overcoming Limited Resources

    As a result of resource limitations, seismologists in Haiti are able to provide only limited information to the public or to decision-makers when earthquakes are felt. This reinforces the ill-founded perception that seismic monitoring is of little value, and it keeps the population in the dark about seismic hazard. As a result, citizens and businesses do little to protect themselves from future large events. The lack of reliable information also provides ground for fake seismonews, including the notion that earthquake prediction has already been around for years so that earthquake monitoring is irrelevant.

    Interestingly, however, the public demands reliable information about earthquakes and tsunamis and their associated risks. They ask questions, want to be informed, and want to know how to prepare. Some would even like to be able to help improve earthquake knowledge in Haiti.

    A citizen’s network of small, affordable seismic stations could be a starting place for providing this information. Even though RS instruments would most likely be concentrated in major cities, their redundancy would alleviate inevitable maintenance issues at any single station. Such a network would improve the ability of the Haiti seismic network to detect small-magnitude earthquakes on a continuous basis, resulting in a better understanding of earthquake distribution and fault behavior. In addition, installing seismometers in people’s homes may be a way to initiate a conversation with the population to promote a culture of earthquake safety.

    Setting Up the Network

    4
    Raspberry Shake setup at station R897D in Jacmel (see Figure 1) uses an RS1D instrument located on the first floor of a public notary’s office, under “made-on-the-spot” wooden protection. The RS station is connected to secure power and to the Internet through an Ethernet cable to the router visible on the windowsill. From left to right are Berthony (technician from the Haiti Bureau of Mines and Energy); Mrs. Beaulieu, who hosts the station; and authors Eric Calais and Steeve Symithe. Credit: E. Calais

    We set about creating our RS network by simply laying an RS instrument on the floor of the quietest first-story room we could find at each location. We connected them to power and Internet utilities, in six cases directly to the router via an Ethernet cable and in three cases via Wi-Fi. We made it clear to the hosts that the RS stations would use very little power and Internet bandwidth but that they should contact us if they suspected any issue. We also told them that they were free to disconnect the RS in case of a problem.

    Several hosts asked whether their RS could serve to predict earthquakes or whether they would sound an alarm if seismic waves were coming. We made it very clear that this was not the case and explained that we were mostly interested in the smaller earthquakes: the ones they never feel but that occur every day.

    “What? There are earthquakes every day in Haiti?” was a common reaction. Yes, indeed, we told our hosts, and knowing where and how big the small quakes are tells us a lot about the future large ones. Many hosts asked how they could see the information. We showed them how to view the helicorder (which records data from the seismometer) from their smartphone or computer on their local network, but often, they were not impressed with the displays. Helicorder output is indeed difficult to read because most squiggles are not earthquakes. Clearly, we need to do more work on how to provide relevant and useful information to RS station hosts.

    First Observations

    Three weeks after the installation of the first RS, we could already make a few observations that will be useful for the next phase of our project and, we hope, for other similar projects elsewhere.

    We have detected many events that occurred less than 100 kilometers from this first RS station. The first one (Figure 2), recorded on 13 January 2019, was later located by the seismological network of the Dominican Republic, which quoted its magnitude as 3.1. We also recorded a sequence of four events in northwestern Haiti the day after we installed another station; these events were not reported by any regional seismic network. Regional events show up very well too, for example, the M5.3 earthquake that struck the Dominican Republic on 4 February 2019. Even the P wave and S wave arrivals of teleseismic (distant) events are recorded, including an M5.6 earthquake that occurred in Colombia on 26 January 2019.

    5
    Fig. 2. Station R30E2, located in downtown Pétion-Ville, produced Haiti’s first Raspberry Shake station recording of a local earthquake on 13 January 2019. This event was not reported by Haiti’s national seismic network, but it was later reported by the Dominican Republic seismic network as an M3.1 event (yellow star in Figure 1) along the Enriquillo–Presqu’île du Sud fault close to the border between Haiti and the Dominican Republic.

    Noise levels are, of course, very different from station to station, unless tight seismological prescriptions are enforced. However, that is not the point of using low-cost RS stations at individual homes, businesses, or schools. Our hope is that the redundancy of RS stations within a small footprint—a city—will suffice to ensure the availability of enough reliable data. This remains to be investigated in a quantitative manner as more stations come online.

    We noticed that reliability and continuity of service are an issue, even though we tried our best to place the RS instruments at locations with continuous power and reliable Internet. One RS station host wanted to negotiate communication costs and, after a few days, apparently disconnected his station. Another station, located in a power-secure part of Port-au-Prince that had not previously needed power backup, is now experiencing regular blackouts. This underscores the importance of observation redundancy, with many stations at short distances from each other, because one never knows which one will have an issue and stop operating when an interesting earthquake shows up.

    A Work in Progress

    We were positively impressed by the response of civil society members and the private sector to this initiative. However, to gain the support of civil society, it is clear that we need to provide RS hosts with personalized information, such as “your RS instrument detected an earthquake of magnitude 2.5 located 50 kilometers away, in the area of….” A smartphone application would be a great way to provide this information in quasi-real time and keep station hosts engaged. It could also serve to broadcast information on earthquake preparedness and hence use the (fortunately long!) time intervals between large earthquakes to educate and promote earthquake safety.

    With the lessons learned during this pilot experiment, our goal now is to push forward and engage the civil society and the private sectors—at least those entities that can afford continuous power and Internet—to be a bigger part of this project. Expanding the project would provide more RS stations and thus redundancy and continuity of service. It would also engage RS hosts in a project that puts them at the center of the information chain. RS hosts will become information providers to scientists rather than passive listeners to scarce and unintelligible information.

    It is our hope that as RS hosts and others become more aware of the earthquake issue, they will share information they will be privy to. We hope that they will become advocates for seismic monitoring, but more important, we hope that they will act to reduce seismic risk for themselves and their community.

    Acknowledgments

    This pilot activity is funded by the Interreg Caraibes/European Regional Development Fund (FEDER) program through the PREST (vers la Plateforme Régionale de Surveillance Tellurique du Futur) project, the Centre National de la Recherche Scientifique/French Institute for Research and Development (IRD) Risques Naturels program, and the Jeune Equipe Associée of the IRD. All data from the RS stations installed in Haiti are openly available via the Raspberry Shake International Federation of Digital Seismograph Networks (FDSN) web services. We thank Maurice Lamontagne and two anonymous reviewers for their constructive comments.

    References

    Anthony, R. E., et al. (2018), Do low‐cost seismographs perform well enough for your network? An overview of laboratory tests and field observations of the OSOP Raspberry Shake 4D, Seismol. Res. Lett., 90(1), 219–228, https://doi.org/10.1785/0220180251.

    Bent, A. L., et al. (2018), Real‐time seismic monitoring in Haiti and some applications, Seismol. Res. Lett., 89(2A), 407–415, https://doi.org/10.1785/0220170176.

    Cochran, E. S., et al. (2009), The Quake-Catcher Network: Citizen science expanding seismic horizons, Seismol. Res. Lett., 80(1), 26–30, https://doi.org/10.1785/gssrl.80.1.26.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 8:14 am on March 28, 2019 Permalink | Reply
    Tags: "Did the Moon trigger Saturday’s M=6.1 earthquake in Colombia?", , , QCN Quake-Catcher Network, ,   

    From temblor: “Did the Moon trigger Saturday’s M=6.1 earthquake in Colombia?” 

    1

    From temblor

    March 27, 2019
    Aron Mirwald, M.Sc., Temblor, Inc.

    A magnitude 6.1 earthquake occurred on 23 March 2019 at 2:14 pm in Colombia. A recent scientific paper reports that the tide might be responsible for 16% of the earthquakes in Colombia. But did the Moon trigger this earthquake? Possibly, but there are important limitations.

    1
    Colombia’s hyperactive Cauca Cluster and Bucaramanga Nest

    The M=6.1 quake, which was widely felt in Bogota, Cali, and Medellin, was located in the well-known ‘Cauca cluster’ in Colombia, where M≥3 earthquakes occur frequently (~24 per year). Together with the ‘Bucaramanga nest’ (~550 per year), the two clusters account for over half of all Colombian earthquakes (Geological Service Colombia). Most of the earthquakes in the two clusters strike at depths between 70-180 km (43 -111 mi). How earthquakes can be produced at these great depths is itself an enigma, and a matter of ongoing research (read this and this for an introduction).

    But, as for many geoscience problems, there is more to it: Researchers from the Medellin University have found that earthquakes in Colombia correlate with the tide. They show in their recent publication that the relation between earthquakes and tide is especially strong for earthquakes within the two earthquake clusters (Monaco et. al., 2019).

    2
    Each dot represents an earthquake. The colored dots are corresponding to earthquakes in seismic clusters. The upper two are the Cauca cluster and Bucaramanga nest, where over half of the earthquakes in Colombia occur.

    The Moon and the Sun cause the Earth to deform

    Maybe you have heard that we are slightly lighter when the moon is above us (only one millionth of our weight). But, to be exact, this is also true if the moon is directly below us, at the opposite side. The reason for this is that the gravitational force is not the only force at play. The earth is moved by the moon circling around it, and we experience a centrifugal force because of this (here is a webpage with a great animation of this). The net force is upwards both at the side that faces the moon and at the opposite one.

    4
    Both Moon and Earth move in ellipses due to the force they exert on each other. The white arrows represent the net force, i.e. the sum of the centrifugal force and the gravitational force.
    Image from http://beltoforion.de (interactive animation)

    The moon is not the only one who influences the earth. The sun does it in a similar way, although the force it generates is about half as large. The combined effect of the Sun and the Moon is called ‘tide’. The tide has two effects on the earth. First, it moves large quantities of water, also known as ocean tide. Second, it deforms the solid earth: The tidal forces, that pull on both sides, elongate the planet, making it around 40 cm longer. This generates shear and unclamping stresses in the earth that can promote earthquakes (Heaton, 1975).

    The magnitudes of the stresses generated by the tide are much smaller than stresses due to the movement of the tectonic plates. This means that tides themselves are not responsible for earthquakes. Perhaps, however, if an earthquake is about to trigger, the tide can nudge it to fail. Therefore, we would expect seismicity to be higher when the tidal stresses and the tectonic stresses point in the same direction, and lower when the opposite is true.

    Searching for periodicity: can we prove tidal triggering?

    There are two key tidal cycles: The first one is 27.5 days long, which is the time the moon needs to circle around the earth. The second one is 24 hours long, which is the time the earth takes to turn around its own axis. If an increase in the rate of earthquakes correlates with these periods, then that increase could be tidally triggered. The next step would then be to actually compute the stresses involved.

    Could the tides permit earthquake forecasts?

    Since 1980 seismologists have searched for such a link, with mixed results. Recent studies, which have found a relation, are limited to certain regions or circumstances (Ide et. al., 2016). For example, it was found that the number of earthquakes in the region of the 2011 Tohoku earthquake in Japan was correlated with the tide before the earthquake occurred. After the magnitude 9 earthquake, on the other hand, no correlation was found (Tanaka et. al., 2012). Studies like this speculate that it might be possible to evaluate if a large rupture is about to come in certain areas, but this has yet to be proven.

    The recent event was probably facilitated by the tide

    In their research, Dr. Gloria Moncayo and her colleagues evaluated earthquakes in Colombia between 1993 and 2017. They found that the rate of earthquakes indeed had a periodic component, with a period of 27.5 days. About one-sixth (or 16%) more earthquakes occur when the moon is closest, i.e. at a full moon. This correlation between earthquakes and tides was strongest for the events within the Cauca cluster and the Bucaramanga nest.

    The recent earthquake occurred just three days after the last full moon (20 March). In the figure below, this corresponds to a phase of 34°, and thus in an area where more earthquakes are expected due to the tide. We contacted the authors of the research in order to learn more.

    Dr. Moncayo told us that the position and the timing of the event indicated tidal triggering. Her colleague, Dr. Jorge I. Zuluaga, added that they calculated the tidal stress for this event and found that its direction was such that the earthquake would be facilitated. ‘If I could bet a dollar, I would bet that it was tidally triggered. Regretfully, we cannot falsify this assertion’, he wrote.

    6
    Here, you see the number of earthquakes in relation to the 27.5-day period of the moon. A phase of 0 and 360 degrees corresponds to a full moon, and 180 degrees to a new moon. You can see that only a small fraction of the total number of earthquakes varies with time.
    Image from Moncayo et. al. (2019)

    Putting it into perspective: A tidal nudge, but not an earthquake prediction

    For last Saturday’s event, we know that the tidal stress favored the triggering. Before we jump into hasty conclusions, we should be aware that there are limitations to the result of the study of Dr. Moncayo and her colleagues. An important one is that the seismological network has expanded in the time they evaluated. This could introduce error in the detection of periodicity (Ader and Avouac, 2013). Even if the periodicity that the authors found was true, still most of the earthquakes are independent of the tide. Only a fraction (less than 16%) of the seismicity could be attributed to it. Finally, we need to know the actual tidal stresses and not only the periodicity to make statements of the causality.

    References

    Ader, T. J., & Avouac, J. P. (2013). Detecting periodicities and declustering in earthquake catalogs using the Schuster spectrum, application to Himalayan seismicity. Earth and Planetary Science Letters, 377, 97-105.

    Heaton, T. H. (1975). Tidal triggering of earthquakes. Geophysical Journal International, 43(2), 307-326.

    Ide, S., Yabe, S., & Tanaka, Y. (2016). Earthquake potential revealed by tidal influence on earthquake size–frequency statistics. Nature Geoscience, 9(11), 834.

    Moncayo, G. A., Zuluaga, J. I., & Monsalve, G. (2019). Correlation between tides and seismicity in Northwestern South America: the case of Colombia. Journal of South American Earth Sciences, 89, 227-245.

    Tanaka, S. (2012). Tidal triggering of earthquakes prior to the 2011 Tohoku‐Oki earthquake (Mw 9.1). Geophysical research letters, 39(7).

    https://www2.sgc.gov.co/sismos/sismos/ultimos-sismos.html

    http://beltoforion.de/article.php?a=tides_explained&hl=en&p=tides_applet&s=idPageTop#idPageTop

    http://temblor.net/earthquake-insights/the-riddle-of-the-19-september-2017-mexican-earthquake-8481/

    http://news.mit.edu/2013/study-faults-a-runaway-mechanism-in-intermediate-depth-earthquakes-1223

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 12:44 pm on March 22, 2019 Permalink | Reply
    Tags: "How fluid viscosity affects earthquake intensity", , , Induced seismicity as opposed to natural seismicity where earthquakes occur without human intervention, QCN Quake-Catcher Network, , Subsurface exploration projects such as geothermal power injection wells and mining all involve injecting pressurized fluids into fractures in the rock- Read: fracking   

    From École Polytechnique Fédérale de Lausanne: “How fluid viscosity affects earthquake intensity” 

    EPFL bloc

    From École Polytechnique Fédérale de Lausanne

    3.22.19
    Sarah Perrin

    1
    A young researcher at EPFL has demonstrated that the viscosity of fluids present in faults has a direct effect on the force of earthquakes.

    Fault zones play a key role in shaping the deformation of the Earth’s crust. All of these zones contain fluids, which heavily influence how earthquakes propagate. In an article recently published in Nature Communications, Chiara Cornelio, a PhD student at EPFL’s Laboratory of Experimental Rock Mechanics (LEMR), shows how the viscosity of these fluids directly affects an earthquake’s intensity. After running a series of laboratory tests and simulations, Cornelio developed a physical model to accurately calculate variables such as how much energy an earthquake needs to propagate—and, therefore, its strength—according to the viscosity of subsurface fluids.

    The study formed part of wider research into geothermal energy projects which, like other underground activities, can trigger earthquakes – a process known as induced seismicity, as opposed to natural seismicity, where earthquakes occur without human intervention.

    “Subsurface exploration projects such as geothermal power, injection wells and mining all involve injecting pressurized fluids into fractures in the rock,” explains Cornelio. “Studies like this show how a better understanding of the properties and effects of fluids is vital to preventing or attenuating induced earthquakes. Companies should factor these properties into their thinking, rather than focusing solely on volume and pressure considerations.”

    Like soap

    Cornelio ran 36 experiments, simulating earthquakes of varying intensity, and propagating at different speeds, in granite or marble, with fluids of four different viscosities. Her findings demonstrated a clear correlation between fluid viscosity and earthquake intensity.

    “Imagine these fluids working like soap, reducing the friction between your hands when you wash them, or like the oil you spray on mechanical parts to get them moving again,” explains Marie Violay, an assistant professor and the head of the LEMR. “Moreover, naturally occurring earthquakes produce heat when the two plates rub together. That heat melts the rock, creating a lubricating film that causes the fault to slip even further. Our study also gives us a clearer picture of how that natural process works.”

    See the full article here .

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL campus

    EPFL is Europe’s most cosmopolitan technical university. It receives students, professors and staff from over 120 nationalities. With both a Swiss and international calling, it is therefore guided by a constant wish to open up; its missions of teaching, research and partnership impact various circles: universities and engineering schools, developing and emerging countries, secondary schools and gymnasiums, industry and economy, political circles and the general public.

     
  • richardmitnick 1:46 am on March 16, 2019 Permalink | Reply
    Tags: Associate Professor Masaki Ando from the Department of Physics invented a novel kind of gravimeter — the torsion bar antenna (TOBA) — which aims to be the first of such instruments, , , Gravimeters — sensors which measure the strength of local gravity, QCN Quake-Catcher Network, ,   

    From University of Tokyo: “Sensing shakes” 

    From University of Tokyo

    March 11, 2019

    A new way to sense earthquakes could help improve early warning systems.

    Earthquake Research Institute

    1
    Contour maps depict changes in gravity gradient immediately before the earthquake hits. The epicenter of the 2011 Tohoku earthquake is marked by (✩). ©2019 Kimura Masaya.

    Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell the difference between life and death. UTokyo researchers demonstrate a new earthquake detection method — their technique exploits subtle telltale gravitational signals traveling ahead of the tremors. Future research could boost early warning systems.

    The shock of the 2011 Tohoku earthquake in eastern Japan still resonates for many. It caused unimaginable devastation, but also generated vast amounts of seismic and other kinds of data. Years later researchers still mine this data to improve models and find novel ways to use it, which could help people in the future. A team of researchers from the University of Tokyo’s Earthquake Research Institute (ERI) found something in this data which could help the field of research and might someday even save lives.

    It all started when ERI Associate Professor Shingo Watada read an interesting physics paper on an unrelated topic by J. Harms from Istituto Nazionale di Fisica Nucleare in Italy. The paper suggests gravimeters — sensors which measure the strength of local gravity — could theoretically detect earthquakes.

    “This got me thinking,” said Watada. “If we have enough seismic and gravitational data from the time and place a big earthquake hit, we could learn to detect earthquakes with gravimeters as well as seismometers. This could be an important tool for future research of seismic phenomena.”

    The idea works like this. Earthquakes occur when a point along the edge of a tectonic plate comprising the earth’s surface makes a sudden movement. This generates seismic waves which radiate from that point at 6-8 kilometers per second. These waves transmit energy through the earth and rapidly alter the density of the subsurface material they pass through. Dense material imparts a slightly greater gravitational attraction than less dense material. As gravity propagates at light speed, sensitive gravimeters can pick up these changes in density ahead of the seismic waves’ arrival.

    2
    A map of Japan showing locations for the epicenter of the 2011 Tohoku earthquake (✩),Kamioka (K), Matsushiro (M) and seismic survey instruments used (△ and ●). ©2019 Kimura Masaya.

    “This is the first time anyone has shown definitive earthquake signals with such a method. Others have investigated the idea, yet not found reliable signals,” elaborated ERI postgraduate Masaya Kimura. “Our approach is unique as we examined a broader range of sensors active during the 2011 earthquake. And we used special processing methods to isolate quiet gravitational signals from the noisy data.”

    Japan is famously very seismically active so it’s no surprise there are extensive networks of seismic instruments on land and at sea in the region. The researchers used a range of seismic data from these and also superconducting gravimeters (SGs) in Kamioka, Gifu Prefecture, and Matsushiro, Nagano Prefecture, in central Japan.

    The signal analysis they performed was extremely reliable scoring what scientists term a 7-sigma accuracy, meaning there is only a one-in-a-trillion chance a result is incorrect. This fact greatly helps to prove the concept and will be useful in calibration of future instruments built specifically to help detect earthquakes. Associate Professor Masaki Ando from the Department of Physics invented a novel kind of gravimeter — the torsion bar antenna (TOBA) — which aims to be the first of such instruments.

    3
    A TOBA with door open to reveal cryogenically cooled sensor platform inside. ©2019 Ando Masaki.

    “SGs and seismometers are not ideal as the sensors within them move together with the instrument, which almost cancels subtle signals from earthquakes,” explained ERI Associate Professor Nobuki Kame. “This is known as an Einstein’s elevator, or the equivalence principle. However, the TOBA will overcome this problem. It senses changes in gravity gradient despite motion. It was originally designed to detect gravitational waves from the big bang, like earthquakes in space, but our purpose is more down-to-earth.”

    The team dreams of a network of TOBA distributed around seismically active regions, an early warning system that could alert people 10 seconds before the first ground shaking waves arrive from an epicenter 100 km away. Many earthquake deaths occur as people are caught off-guard inside buildings that collapse on them. Imagine the difference 10 seconds could make. This will take time but the researchers continually refine models to improve accuracy of the method for eventual use in the field.

    Science paper:
    “Earthquake-induced prompt gravity signals identified in dense array data in Japan,” Masaya Kimura; Nobuki Kame; Shingo Watada; Makiko Ohtani; Akito Araya; Yuichi Imanishi; Masaki Ando; Takashi Kunugi
    Earth, Planets and Space

    See the full article here .

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Tokyo aims to be a world-class platform for research and education, contributing to human knowledge in partnership with other leading global universities. The University of Tokyo aims to nurture global leaders with a strong sense of public responsibility and a pioneering spirit, possessing both deep specialism and broad knowledge. The University of Tokyo aims to expand the boundaries of human knowledge in partnership with society. Details about how the University is carrying out this mission can be found in the University of Tokyo Charter and the Action Plans.

     
  • richardmitnick 12:38 pm on February 13, 2019 Permalink | Reply
    Tags: , , Indonesia’s devastating 2018 earthquake was a rare ‘supershear’ according to UCLA-led study, QCN Quake-Catcher Network, ,   

    From UCLA Newsroom: “Indonesia’s devastating 2018 earthquake was a rare ‘supershear,’ according to UCLA-led study” 


    From UCLA Newsroom

    February 11, 2019

    Stuart Wolpert
    310-206-0511
    swolpert@stratcomm.ucla.edu

    1
    Pierre Prakash/European Union

    In supershear quakes, the rupture moves faster than the shear waves, which produces more energy in a shorter time, making supershears unusually destructive.

    The devastating 7.5 magnitude earthquake that struck the Indonesian island of Sulawesi last September was a rare “supershear” earthquake, according to a study led by UCLA researchers.

    Only a dozen supershear quakes have been identified in the past two decades, according to Lingsen Meng, UCLA’s Leon and Joanne V.C. Knopoff Professor of Physics and Geophysics and one of the report’s senior authors. The new study was published Feb. 4 in the journal Nature Geoscience.

    Meng and a team of scientists from UCLA, France’s Geoazur Laboratory, the Jet Propulsion Laboratory at Caltech, and the Seismological Laboratory at Caltech analyzed the speed, timing and extent of the Palu earthquake. Using high-resolution observations of the seismic waves caused by the temblor, along with satellite radar and optical images, they found that the earthquake propagated unusually fast, which identified it as a supershear.

    Supershear earthquakes are characterized by the rupture in the earth’s crust moving very fast along a fault, causing the up-and-down or side-to-side waves that shake the ground — called seismic shear waves — to intensify. Shear waves are created in standard earthquakes, too, but in supershear quakes, the rupture moving faster than the shear waves produces more energy in a shorter time, which is what makes supershears even more destructive.

    “That intense shaking was responsible for the widespread landslides and liquefactions [the softening of soil caused by the shaking, which often causes buildings to sink into the mud] that followed the Palu earthquake,” Meng said.

    In fact, he said, the vibrations produced by the shaking of supershear earthquakes is analogous to the sound vibrations of the sonic boom produced by supersonic jets.

    2
    Lingsen Meng. Penny Jennings/UCLA

    UCLA graduate student Han Bao, the report’s first author, gathered publicly available ground-motion recordings from a sensor network in Australia — about 2,500 miles away from where the earthquake was centered — and used a UCLA-developed source imaging technique that tracks the growth of large earthquakes to determine its rupture speed. The technique is similar to how a smartphone user’s location can be determined by triangulating the times that phone signals arrive at cellphone antenna towers.

    “Our technique uses a similar idea,” Meng said. “We measured the delays between different seismic sensors that record the seismic motions at set locations.”

    The researchers could then use that to determine the location of the rupture at different times during the earthquake.

    They determined that the minute-long quake moved away from the epicenter at 4.1 kilometers per second (or about 2.6 miles per second), faster than the surrounding shear-wave speed of 3.6 kilometers per second (2.3 miles per second). By comparison, non-shear earthquakes more at about 60 percent of that speed — around 2.2 kilometers per second (1.3 miles per second), Meng said.

    Previous supershear earthquakes — like the magnitude 7.8 Kunlun earthquake in Tibet in 2001 and the magnitude 7.9 Denali earthquake in Alaska in 2002 — have occurred on faults that were remarkably straight, meaning that there were few obstacles to the quakes’ paths. But the researchers found on satellite images of the Palu quake that the fault line had two large bends. The temblor was so strong that the rupture was able to maintain a steady speed around these bends.

    That could be an important lesson for seismologists and other scientists who assess earthquake hazards.

    “If supershear earthquakes occur on nonplanar faults, as the Palu earthquake did, we have to consider the possibility of stronger shaking along California’s San Andreas fault, which has many bends, kinks and branches,” Meng said.

    Supershear earthquakes typically start at sub-shear speed and then speed up as they continue. But Meng said the Palu earthquake progressed at supershear speed almost from its inception, which would imply that there was high stress in the rocks surrounding the fault — and therefore stronger shaking and more land movement in a compressed amount of time than would in standard earthquakes.

    “Geometrically irregular rock fragments along the fault plane usually act as barriers preventing earthquakes,” Meng said. “However, if the pressure accumulates for a long time — for decades or even hundreds of years — an earthquake will eventually overcome the barriers and will go supershear right away.”

    Among the paper’s other authors are Tian Feng, a UCLA graduate student, and Hui Huang, a UCLA postdoctoral scholar. The UCLA researchers were supported by the National Science Foundation and the Leon and Joanne V.C. Knopoff Foundation.

    The other authors are Cunren Liang of the Seismological Laboratory at Caltech; Eric Fielding and Christopher Milliner of JPL at Caltech and Jean-Paul Ampuero of Geoazur.


    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC LA Campus

    For nearly 100 years, UCLA has been a pioneer, persevering through impossibility, turning the futile into the attainable.

    We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

    This can-do perspective has brought us 12 Nobel Prizes, 12 Rhodes Scholarships, more NCAA titles than any university and more Olympic medals than most nations. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 10:57 am on January 8, 2019 Permalink | Reply
    Tags: , , , , In the late evening on January 3 a M=5.1 earthquake caused strong local ground shaking in Nagomi-machi, QCN Quake-Catcher Network, Quake Connectivity, ,   

    From temblor: “Quake Connectivity: 3 January 2019 M=5.1 Japan shock was promoted by the April 2016 M=7.0 Kumamoto earthquake” 

    1

    From temblor

    January 7, 2019
    By Shinji Toda, Ph.D. (IRIDeS, Tohoku University)
    Ross S. Stein, Ph.D. (Temblor, Inc.)

    Was the small but strong shock in southern Japan a random event?

    In the late evening on January 3, a M=5.1 earthquake caused strong local ground shaking (JMA Intensity 6-, equivalent to MMI Intensity IX-X) in Nagomi-machi, ~25 km north of Kumamoto City (Fig. 1). Although the quake brought only light damage to the town, it stopped the Shinkansen ‘bullet trains’ and highway services for an emergency check-up during Japan’s well-traveled New Year holiday.

    1
    Figure 1. JMA intensity distribution of the January 3 M=5.1 earthquake. At the epicenter (X), the shaking reached JMA 6-.

    Japan’s Headquarters for Earthquake Research Promotion (HERP) declares the M=5.1 to be unrelated to the 2016 M=7.0 shock. We beg to differ.

    This quake recalls the devastating 2016 Mw=7.0 (Mjma=7.3) Kumamoto earthquake that killed 50 people and destroyed thousands of houses (Hashimoto et al., 2017). Immediately after the M=5.1 shock, HERP (2019) announced that there is no causal relation between the 3 Jan 2019 shock and the 15 April 2016 Kumamoto earthquake. In contrast, we contend that the M=5.1 is instead part of the long-lasting and remarkably widespread aftershock sequence of the M=7.0 Kumamoto earthquake.

    2
    Figure 2. (Left panel) Coulomb stress imparted by the 2016 Kumamoto earthquake sequence to the surrounding crust as a result of the combined Mw=6.0 and Mw=7.0 shocks. This figure was originally posted in a Temblor blog (Stein and Toda, 2016). Regions in which strike-slip faults are brought closer to failure are red (‘stress trigger zones’); regions now inhibited from failure are blue (‘stress shadows’). Aftershocks during first three months (translucent green dots) generally lie in regions brought closer to failure. The January 3 event (yellow star) is located in one of the stress trigger zones.

    (Right panel) Seismicity rate change between before (2009/01/01-2016/04/14) and after (2016/04/14-2019/01/02) the 2016 Kumamoto earthquake sequence. Red areas ‘turned on’ after the 2016 mainshock; blue areas ‘shut down.’

    The M=5.1 shock struck in a previously published Coulomb ‘stress trigger zone’

    In the web article of the IRIDeS Tohoku University released immediately after the 2016 shock (IRIDeS, 2016) and our blog article posted on September 2, 2016 (Stein and Toda, 2016), we emphasized the effect of Coulomb stress transfer to nearby regions (warmer color regions in Fig. 2 left panel), and mentioned the initial aftershocks mostly occurred in the regions where we calculated that the Coulomb stress increased. The Jan 3, 2019 M=5.1 shock indeed occurred in one of the stress increased lobes (yellow star in Fig. 2). This lobe experienced an increase in seismicity after the Kumamoto mainshock (Box A in Fig. 3 below).

    3
    Figure 3. Epicenters of all earthquakes shallower than 20 km during the period of 2015-2018 (JMA catalog). Although there are several dense clusters that have nothing to do with the Kumamoto earthquake, we nevertheless see that the aftershock zone is extends up to five rupture lengths from the fault (thick black line). The three boxes are where we examined the seismicity over time in Figure 4.

    The quake rate doubled in the stress trigger zone of the 2016 Mw=7.0 quake, and dropped by a factor of 5 in its stress shadow.

    Given that Japan is such an earthquake-prone country, one could argue that it was simply a random accident that the M=5.1 quake struck in the stress trigger zone. To address this possibility, we first examined the change in earthquake occurrence rate (‘seismicity rate change’) before and after the 2016 Kumamoto earthquake (Fig. 2 right panel). A visual comparison of our Coulomb calculation (Fig. 2 left panel) with seismicity rate change (Fig. 2 right panel) shows they match reasonably well. The epicenter of the 3 January 2019 event is in the red spot on both maps. Furthermore, regions north and south of the 2016 rupture zone, in which the faults were inhibited from failure by the stress changes, indeed show a seismicity decrease.

    To make sure that the local seismicity responded to the Kumamoto earthquake and not some other event at roughly the same time, we have chosen three sub-regions (boxes in Fig. 3) and looked at their seismicity time series (Fig. 4). In box A, the number of shocks, most of which are very small, was ~600 a year before the 2016 mainshock. But it has risen by over 2, to ~1500 per year since the mainshock. Thus, the M=5.1 event occurred in the zone of sustained higher rate of seismicity associated with the 2016 Kumamoto earthquake. A similar continuous and long-lasting seismicity increase also occurred in box C (northern Miyazaki Prefecture) where Coulomb stress was also imparted by the mainshock. The opposite response is observed in box B, where Coulomb stress was calculated to have decreased. There, the seismicity plummeted to 1/5 of the pre-Kumamoto level.

    4
    Figure 4. Seismic time series in the particular sub-regions, A, B, and C, corresponding to the boxes in Fig. 2 left panel and Fig. 3. The blue line indicates cumulative number of earthquakes since 2015 (with the corresponding blue scale at left), whereas the green stems identify each earthquake time and magnitude (green scale at right). What’s clear is that in all cases, the seismicity rates changed roughly at the time of the 2016 Kumamoto mainshock, and in the manner forecast by the Coulomb stress changes.

    There is a caveat that the Japan Meteorological Agency (JMA) has changed their earthquake determination algorithm after April 2016. However, it should have been homogeneously implemented in Kyushu. Since we confirmed the regional-dependent seismic behaviors in Fig. 4, we do not think the increased seismicity in the box A in Fig. 4 is an artifact. We also note that the rate of shallow M≥5 earthquakes under inland Japan (378,000 km2) is roughly about 10 a year. It enables us to say the probability to have one M≥5 quake in the box A (1168 km2) per year is ~3%, and so it is rare enough to make an accidental or coincidental occurrence unlikely.

    The long-lasting and far-reaching impact of stress transfer on seismic hazard.

    A key lesson learned from this M=5.1 quake is the effect of stress disturbance due to the three-year-old M=7 event continues over a large area in central Kyushu. And even though the size of the January 3 quake is much smaller than the M=7.0, it can nevertheless cause serious damage. Further, aftershocks do not get smaller with time after a mainshock; instead they only get more spaced out in time. So, a larger shock could still strike. The most likely place for such an event is unfortunately the highly-populated Kumamoto city, because there the stress imparted by the 2016 mainshock was greater than anywhere else.

    References

    Manabu Hashimoto, Martha Savage, Takuya Nishimura, Haruo Horikawa and Hiroyuki Tsutsumi (2017), Special issue “2016 Kumamoto earthquake sequence and its impact on earthquake science and hazard assessment” Earth, Planets and Space, 69-98, https://earth-planets-space.springeropen.com/articles/10.1186/s40623-017-0682-7

    Headquarters for Earthquake Research Promotion (2019), https://www.static.jishin.go.jp/resource/monthly/2019/20190103_kumamoto.pdf

    IRIDeS (International Research Institute of Disaster Science) (2016), http://irides.tohoku.ac.jp/event/2016kumamotoeq_science.html

    Ross S. Stein and Volkan Sevilgen (2016), The Tail that Wagged the Dog: M=7.0 Kumamoto, Japan shock promoted by M=6.1 quake that struck 28 hr beforehand http://temblor.net/earthquake-insights/japan-542/

    Ross S. Stein and Shinji Toda (2016), How a M=6 earthquake triggered a deadly M=7 in Japan, Temblor http://temblor.net/earthquake-insights/how-a-m6-earthquake-triggered-a-deadly-m7-in-japan-1304/

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 10:08 am on December 24, 2018 Permalink | Reply
    Tags: , QCN Quake-Catcher Network, , Sunda Strait tsunami launched by sudden collapse of Krakatau volcano into the sea,   

    From temblor: “Sunda Strait tsunami launched by sudden collapse of Krakatau volcano into the sea” 

    1

    From temblor

    December 23, 2018
    Jason Patton

    Residents of the islands of Sumatra and Java were surprised by an unexpected tsunami yesterday. At the time we write this, there are reports of over 200 unfortunate deaths.

    Cause: Earthquake, Landslide, or Volcanic Eruption?

    1
    Satellite imagery comparison based on Copernicus Sentinel-1 satellite imagery.

    ESA/Sentinel 1

    Tsunami can be triggered by 4 processes: earthquakes, landslides, weather causes (storms), and volcanic eruptions. Tide gages in the Sunda Strait recorded the tsunami and there is a wide range of observations that can be found on social media. Tsunami caused by submarine landslides can be nearly impossible to plan for and there is typically very little advance notice.

    The Sunda Strait is the seaway that is formed between the islands of Java and Sumatra, Indonesia. This area of the world is best known for the 1883 eruption of Krakatau (or Krakatoa). This is a region of active tectonics and the deadly earthquake and tsunami from 2004 is still in our minds and hearts, not to mention the tsunami in Palu, Sulawesi, Indonesia just a short time ago.

    After the tsunami hit, people immediately thought about the Anak Krakatau volcano as a possible source, where there has been ongoing eruptions for several years. This volcano is located where the 1883 eruption happened and is part of the same volcanic system. There are ongoing efforts to monitor this volcanic system (Hoffmann-Rothe, et al., 2006).

    The vitally important service from national organizations like the European Union provide near real time satellite imagery. When compared with historic imagery, we have the ability to evaluate changes at the Earth’s surface.

    The landslide could have itself been triggered by earthquakes or an eruption. Considering the low level of seismicity, the eruption is the likely culprit. Because the eruption is continuing, the possibility for additional landslides and tsunami should be considered for people who live along the coastline in the Sunda Strait.

    We have outlined the general location of the shoreline on these images to take a first glance at the size of the landslide. The images are imperfect and this analysis is an approximation. The source of the satellite imagery is listed in the references below.

    We have also outlined the spatial extent of the shoreline of Krakatau prior to the 1883 eruption.

    Krakatau

    The eruption in 1883 is known around the world because it had a global impact upon the climate for several years. Simon Winchester wrote a book entitled Krakatoa: The Day the World Exploded, August 27, 1883 and this is considered an excellent text that helps people learn about the eruption and the impact of volcanic hazards.

    The 1883 eruption also caused a tsunami that caused devastation along the coastline and killed several thousand people. Below is a lithograph showing the 1883 eruption. This was published in 1888 (Royal Society, 1888).

    2
    An 1888 lithograph of the 1883 eruption of Krakatoa.

    The Smithsonian Institution has an excellent website that covers the monitoring of volcanoes around the globe. Here is the webpage for the Anak Krakatau volcano.

    There are lots of videos and photos of the ongoing eruptions. Below is a spectacular video taken from an airplane sent by the Indonesian Government to investigate the situation.

    These natural hazards span the globe. Learn more about your exposure to natural hazards at temblor.net.

    Tsunami Without Warning

    The tsunami lasted about an hour in places and created both sea level rise and fall.

    Below are two tide gage records from the region nearest the volcanic islands in the Sunda Strait. The upper panels show the tsunami records. The lower panel is a map showing the locations relative to Anak Krakatau.

    3

    4

    Tide gage records from http://tides.big.go.id . Vertical scale is in meters (about the same size as a yard).

    The tide gage record reveals that there was about 40 minutes from the first wave arrival to the highest and most destructive inundation. So, even without an expensive tsunami warning buoy system, or without a Krakatau Island seismic and GPS monitoring network, we can see, in retrospect, that warning was possible. A rate-of-change detector on tide gages could have been effective if a signal were sent to cell phones.

    Out of the 2004 ‘Boxing Day’ M=9.2 earthquake tsunami catastrophe was born the DART buoy system in the Pacific and Indian Oceans. Out of the 2011 M=9.0 Tohoku earthquake tsunami disaster was born much faster and more accurate tsunami warnings when triggered by large offshore quakes.

    Wouldn’t it be great if, out of this tragedy, a simple but effective warning system arose that could be ‘bolted on’ to existing telemetered tide gages that are already in place along the Pacific Ring of Fire and other volcanic centers?

    References:

    Hoffmann-Rothe, A., Seht, M.I-V., Knieb, R., Faber, E., Klinge, K., Reichert, C., Purbawinata, M.A., and Patria, C., 2006. Monitoring Anak Krakatau Volcano in Indonesia in EOS Transactions, v. 87, no. 81, p. 581, 585-586

    Royal Society, 1888. The Eruption of Krakatoa and Subsequent Phenomena, Report of the Krakatoa Committee of the Geological Society, London, Trubner and Co.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 11:39 am on October 27, 2018 Permalink | Reply
    Tags: , , , , , QCN Quake-Catcher Network, , , The Whistle   

    From temblor: “The Whistle: Are We Ready for the Big One?” 

    1

    From temblor

    October 24, 2018

    Jason R. Patton, Ph.D.
    Ross Stein, Ph.D.
    Volkan Sevilgen, M.Sc.

    It Has Happened Before

    The southern San Andreas fault (SSAF) is a plate boundary strike-slip fault, where the Pacific plate moves northward relative to the North America plate. There have been large earthquakes on this fault in historic time, including the 1857 Forth Tejon earthquake. This 1857 earthquake is estimated to have been a magnitude 7.9 earthquake (larger than the recent earthquake in Sulawesi, Indonesia). There is also a record of prehistoric earthquakes on this fault, spanning the past 5000 years (Weldon et al., 2004; Sharer et al., 2007). These authors have determined that the average time between earthquakes on the SSAF is 105 years. However, the time between earthquakes ranges from 31 – 165 years. This large variation in inter-event time periods makes it more difficult to know when the next “Big One” will happen.

    The USGS prepares earthquake scenarios based on our knowledge about past earthquakes and how future earthquakes may behave based on our empirical knowledge. Below is a USGS scenario map for the part of the SSAF that ruptured in the 1857 Fort Tejon earthquake. The color scale represent relative earthquake shaking intensity based on the Modified Mercalli Intensity scale. Warmer colors represent areas of stronger ground shaking. While the map below is based on a computer model, this is a good estimate of how strongly the ground shook in 1957. Note how the strongest ground shaking is adjacent to the fault.

    1
    USGS Shakemap scenario map for the southern San Andreas fault, showing an estimate of shaking intensity from an earthquake similar in length and magnitude to the 1857 Fort Tejon earthquake. The part of the fault that slips in this scenario earthquake is shown as a black line, very similar to the known extent of the 1857 earthquake.

    Several governments and non-governmental organizations prepare estimates of seismic hazard so that people can ensure their building codes are designed to mitigate these hazards. The Global Earthquake Model (GEM) is an example of our efforts to estimate seismic hazards on a global scale. Temblor.net uses the Global Earth Activity Rate (GEAR) model to provide estimates of seismic hazard at a global to local scale (Bird et al., 2015). GEAR blends quakes during the past 41 years with strain of the Earth’s crust as measured using Global Positioning System (GPS) observations.

    Below is a map prepared using the temblor.net app. Seismicity from the past month, week, and day are shown as colored circles. The temblor app suggests that this region of San Bernardino, CA has an earthquake score of 93. To find out what your earthquake score is, enter your address in the app at temblor.net.

    2
    Earthquake Risk map for southern California, centered on the inland empire. Active faults are shown as red lines. Earthquakes from the past month are shown as circles.

    We Imagine the Consequences

    Earthquakes can cause damage to buildings and other infrastructure due to the shaking intensity. The closer to the earthquake, the higher the intensity. Buildings are located on different types of bedrock and this can amplify the shaking intensity in places. How do we know this? We have made direct observations of the damage from earthquakes.

    There is ample evidence of what happens during earthquakes like what will occur on the SSAF someday. The same fault system, further north, has also ruptured in historic time. In 1868, the Hayward fault (a sister fault of the San Andreas) had an earthquake that caused extensive damage in the San Francisco Bay area. The USGS and the California Geological Survey are using the 150 year anniversary of this earthquake as a tool to educate the public about earthquake hazards along these active faults in northern California. Here is a short video about the HayWired Scenario. More can be learned about how to outsmart disaster at the “HayWired” website here.

    Below is a photo from the aftermath of the 1868 Hayward fault earthquake.

    3
    This photo shows damage to “Pierce’s House,” a building damaged by the 1868 Hayward fault earthquake. Image source: Wikimedia Commons, public domain.

    Another historic earthquake that caused extensive damage in California is the 1906 Great San Francisco earthquake, another San Andreas fault earthquake. The damage from this earthquake included building damage and fire. Fire is one of the most common damaging effects of an earthquake like what will happen someday on the SSAF.

    Below is a photo showing damage to houses that were built on material that did not perform well during an earthquake.

    4
    Photo of houses following the 1906 San Francisco earthquake. Photo from National Archives Record Group 46, public domain.

    The combination of hazard and exposure (people) is what we call risk. When people are exposed to earthquake hazards, they are at risk from damage due to those earthquakes. If there is an earthquake and nobody is there to experience the earthquake, there is no risk. One major difference between 1868, 1906, and today is that there are more people that live close to these earthquake faults. While the average number of earthquakes stays relatively constant through time, as the population grows in earthquake country, the risk also grows.

    Do you live along the San Andreas or some other plate boundary fault? What about another kind of fault?

    To learn more about your exposure to these hazards, visit temblor.net.

    When is the next Big One?

    We don’t know when the next southern San Andreas fault big earthquake will happen. Currently there are no scientifically demonstrated ways to predict earthquakes. We can use the frequency of past earthquakes and patterns of earthquake occurrence (current seismicity) to estimate the chance that an earthquake will occur over a period of time.

    These estimates of future earthquake occurrence are called forecasts. Most people are familiar with weather forecasts, but we know much less about earthquakes than we do about weather. Because of this, earthquake forecasts may not have the same amount of accuracy that weather forecasts do. However, these forecasts are based on the latest cutting edge science about earthquakes and are monumentally better than simply tossing a coin. The cool thing about these forecasts is that the science behind them improves over time as we learn more about how earthquakes happen. This is another improvement over coin tosses, which flip pretty much the same as they did since coins were invented.

    The Whistle is an upcoming series of broadcasts produced by the Empire Network, a collaboration between KVCR, PBS, and National Public Radio.

    This four-part documentary series that dives into earthquake science, history, local and international earthquakes and tsunamis, California preparedness and immediate response, prevention, mitigation, retrofits, resilience, sustainability, conservation, incentives, challenges, new technologies… and solutions. Are we ready for the Big One?

    The first episode airs on October 25 and we will learn about earthquakes and the San Andreas fault:

    ______________________________________________________
    Earthquakes and the San Andreas fault. The Ring of Fire. What do we know about earthquakes today? What causes them, how often, why we know the Big One is due. Evolution of seismology and our understanding of earthquakes and plate tectonics. How did the First Nations and early European settlers deal with Earthquakes before modern technology? How dangerous is the threat and how much of an impact can a big earthquake cause? What will happen when the next big one hits?
    ______________________________________________________

    Episode 2 covers how our immediate response might unfold during and following the Big One. Episode 3 reviews our knowledge of the current state of infrastructures (buildings, roads) and how an earthquake might impact these investments in society. Finally, the 4th episode presents an evaluation of how we have improved our ability to be resilient in the face of disasters from the Big One following decades of applying the scientific method to our observations of earthquakes. How will Earthquake Early Warning work and how will we benefit from this? Learn more by watching The Whistle.

    The premiere for “The Whistle, Are We Ready for the Big One?” premieres on Thursday Oct. 25. Watch the first episode on television, or head to this website where the video will be available to stream online.

    3

    References

    Bird, P., Jackson, D. D., Kagan, Y. Y., Kreemer, C., and Stein, R. S., 2015. GEAR1: A global earthquake activity rate model constructed from geodetic strain rates and smoothed seismicity, Bull. Seismol. Soc. Am., v. 105, no. 5, p. 2538–2554, DOI: 10.1785/0120150058

    Sharer, K.M., Weldon, R.J.III., Fumal, T.E., and Biasi, G., 2007. Paleoearthquakes on the Southern San Andreas Fault, Wrightwood, California, 3000 to 1500 B.C.: A New Method for Evaluating Paleoseismic Evidence and Earthquake Horizons in Bull. Seismol. Soc. Am., v. 97, no. 4, p. 1054–1093, DOI: 10.1785/0120060137

    Weldon, R., Sharer, K.M., Fumal, T., and Biasi, G., 2004. Wrightwood and the Earthquake Cycle: What a Long Recurrence Record Tells Us About How Faults Work in GSA Today, v. 14, no. 9, doi: 10.1130/1052-5173(2004)0142.0.CO;2

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 11:13 am on October 27, 2018 Permalink | Reply
    Tags: , , , , , Greek earthquake in a region of high seismic hazard, QCN Quake-Catcher Network, ,   

    From temblor: “Greek earthquake in a region of high seismic hazard” 

    1

    From temblor

    October 26, 2018
    Jason R. Patton, Ph.D.
    Ross Stein, Ph.D.
    Volkan Sevilgen, M.Sc.

    An earthquake with a magnitude of M = 6.8 earthquake struck today along the coast of Greece, preceded by a M = 5.0 earthquake. This large earthquake was felt widely across the region, including Italy, Albania, Bulgaria, and Macedonia. . Greece is at the intersection of several different tectonic regimes and is spanned by a zone of increased seismic hazard evidenced by the GEAR seismic hazard model. The earthquake is related to the convergent plate boundary that spans the southern boundary of Greece. The Gulf of Corinth, where the strongest shaking was felt, is the most seismically active site in Greece.

    Tectonic Setting

    Greece is in the middle of a tectonic die, with the right-lateral strike-slip North Anatolia fault striking from the east and the Ionian trench subduction zone converging from the south. In addition, there is a rapid (10-15 mm per year) extension at the Corinth Rift, forming the Gulf of Corinth just northeast of today’s earthquake sequence.

    The interaction of these different plate boundaries results in overlapping fault systems of different types of faults. The southern boundary of Greece is characterized by the formation of thrust faults formed from compression due to the subduction of the Africa plate beneath the Anatolia plate.

    The North Anatolia fault is a high slip rate fault (it moves fast) and can generate large damaging earthquakes such as the 1999 M = 7.6 Izmit earthquake. Much of the North Anatolia fault has ruptured in the 20th century and many consider the segment of the fault that runs near Istanbul, Turkey, is thought to be ready to slip next.

    The map below shows how the North Anatolia fault enters the region and how the subduction zones may be offset by the Kefallonia fault (Kokkalas, et al., 2006). The Ionian trench is labeled “Hellenic Arc” in this map. The M = 6.8 earthquake is in the general location of the blue star.

    1
    Plate boundary faults are shown with symbols representing the type of plate boundary. Subduction zones are shown with triangles pointing in the direction of motion of the down-going plate. Strike-slip relative motion is shown as oppositely directed arrows. Thick black arrows show relative plate motion in mm per year. Thin arrows with black dots at their base are Global Positioning System plate velocities (reference vector scale is in lower right corner).

    Seismic Hazards

    Hundreds of millions of people globally live in earthquake country. Do you live along a subduction zone or other plate boundary fault? What about another kind of fault?

    To learn more about your exposure to these hazards, visit temblor.net.

    Several governments and non-governmental organizations prepare estimates of seismic hazard so that people can ensure their building codes are designed to mitigate these hazards. The Global Earthquake Model (GEM) is an example of our efforts to estimate seismic hazards on a global scale. Temblor.net uses the Global Earth Activity Rate (GEAR) model to provide estimates of seismic hazard at a global to local scale (Bird et al., 2015). GEAR blends quakes during the past 41 years with strain of the Earth’s crust as measured using Global Positioning System (GPS) observations.

    Below is a map prepared using the temblor.net app. Seismicity from the past month, week, and day are shown as colored circles. The rainbow color scale represents the chance of a given earthquake magnitude, for a given location, within the lifetime of a person (technically, it is the magnitude with a 1% chance per year of occurring within 100 km). The temblor app suggests that this region could have an earthquake with a magnitude of M = 7.0 to 7.25 in a typical lifetime, and so the M = 6.8 was by no means rare or unexpected.

    Note how the seismic hazard is increased along the North Anatolia fault in Turkey and follows this fault as it enters Greece. There is also an increased risk of earthquakes associated with the Ionian trench. This belt of increased seismic hazard is well correlated with the tectonic boundaries. Much of Greece lies within this zone of increased seismic hazard.

    3
    Global Earthquake Activity Rate map for this region of the western equatorial Pacific. Faults are shown as red lines. Warmer colors represent regions that are more likely to experience a larger earthquake than the regions with cooler colors. Seismicity from the past is shown and the location of the M 6.8 earthquake is located near the blue teardrop symbol.

    References

    Bird, P., Jackson, D. D., Kagan, Y. Y., Kreemer, C., and Stein, R. S., 2015. GEAR1: A global earthquake activity rate model constructed from geodetic strain rates and smoothed seismicity, Bull. Seismol. Soc. Am., v. 105, no. 5, p. 2538–2554, DOI: 10.1785/0120150058

    Kokkalas, S., Xypolias, P., Koukouvelas, I., and Doutsos, T., 2006, Postcollisional contractional and extensional deformation in the Aegean region, in Dilek, Y., and Pavlides, S., eds., Postcollisional tectonics and magmatism in the Mediterranean region and Asia: Geological Society of America Special Paper 409, p. 97–123

    More can be found about the seismotectonics of this region here.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: