Tagged: QCN Quake-Catcher.net; Shake Alert; Earthquake Alert; Mobile App systems Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 5:49 pm on February 8, 2022 Permalink | Reply
    Tags: "Earthquake early warning system could save lives in southern Europe", , , , , QCN Quake-Catcher.net; Shake Alert; Earthquake Alert; Mobile App systems,   

    From University College London (UK) via phys.org: “Earthquake early warning system could save lives in southern Europe” 

    UCL bloc

    From University College London (UK)

    via

    phys.org

    February 8, 2022

    1
    Credit: Pixabay/CC0 Public Domain.

    A public earthquake early warning system in Greece and Italy could give people vital seconds’ notice of a major earthquake, according to a new study led by University College London (UCL) researchers.

    Southeastern Europe is the continent’s most seismically active region, with Greece, Italy and Turkey often experiencing the most frequent and strongest earthquakes. Greece and Italy currently have no operational government-supported country- or region-wide warning systems in place. The only European countries with such systems in place are Romania and Turkey.

    Central Italy in particular regularly experiences earthquakes, with the most notable recent ones being a series across 2016 and 2017. The first of these, in August 2016, killed nearly 300 people and cost between $1 billion and $11 billion, with widespread damage to cultural heritage buildings and infrastructure.

    In the paper, published in Nature Communications, researchers from UCL and the European Centre for Training and Research in Earthquake Engineering (EUCENTRE) find that an earthquake early warning system, similar to those used in countries including the U.S. and Japan, could give over 10 seconds of warning time at various locations across Europe.

    An earthquake early warning system consists of sensor networks and mathematical models for detecting earthquakes in real time and warning affected areas before ground shaking reaches them. The ability to warn target sites before tremors begin, even if only by a few seconds, can buy valuable time to reduce damage, accidents and fatalities. More specifically, users can use this alert time to adopt the widely recommended “drop, cover and hold on” actions, evacuate hazardous buildings or move to safer locations within them to reduce the likelihood of injuries and fatalities.

    Lead author Dr. Gemma Cremen (UCL Civil, Environmental & Geomatic Engineering [CEGE]) said, “A country-wide alert system would give people a few precious seconds to mitigate the potentially damaging effects of earthquakes. This warning time can enable many types of automated actions, such as stopping elevators at the nearest floor and opening the doors; slowing high-speed trains to avoid accidents/derailments; turning traffic lights red and preventing cars from entering unsafe structures such as bridges and tunnels; shutting down gas pipelines to minimize fire hazards.”

    The authors analyzed data from 2,377 sensor stations already in place, looking at their location and the time between initial, fast-traveling but low-amplitude tremors and the major waves that cause damage and injury. From this, they calculated the amount of warning time that might be possible at each location, the expected level of shaking, and how many people would be affected by the earthquake. This information, together with an estimate of the accuracy of the warning, led to a new indicator for the potential usefulness of earthquake early warning across Europe.

    In order for a large-scale earthquake early warning system to be implemented, the already-existing sensor stations in Italy and Greece would need to be upgraded to be able to effectively and quickly transmit the relevant information, which is then used to predict the strength of the earthquake, its epicenter and how much shaking it will cause in a certain area. These predictions are made based on the first, fast waves that come through.

    Co-author Dr. Elisa Zuccolo (EUCENTRE) said, “The most important component of an earthquake early warning system is a dense network of sensors with fast and robust communication infrastructure. Thanks to technological advances, it is now possible to install many low-cost seismic sensors and upgrade existing ones cheaply, thus making early warning systems a very useful risk mitigation measure economically sustainable.”

    Such a system would also require a set threshold based on the level of shaking predicted, above which an alert is issued. This would avoid unnecessary panic and economic loss where the level of shaking is minimal and causes no damage.

    Co-lead author Professor Carmine Galasso (UCL CEGE and Scuola Universitaria Superiore IUSS Pavia) said, “It is important to remember that an earthquake early warning system always involves some uncertainty due to the real-time process used to estimate the earthquake characteristics. Some applications may produce significant economic losses if a false alarm occurs, eventually affecting communities.

    “There is a complex trade-off between the potential costs of false (and missed alarms) and the available warning time. Predictions will improve as the seismic network gathers more data on the ongoing earthquake, but the time until shaking at the target site will decrease. This short warning time means that automated decisions and mitigation actions are generally preferred.”

    Earthquake early warning systems alone are not enough to minimize damage. Building codes and standards used for bridges, railways and other infrastructure need to have earthquake-resistant clauses to ensure they are resilient enough to withstand shaking. The success of a system would also depend on people being educated on what action to take if a warning is received.

    The study was funded by the €8 million EU project TURNkey, which includes a multi-disciplinary team of experts from 21 partner institutions (both universities/research centers and private companies) in 10 European countries.

    A key task led by Dr. Cremen and Professor Galasso within the TURNkey project centered on creating new engineering-driven earthquake early warning solutions with tangible benefits for short-term disaster-related decision making.

    They developed a novel framework that uses advance risk (engineering)-based predictions and accounts for unavoidable malfunctions (i.e., false alarms) to determine whether or not earthquake early warning alerts should be triggered for an incoming earthquake. This method, which could be packaged as a plug-in to existing earthquake early warning platforms around the world, maximizes the potential of earthquake early warning as a credible tool for promoting seismic resilience.

    The approach was applied to a hypothetical European-style school and the Port of Gioia Tauro in Italy, which demonstrated the method’s ability to evaluate the optimal risk-informed decision (i.e. whether or not to trigger an earthquake early warning) for an incoming earthquake on the basis of many uncertain factors (including relevant stakeholder tolerances towards risk).

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015
    Meet The Quake-Catcher Network
    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.
    After almost eight years at Stanford University (US), and a year at California Institute of Technology (US), the QCN project is moving to the University of Southern California (US) Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.
    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards
    and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:
    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

    GNSS-Global Navigational Satellite System

    1
    GNSS station | Pacific Northwest Geodetic Array, Central Washington University (US)
    _____________________________________________________________________________________

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UCL campus

    Established in 1826, as London University by founders inspired by the radical ideas of Jeremy Bentham, University College London (UK) was the first university institution to be established in London, and the first in England to be entirely secular and to admit students regardless of their religion. University College London (UK) also makes contested claims to being the third-oldest university in England and the first to admit women. In 1836, University College London (UK) became one of the two founding colleges of the University of London (UK), which was granted a royal charter in the same year. It has grown through mergers, including with the Institute of Ophthalmology (in 1995); the Institute of Neurology (in 1997); the Royal Free Hospital Medical School (in 1998); the Eastman Dental Institute (in 1999); the School of Slavonic and East European Studies (in 1999); the School of Pharmacy (in 2012) and the Institute of Education (in 2014).

    University College London (UK) has its main campus in the Bloomsbury area of central London, with a number of institutes and teaching hospitals elsewhere in central London and satellite campuses in Queen Elizabeth Olympic Park in Stratford, east London and in Doha, Qatar. University College London (UK) is organised into 11 constituent faculties, within which there are over 100 departments, institutes and research centres. University College London (UK) operates several museums and collections in a wide range of fields, including the Petrie Museum of Egyptian Archaeology and the Grant Museum of Zoology and Comparative Anatomy, and administers the annual Orwell Prize in political writing. In 2019/20, UCL had around 43,840 students and 16,400 staff (including around 7,100 academic staff and 840 professors) and had a total income of £1.54 billion, of which £468 million was from research grants and contracts.

    University College London (UK) is a member of numerous academic organisations, including the Russell Group(UK) and the League of European Research Universities, and is part of UCL Partners, the world’s largest academic health science centre, and is considered part of the “golden triangle” of elite, research-intensive universities in England.

    University College London (UK) has many notable alumni, including the respective “Fathers of the Nation” of India; Kenya and Mauritius; the founders of Ghana; modern Japan; Nigeria; the inventor of the telephone; and one of the co-discoverers of the structure of DNA. UCL academics discovered five of the naturally occurring noble gases; discovered hormones; invented the vacuum tube; and made several foundational advances in modern statistics. As of 2020, 34 Nobel Prize winners and 3 Fields medalists have been affiliated with UCL as alumni, faculty or researchers.

    History

    University College London (UK) was founded on 11 February 1826 under the name London University, as an alternative to the Anglican universities of the University of Oxford(UK) and University of Cambridge(UK). London University’s first Warden was Leonard Horner, who was the first scientist to head a British university.

    Despite the commonly held belief that the philosopher Jeremy Bentham was the founder of University College London (UK), his direct involvement was limited to the purchase of share No. 633, at a cost of £100 paid in nine installments between December 1826 and January 1830. In 1828 he did nominate a friend to sit on the council, and in 1827 attempted to have his disciple John Bowring appointed as the first professor of English or History, but on both occasions his candidates were unsuccessful. This suggests that while his ideas may have been influential, he himself was less so. However, Bentham is today commonly regarded as the “spiritual father” of University College London (UK), as his radical ideas on education and society were the inspiration to the institution’s founders, particularly the Scotsmen James Mill (1773–1836) and Henry Brougham (1778–1868).

    In 1827, the Chair of Political Economy at London University was created, with John Ramsay McCulloch as the first incumbent, establishing one of the first departments of economics in England. In 1828 the university became the first in England to offer English as a subject and the teaching of Classics and medicine began. In 1830, London University founded the London University School, which would later become University College School. In 1833, the university appointed Alexander Maconochie, Secretary to the Royal Geographical Society, as the first professor of geography in the British Isles. In 1834, University College Hospital (originally North London Hospital) opened as a teaching hospital for the university’s medical school.

    1836 to 1900 – University College, London

    In 1836, London University was incorporated by royal charter under the name University College, London. On the same day, the University of London was created by royal charter as a degree-awarding examining board for students from affiliated schools and colleges, with University College and King’s College, London being named in the charter as the first two affiliates.

    The Slade School of Fine Art was founded as part of University College in 1871, following a bequest from Felix Slade.

    In 1878, the University College London (UK) gained a supplemental charter making it the first British university to be allowed to award degrees to women. The same year University College London (UK) admitted women to the faculties of Arts and Law and of Science, although women remained barred from the faculties of Engineering and of Medicine (with the exception of courses on public health and hygiene). While University College London (UK) claims to have been the first university in England to admit women on equal terms to men, from 1878, the University of Bristol(UK) also makes this claim, having admitted women from its foundation (as a college) in 1876. Armstrong College, a predecessor institution of Newcastle University (UK), also allowed women to enter from its foundation in 1871, although none actually enrolled until 1881. Women were finally admitted to medical studies during the First World War in 1917, although limitations were placed on their numbers after the war ended.

    In 1898, Sir William Ramsay discovered the elements krypton; neon; and xenon whilst professor of chemistry at University College London (UK).

    1900 to 1976 – University of London, University College

    In 1900, the University College London (UK) was reconstituted as a federal university with new statutes drawn up under the University of London Act 1898. UCL, along with a number of other colleges in London, became a school of the University of London. While most of the constituent institutions retained their autonomy, University College London (UK) was merged into the University in 1907 under the University College London (Transfer) Act 1905 and lost its legal independence. Its formal name became University College London (UK), University College, although for most informal and external purposes the name “University College, London” (or the initialism UCL) was still used.

    1900 also saw the decision to appoint a salaried head of the college. The first incumbent was Carey Foster, who served as Principal (as the post was originally titled) from 1900 to 1904. He was succeeded by Gregory Foster (no relation), and in 1906 the title was changed to Provost to avoid confusion with the Principal of the University of London. Gregory Foster remained in post until 1929. In 1906, the Cruciform Building was opened as the new home for University College Hospital.

    As it acknowledged and apologized for in 2021, University College London (UK) played “a fundamental role in the development, propagation and legitimisation of eugenics” during the first half of the 20th century. Among the prominent eugenicists who taught at University College London (UK) were Francis Galton, who coined the term “eugenics”, and Karl Pearson, and eugenics conferences were held at UCL until 2017.

    University College London (UK) sustained considerable bomb damage during the Second World War, including the complete destruction of the Great Hall and the Carey Foster Physics Laboratory. Fires gutted the library and destroyed much of the main building, including the dome. The departments were dispersed across the country to Aberystwyth; Bangor; Gwynedd; University of Cambridge (UK) ; University of Oxford (UK); Rothamsted near Harpenden; Hertfordshire; and Sheffield, with the administration at Stanstead Bury near Ware, Hertfordshire. The first UCL student magazine, Pi, was published for the first time on 21 February 1946. The Institute of Jewish Studies relocated to UCL in 1959.

    The Mullard Space Science Laboratory(UK) was established in 1967. In 1973, UCL became the first international node to the precursor of the internet, the ARPANET.

    Although University College London (UK) was among the first universities to admit women on the same terms as men, in 1878, the college’s senior common room, the Housman Room, remained men-only until 1969. After two unsuccessful attempts, a motion was passed that ended segregation by sex at University College London (UK). This was achieved by Brian Woledge (Fielden Professor of French at University College London (UK) from 1939 to 1971) and David Colquhoun, at that time a young lecturer in pharmacology.

    1976 to 2005 – University College London (UK)

    In 1976, a new charter restored University College London (UK) ‘s legal independence, although still without the power to award its own degrees. Under this charter the college became formally known as University College London (UK). This name abandoned the comma used in its earlier name of “University College, London”.

    In 1986, University College London (UK) merged with the Institute of Archaeology. In 1988, University College London (UK) merged with the Institute of Laryngology & Otology; the Institute of Orthopaedics; the Institute of Urology & Nephrology; and Middlesex Hospital Medical School.

    In 1993, a reorganisation of the University of London (UK) meant that University College London (UK) and other colleges gained direct access to government funding and the right to confer University of London degrees themselves. This led to University College London (UK) being regarded as a de facto university in its own right.

    In 1994, the University College London (UK) Hospitals NHS Trust was established. University College London (UK) merged with the College of Speech Sciences and the Institute of Ophthalmology in 1995; the Institute of Child Health and the School of Podiatry in 1996; and the Institute of Neurology in 1997. In 1998, UCL merged with the Royal Free Hospital Medical School to create the Royal Free and University College Medical School (renamed the University College London (UK) Medical School in October 2008). In 1999, UCL merged with the School of Slavonic and East European Studies and the Eastman Dental Institute.

    The University College London (UK) Jill Dando Institute of Crime Science, the first university department in the world devoted specifically to reducing crime, was founded in 2001.

    Proposals for a merger between University College London (UK) and Imperial College London(UK) were announced in 2002. The proposal provoked strong opposition from University College London (UK) teaching staff and students and the AUT union, which criticised “the indecent haste and lack of consultation”, leading to its abandonment by University College London (UK) provost Sir Derek Roberts. The blogs that helped to stop the merger are preserved, though some of the links are now broken: see David Colquhoun’s blog and the Save University College London (UK) blog, which was run by David Conway, a postgraduate student in the department of Hebrew and Jewish studies.

    The London Centre for Nanotechnology was established in 2003 as a joint venture between University College London (UK) and Imperial College London (UK). They were later joined by King’s College London(UK) in 2018.

    Since 2003, when University College London (UK) professor David Latchman became master of the neighbouring Birkbeck, he has forged closer relations between these two University of London colleges, and personally maintains departments at both. Joint research centres include the UCL/Birkbeck Institute for Earth and Planetary Sciences; the University College London (UK) /Birkbeck/IoE Centre for Educational Neuroscience; the University College London (UK) /Birkbeck Institute of Structural and Molecular Biology; and the Birkbeck- University College London (UK) Centre for Neuroimaging.

    2005 to 2010

    In 2005, University College London (UK) was finally granted its own taught and research degree awarding powers and all University College London (UK) students registered from 2007/08 qualified with University College London (UK) degrees. Also in 2005, University College London (UK) adopted a new corporate branding under which the name University College London (UK) was replaced by the initialism UCL in all external communications. In the same year, a major new £422 million building was opened for University College Hospital on Euston Road, the University College London (UK) Ear Institute was established and a new building for the University College London (UK) School of Slavonic and East European Studies was opened.

    In 2007, the University College London (UK) Cancer Institute was opened in the newly constructed Paul O’Gorman Building. In August 2008, University College London (UK) formed UCL Partners, an academic health science centre, with Great Ormond Street Hospital for Children NHS Trust; Moorfields Eye Hospital NHS Foundation Trust; Royal Free London NHS Foundation Trust; and University College London Hospitals NHS Foundation Trust. In 2008, University College London (UK) established the University College London (UK) School of Energy & Resources in Adelaide, Australia, the first campus of a British university in the country. The School was based in the historic Torrens Building in Victoria Square and its creation followed negotiations between University College London (UK) Vice Provost Michael Worton and South Australian Premier Mike Rann.

    In 2009, the Yale UCL Collaborative was established between University College London (UK); UCL Partners; Yale University(US); Yale School of Medicine; and Yale – New Haven Hospital. It is the largest collaboration in the history of either university, and its scope has subsequently been extended to the humanities and social sciences.

    2010 to 2015

    In June 2011, the mining company BHP Billiton agreed to donate AU$10 million to University College London (UK) to fund the establishment of two energy institutes – the Energy Policy Institute; based in Adelaide, and the Institute for Sustainable Resources, based in London.

    In November 2011, University College London (UK) announced plans for a £500 million investment in its main Bloomsbury campus over 10 years, as well as the establishment of a new 23-acre campus next to the Olympic Park in Stratford in the East End of London. It revised its plans of expansion in East London and in December 2014 announced to build a campus (UCL East) covering 11 acres and provide up to 125,000m^2 of space on Queen Elizabeth Olympic Park. UCL East will be part of plans to transform the Olympic Park into a cultural and innovation hub, where University College London (UK) will open its first school of design, a centre of experimental engineering and a museum of the future, along with a living space for students.

    The School of Pharmacy, University of London merged with University College London (UK) on 1 January 2012, becoming the University College London (UK) School of Pharmacy within the Faculty of Life Sciences. In May 2012, University College London (UK), Imperial College London and the semiconductor company Intel announced the establishment of the Intel Collaborative Research Institute for Sustainable Connected Cities, a London-based institute for research into the future of cities.

    In August 2012, University College London (UK) received criticism for advertising an unpaid research position; it subsequently withdrew the advert.

    University College London (UK) and the Institute of Education formed a strategic alliance in October 2012, including co-operation in teaching, research and the development of the London schools system. In February 2014, the two institutions announced their intention to merge, and the merger was completed in December 2014.

    In September 2013, a new Department of Science, Technology, Engineering and Public Policy (STEaPP) was established within the Faculty of Engineering, one of several initiatives within the university to increase and reflect upon the links between research and public sector decision-making.

    In October 2013, it was announced that the Translation Studies Unit of Imperial College London would move to University College London (UK), becoming part of the University College London (UK) School of European Languages, Culture and Society. In December 2013, it was announced that University College London (UK) and the academic publishing company Elsevier would collaborate to establish the UCL Big Data Institute. In January 2015, it was announced that University College London (UK) had been selected by the UK government as one of the five founding members of the Alan Turing Institute(UK) (together with the universities of Cambridge, University of Edinburgh(SCL), Oxford and University of Warwick(UK)), an institute to be established at the British Library to promote the development and use of advanced mathematics, computer science, algorithms and big data.

    2015 to 2020

    In August 2015, the Department of Management Science and Innovation was renamed as the School of Management and plans were announced to greatly expand University College London (UK) ‘s activities in the area of business-related teaching and research. The school moved from the Bloomsbury campus to One Canada Square in Canary Wharf in 2016.

    University College London (UK) established the Institute of Advanced Studies (IAS) in 2015 to promote interdisciplinary research in humanities and social sciences. The prestigious annual Orwell Prize for political writing moved to the IAS in 2016.

    In June 2016 it was reported in Times Higher Education that as a result of administrative errors hundreds of students who studied at the UCL Eastman Dental Institute between 2005–06 and 2013–14 had been given the wrong marks, leading to an unknown number of students being attributed with the wrong qualifications and, in some cases, being failed when they should have passed their degrees. A report by University College London (UK) ‘s Academic Committee Review Panel noted that, according to the institute’s own review findings, senior members of University College London (UK) staff had been aware of issues affecting students’ results but had not taken action to address them. The Review Panel concluded that there had been an apparent lack of ownership of these matters amongst the institute’s senior staff.

    In December 2016 it was announced that University College London (UK) would be the hub institution for a new £250 million national dementia research institute, to be funded with £150 million from the Medical Research Council and £50 million each from Alzheimer’s Research UK and the Alzheimer’s Society.

    In May 2017 it was reported that staff morale was at “an all time low”, with 68% of members of the academic board who responded to a survey disagreeing with the statement ” University College London (UK) is well managed” and 86% with “the teaching facilities are adequate for the number of students”. Michael Arthur, the Provost and President, linked the results to the “major change programme” at University College London (UK). He admitted that facilities were under pressure following growth over the past decade, but said that the issues were being addressed through the development of UCL East and rental of other additional space.

    In October 2017 University College London (UK) ‘s council voted to apply for university status while remaining part of the University of London. University College London (UK) ‘s application to become a university was subject to Parliament passing a bill to amend the statutes of the University of London, which received royal assent on 20 December 2018.

    The University College London (UK) Adelaide satellite campus closed in December 2017, with academic staff and student transferring to the University of South Australia(AU). As of 2019 UniSA and University College London (UK) are offering a joint masters qualification in Science in Data Science (international).

    In 2018, University College London (UK) opened UCL at Here East, at the Queen Elizabeth Olympic Park, offering courses jointly between the Bartlett Faculty of the Built Environment and the Faculty of Engineering Sciences. The campus offers a variety of undergraduate and postgraduate master’s degrees, with the first undergraduate students, on a new Engineering and Architectural Design MEng, starting in September 2018. It was announced in August 2018 that a £215 million contract for construction of the largest building in the UCL East development, Marshgate 1, had been awarded to Mace, with building to begin in 2019 and be completed by 2022.

    In 2017 University College London (UK) disciplined an IT administrator who was also the University and College Union (UCU) branch secretary for refusing to take down an unmoderated staff mailing list. An employment tribunal subsequently ruled that he was engaged in union activities and thus this disciplinary action was unlawful. As of June 2019 University College London (UK) is appealing this ruling and the UCU congress has declared this to be a “dispute of national significance”.

    2020 to present

    In 2021 University College London (UK) formed a strategic partnership with Facebook AI Research (FAIR), including the creation of a new PhD programme.

    Research

    University College London (UK) has made cross-disciplinary research a priority and orientates its research around four “Grand Challenges”, Global Health, Sustainable Cities, Intercultural Interaction and Human Wellbeing.

    In 2014/15, University College London (UK) had a total research income of £427.5 million, the third-highest of any British university (after the University of Oxford and Imperial College London). Key sources of research income in that year were BIS research councils (£148.3 million); UK-based charities (£106.5 million); UK central government; local/health authorities and hospitals (£61.5 million); EU government bodies (£45.5 million); and UK industry, commerce and public corporations (£16.2 million). In 2015/16, University College London (UK) was awarded a total of £85.8 million in grants by UK research councils, the second-largest amount of any British university (after the University of Oxford), having achieved a 28% success rate. For the period to June 2015, University College London (UK) was the fifth-largest recipient of Horizon 2020 EU research funding and the largest recipient of any university, with €49.93 million of grants received. University College London (UK) also had the fifth-largest number of projects funded of any organisation, with 94.

    According to a ranking of universities produced by SCImago Research Group University College London (UK) is ranked 12th in the world (and 1st in Europe) in terms of total research output. According to data released in July 2008 by ISI Web of Knowledge, University College London (UK) is the 13th most-cited university in the world (and most-cited in Europe). The analysis covered citations from 1 January 1998 to 30 April 2008, during which 46,166 UCL research papers attracted 803,566 citations. The report covered citations in 21 subject areas and the results revealed some of University College London (UK) ‘s key strengths, including: Clinical Medicine (1st outside North America); Immunology (2nd in Europe); Neuroscience & Behaviour (1st outside North America and 2nd in the world); Pharmacology & Toxicology (1st outside North America and 4th in the world); Psychiatry & Psychology (2nd outside North America); and Social Sciences, General (1st outside North America).

    University College London (UK) submitted a total of 2,566 staff across 36 units of assessment to the 2014 Research Excellence Framework (REF) assessment, in each case the highest number of any UK university (compared with 1,793 UCL staff submitted to the 2008 Research Assessment Exercise (RAE 2008)). In the REF results 43% of University College London (UK) ‘s submitted research was classified as 4* (world-leading); 39% as 3* (internationally excellent); 15% as 2* (recognised internationally) and 2% as 1* (recognised nationally), giving an overall GPA of 3.22 (RAE 2008: 4* – 27%, 3* – 39%, 2* – 27% and 1* – 6%). In rankings produced by Times Higher Education based upon the REF results, University College London (UK) was ranked 1st overall for “research power” and joint 8th for GPA (compared to 4th and 7th respectively in equivalent rankings for the RAE 2008).

     
  • richardmitnick 10:35 pm on January 26, 2022 Permalink | Reply
    Tags: "Northern Taiwan starts the new year with a jolt", , , , , QCN Quake-Catcher.net; Shake Alert; Earthquake Alert; Mobile App systems,   

    From temblor: “Northern Taiwan starts the new year with a jolt” 

    1

    From temblor

    January 26, 2022
    Wei-An Chen, B.S.
    Chung-Han Chan, Ph.D.
    Earthquake Disaster & Risk Evaluation and Management Center (E-DREaM)

    An offshore magnitude-6.0 earthquake on January 3 rattled the Taipei metropolitan area, but cities closer to the epicenter felt only light shaking.

    A magnitude-6.0 earthquake struck off the east coast of Taiwan on January 3, 2022, showing that faults are not going to take a break even for new year holidays.

    Shaking was felt throughout the island’s northern cities, reminding Taiwanese that they are living on a seismically active island. Scientists are constantly working to better understand earthquakes to help mitigate losses from strong shaking.

    January’s earthquake took place in the Ryukyu subduction system, where the Philippine Sea Plate subducts to the North, beneath the Eurasia Plate. The earthquake struck 19.4 kilometers below the surface, on the southernmost segment of the interface between these plates. The region is seismically active; more than 10 magnitude-6.0 and greater events have struck nearby in the past three decades.

    Patchy shaking patterns

    Ground shaking intensity usually decays with the distance from the origin of an earthquake. In the case of January’s earthquake, however, shaking was patchy. For instance, Taipei City — 130 kilometers away from the epicenter — experienced ground shaking up to 30.6 gal (Modified Mercalli intensity IV). Yet, in Hualien City, only 58 kilometers (36 miles) away from the earthquake, shaking reached only around 7.9 gal.

    1
    The distribution of peak ground acceleration (PGA) during the January 3 earthquake. The epicenter is denoted as a blue star. Stronger ground shaking was observed in northern Taiwan than to the south.

    This pattern is related to the ground beneath Taipei City, which is made up of soft sediments surrounded by hills made of stiff soil. Such “basins” trap seismic and amplify ground shaking, like a bowl of jelly. Similar effects were observed during the magnitude-7.1 Hualien earthquake in 2002. Despite striking far from Taipei City, this event caused high ground shaking intensity, resulting in significant damage; Hundreds of buildings were damaged and a tower crane working on Taipei 101 collapsed.

    Strong shaking was not restricted to Taipei. Shaking was significant throughout northern Taiwan, whereas in areas to the south, close to the epicenter, the effect was minimal. Such heterogeneous distribution could also be attributed to the earthquake itself. Earthquakes happen when a section of a fault slips. Such a “rupture” generally starts at a point and propagates along the boundary, as the area the slipped grows. The seismic waves traveling in the same direction as the propagating rupture are compressed and amplified, intensifying shaking. This phenomenon is also known as the “Doppler effect.” During the January 3 earthquake, slip on the fault propagated to the northwest with maximum slip of 26 centimeters (10 inches). The waves traveling towards northern Taiwan were therefore amplified.

    Seismologists noticed a similar effect during the magnitude-6.4 Meinong earthquake, which struck southern Taiwan in 2016. This event ruptured westward from the nucleation point, below the epicenter, causing stronger ground shaking and damage in that direction.

    Ryukyu Trench could host an even bigger earthquake

    GPS data collected on the northeast coast of Taiwan indicate that the Ryukyu subduction zone is locked, according to an analysis by Ya-Ju Hsu, a seismologist at the Institute of Earth Sciences, Academia Sinica, Taiwan. Along the boundary, frictional resistance is greater than the stress of the plates moving past one another. An earthquake occurs when that force overcomes friction.

    Seismological and geodetic evidence suggests that enough stress has built on the boundary to generate a magnitude-8.0 or larger megathrust earthquake. Such an earthquake could cause widespread damage from violent shaking and a major tsunami.

    Although earthquakes around magnitude 6.0, such as the one on January 3, sometimes take place in the subduction zone, the energy they release is negligible compared to that of a magnitude-8.0 event. After a smaller magnitude-6.0 event, there is still enough stress on the boundary for a magnitude-8.0 earthquake.

    2
    Shake map from a magnitude-8.0 scenario in the Ryukyu subduction zone. The maximum ground shaking might impact central Hualien County.

    To quantify the seismic hazard and risk from the subduction zone, scientists from National Central University [國立中央大學](TW), Sinotech Engineering Consultants, Inc., National Science and Technology Center for Disaster Reduction [ 國家災害防救科技中心](TW) and National Center for Research on Earthquake Engineering [國家地震工程研究中心](TW) worked together to simulate a ground shaking scenario for a future magnitude-8.0 earthquake along the Ryukyu subduction interface. The resulting shake map [above] shows that ground shaking would be severe in central Hualien County, due to its proximity to the interface. By further considering the distribution of buildings, population and infrastructure, researchers could take this analysis further and calculate losses from such an event, including the distribution of building, road, bridge and cell tower damage, fatalities, fires, electricity interruption and requirement of sheltering. This scenario became the basis for the drill on National Disaster Preparedness Day in September 2021.

    There is no doubt that the Ryukyu subduction system is one of the major threats to Taiwan. An event at the southernmost segment in this system could result in significant ground shaking along the eastern coast Taiwan and even the Taipei metropolitan area. Thus, it is crucial to boost awareness and fortify communities against major damage by enhancing buildings that are vulnerable to earthquake damage.

    References

    Hsu, Y. J., Ando, M., Yu, S. B., & Simons, M. (2012). The potential for a great earthquake along the southernmost Ryukyu subduction zone. Geophysical research letters, 39(14).
    Wu, Y. M., Liang, W. T., Mittal, H., Chao, W. A., Lin, C. H., Huang, B. S., & Lin, C. M. (2016). Performance of a low-cost earthquake early warning system (P-alert) during the 2016 ML 6.4 Meinong (Taiwan) earthquake. Seismological Research Letters, 87(5), 1050-1059.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

     
  • richardmitnick 12:56 pm on January 15, 2022 Permalink | Reply
    Tags: "Strong earthquake increases seismic hazard in Qinghai in China", , , , QCN Quake-Catcher.net; Shake Alert; Earthquake Alert; Mobile App systems,   

    From temblor : “Strong earthquake increases seismic hazard in Qinghai in China” 

    1

    From temblor

    January 13, 2022

    By Zhigang Peng, Ph.D., School of Earth and Atmospheric Sciences, The Georgia Institute of Technology (US), Jing Liu-Zeng, Ph.D., Tianjin University[天津大學](CN), Yangfan Deng, Ph.D., The Chinese Academy of Sciences [中国科学院](CN) Center for Excellence in Deep Earth Science, Guangzhou, China, Shinji Toda, Ph.D., International Research Institute of Disaster Science, Tohoku University [東北大学](JP).

    A powerful magnitude-6.6 earthquake occurred in the Qinghai province in Western China on January 7, 2022 (Figure 1). The quake struck at 1:45 a.m. local time in a remote region of Menyuan county. It was the largest earthquake in China since the magnitude-7.3 Maduo earthquake in the same province in May 2021. The Menyuan earthquake was widely felt in surrounding regions and caused temporary halts of several high-speed rail lines. But the region is sparsely populated, and only minor injuries and property damage were reported.

    1
    Figure 1. Active faults in the northeastern Tibetan plateau and the focal mechanism of the most recent Menyuan earthquake in Northwestern China. The inset marks the map in a larger map of Tibetan Plateau. HYF: Haiyuan Fault; ATF: Altyn Tagh Fault; KF: Kunlun fault; XHF: Xianshuihe Fault. Credit: Wenqian Yao.

    Tectonic Environment

    The earthquake occurred in the northeastern margin of the Tibetan Plateau, which was created by the collision between the Eurasian and Indian tectonic plates. Near the recent epicenter, tectonic movement is mostly accommodated by a combination of thrust faults and left-lateral strike-slip fault systems such as the Altyn Tagh, the Kunlun and Haiyuan faults (Figure 1). The most recent Menyuan earthquake occurred on the Lenglongling (meaning “Cold Dragon Ridge” in Chinese) Fault, which is the western branch of the Haiyuan fault. This region is seismically active. Moderate-sized earthquakes occurred in 1986 and 2016 within 40 kilometers to the east of the recent epicenter. Both preceding events involved thrust motion, and so were different from this strike-slip event. All three quakes occurred in a “restraining bend” of the Haiyuan fault, meaning that there is compression straddling the fault, leading to a combination of thrusting and strike-slip motion.

    Compared with the 2016 event, the 2022 earthquake started in the same bend or jog, but the rupture appeared to propagate further to the west along the main strike-slip fault, producing roughly 22-kilometer surface ruptures on the ground. Further to the east, two roughly magnitude-8.0 earthquakes occurred in the past century (the 1920 Haiyuan and 1927 Gulang earthquakes), causing significant damage and casualties (Figure 2). The great 1920 Haiyuan earthquake also triggered numerous landslides in the terrain mantled by loess — windblown sand or dust, often derived from glacier deposits. Between these great earthquakes is a 260-kilometer-long segment of the Haiyuan Fault that has not ruptured in the past 1000 years (Liu-Zeng et al., 2007). The section is known as the “Tianzhu” seismic gap (Gaudemer et al. 1995) and could host large damaging earthquakes in the future.

    2
    Figure 2. Tectonic map and earthquake locations/focal mechanisms in the Northeastern Tibetan Plateau. The blue lines mark ruptures associated with previous large earthquakes and the red line mark the Tianzhu seismic gap. Modified after Deng et al. (2020).

    Mainshock Slip Patterns and Intensities

    The mainshock focal mechanism is primarily left-lateral, which is consistent with the tectonic movement of the nearby Lenglongling Fault. Rapid finite fault modeling based on long-period teleseismic waves has shown that the mainshock ruptured in both directions along the fault from its nucleation point, with more slip to the east (Figure 3). In contrast, back-projections of short-period teleseismic P waves suggest that the mainshock ruptured primarily to the northwest (Figure 4). This is perhaps not surprising because these approaches use different techniques and frequency bands, and hence they are mostly sensitive to different types of earthquake rupture. For example, long-period finite fault modeling results likely correspond to smooth ruptures that produce significant fault slip. In comparison, short-period back-projection results likely image seismic ruptures on a relatively rough patch that produce significant high-frequency shaking. This is qualitatively consistent with the near-field strong motion and intensity recordings (Figure 5), showing high peak accelerations primarily around the mainshock epicenter and to the northwest direction.

    3
    Figure 3. A preliminary finite fault modeling result for the 2022 magnitude-6.6 Menyuan mainshock based on teleseismic P waves. The inset marks the fault strike with respect to north. Modified from results by Weiming Wang.

    4
    Figure 4. Mainshock rupture propagation results based on back-projection stack of teleseismic P waves recorded at broadband stations in Europe. Timing (color of circles) and amplitude (size of circles) for the stack with the maximum correlation at each time step in the map view. Red and black stars represent the epicenter of the 2022 Mw 6.6 Qinghai earthquake determined by the China Earthquake Networks Center (CENC), and United States Geological Survey (USGS), respectively. Gray circles indicate the locations of aftershocks that occurred within one day following the main shock (from Lihua Fang). Red lines represent traces of faults and province boundaries, respectively. Credit: Dun Wang.

    5
    Figure 5. Near-field peak acceleration map for the M6.6 Menyuan mainshock. Modified from a figure provided by Qiang Ma.

    Aftershocks and Surface Ruptures

    As of January 13, 2022, at 8 a.m. Beijing time, more than 5000 aftershocks have been identified (Figure 6). The largest aftershock has a moment magnitude of 5.3. Relocated aftershocks extended about 40 kilometers to both sides of the mainshock epicenter. To the west, the aftershocks illuminate a fault striking nearly east-west, which is consistent with a rupture on the similarly oriented Tuolaishan Fault (TLSF). To the east, aftershocks mostly follow the local strike of the Lenglongling fault (LLLF). There appears to be a few kilometers gap between the aftershocks of the 2022 magnitude-6.6 mainshock and those of the 2016 magnitude-5.9 mainshock. The 2016 event was a thrust event that likely ruptured the Northern Lenglongling Fault (NLLLF) (Liu et al., 2019), rather than the left-lateral Lenglongling Fault that ruptured in the most recent event.

    6
    Figure 6. A comparison of relocated aftershocks following the 2022 M6.6 and 2016 M5.9 mainshocks. The aftershock locations following the 2022 mainshock were provided by Lihua Fang. LLLF: Lenglongling fault; NLLLF: Northern Lenglongling fault; TLSF: Tuolaishan fault. The 2016 aftershock locations were from Liu et al. (2019). Credit: Yangfan Deng.

    Coulomb Stress Transfers and Seismic Hazard

    9
    Figure 9. Coulomb stress changes due to the 2016 Mw5.9 earthquake resolved onto (a) the left-lateral faults parallel to the 2022 rupture plane and (b) onto the 2022 fault plane of the finite fault model of Wang et al. (Figure 3). We implemented a simple uniform slip model of the NW-striking blind thrust for the 2016 earthquake based on the USGS CMT and Wells and Coppersmith (1994) empirical relation. Credit: Shinji Toda.

    Due to their proximity and timing, we explore whether the 2016 magnitude-5.9 event promoted the 2022 magnitude-6.6 earthquake by static stress transfer. As shown in Figure 9, the 2016 magnitude-5.9 earthquake imparted up to 0.4 bar (0.04 MPa) of stress on the fault plane that ruptured during the 2022 earthquake. The calculation was done using the Coulomb 3.3 Software (Toda et al., 2011), with an effective coefficient of friction of 0.4. Similarly, we also compute the Coulomb stress changes on both left-lateral faults and northwest-trending thrust faults due to the combined effects of the 2016 and 2022 events (Figure 10). As expected, both events produced positive stress changes on nearby faults, suggesting an increased likelihood of future damaging earthquakes in these regions. In particular, the 2022 earthquake may have brought the unbroken sections to the west (i.e., the Tuolaishan Fault) and east (i.e., the Lenglongling Fault) of the 2022 surface ruptures several bars closer to failure. Indeed, so far, several roughly magnitude-5.0 aftershocks have occurred, suggesting seismic hazard in these sections is relatively high.

    10
    Figure 10. The maximum Coulomb stress imparted by both 2016 and 2022 events for (a) WNW-striking left-lateral faults, and (b) NW-trending thrust faults at a depth range of 5-15 km. The finite fault model by Wang et al. (Figure 3) is used for the 2022 earthquake stress transfer. Credit: Shinji Toda.

    The recent earthquake struck in an area previously highlighted by the China Earthquake Administration as having a high probability of a magnitude-6.0 or greater earthquake (Xu et al., 2017). This earthquake provides a glimmer of hope for the scientists engaging in long- and short-term earthquake forecasting in China.

    Acknowledgement

    We thank Drs. Lihua Fang at Institute of Geophysics, China Earthquake Administration, Dun Wang at Chinese University of Geosciences, Wuhan, Weiming Wang at Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Qiang Ma at Institute Engineering Mechanics, China Earthquake Administration, and Jie Gao at China Earthquake Disaster Prevention Center for providing their preliminary results and field photos that are included in this news report. We also thank Dr. Weqian Yao at Tianjing University for making Figure 1.

    References

    Deng, Y., Peng, Z., & Liu-Zeng, J. (2020), Systematic search for repeating earthquakes along the Haiyuan fault system in Northeastern Tibet, Journal of Geophysical Research: Solid Earth, 125(7), e2020JB019583, https://doi.org/10.1029/2020JB019583.

    Gaudemer, Y., Tapponnier, P., Meyer, B., Peltzer, G., Shunmin, G., Zhitai, C., et al. (1995). Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap’, on the western Haiyuan Fault, Gansu (China). Geophysical Journal International, 120(3), 599–645. https://doi.org/10.1111/j.1365-246X.1995.tb01842.x

    Liu, M., Li, H., Peng, Z., Ouyang, L., Ma, Y., Ma, J., Liang, Z., & Huang, Y. (2019), Spatial-temporal distribution of early aftershocks following the 2016 Ms 6.4 Menyuan, Qinghai, China Earthquake, Tectonophysics, 766, 469-479, https://doi.org/10.1016/j.tecto.2019.06.022.

    Liu-Zeng, J., Y. Klinger, X. Xu, C. Lasserre, G. Chen, W. Chen, P. Tapponnier, and B. Zhang, 2007. Millennial Recurrence of Large Earthquakes on the Haiyuan Fault near Songshan, Gansu Province, China, Bulletin of Seismological Society of America, 97 (1B): 14-34

    Toda, S. R. S. Stein, V. Sevilgen, and J. Lin (2011) Coulomb 3.3 graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching —user guide: U.S. Geological Survey Open-File Report 2011–1060, 63 p., available at https://pubs.usgs.gov/of/2011/1060/.

    Wells, D.L. and Coppersmith K.J. (1994), New Empirical Relationships among Magnitude, Rupture Length, Rupture width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84, 974-1002.

    Xu, Xiwei, X. Wu, G. Yu, X. Tan, and K. Li (2017), Seismo-geological signatures for identifying M≥7.0 earthquake risk areas and their preliminary application in mainland China, Seismology and Geology, 39(2), doi:10.3969/j.isn.0253-4967.2017.02.001 (in Chinese).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

     
  • richardmitnick 8:32 pm on December 30, 2021 Permalink | Reply
    Tags: "Luzon in the Philippines sees sixth strong earthquake in five months", , , , QCN Quake-Catcher.net; Shake Alert; Earthquake Alert; Mobile App systems,   

    From temblor : “Luzon in the Philippines sees sixth strong earthquake in five months” 

    1

    From temblor

    December 21, 2021

    By Mario Aurelio, Director of the The University of the Philippines [Pamantasan ng Pilipinas or Unibersidad ng Pilipinas](PH) National Institute of Geological Sciences Sandra Donna Catugas, Structural Geology and Tectonics Laboratory at the University of Philippines National Institute of Geological Sciences
    John Agustin Escudero, Structural Geology and Tectonics Laboratory at the University of Philippines National Institute of Geological Sciences
    Alfredo Mahar Francisco Lagmay, Executive Director, University of the Philippines Resilience Institute-Nationwide Operational Assessment of Hazards Center (@nababaha)
    Giovanni A. Tapang, Dean of the University of the Philippines-Diliman College of Science

    On December 13, 2021, at 5:12 p.m. local time, the Batangas region in southern Luzon, Philippines, was hit by the fifth earthquake with a magnitude greater than 5.0 since a magnitude-6.6 tremor on July 24, 2021 (Aurelio et al., 2021a; 2021b; 2021c). Prior to this, four earthquakes with magnitude-5.8 (July 24 and August 13), 5.7 (September 27) and 5.2 (October 7) struck within a radius of 20 miles (30 kilometers) of the first July 24 event. This recurrence interval — an average of more than one strong earthquake every month — is too short to be neglected. This is either an unusually vigorous aftershock sequence, or an event comparable to a seismic swarm.

    Area of stress increase

    Using the fault responsible for generating the magnitude-6.6 earthquake of July 24, as the source fault, Coulomb stress transfer modeling indicates that the magnitude-5.5 tremor of December 13 falls within the lobe of increased stress when used as the receiver fault (Fig. 1). The 65-mile (104-kilometer) depth of the December tremor also plots approximately along the same fault plane, but four miles (seven kilometers) shallower than the July 24 event. These observations suggest that the first earthquake likely triggered the second.

    1
    Figure 1. Seismotectonics of six moderate magnitude, thrust-mechanism earthquakes (shown by beachballs) occurring in the same region in Batangas, southern Luzon, Philippines, within a period of five months (July 24 to December 13, 2021). Result of Coulomb stress change modeling shown. July 24 magnitude-6.6 as source; December 13 magnitude-5.5 as receiver. References: Jarvis et al., 2008 for SRTM topography; Weatherall et al., 2020 for bathymetry; Toda et al., 2011 for Coulomb stress transfer modeling; PHIVOLCS for earthquake data. GMT (Wessel and Smith, 1995) was used to generate the map. See text for more discussion. Credit: Aurelio, Catugas, Escudero, Lagmay,Tapang.

    The same triggering mechanism can explain three of the other recent magnitude-5.0 and larger events when each is used as the receiver fault (Aurelio et al., 2021a; 2021b), except for the magnitude-5.7 quake of September 27, which occurred in a zone of decreased stress (Aurelio et al., 2021c).

    However, when Coulomb stress transfer modeling considers an optimally-oriented receiver fault — assumed to be aligned with the stress field, thus promoting failure — all five earthquakes that succeeded the July 24 magnitude-6.6 earthquake fall within the lobe of increased stress at 65 miles (104 kilometers) depth (Fig. 2). The hypocenters — the locations on the fault where each earthquake nucleated — cluster within the calculated region of increased stress, which suggests triggering of all five quakes by the magnitude-6.6 July 24 event.

    2
    Figure 2. Seismotectonics of six moderate magnitude, thrust-mechanism earthquakes (shown by beachballs) occurring in the same region in Batangas, southern Luzon, Philippines, within a period of five months (July 24 to December 13, 2021). Result of Coulomb stress change modeling shown. July 24 magnitude-6.6 as source, with optimally-oriented fault as receiver. References: Jarvis et al., 2008 for SRTM topography; Weatherall et al., 2020 for bathymetry; Toda et al., 2011 for Coulomb stress transfer modeling; PHIVOLCS for earthquake data. GMT (Wessel and Smith, 1995) was used to generate the map. See text for more discussion. Credit: Aurelio, Catugas, Escudero, Lagmay,Tapang.

    Cause for concern?

    Based on the data collected during the last decade (Aurelio et al., 2021b), an average of 2.5 events larger than magnitude-5.0 strike per year within 50 kilometers of the July 24 magnitude-6.6 event. The recent spate of moderate quakes — each separated by less than a month — far exceeds this average and suggests that this is an evolving sequence.

    Could these six moderate magnitude earthquakes occurring over a short period of time indicate that stresses are being released rapidly? Or could these be lower-magnitude foreshocks of a larger event that has yet to strike? The latter is a possibility and should serve as a reminder to the 25 million inhabitants of Metro Manila and surrounding provinces that this region is vulnerable to a large earthquake. Preparedness and readiness are vital.

    Low-cost seismology studies

    The December 13 tremor was recorded by low-cost seismometers partly belonging to Public Seismic Network that is currently being established by the College of Science of the University of the Philippines-Diliman (UP Diliman) in Quezon City (Fig. 3). These low-cost seismometers, developed by Raspberry Shake, have been tried and tested both in the laboratory (Anthony et al., 2019) and in the field (Manconi et al., 2018; Winter et al., 2021; Holmgren, 2021).

    3
    Figure 3. Earthquake information generated by a Raspberry Shake station located nearest to the Public Seismic Network hub located inside the University of the Philippines-Diliman campus in Quezon City. The figure is a screenshot from the mobile phone app showing on the: upper panel – the date and time (local) of the seismic event, earthquake parameters (magnitude-5.5 and focal depth of 157 kilometers), station ID: R5160, map showing the locations of the Raspberry Shake seismic station and the epicenter and, station-to-epicenter distance in kilometers; middle panel – the waveform of the earthquake, clearly delineating the first P and S waves; lower panel – wave frequency distribution as a function of time. Credit: Aurelio, Catugas, Escudero, Lagmay, Tapang

    The earthquake parameters for December’s quake, generated by the UP Diliman-based network, include a calculated magnitude of 5.5, which compares well with magnitudes calculated by established international seismological observatories such as The Geological Survey (US) – National Earthquake Information Center (USGS-NEIC), GEOFON German Research Center for Geosciences (GEOFON-GFZ, Potsdam, Germany) and PHIVOLCS (Philippines). The low-cost, Raspberry Shake-derived earthquake depth of 98 miles (157 kilometers) is close to that computed by USGS-NEIC, but varies significantly from GEOFON-GFZ (69 miles/111 kilometers) and PHIVOLCS (64 miles/104 kilometers) estimates.

    Currently, most of these low-cost seismometers are owned and operated by ordinary citizens on their private properties. Though the stations are still scarce, there are good indications that more citizens are interested in setting up their own stations to join the UP Diliman-based network. Efforts are underway to find funds for more seismometers to deploy in schools throughout the country, with the aims of expanding the network and serving as a learning and teaching platform for students interested in earthquake studies.

    Meanwhile, at the UP National Institute of Physics (UP-NIP), a group of scientists from the institutes’ Instrumentation Physics Laboratory (ILP), is developing a low-cost seismic network consisting of accelerometers manufactured from commercially available components (Fig. 4). Each accelerometer costs less than $200 USD to manufacture. This network is part of a study to understand how shaking decays with distance from the source and how it is influenced by the nature of the ground underneath — called a ground attenuation relationship. Current attenuation relationships used in the country come from outside the Philippines, including experimental results from artificially induced, low-magnitude earthquakes, and data gathered directly from natural earthquakes.

    5
    Figure 4. Custom-made ground motion sensor (accelerometer) fabricated at the Instrumentation Physics Laboratory (IPL) of the University of the Philippines National Institute of Physics. The sensor contains the following components: (Left photo) (1) digital accelerometer; (2) development board containing the microcontroller, SD card module, and antenna for Long Range (LoRa) reception capabilities; (3) power section of board; (4) GPS module; (5) Real Time Clock (RTC) module; (6) antenna; (7) storage module; (8) power switch, (9) connection to the battery (not seen in picture) secured at the bottom of the container. (Right photo) Sensor assembled inside a closed, laser-cut acrylic sheet, with the electronic parts secured inside, connected to a pipe that serves as an extended antenna. The acrylic box is equipped with a level (button on top) to ensure horizontality of the base of the sensor. Credit: Aurelio (ongoing).

    These complementary efforts to establish low-cost seismological observatories serve two purposes. The Raspberry Shake network promotes citizen science. The second effort led by scientists helps Philippine researchers conduct innovative but inexpensive earthquake research. Both efforts hold promise in contributing to hazard resilience in an earthquake-prone country that often lacks scientific research funds.

    References

    Anthony, R.E., Ringler, A., Wilson D.C., and Wolin, E. (2019). Do Low-Cost Seismographs Perform Well Enough for Your Network? An Overview of Laboratory Tests and Field Observations of the OSOP Raspberry Shake 4D. Seismological Research Letters. 90 (1): 219-228.

    Aurelio, M. (ongoing). Project Leader: Establishing a ground attenuation relation for the Philippines using artificial blasting methods. Project funded by the University of the Philippines – Office of the Vice-President for Academic Affairs (UP-OVPAA) under the Enhanced Creative Work Research Grant (ECWRG).

    Aurelio, M., Lagmay, M., Escudero, J. A., and Catugas, S. (2021a). Latest Philippine earthquake reveals tectonic complexity, Temblor, doi.org/10.32858/temblor.191

    Aurelio, M., Lagmay, M., Escudero, J. A., and Catugas, S. (2021b). Philippine fault jolts Batangas again, with magnitude-5.8 quake, Temblor, doi.org/10.32858/temblor.198

    Aurelio, M., Lagmay, M., Escudero, J. A., and Catugas, S. (2021c). Magnitude-5.7 Batangas earthquake puzzles researchers, Temblor, doi.org/10.32858/temblor.21

    GEOFON German Research Center for Geosciences. Available at: http://www.geofon.gfz-potsdam.de

    Holmgren, J.M and Werner, M. (2021). Raspberry Shake Instruments Provide Initial Ground‐Motion Assessment of the Induced Seismicity at the United Downs Deep Geothermal Power Project in Cornwall, United Kingdom. The Seismic Record 1 (1): 27–34.

    Jarvis, A., H.I. Reuter, A. Nelson, E. Guevara (2008). Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org).

    Manconi, A., Coviello, V. and Galletti, M. (2018). Short Communication: Monitoring Rockfall with the Raspberry Shake. Earth Surface Dynamics 6(4): 1219-1227.

    Observatoire GEOSCOPE. Available at: http://geoscope.ipgp.fr/index.php/en/

    Philippine Institute of Volcanology and Seismology (PHIVOLCS). Available at: http://www.phivolcs.dost.gov.ph

    Toda, Shinji, Stein, R.S., Sevilgen, Volkan, and Lin, J. (2011). Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching—user guide: U.S. Geological Survey Open-File Report 2011–1060, 63 p., available at https://pubs.usgs.gov/of/2011/1060/

    United States Geological Survey – National Earthquake Information Center (USGS-NEIC). Available at: http://www.earthquake.usgs.gov

    Weatherall P., Tozer B., Arndt J.E., Bazhenova E., Bringensparr C., Castro C.F., Dorschel B., Ferrini V., Hehemann L., Jakobsson M., Johnson P., Ketter T., Mackay K., Martin T.V., Mayer L.A., McMichael-Phillips J., Mohammad R., Nitsche F.O., Sandwell D.T., Snaith H., Viquerat S. (2020). The GEBCO_2020 Grid – a continuous terrain model of the global oceans and land. British Oceanographic Data Centre, National Oceanography Centre, NERC, UK. doi:10.5285/a29c5465-b138-234d-e053-6c86abc040b9

    Wessel, P. and Smith, W.H.F., (1995). New version of the Generic Mapping Tools released. EOS Trans. Am. Geophys. Union 76, 329.

    Winter, K., Lombardi, D. Diaz-Moreno A., and Bainbridge, R. (2021). Monitoring Icequakes in East Antarctica with the Raspberry Shake. Seismological Research Letters. Doi: https://doi.org/10.1785/0220200483

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

     
  • richardmitnick 7:24 am on December 28, 2021 Permalink | Reply
    Tags: "Contorted Oceanic Plate Caused Complex Quake off New Zealand's East Cape", , , , Intraslab earthquakes, March 4 2021 East Cape earthquake off the northeasternmost tip of New Zealand's North Island, Multiple episodes of rupture generated by both compression and extension in the subsurface at different depths, QCN Quake-Catcher.net; Shake Alert; Earthquake Alert; Mobile App systems, , Subduction of a seamount or multiple seamounts along with the subducted slab could contort the slab and create local changes in the stress field., Subduction zones: where a slab of oceanic plate is pushed beneath another tectonic plate down into the mantle cause the world's largest and most destructive earthquakes.,   

    From The University of Tsukuba [筑波大学](JP): “Contorted Oceanic Plate Caused Complex Quake off New Zealand’s East Cape” 

    From The University of Tsukuba [筑波大学](JP)

    Dec 17, 2021

    Professor YAGI Yuji
    Faculty of Life and Environmental Sciences
    University of Tsukuba

    Assistant Professor OKUWAKI Ryo
    Mountain Science Center, Faculty of Life and Environmental Sciences
    University of Tsukuba
    rokuwaki@geol.tsukuba.ac.jp

    1
    Image by klee048/Shutterstock.

    Researchers led by the University of Tsukuba used seismic data generated by the 2021 East Cape earthquake to reveal a complex stress field with unusual trench-parallel deep compression.

    Subduction zones, where a slab of oceanic plate is pushed beneath another tectonic plate down into the mantle, cause the world’s largest and most destructive earthquakes. Reconstructing the geometry and stress conditions of the subducted slabs at subduction zones is crucial to understanding and preparing for major earthquakes. However, the tremendous depths of these slabs make this challenging—seismologists rely mainly on the rare windows into these deeply buried slabs provided by the infrequent but strong earthquakes, termed intraslab earthquakes, that occur within them.

    In a new study published in Geophysical Research Letters, a research team led by the University of Tsukuba used seismic data generated by a magnitude 7.3 earthquake that occurred off the northeasternmost tip of New Zealand’s North Island on March 4, 2021, detected by seismometers around the world, to investigate the particularly unusual geometry and stress states of the subducted slab deep below the surface in this region.

    “The 2021 East Cape earthquake showed a complex rupture process, likely because of its location at the boundary between the Kermadec Trench to the north and the Hikurangi Margin to the south,” lead author of the study Assistant Professor Ryo Okuwaki explains. “To investigate the geometry of the stress field and earthquake rupture process, we used a novel finite-fault inversion technique that required no pre-existing knowledge of the area’s faults.”

    This investigation revealed multiple episodes of rupture, generated by both compression and extension in the subsurface at different depths. These episodes included shallow (~30 km) rupture due to extension perpendicular to the trench as would typically be expected in a subduction zone. Unexpectedly, however, the deep (~70 km) rupture occurred with compression parallel to the subduction trench.

    “Two alternative or inter-related factors may explain the unique rupture geometry of the 2021 East Cape earthquake,” senior author Professor Yuji Yagi explains. “First, subduction of a seamount or multiple seamounts along with the subducted slab could contort the slab and create local changes in the stress field. Second, the transition from the Kermadec Trench to the Hikurangi Margin, where the subducted oceanic crust is considerably thicker, could create the local conditions responsible for the unusual faulting pattern.”

    Because of the rarity of deep intraslab earthquakes in this region, distinguishing between these two possibilities is currently challenging, and indeed both factors might play significant roles in creating the complex stress field revealed by the East Cape earthquake. Additional earthquakes off the northeast coast of New Zealand in the future may shed further light on this deep tectonic mystery.

    ###
    This work was supported by the Grant-in-Aid for Scientific Research (C) 19K04030.

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project smartphone ap is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015
    Meet The Quake-Catcher Network
    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.
    After almost eight years at Stanford University (US), and a year at California Institute of Technology (US), the QCN project is moving to the University of Southern California (US) Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.
    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards
    and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:
    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

    GNSS-Global Navigational Satellite System

    1
    GNSS station | Pacific Northwest Geodetic Array, Central Washington University (US)
    _____________________________________________________________________________________

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Tsukuba [筑波大学](JP) located in Tsukuba, Ibaraki, is one of top 9 Designated National University and selected as a Top Type university of Top Global University Project by the Japanese government.

    The university’s academic strength is in STEMM fields (Science, Technology, Engineering, Mathematics, Medicine), physical education, and related interdisciplinary fields. It is by taking located in Tsukuba Science City which has more than 300 research institutions. The university has had three Nobel laureates (two in Physics and one in Chemistry, see also “History”), and about 70 athletes, their students and alumni, have participated in the Olympic Games.

    It has established interdisciplinary Ph.D. programs in Human Biology and Empowerment Informatics, and the International Institute for Integrative Sleep Medicine, which were created through the Ministry of Education, Culture, Sports, Science and Technology’s competitive funding projects.

    Its Graduate School of Life and Environmental Sciences is represented on the national Coordinating Committee for Earthquake Prediction.

    Research performance

    Tsukuba is one of the leading research institutions in Japan. According to Thomson Reuters, Tsukuba is the 10th best research institutions among all the universities and non-educational research institutions in Japan.

    Weekly Diamond [ja] reported that Tsukuba has the 27th highest research standard in Japan in research fundings per researchers in COE Program. In the same article, it’s ranked 11th in the quality of education by GP (in Japanese) funds per student.

    It has a good research standard in Economics, as Research Papers in Economics ranked Tsukuba as the eighth best Economics research university in January 2011.

    Undergraduate schools and colleges

    School of Humanities and Culture, with separate colleges for the humanities, for comparative culture and for Japanese language and culture.
    School of Social and International Studies, including colleges for social sciences and for international studies.
    School of Human Sciences, with separate colleges for education, for psychology and for disability sciences.
    School of Life and Environmental Sciences, incorporating colleges for biological sciences, for agro-biological resources and for geoscience.
    School of Science and Engineering, with colleges for mathematics, physics, chemistry, engineering sciences and engineering systems, as well as for policy and planning sciences.
    School of Informatics, incorporating separate colleges for information sciences; for media arts, science and technology; and for knowledge and library sciences.
    School of Medicine and Medical Sciences, including schools of medicine, nursing nd medical sciences.
    School of Health and Physical Education.
    School of Art and Design.

    Graduate schools and programs

    Master’s Program in Education
    School Leadership and Professional Development
    Secondary Education
    Graduate School of Humanities and Social Sciences
    Doctoral Program in Philosophy
    Doctoral Program in History and Anthropology
    Doctoral Program in Literature and Linguistics
    Master’s Program in Modern Languages and Cultures
    Doctoral Program in Modern Languages and Cultures
    Master’s Program in International Public Policy
    Doctoral Program in International Public Policy
    Master’s Program in Economics
    Doctoral Program in Economics
    Master’s Program in Law
    Doctoral Program in Law
    Master’s Program in International Area Studies
    Doctoral Program in International and Advanced Japanese Studies
    Graduate School of Business Sciences (programs for working individuals)
    Master’s Program in Systems Management
    Master’s Program in Advanced Studies of Business Law
    Doctoral Program in Systems Management and Business Law
    Law School Program
    MBA Program in International Business
    Graduate School of Pure and Applied Sciences
    Master’s Program in Mathematics
    Doctoral Program in Mathematics
    Master’s Program in Physics
    Doctoral Program in Physics
    Master’s Program in Chemistry
    Doctoral Program in Chemistry
    Doctoral Program in Nano-Science and Nano-Technology
    Master’s Program in Applied Physics
    Doctoral Program in Applied Physics
    Master’s Program in Materials Science
    Doctoral Program in Materials Science
    Doctoral Program in Materials Sciences and Technology
    Graduate School of Systems and Information Engineering
    Master’s Program in Policy and Planning Sciences
    Master’s Program in Service Engineering
    Doctoral Program in Policy and Planning Sciences
    Master’s Program in Risk Engineering
    Doctoral Program in Risk Engineering
    Master’s Program in Computer Science
    Doctoral Program in Computer Science
    Master’s Program in Intelligent Interaction Technologies
    Doctoral Program in Intelligent Interaction Technologies
    Master’s Program in Engineering Mechanics and Energy
    Doctoral Program in Engineering Mechanics and Energy
    Master’s Program in Social Systems Engineering
    Master’s Program in Business Administration and Public Policy
    Doctoral Program in Social Systems and Management
    Graduate School of Life and Environmental Sciences
    Doctoral Program in Integrative Environment and Biomass Sciences
    Master’s Program in Geosciences
    Doctoral Program in Geoenvironmental Sciences
    Doctoral Program in Earth Evolution Sciences
    Master’s Program in Biological Sciences
    Doctoral Program in Biological Sciences
    Master’s Program in Agro-bioresources Science and Technology
    Doctoral Program in Appropriate Technology and Sciences for Sustainable Development
    Doctoral Program in Biosphere Resource Science and Technology
    Doctoral Program in Life Sciences and Bioengineering
    Doctoral Program in Bioindustrial Sciences
    Master’s Program in Environmental Sciences
    Doctoral Program in Sustainable Environmental Studies
    Doctoral Program in Advanced Agricultural Technology and Sciences
    Graduate School of Comprehensive Human Sciences
    Master’s Program in Medical Sciences (Tokyo Campus (evening programs for working adults))
    Master’s Program in Sports and Health Promotion
    Master’s Program in Education Sciences
    Doctoral Program in Education
    Doctoral Program in School Education
    Master’s Program in Psychology
    Doctoral Program in Psychology
    Master’s Program in Disability Sciences
    Doctoral Program in Disability Sciences
    Master’s Program in Lifespan Development (Tokyo Campus (evening programs for working adults))
    Doctoral Program in Lifespan Developmental Sciences (Tokyo Campus (evening programs for working adults))
    Master’s Program in Kansei, Behavioral and Brain Sciences
    Doctoral Program in Kansei, Behavioral and Brain Sciences
    Master’s Program in Nursing Sciences
    Doctoral Program in Nursing Sciences
    Master’s Program in Health and Sport Sciences
    Doctoral Program in Physical Education, Health and Sport Sciences
    Master’s Program in Art and Design
    Doctoral Program in Art and Design
    Master’s Program in World Heritage Studies
    Doctoral Program in World Cultural Heritage Studies
    Doctoral Program in Human Care Science
    Doctoral Program in Sports Medicine
    Doctoral Program in Coaching Science
    Doctoral Program in Biomedical Sciences
    Doctoral Program in Clinical Sciences
    Graduate School of Library, Information and Media Studies
    Master’s Program in Library, Information and Media Studies
    Doctoral Program in Library, Information and Media Studies
    School of Integrative and Global Majors (SIGMA)
    Ph.D. Program in Human Biology
    Ph.D. Program in Empowerment Informatics
    Master’s Program in Life Science Innovation
    Doctoral Program in Life Science Innovation

    Research centers

    Center for Computational Sciences
    Shimoda Marine Research Center
    Gene Research Center
    Plasma Research Center
    University’s inter-department education research institutes (Research)
    Life Science Center of Tsukuba Advanced Research Alliance (Life Science Center of TARA)
    International Institute for Integrative Sleep Medicine (WPI-IIIS)
    Agricultural and Forestry Research Center
    Terrestrial Environment Research Center
    Laboratory Animal Resource Center
    Sugadaira Montane Research Center
    Research Center for University Studies
    Proton Medical Research Center
    Tsukuba Industrial Liaison and Cooperative Research Center
    Center for Research on International Cooperation in Educational Development
    Research Center for Knowledge Communities
    Tsukuba Research Center for Interdisciplinary Materials Science
    Special Needs Education Research Center
    The Alliance for Research on North Africa
    Academic Computing and Communications Center
    Research Facility Center for Science and Technology
    Radioisotope Center
    Tsukuba Critical Path Research and Education Integrated Leading Center
    Center for Cybernics Research
    University’s inter-department education research institutes (student support)
    Foreign Language Center
    Sport and Physical Education Center
    International Student Center
    Admission Center
    University Health Center

     
  • richardmitnick 10:59 am on December 21, 2021 Permalink | Reply
    Tags: "How Fault Surface Features Can Tell Us About Future Earthquakes", A quick assessment of a fault’s maturity will help scientists better understand the risks they pose to nearby communities., , , , , Fault line characteristics such as structural maturity can give hints about how a future earthquake may act., , Mature and immature faults generate very different earthquakes. Mature faults release less stress-their rupture propagates quickly down their length. Immature faults create high-energy slower quakes., QCN Quake-Catcher.net; Shake Alert; Earthquake Alert; Mobile App systems   

    From Eos: “How Fault Surface Features Can Tell Us About Future Earthquakes” 

    From AGU
    Eos news bloc

    From Eos

    21 December 2021
    Elizabeth Thompson

    1
    The San Andreas Fault, a mature strike-slip fault, is well studied because it lies near major population centers. Understanding fault maturity here and at other faults can help scientists model earthquakes and assess risks to nearby communities. Credit: Doc Searls, CC BY-SA 2.0.

    Earthquakes cannot be forecast like weather, but fault line characteristics, such as structural maturity, can give hints about how a future earthquake may act. Structural maturity is related to the age of the fault, but especially important is its “experience,” how much a fault has developed and changed over time and activity.

    Mature and immature faults generate very different earthquakes. Mature faults release less stress, but their rupture propagates quickly down their length, whereas immature faults create high-energy, slower quakes. A quick assessment of a fault’s maturity will help scientists better understand the risks they pose to nearby communities.

    A new study seeks to quantify faults’ maturity into a useful metric to help assess earthquake risks. Manighetti et al. measured surface features of fault lines that previous studies had evaluated at several maturity levels. They then analyzed their measurements to see how they related to the maturity judgment.

    The researchers found that corrugation (i.e., undulation) and step-overs were good maturity indicators. Immature faults were reliably shorter, with high corrugation and high step-over density. As faults matured, they lengthened and smoothed out, reducing undulations and step-over density.

    These traits are not only reliable across faults; they are also detectable at low resolutions. Scientists can map as little as a third of a fault’s length at relatively low resolution and still generate an accurate assessment of a fault’s maturity. This means that these metrics are practical for models and hazard assessments. Applying neural networks to the mapping process would make this method even easier, according to the authors.

    Science paper:
    Geophysical Research Letters

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project smartphone ap is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015
    Meet The Quake-Catcher Network
    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.
    After almost eight years at Stanford University (US), and a year at California Institute of Technology (US), the QCN project is moving to the University of Southern California (US) Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.
    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards
    and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:
    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

    GNSS-Global Navigational Satellite System

    1
    GNSS station | Pacific Northwest Geodetic Array, Central Washington University (US)
    _____________________________________________________________________________________

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

     
  • richardmitnick 9:13 am on December 19, 2021 Permalink | Reply
    Tags: "Using sparse data to predict lab quakes", , , , , , , , QCN Quake-Catcher.net; Shake Alert; Earthquake Alert; Mobile App systems, Transfer learning: comparisons from the lab to the field   

    From DOE’s Los Alamos National Laboratory (US) : “Using sparse data to predict lab quakes” 

    LANL bloc

    From DOE’s Los Alamos National Laboratory (US)

    December 16, 2021

    1
    Stick-slip events in the earth cause damage like this, but limited data from these relatively rare earthquakes makes them difficult to model with machine learning. Transfer learning may provide a path to understanding when such deep faults slip. Credit: Dreamstime.

    A machine-learning approach developed for sparse data reliably predicts fault slip in laboratory earthquakes and could be key to predicting fault slip and potentially earthquakes in the field. The research by a Los Alamos National Laboratory team builds on their previous success using data-driven approaches that worked for slow-slip events in earth but came up short on large-scale stick-slip faults that generate relatively little data—but big quakes.

    “The very long timescale between major earthquakes limits the data sets, since major faults may slip only once in 50 to 100 years or longer, meaning seismologists have had little opportunity to collect the vast amounts of observational data needed for machine learning,” said Paul Johnson, a geophysicist at Los Alamos and a co-author on a new paper in Nature Communications.

    To compensate for limited data, Johnson said, the team trained a convolutional neural network on the output of numerical simulations of laboratory quakes as well as on a small set of data from lab experiments. Then they were able to predict fault slips in the remaining unseen lab data.

    This research was the first application of transfer learning to numerical simulations for predicting fault slip in lab experiments, Johnson said, and no one has applied it to earth observations.

    With transfer learning, researchers can generalize from one model to another as a way of overcoming data sparsity. The approach allowed the Laboratory team to build on their earlier data-driven machine learning experiments successfully predicting slip in laboratory quakes and apply it to sparse data from the simulations. Specifically, in this case, transfer learning refers to training the neural network on one type of data—simulation output—and applying it to another—experimental data—with the additional step of training on a small subset of experimental data, as well.

    “Our aha moment came when I realized we can take this approach to earth,” Johnson said. “We can simulate a seismogenic fault in earth, then incorporate data from the actual fault during a portion of the slip cycle through the same kind of cross training.” The aim would be to predict fault movement in a seismogenic fault such as the San Andreas, where data is limited by infrequent earthquakes.

    The team first ran numerical simulations of the lab quakes. These simulations involve building a mathematical grid and plugging in values to simulate fault behavior, which are sometimes just good guesses.

    For this paper, the convolutional neural network comprised an encoder that boils down the output of the simulation to its key features, which are encoded in the model’s hidden, or latent space, between the encoder and decoder. Those features are the essence of the input data that can predict fault-slip behavior.

    The neural network decoded the simplified features to estimate the friction on the fault at any given time. In a further refinement of this method, the model’s latent space was additionally trained on a small slice of experimental data. Armed with this “cross-training,” the neural network predicted fault-slip events accurately when fed unseen data from a different experiment.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    DOE’s Los Alamos National Laboratory (US) mission is to solve national security challenges through scientific excellence.

    LANL campus
    DOE’s Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is managed by Triad, a public service oriented, national security science organization equally owned by its three founding members: The University of California Texas A&M University (US), Battelle Memorial Institute (Battelle) for the Department of Energy’s National Nuclear Security Administration. Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

     
  • richardmitnick 9:20 am on May 4, 2021 Permalink | Reply
    Tags: "Earthquake early warnings launch in Washington completing West Coast-wide ShakeAlert system", , , , QCN Quake-Catcher.net; Shake Alert; Earthquake Alert; Mobile App systems,   

    From University of Washington (US) : “Earthquake early warnings launch in Washington completing West Coast-wide ShakeAlert system” Revised with texts for images. 

    From University of Washington (US)

    May 3, 2021

    Hannah Hickey,
    Kiyomi Taguchi
    Rebecca Gourley


    WA ShakeAlert early warning system activated May 4th.

    When the Big One hits, the first thing Washington residents notice may not be the ground shaking, but their phone issuing a warning. The U.S. Geological Survey, the University of Washington-based Pacific Northwest Seismic Network and the Washington Emergency Management Division on Tuesday, May 4, will activate the system that sends earthquake early warnings throughout Washington state. This completes the tri-state rollout of ShakeAlert, an automated system that gives people living in Washington, Oregon and California advance warning of incoming earthquakes.

    “For the first time, advance warning of imminent earthquake shaking will be a reality in our region. Even just seconds, up to a minute of warning is enough to prepare yourself and take cover — actions that may spare you from injury or even save your life,” said Harold Tobin, a UW professor of Earth and space sciences and director of the PNSN, which operates the seismic monitoring in Washington and Oregon.

    1
    A team from the UW-based Pacific Northwest Seismic Network installs a new solar panel array at a seismic monitoring site in Enumclaw, Washington, on April 20, 2021. The seismometer, one of hundreds that provide data for ShakeAlert, is in the hole in the foreground. A trench brings cables to the newly installed solar panels, on the right, that power the system, and an aluminum box containing electronics that digitize and transmit the seismic data. Credit: Mark Stone/University of Washington.

    2
    An upgraded Pacific Northwest Seismic Network monitoring station in Enumclaw, Washington, on April 20, 2021. The newly installed solar panels provide power for the system that detects the first signs of an earthquake. Credit: Mark Stone/University of Washington.

    3
    Same as above.

    4

    Once the system goes live on May 4, the first signs of an earthquake above a magnitude 4.5 or 5, about when the shaking becomes noticeable indoors, will trigger an alert and a reminder to drop, cover and hold on. Warning times range from a few seconds to tens of seconds depending on your distance to the epicenter. The launch will be silent — there will be no test on May 4.

    The PNSN operates a growing network of about 230 seismic stations in Washington and some 155 stations in Oregon that provide data for ShakeAlert. When four or more of these instruments detect unusual shaking, that motion is analyzed by computers, some of them on the UW campus, that quickly calculate the size and location of the event.
    ______________________________________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.
    _____________________________________________________________________________________

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    u-washington-campus
    The University of Washington (US) is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.

    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

    The University of Washington (US) is a public research university in Seattle, Washington, United States. Founded in 1861, University of Washington is one of the oldest universities on the West Coast; it was established in downtown Seattle approximately a decade after the city’s founding to aid its economic development. Today, the university’s 703-acre main Seattle campus is in the University District above the Montlake Cut, within the urban Puget Sound region of the Pacific Northwest. The university has additional campuses in Tacoma and Bothell. Overall, University of Washington encompasses over 500 buildings and over 20 million gross square footage of space, including one of the largest library systems in the world with more than 26 university libraries, as well as the UW Tower, lecture halls, art centers, museums, laboratories, stadiums, and conference centers. The university offers bachelor’s, master’s, and doctoral degrees through 140 departments in various colleges and schools, sees a total student enrollment of roughly 46,000 annually, and functions on a quarter system.

    University of Washington is a member of the Association of American Universities(US) and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation(US), UW spent $1.41 billion on research and development in 2018, ranking it 5th in the nation. As the flagship institution of the six public universities in Washington state, it is known for its medical, engineering and scientific research as well as its highly competitive computer science and engineering programs. Additionally, University of Washington continues to benefit from its deep historic ties and major collaborations with numerous technology giants in the region, such as Amazon, Boeing, Nintendo, and particularly Microsoft. Paul G. Allen, Bill Gates and others spent significant time at Washington computer labs for a startup venture before founding Microsoft and other ventures. The University of Washington’s 22 varsity sports teams are also highly competitive, competing as the Huskies in the Pac-12 Conference of the NCAA Division I, representing the United States at the Olympic Games, and other major competitions.

    The university has been affiliated with many notable alumni and faculty, including 21 Nobel Prize laureates and numerous Pulitzer Prize winners, Fulbright Scholars, Rhodes Scholars and Marshall Scholars.

    In 1854, territorial governor Isaac Stevens recommended the establishment of a university in the Washington Territory. Prominent Seattle-area residents, including Methodist preacher Daniel Bagley, saw this as a chance to add to the city’s potential and prestige. Bagley learned of a law that allowed United States territories to sell land to raise money in support of public schools. At the time, Arthur A. Denny, one of the founders of Seattle and a member of the territorial legislature, aimed to increase the city’s importance by moving the territory’s capital from Olympia to Seattle. However, Bagley eventually convinced Denny that the establishment of a university would assist more in the development of Seattle’s economy. Two universities were initially chartered, but later the decision was repealed in favor of a single university in Lewis County provided that locally donated land was available. When no site emerged, Denny successfully petitioned the legislature to reconsider Seattle as a location in 1858.

    In 1861, scouting began for an appropriate 10 acres (4 ha) site in Seattle to serve as a new university campus. Arthur and Mary Denny donated eight acres, while fellow pioneers Edward Lander, and Charlie and Mary Terry, donated two acres on Denny’s Knoll in downtown Seattle. More specifically, this tract was bounded by 4th Avenue to the west, 6th Avenue to the east, Union Street to the north, and Seneca Streets to the south.

    John Pike, for whom Pike Street is named, was the university’s architect and builder. It was opened on November 4, 1861, as the Territorial University of Washington. The legislature passed articles incorporating the University, and establishing its Board of Regents in 1862. The school initially struggled, closing three times: in 1863 for low enrollment, and again in 1867 and 1876 due to funds shortage. University of Washington awarded its first graduate Clara Antoinette McCarty Wilt in 1876, with a bachelor’s degree in science.

    19th century relocation

    By the time Washington state entered the Union in 1889, both Seattle and the University had grown substantially. University of Washington’s total undergraduate enrollment increased from 30 to nearly 300 students, and the campus’s relative isolation in downtown Seattle faced encroaching development. A special legislative committee, headed by University of Washington graduate Edmond Meany, was created to find a new campus to better serve the growing student population and faculty. The committee eventually selected a site on the northeast of downtown Seattle called Union Bay, which was the land of the Duwamish, and the legislature appropriated funds for its purchase and construction. In 1895, the University relocated to the new campus by moving into the newly built Denny Hall. The University Regents tried and failed to sell the old campus, eventually settling with leasing the area. This would later become one of the University’s most valuable pieces of real estate in modern-day Seattle, generating millions in annual revenue with what is now called the Metropolitan Tract. The original Territorial University building was torn down in 1908, and its former site now houses the Fairmont Olympic Hotel.

    The sole-surviving remnants of Washington’s first building are four 24-foot (7.3 m), white, hand-fluted cedar, Ionic columns. They were salvaged by Edmond S. Meany, one of the University’s first graduates and former head of its history department. Meany and his colleague, Dean Herbert T. Condon, dubbed the columns as “Loyalty,” “Industry,” “Faith”, and “Efficiency”, or “LIFE.” The columns now stand in the Sylvan Grove Theater.

    20th century expansion

    Organizers of the 1909 Alaska-Yukon-Pacific Exposition eyed the still largely undeveloped campus as a prime setting for their world’s fair. They came to an agreement with Washington’s Board of Regents that allowed them to use the campus grounds for the exposition, surrounding today’s Drumheller Fountain facing towards Mount Rainier. In exchange, organizers agreed Washington would take over the campus and its development after the fair’s conclusion. This arrangement led to a detailed site plan and several new buildings, prepared in part by John Charles Olmsted. The plan was later incorporated into the overall University of Washington campus master plan, permanently affecting the campus layout.

    Both World Wars brought the military to campus, with certain facilities temporarily lent to the federal government. In spite of this, subsequent post-war periods were times of dramatic growth for the University. The period between the wars saw a significant expansion of the upper campus. Construction of the Liberal Arts Quadrangle, known to students as “The Quad,” began in 1916 and continued to 1939. The University’s architectural centerpiece, Suzzallo Library, was built in 1926 and expanded in 1935.

    After World War II, further growth came with the G.I. Bill. Among the most important developments of this period was the opening of the School of Medicine in 1946, which is now consistently ranked as the top medical school in the United States. It would eventually lead to the University of Washington Medical Center, ranked by U.S. News and World Report as one of the top ten hospitals in the nation.

    In 1942, all persons of Japanese ancestry in the Seattle area were forced into inland internment camps as part of Executive Order 9066 following the attack on Pearl Harbor. During this difficult time, university president Lee Paul Sieg took an active and sympathetic leadership role in advocating for and facilitating the transfer of Japanese American students to universities and colleges away from the Pacific Coast to help them avoid the mass incarceration. Nevertheless many Japanese American students and “soon-to-be” graduates were unable to transfer successfully in the short time window or receive diplomas before being incarcerated. It was only many years later that they would be recognized for their accomplishments during the University of Washington’s Long Journey Home ceremonial event that was held in May 2008.

    From 1958 to 1973, the University of Washington saw a tremendous growth in student enrollment, its faculties and operating budget, and also its prestige under the leadership of Charles Odegaard. University of Washington student enrollment had more than doubled to 34,000 as the baby boom generation came of age. However, this era was also marked by high levels of student activism, as was the case at many American universities. Much of the unrest focused around civil rights and opposition to the Vietnam War. In response to anti-Vietnam War protests by the late 1960s, the University Safety and Security Division became the University of Washington Police Department.

    Odegaard instituted a vision of building a “community of scholars”, convincing the Washington State legislatures to increase investment in the University. Washington senators, such as Henry M. Jackson and Warren G. Magnuson, also used their political clout to gather research funds for the University of Washington. The results included an increase in the operating budget from $37 million in 1958 to over $400 million in 1973, solidifying University of Washington as a top recipient of federal research funds in the United States. The establishment of technology giants such as Microsoft, Boeing and Amazon in the local area also proved to be highly influential in the University of Washington’s fortunes, not only improving graduate prospects but also helping to attract millions of dollars in university and research funding through its distinguished faculty and extensive alumni network.

    21st century

    In 1990, the University of Washington opened its additional campuses in Bothell and Tacoma. Although originally intended for students who have already completed two years of higher education, both schools have since become four-year universities with the authority to grant degrees. The first freshman classes at these campuses started in fall 2006. Today both Bothell and Tacoma also offer a selection of master’s degree programs.

    In 2012, the University began exploring plans and governmental approval to expand the main Seattle campus, including significant increases in student housing, teaching facilities for the growing student body and faculty, as well as expanded public transit options. The University of Washington light rail station was completed in March 2015, connecting Seattle’s Capitol Hill neighborhood to the University of Washington Husky Stadium within five minutes of rail travel time. It offers a previously unavailable option of transportation into and out of the campus, designed specifically to reduce dependence on private vehicles, bicycles and local King County buses.

    University of Washington has been listed as a “Public Ivy” in Greene’s Guides since 2001, and is an elected member of the American Association of Universities. Among the faculty by 2012, there have been 151 members of American Association for the Advancement of Science, 68 members of the National Academy of Sciences(US), 67 members of the American Academy of Arts and Sciences, 53 members of the National Academy of Medicine(US), 29 winners of the Presidential Early Career Award for Scientists and Engineers, 21 members of the National Academy of Engineering(US), 15 Howard Hughes Medical Institute Investigators, 15 MacArthur Fellows, 9 winners of the Gairdner Foundation International Award, 5 winners of the National Medal of Science, 7 Nobel Prize laureates, 5 winners of Albert Lasker Award for Clinical Medical Research, 4 members of the American Philosophical Society, 2 winners of the National Book Award, 2 winners of the National Medal of Arts, 2 Pulitzer Prize winners, 1 winner of the Fields Medal, and 1 member of the National Academy of Public Administration. Among UW students by 2012, there were 136 Fulbright Scholars, 35 Rhodes Scholars, 7 Marshall Scholars and 4 Gates Cambridge Scholars. UW is recognized as a top producer of Fulbright Scholars, ranking 2nd in the US in 2017.

    The Academic Ranking of World Universities (ARWU) has consistently ranked University of Washington as one of the top 20 universities worldwide every year since its first release. In 2019, University of Washington ranked 14th worldwide out of 500 by the ARWU, 26th worldwide out of 981 in the Times Higher Education World University Rankings, and 28th worldwide out of 101 in the Times World Reputation Rankings. Meanwhile, QS World University Rankings ranked it 68th worldwide, out of over 900.

    U.S. News & World Report ranked University of Washington 8th out of nearly 1,500 universities worldwide for 2021, with University of Washington’s undergraduate program tied for 58th among 389 national universities in the U.S. and tied for 19th among 209 public universities.

    In 2019, it ranked 10th among the universities around the world by SCImago Institutions Rankings. In 2017, the Leiden Ranking, which focuses on science and the impact of scientific publications among the world’s 500 major universities, ranked University of Washington 12th globally and 5th in the U.S.

    In 2019, Kiplinger Magazine’s review of “top college values” named University of Washington 5th for in-state students and 10th for out-of-state students among U.S. public colleges, and 84th overall out of 500 schools. In the Washington Monthly National University Rankings University of Washington was ranked 15th domestically in 2018, based on its contribution to the public good as measured by social mobility, research, and promoting public service.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: