Tagged: Pulsars Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:34 pm on July 26, 2022 Permalink | Reply
    Tags: , , , , , , Pulsars, The neutron star-a pulsar designated PSR J0952-0607,   

    From The W.M. Keck Observatory: “Heaviest Neutron Star to Date is a ‘Black Widow’ Eating its Mate” 

    W.M. Keck Observatory two ten meter telescopes operated by California Institute of Technology and The University of California, at Mauna Kea Observatory, Hawai’i, altitude 4,207 m (13,802 ft). Credit: Caltech.

    Keck Laser Guide Star Adaptive Optics on two 10 meter Keck Observatory telescopes, Mauna Kea Hawai’i, altitude 4,207 m (13,802 ft).

    Mauna Kea Observatories Hawai’i altitude 4,213 m (13,822 ft).

    From The W.M. Keck Observatory

    July 26, 2022

    Mari-Ela Chock (She/Her/Hers)
    Communications Officer
    808.554.0567
    mchock@keck.hawaii.edu

    1
    Artist’s rendition of a ‘spidery’ pulsar. Credit: NASA’s Goddard Space Flight Center.

    A dense, collapsed star spinning 707 times per second — making it one of the fastest spinning neutron stars in the Milky Way galaxy — has shredded and consumed nearly the entire mass of its stellar companion and, in the process, grown into the heaviest neutron star observed to date.

    The study was performed using W. M. Keck Observatory on Maunakea, Hawaiʻi Island and is published in today’s issue of The Astrophysical Journal Letters [below].

    Weighing this record-setting neutron star, which tops the charts at 2.35 times the mass of the Sun, helps astronomers understand the weird quantum state of matter inside these dense objects, which — if they get much heavier than that — collapse entirely and disappear as a black hole.

    “We know roughly how matter behaves at nuclear densities, like in the nucleus of a uranium atom,” said Alex Filippenko, Distinguished Professor of Astronomy at the University of California-Berzerkeley. “A neutron star is like one giant nucleus, but when you have one-and-a-half solar masses of this stuff, which is about 500,000 Earth masses of nuclei all clinging together, it’s not at all clear how they will behave.”

    Stanford University Professor of Astrophysics Roger W. Romani noted that neutron stars are so dense — 1 cubic inch weighs over 10 billion tons — that their cores are the densest matter in the universe short of black holes, which are impossible to study because they are hidden behind their event horizon. The neutron star-a pulsar designated PSR J0952-0607, is thus the densest object within sight of Earth.

    The measurement of the neutron star’s mass was possible thanks to the extreme sensitivity of the 10-meter Keck I telescope. Using Keck Observatory’s Low Resolution Imaging Spectrometer (LRIS) [below], the team was just able to record a spectrum of visible light from the hotly glowing companion star, now reduced to the size of a large gaseous planet. The stars are about 3,000 light years from Earth in the direction of the constellation Sextans.

    2
    Astronomers measured the velocity of a faint star (green circle) that has been stripped of nearly its entire mass by an invisible companion, a neutron star and millisecond pulsar that they determined to be the most massive yet found and perhaps the upper limit for neutron stars. Image credit: Roger W. Romani, Alex Filippenko/W. M. Keck Observatory.

    Discovered in 2017 [The Astrophysical Journal Letters (below)], PSR J0952-0607 is referred to as a “black widow” pulsar — an analogy to the tendency of female black widow spiders to consume the much smaller male after mating. Filippenko and Romani have been studying black widow systems for more than a decade, hoping to establish the upper limit on how large neutron stars/pulsars can grow.

    “By combining this measurement with those of several other black widows, we show that neutron stars must reach at least this mass, 2.35 plus or minus 0.17 solar masses,” said Romani, who is a professor of physics in Stanford’s School of Humanities and Sciences and member of the Kavli Institute for Particle Astrophysics and Cosmology. “In turn, this provides some of the strongest constraints on the property of matter at several times the density seen in atomic nuclei. Indeed, many otherwise popular models of dense-matter physics are excluded by this result.”

    If 2.35 solar masses is close to the upper limit of neutron stars, the researchers say, then the interior is likely to be a soup of neutrons as well as up and down quarks — the constituents of normal protons and neutrons — but not exotic matter, such as “strange” quarks or kaons, which are particles that contain a strange quark.

    “A high maximum mass for neutron stars suggests that it is a mixture of nuclei and their dissolved up and down quarks all the way to the core,” Romani said. “This excludes many proposed states of matter, especially those with exotic interior composition.”

    How large can they grow?

    Astronomers generally agree that when a star with a core larger than about 1.4 solar masses collapses at the end of its life, it forms a dense, compact object with an interior under such high pressure that all atoms are smashed together to form a sea of neutrons and their subnuclear constituents, quarks. These neutron stars are born spinning, and though too dim to be seen in visible light, reveal themselves as pulsars, emitting beams of light — radio waves, X-rays or even gamma rays — that flash Earth as they spin, much like the rotating beam of a lighthouse.

    “Ordinary” pulsars spin and flash about once per second, on average, a speed that can easily be explained given the normal rotation of a star before it collapses. But some pulsars repeat hundreds or up to 1,000 times per second, which is hard to explain unless matter has fallen onto the neutron star and spun it up. But for some millisecond pulsars, no companion is visible.

    One possible explanation for isolated millisecond pulsars is that each did once have a companion, but it stripped it down to nothing.

    “The evolutionary pathway is absolutely fascinating. Double exclamation point,” Filippenko said. “As the companion star evolves and starts becoming a red giant, material spills over to the neutron star, and that spins up the neutron star. By spinning up, it now becomes incredibly energized, and a wind of particles starts coming out from the neutron star. That wind then hits the donor star and starts stripping material off, and over time, the donor star’s mass decreases to that of a planet, and if even more time passes, it disappears altogether. So, that’s how lone millisecond pulsars could be formed. They weren’t all alone to begin with — they had to be in a binary pair — but they gradually evaporated away their companions, and now they’re solitary.”

    The pulsar PSR J0952-0607 and its faint companion star support this origin story for millisecond pulsars.

    “These planet-like objects are the dregs of normal stars which have contributed mass and angular momentum, spinning up their pulsar mates to millisecond periods and increasing their mass in the process,” Romani said.

    “In a case of cosmic ingratitude, the black widow pulsar, which has devoured a large part of its mate, now heats and evaporates the companion down to planetary masses and perhaps complete annihilation,” said Filippenko.

    Spider pulsars include redbacks and tidarrens

    Finding black widow pulsars in which the companion is small, but not too small to detect, is one of few ways to weigh neutron stars. In the case of this binary system, the companion star — now only 20 times the mass of Jupiter — is distorted by the mass of the neutron star and tidally locked, similar to the way our moon is locked in orbit so that we see only one side. The neutron star-facing side is heated to temperatures of about 6,200 Kelvin, or 10,700 degrees Fahrenheit, a bit hotter than our sun, and just bright enough to see with a large telescope.

    Filippenko and Romani turned the Keck I telescope on PSR J0952-0607 on six occasions over the last four years, each time observing with LRIS in 15-minute chunks to catch the faint companion at specific points in its 6.4-hour orbit of the pulsar. By comparing the spectra to that of similar Sun-like stars, they were able to measure the orbital velocity of the companion star and calculate the mass of the neutron star.

    Filippenko and Romani have examined about a dozen black widow systems so far, though only six had companion stars bright enough to let them calculate a mass. All involved neutron stars less massive than the pulsar PSR J0952-060. They’re hoping to study more black widow pulsars, as well as their cousins: redbacks, named for the Australian equivalent of black widow pulsars, which have companions closer to one-tenth the mass of the Sun; and what Romani dubbed tidarrens — where the companion is around one-hundredth of a solar mass — after a relative of the black widow spider. The male of this species, Tidarren sisyphoides, is about 1% of the female’s size.

    “We can keep looking for black widows and similar neutron stars that skate even closer to the black hole brink. But if we don’t find any, it tightens the argument that 2.3 solar masses is the true limit, beyond which they become black holes,” Filippenko said.

    “This is right at the limit of what the Keck telescope can do, so barring fantastic observing conditions, tightening the measurement of PSR J0952-0607 likely awaits the 30-meter telescope era,” added Romani.

    The work was supported by the National Aeronautics and Space Administration (80NSSC17K0024, 80NSSC17K0502), the Christopher R. Redlich Fund, the TABASGO Foundation, and UC Berkeley’s Miller Institute for Basic Research in Science.

    ABOUT LRIS

    The Low Resolution Imaging Spectrometer (LRIS) is a very versatile and ultra-sensitive visible-wavelength imager and spectrograph built at the California Institute of Technology by a team led by Prof. Bev Oke and Prof. Judy Cohen and commissioned in 1993. Since then it has seen two major upgrades to further enhance its capabilities: the addition of a second, blue arm optimized for shorter wavelengths of light and the installation of detectors that are much more sensitive at the longest (red) wavelengths. Each arm is optimized for the wavelengths it covers. This large range of wavelength coverage, combined with the instrument’s high sensitivity, allows the study of everything from comets (which have interesting features in the ultraviolet part of the spectrum), to the blue light from star formation, to the red light of very distant objects. LRIS also records the spectra of up to 50 objects simultaneously, especially useful for studies of clusters of galaxies in the most distant reaches, and earliest times, of the universe. LRIS was used in observing distant supernovae by astronomers who received the Nobel Prize in Physics in 2011 for research determining that the universe was speeding up in its expansion.

    Science papers:
    The Astrophysical Journal Letters 2017

    The Astrophysical Journal Letters 2022

    _______________________________________________
    Women in STEM – Dame Susan Jocelyn Bell Burnell Discovered pulsars


    Biography

    British astrophysicist, scholar and trailblazer Jocelyn Bell Burnell discovered the space-based phenomena known as pulsars, going on to establish herself as an esteemed leader in her field. Who Is Jocelyn Bell Burnell?
    Jocelyn Bell Burnell is a British astrophysicist and astronomer. As a research assistant, she helped build a large radio telescope and discovered pulsars, providing the first direct evidence for the existence of rapidly spinning neutron stars. In addition to her affiliation with Open University, she has served as dean of science at the University of Bath and president of the Royal Astronomical Society. Bell Burnell has also earned countless awards and honors during her distinguished academic career.

    Early Life

    Jocelyn Bell Burnell was born Susan Jocelyn Bell on July 15, 1943, in Belfast, Northern Ireland. Her parents were educated Quakers who encouraged their daughter’s early interest in science with books and trips to a nearby observatory. Despite her appetite for learning, however, Bell Burnell had difficulty in grade school and failed an exam intended to measure her readiness for higher education.

    Undeterred, her parents sent her to England to study at a Quaker boarding school, where she quickly distinguished herself in her science classes. Having proven her aptitude for higher learning, Bell Burnell attended the University of Glasgow, where she earned a bachelor’s degree in physics in 1965.

    Little Green Men

    In 1965, Bell Burnell began her graduate studies in radio astronomy at Cambridge University. One of several research assistants and students working under astronomers Anthony Hewish, her thesis advisor, and Martin Ryle, over the next two years she helped construct a massive radio telescope designed to monitor quasars. By 1967, it was operational and Bell Burnell was tasked with analyzing the data it produced. After spending endless hours pouring over the charts, she noticed some anomalies that did not fit with the patterns produced by quasars and called them to Hewish’s attention.

    Over the ensuing months, the team systematically eliminated all possible sources of the radio pulses—which they affectionately labeled Little Green Men, in reference to their potentially artificial origins—until they were able to deduce that they were made by neutron stars, fast-spinning collapsed stars too small to form black holes.

    Pulsars and Nobel Prize Controversy

    Their findings were published in the February 1968 issue of Nature and caused an immediate sensation. Intrigued as much by the novelty of a woman scientist as by the astronomical significance of the team’s discovery, which was labeled pulsars—for pulsating radio stars—the press picked up the story and showered Bell Burnell with attention. That same year, she earned her Ph.D. in radio astronomy from Cambridge University.

    However, in 1974, only Hewish and Ryle received the Nobel Prize for Physics for their work. Many in the scientific community raised their objections, believing that Bell Burnell had been unfairly snubbed. However, Bell Burnell humbly rejected the notion, feeling that the prize had been properly awarded given her status as a graduate student, though she has also acknowledged that gender discrimination may have been a contributing factor.

    Life on the Electromagnetic Spectrum

    Nobel Prize or not, Bell Burnell’s depth of knowledge regarding radio astronomy and the electromagnetic spectrum has earned her a lifetime of respect in the scientific community and an esteemed career in academia. After receiving her doctorate from Cambridge, she taught and studied gamma ray astronomy at the University of Southampton. Bell Burnell then spent eight years as a professor at University College London, where she focused on x-ray astronomy.

    During this same time, she began her affiliation with Open University, where she would later work as a professor of physics while studying neurons and binary stars, and also conducted research in infrared astronomy at the Royal Observatory, Edinburgh. She was the Dean of Science at the University of Bath from 2001 to 2004, and has been a visiting professor at such esteemed institutions as Princeton University and Oxford University.

    Array of Honors and Achievements

    In recognition of her achievements, Bell Burnell has received countless awards and honors, including Commander and Dame of the Order of the British Empire in 1999 and 2007, respectively; an Oppenheimer prize in 1978; and the 1989 Herschel Medal from the Royal Astronomical Society, for which she would serve as president from 2002 to 2004. She was president of the Institute of Physics from 2008 to 2010, and has served as president of the Royal Society of Edinburgh since 2014. Bell Burnell also has honorary degrees from an array of universities too numerous to mention.

    Personal Life

    In 1968, Jocelyn married Martin Burnell, from whom she took her surname, with the two eventually divorcing in 1993. The two have a son, Gavin, who has also become a physicist.

    A documentary on Bell Burnell’s life, Northern Star, aired on the BBC in 2007.


    Dame Susan Jocelyn Bell Purnell at Perimeter Institute Oct 26, 2018.
    _______________________________________________

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by The California Association for Research in Astronomy(CARA), whose Board of Directors includes representatives from the California Institute of Technologyand the University of California with liaisons to the board from The National Aeronautics and Space Agencyand the Keck Foundation.


    Keck UCal

    Instrumentation

    Keck 1

    HIRES – The largest and most mechanically complex of the Keck’s main instruments, the High Resolution Echelle Spectrometer breaks up incoming starlight into its component colors to measure the precise intensity of each of thousands of color channels. Its spectral capabilities have resulted in many breakthrough discoveries, such as the detection of planets outside our solar system and direct evidence for a model of the Big Bang theory.

    Keck High-Resolution Echelle Spectrometer (HIRES), at the Keck I telescope.
    LRIS – The Low Resolution Imaging Spectrograph is a faint-light instrument capable of taking spectra and images of the most distant known objects in the universe. The instrument is equipped with a red arm and a blue arm to explore stellar populations of distant galaxies, active galactic nuclei, galactic clusters, and quasars.

    UCO Keck LRIS on Keck 1.

    VISIBLE BAND (0.3-1.0 Micron)

    MOSFIRE – The Multi-Object Spectrograph for Infrared Exploration gathers thousands of spectra from objects spanning a variety of distances, environments and physical conditions. What makes this huge, vacuum-cryogenic instrument unique is its ability to select up to 46 individual objects in the field of view and then record the infrared spectrum of all 46 objects simultaneously. When a new field is selected, a robotic mechanism inside the vacuum chamber reconfigures the distribution of tiny slits in the focal plane in under six minutes. Eight years in the making with First Light in 2012, MOSFIRE’s early performance results range from the discovery of ultra-cool, nearby substellar mass objects, to the detection of oxygen in young galaxies only 2 billion years after the Big Bang.

    Keck/MOSFIRE on Keck 1.

    OSIRIS – The OH-Suppressing Infrared Imaging Spectrograph is a near-infrared spectrograph for use with the Keck I adaptive optics system. OSIRIS takes spectra in a small field of view to provide a series of images at different wavelengths. The instrument allows astronomers to ignore wavelengths where the Earth’s atmosphere shines brightly due to emission from OH (hydroxl) molecules, thus allowing the detection of objects 10 times fainter than previously available.
    Keck OSIRIS on Keck 1.

    Keck 2

    DEIMOS – The Deep Extragalactic Imaging Multi-Object Spectrograph is the most advanced optical spectrograph in the world, capable of gathering spectra from 130 galaxies or more in a single exposure. In ‘Mega Mask’ mode, DEIMOS can take spectra of more than 1,200 objects at once, using a special narrow-band filter.

    Keck/DEIMOS on Keck 2.

    NIRSPEC – The Near Infrared Spectrometer studies very high redshift radio galaxies, the motions and types of stars located near the Galactic Center, the nature of brown dwarfs, the nuclear regions of dusty starburst galaxies, active galactic nuclei, interstellar chemistry, stellar physics, and solar-system science.

    NIRSPEC on Keck 2.

    ESI – The Echellette Spectrograph and Imager captures high-resolution spectra of very faint galaxies and quasars ranging from the blue to the infrared in a single exposure. It is a multimode instrument that allows users to switch among three modes during a night. It has produced some of the best non-AO images at the Observatory.

    KECK Echellette Spectrograph and Imager (ESI).

    KCWI – The Keck Cosmic Web Imager is designed to provide visible band, integral field spectroscopy with moderate to high spectral resolution, various fields of view and image resolution formats and excellent sky-subtraction. The astronomical seeing and large aperture of the telescope enables studies of the connection between galaxies and the gas in their dark matter halos, stellar relics, star clusters and lensed galaxies.

    Keck Cosmic Web Imager on Keck 2 schematic.

    Keck Cosmic Web Imager on Keck 2.

    NEAR-INFRARED (1-5 Micron)

    ADAPTIVE OPTICS – Adaptive optics senses and compensates for the atmospheric distortions of incoming starlight up to 1,000 times per second. This results in an improvement in image quality on fairly bright astronomical targets by a factor 10 to 20.

    LASER GUIDE STAR ADAPTIVE OPTICS [pictured above] – The Keck Laser Guide Star expands the range of available targets for study with both the Keck I and Keck II adaptive optics systems. They use sodium lasers to excite sodium atoms that naturally exist in the atmosphere 90 km (55 miles) above the Earth’s surface. The laser creates an “artificial star” that allows the Keck adaptive optics system to observe 70-80 percent of the targets in the sky, compared to the 1 percent accessible without the laser.

    NIRC-2/AO – The second generation Near Infrared Camera works with the Keck Adaptive Optics system to produce the highest-resolution ground-based images and spectroscopy in the 1-5 micron range. Typical programs include mapping surface features on solar system bodies, searching for planets around other stars, and analyzing the morphology of remote galaxies.

    Keck NIRC2 Camera on Keck 2.
    ABOUT NIRES
    The Near Infrared Echellette Spectrograph (NIRES) is a prism cross-dispersed near-infrared spectrograph built at the California Institute of Technology by a team led by Chief Instrument Scientist Keith Matthews and Prof. Tom Soifer. Commissioned in 2018, NIRES covers a large wavelength range at moderate spectral resolution for use on the Keck II telescope and observes extremely faint red objects found with the Spitzer and WISE infrared space telescopes, as well as brown dwarfs, high-redshift galaxies, and quasars.

    Keck Near-Infrared Echellette Spectrometer on Keck 2.

    Future Instrumentation

    KCRM – The Keck Cosmic Reionization Mapper will complete the Keck Cosmic Web Imager (KCWI), the world’s most capable spectroscopic imager. The design for KCWI includes two separate channels to detect light in the blue and the red portions of the visible wavelength spectrum. KCWI-Blue was commissioned and started routine science observations in September 2017. The red channel of KCWI is KCRM; a powerful addition that will open a window for new discoveries at high redshifts.

    KCRM – Keck Cosmic Reionization Mapper KCRM on Keck 2.

    KPF – The Keck Planet Finder (KPF) will be the most advanced spectrometer of its kind in the world. The instrument is a fiber-fed high-resolution, two-channel cross-dispersed echelle spectrometer for the visible wavelengths and is designed for the Keck II telescope. KPF allows precise measurements of the mass-density relationship in Earth-like exoplanets, which will help astronomers identify planets around other stars that are capable of supporting life.

    KPF Keck Planet Finder on Keck 2.

     
  • richardmitnick 10:38 am on July 18, 2022 Permalink | Reply
    Tags: "Humanity's First-Ever Exoplanet Discovery Was an Unbelievable Fluke", , , , , In the early 1990s planetary history was made. In 1992 two astronomers-Alexander Wolszczan and Dale Frail-announced the discovery of the very first planets outside the Solar System., Pulsars, , ,   

    From The University of Manchester (UK) and The Jodrell Bank Centre for Astrophysics (UK) via “Science Alert (AU)” : “Humanity’s First-Ever Exoplanet Discovery Was an Unbelievable Fluke” 

    U Manchester bloc

    From The University of Manchester (UK)

    and

    The Jodrell Bank Centre for Astrophysics (UK)

    Via

    ScienceAlert

    “Science Alert (AU)”

    18 JULY 2022
    MICHELLE STARR

    1
    Artist’s impression of Lich and its worlds. (Pablo Carlos Budassi/Wikimedia Commons)

    In the early 1990s, planetary history was made. In 1992, two astronomers, Alexander Wolszczan and Dale Frail, published a paper in Nature [below] announcing the discovery of the very first planets outside the Solar System.

    These two extrasolar planets, or exoplanets, were immediately intriguing. They were rocky worlds 4.3 and 3.9 times the mass of Earth, whirling in orbit around a type of dead star known as a millisecond pulsar, named PSR B1257+12, or Lich for short (Lich is a powerful living-dead creature in folklore). A third exoplanet 0.2 times the mass of Earth was confirmed to be orbiting the pulsar in 1994.

    Now an analysis of hundreds of pulsars has revealed that such exoplanets are incredibly rare – almost vanishingly so.

    Pulsars are pretty rare; only around 3,320 are known in the Milky Way at time of writing. Of those, astronomers now say, fewer than 0.5 percent are likely to have rocky, Earth-like worlds in orbit. That’s just 16 pulsars.

    _______________________________________________
    Women in STEM – Dame Susan Jocelyn Bell Burnell Discovered pulsars


    Biography

    British astrophysicist, scholar and trailblazer Jocelyn Bell Burnell discovered the space-based phenomena known as pulsars, going on to establish herself as an esteemed leader in her field.Who Is Jocelyn Bell Burnell?
    Jocelyn Bell Burnell is a British astrophysicist and astronomer. As a research assistant, she helped build a large radio telescope and discovered pulsars, providing the first direct evidence for the existence of rapidly spinning neutron stars. In addition to her affiliation with Open University, she has served as dean of science at the University of Bath and president of the Royal Astronomical Society. Bell Burnell has also earned countless awards and honors during her distinguished academic career.

    Early Life

    Jocelyn Bell Burnell was born Susan Jocelyn Bell on July 15, 1943, in Belfast, Northern Ireland. Her parents were educated Quakers who encouraged their daughter’s early interest in science with books and trips to a nearby observatory. Despite her appetite for learning, however, Bell Burnell had difficulty in grade school and failed an exam intended to measure her readiness for higher education.

    Undeterred, her parents sent her to England to study at a Quaker boarding school, where she quickly distinguished herself in her science classes. Having proven her aptitude for higher learning, Bell Burnell attended the University of Glasgow, where she earned a bachelor’s degree in physics in 1965.

    Little Green Men

    In 1965, Bell Burnell began her graduate studies in radio astronomy at Cambridge University. One of several research assistants and students working under astronomers Anthony Hewish, her thesis advisor, and Martin Ryle, over the next two years she helped construct a massive radio telescope designed to monitor quasars. By 1967, it was operational and Bell Burnell was tasked with analyzing the data it produced. After spending endless hours pouring over the charts, she noticed some anomalies that did not fit with the patterns produced by quasars and called them to Hewish’s attention.

    Over the ensuing months, the team systematically eliminated all possible sources of the radio pulses—which they affectionately labeled Little Green Men, in reference to their potentially artificial origins—until they were able to deduce that they were made by neutron stars, fast-spinning collapsed stars too small to form black holes.

    Pulsars and Nobel Prize Controversy

    Their findings were published in the February 1968 issue of Nature and caused an immediate sensation. Intrigued as much by the novelty of a woman scientist as by the astronomical significance of the team’s discovery, which was labeled pulsars—for pulsating radio stars—the press picked up the story and showered Bell Burnell with attention. That same year, she earned her Ph.D. in radio astronomy from Cambridge University.

    However, in 1974, only Hewish and Ryle received the Nobel Prize for Physics for their work. Many in the scientific community raised their objections, believing that Bell Burnell had been unfairly snubbed. However, Bell Burnell humbly rejected the notion, feeling that the prize had been properly awarded given her status as a graduate student, though she has also acknowledged that gender discrimination may have been a contributing factor.

    Life on the Electromagnetic Spectrum

    Nobel Prize or not, Bell Burnell’s depth of knowledge regarding radio astronomy and the electromagnetic spectrum has earned her a lifetime of respect in the scientific community and an esteemed career in academia. After receiving her doctorate from Cambridge, she taught and studied gamma ray astronomy at the University of Southampton. Bell Burnell then spent eight years as a professor at University College London, where she focused on x-ray astronomy.

    During this same time, she began her affiliation with Open University, where she would later work as a professor of physics while studying neurons and binary stars, and also conducted research in infrared astronomy at the Royal Observatory, Edinburgh. She was the Dean of Science at the University of Bath from 2001 to 2004, and has been a visiting professor at such esteemed institutions as Princeton University and Oxford University.

    Array of Honors and Achievements

    In recognition of her achievements, Bell Burnell has received countless awards and honors, including Commander and Dame of the Order of the British Empire in 1999 and 2007, respectively; an Oppenheimer prize in 1978; and the 1989 Herschel Medal from the Royal Astronomical Society, for which she would serve as president from 2002 to 2004. She was president of the Institute of Physics from 2008 to 2010, and has served as president of the Royal Society of Edinburgh since 2014. Bell Burnell also has honorary degrees from an array of universities too numerous to mention.

    Personal Life

    In 1968, Jocelyn married Martin Burnell, from whom she took her surname, with the two eventually divorcing in 1993. The two have a son, Gavin, who has also become a physicist.

    A documentary on Bell Burnell’s life, Northern Star, aired on the BBC in 2007.


    Dame Susan Jocelyn Bell Purnell at Perimeter Institute Oct 26, 2018.
    _______________________________________________

    Millisecond pulsars are even rarer, with around 550 known in the Milky Way. That makes humanity’s very first exoplanet discoveries pretty freaking amazing.

    All dead stars are fascinating, but pulsars add a bit of a kick to the interesting factor.

    They’re a kind of neutron star; that’s the core of a dead star that has reached the end of its atomic fusion lifespan, ejected most of its outer material, and collapsed down into an object whose density is only outstripped by black holes. Neutron stars can be up to around 2.3 times the mass of the Sun, packed into a sphere just 20 kilometers (12 miles) across.

    A pulsar is a rotating neutron star that has beams of radiation shooting from its poles. Such is its orientation that, as the pulsar rotates, its beams sweep past Earth, making the star appear to pulse. Think of a really dense cosmic lighthouse.

    And because some pulsars have extremely fast rotation – on millisecond scales – those light pulses also occur on millisecond scales. For a better idea of what that means, you can listen to pulsar pulses translated into sound here.

    This is a pretty extreme environment. It’s possible for them to have exoplanets; since the discovery of Lich and its worlds, a handful of other pulsars have been discovered with exoplanets. However, most of these planets are giants, and those that aren’t can get a bit weird, such as an ultradense world thought to be the remains of a white dwarf star cannibalized by the pulsar.

    A team of astronomers led by Iuliana Nițu of the University of Manchester in the UK wanted to find out how common pulsar planets are. They conducted a survey of 800 pulsars monitored by the Jodrell Bank Observatory in the UK, looking for blips in the timing of the pulses that might indicate the presence of orbiting exoplanets.

    “Pulsars are incredibly interesting and exotic objects,” Nițu said.

    “Exactly 30 years ago, the first extrasolar planets were discovered around a pulsar, but we are yet to understand how these planets can form and survive in such extreme conditions. Finding out how common these are, and what they look like is a crucial step towards this.”

    Their search parameters were set to find worlds from 1 percent of the Moon’s mass up to 100 times the mass of Earth, with orbital periods between 20 days and 17 years. These search parameters would have detected the larger of Lich’s two worlds, Poltergeist and Phobetor, which have orbital periods of 66 and 98 days respectively.

    The team found that two-thirds of the pulsars in their sample are extremely unlikely to host exoplanets much heavier than Earth, and fewer than 0.5 percent are likely to host exoplanets in the mass range of Poltergeist and Phobetor.

    The presence of exoplanets similar to the smaller exoplanet in the Lich system, Draugr, is a little harder to gauge.

    Draugr, with its small mass and 25-day orbit, would not be detectable in 95 percent of the team’s sample, since it would get lost in noise. It’s unclear how many pulsars would be likely to host such tiny worlds; or even whether it’s possible for those worlds to exist outside a multi-planet system.

    Of the 800 pulsars, 15 showed periodic signals that could be attributed to exoplanets. However, the team believes that most of them can be attributed to the pulsar’s magnetosphere. One pulsar in particular, PSR J2007+3120, looked like a promising candidate for follow-up exoplanet surveys.

    That means just 0.5 percent of pulsars are likely to have Earth-like worlds, the team concluded, which means the likelihood of us stumbling across a far distant planet with a rare millisecond pulsar for a star is pretty tiny.

    The team also found that pulsar systems are not biased towards any range of exoplanet size or mass. However, any such exoplanets around a pulsar would have extremely elliptical orbits. This is in stark contrast to the nearly circular orbits seen in the Solar System, and suggests that, however they formed, the process was different from the one that produces planets around baby stars just starting their life.

    The team’s research was presented last week at the National Astronomy Meeting in the UK, and published in the MNRAS.

    Alexander Wolszczan and Dale Frail published their findings in 1992 in Nature.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Jodrell Bank Centre for Astrophysics (UK) comprises research activities in astronomy and astrophysics at The University of Manchester, the world leading facilities of the Jodrell Bank Observatory, the

    SKA-Square Kilometer Array

    U Manchester campus

    The University of Manchester (UK) is a public research university in the city of Manchester, England, formed in 2004 by the merger of the University of Manchester Institute of Science and Technology (renamed in 1966, est. 1956 as Manchester College of Science and Technology) which had its ultimate origins in the Mechanics’ Institute established in the city in 1824 and the Victoria University of Manchester founded by charter in 1904 after the dissolution of the federal Victoria University (which also had members in Leeds and Liverpool), but originating in Owens College, founded in Manchester in 1851. The University of Manchester is regarded as a red brick university, and was a product of the civic university movement of the late 19th century. It formed a constituent part of the federal Victoria University between 1880, when it received its royal charter, and 1903–1904, when it was dissolved.

    The University of Manchester is ranked 33rd in the world by QS World University Rankings 2015-16. In the 2015 Academic Ranking of World Universities, Manchester is ranked 41st in the world and 5th in the UK. In an employability ranking published by Emerging in 2015, where CEOs and chairmen were asked to select the top universities which they recruited from, Manchester placed 24th in the world and 5th nationally. The Global Employability University Ranking conducted by THE places Manchester at 27th world-wide and 10th in Europe, ahead of academic powerhouses such as Cornell University, The University of Pennsylvania and The London School of Economics (UK) . It is ranked joint 56th in the world and 18th in Europe in the 2015-16 Times Higher Education World University Rankings. In the 2014 Research Excellence Framework, Manchester came fifth in terms of research power and seventeenth for grade point average quality when including specialist institutions. More students try to gain entry to the University of Manchester than to any other university in the country, with more than 55,000 applications for undergraduate courses in 2014 resulting in 6.5 applicants for every place available. According to the 2015 High Fliers Report, Manchester is the most targeted university by the largest number of leading graduate employers in the UK.

    The university owns and operates major cultural assets such as the Manchester Museum, Whitworth Art Gallery, John Rylands Library and Jodrell Bank Observatory (UK) which includes the Grade I listed Lovell Telescope.


     
  • richardmitnick 9:40 am on July 11, 2022 Permalink | Reply
    Tags: "Undead planets:: The unusual conditions of the first exoplanet detection", , , , , , , Pulsars, The pulsar-planet system PSR B1257+12 detected in 1992,   

    From The Royal Astronomical Society (UK): “Undead planets:: The unusual conditions of the first exoplanet detection” 

    From The Royal Astronomical Society (UK)

    July 11, 2022

    1
    Artist impression of the pulsar-planet system PSR B1257+12 detected in 1992. The pulsar and three radiation-doused planets are all that remains of a dead star system.

    The first ever exoplanets were discovered 30 years ago around a rapidly rotating star, called a pulsar.

    Now, astronomers have revealed that these planets may be incredibly rare. The new work will be presented tomorrow (Tuesday 12 July) at the National Astronomy Meeting (NAM 2022) by Iuliana Nițu, a PhD student at the University of Manchester.

    The processes that cause planets to form, and survive, around pulsars are currently unknown. A survey of 800 pulsars followed by the Jodrell Bank Observatory over the last 50 years has revealed that this first detected exoplanet system may be extraordinarily uncommon: less than 0.5% of all known pulsars could host Earth-mass planets.

    Pulsars are a type of neutron star, the densest stars in the universe, born during powerful explosions at the end of a typical star’s life.

    They are exceptionally stable, rapidly rotating, and have incredibly strong magnetic fields. Pulsars emit beams of bright radio emission from their magnetic poles that appear to pulse as the star rotates.

    “[Pulsars] produce signals which sweep the Earth every time they rotate, similarly to a cosmic lighthouse,” says Nițu. “These signals can then be picked up by radio telescopes and turned into a lot of amazing science.”

    In 1992, the first ever exoplanets were discovered orbiting a pulsar called PSR B1257+12. The planetary system is now known to host at least three planets similar in mass to the rocky planets in our Solar System. Since then, a handful of pulsars have been found to host planets. However, the extremely violent conditions surrounding the births and lives of pulsars make ‘normal’ planet formation unlikely, and many of these detected planets are exotic objects (such as planets made mostly of diamond) unlike those we know in our Solar System.

    A team of astronomers at the University of Manchester performed the largest search for planets orbiting pulsars to date. In particular, the team looked for signals that indicate the presence of planetary companions with masses up to 100 times that of the Earth, and orbital time periods between 20 days and 17 years. Of the 10 potential detections, the most promising is the system PSR J2007+3120 with the possibility of hosting at least two planets, with masses a few times bigger than the Earth, and orbital periods of 1.9 and ~3.6 years.

    The results of the work indicate no bias for particular planet masses or orbital periods in pulsar systems. However, the results do yield information of the shape of these planets’ orbits: in contrast to the near-circular orbits found in our Solar System, these planets would orbit their stars on highly elliptical paths. This indicates that the formation process for pulsar-planet systems is vastly different than traditional star-planet systems.

    Discussing the motivation of her research, Nițu says: “Pulsars are incredibly interesting and exotic objects. Exactly 30 years ago, the first extra-solar planets were discovered around a pulsar, but we are yet to understand how these planets can form and survive in such extreme conditions. Finding out how common these are, and what they look like is a crucial step towards this.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The

    The Royal Astronomical Society is a learned society and charity that encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. Its headquarters are in Burlington House, on Piccadilly in London. The society has over 4,000 members (“Fellows”), most of them professional researchers or postgraduate students. Around a quarter of Fellows live outside the UK.

    The society holds monthly scientific meetings in London, and the annual National Astronomy Meeting at varying locations in the British Isles. The Royal Astronomical Society publishes the scientific journals MNRAS and Geophysical Journal International, along with the trade magazine Astronomy & Geophysics.

    The Royal Astronomical Society maintains an astronomy research library, engages in public outreach and advises the UK government on astronomy education. The society recognizes achievement in Astronomy and Geophysics by issuing annual awards and prizes, with its highest award being the Gold Medal of The Royal Astronomical Society. The Royal Astronomical Society is the UK adhering organization to the International Astronomical Union and a member of the UK Science Council.

    The society was founded in 1820 as the Astronomical Society of London to support astronomical research. At that time, most members were ‘gentleman astronomers’ rather than professionals. It became the Royal Astronomical Society in 1831 on receiving a Royal Charter from William IV. A Supplemental Charter in 1915 opened up the fellowship to women.

    One of the major activities of the RAS is publishing refereed journals. It publishes two primary research journals, the Monthly Notices of the Royal Astronomical Society [MNRAS] in astronomy and (in association with The German Geophysical Society [Deutsche Geophysikalische Gesellschaft e.V. ](DE)]) the Geophysical Journal International in geophysics. It also publishes the magazine A&G which includes reviews and other articles of wide scientific interest in a ‘glossy’ format. The full list of journals published (both currently and historically) by the RAS, with abbreviations as used for the NASA ADS bibliographic codes is:

    Memoirs of the Royal Astronomical Society (MmRAS): 1822–1977
    Monthly Notices of the Royal Astronomical Society (MNRAS): Since 1827
    Geophysical Supplement to Monthly Notices (MNRAS): 1922–1957
    Geophysical Journal (GeoJ): 1958–1988
    Geophysical Journal International (GeoJI): Since 1989 (volume numbering continues from GeoJ)
    Quarterly Journal of the Royal Astronomical Society (QJRAS): 1960–1996
    Astronomy & Geophysics (A&G): Since 1997 (volume numbering continues from QJRAS)

    Associated groups

    The RAS sponsors topical groups, many of them in interdisciplinary areas where the group is jointly sponsored by another learned society or professional body:

    The Astrobiology Society of Britain (UK) (with The NASA Astrobiology Institute)
    The Astroparticle Physics Group (with The Institute of Physics – London (UK))
    The Astrophysical Chemistry Group (with The Royal Society of Chemistry)
    The British Geophysical Association (with The Geological Society of London (UK).
    The Magnetosphere Ionosphere and Solar-Terrestrial group (UK)
    The UK Planetary Forum
    The UK Solar Physics group

     
  • richardmitnick 1:54 pm on June 12, 2022 Permalink | Reply
    Tags: "Meet the AAS Keynote Speakers: Prof. Jocelyn Bell Burnell" A Very Special Introduction to a Unique Scientist- Dame Susan Jocelyn Bell Burnell, , , , , , Pulsars   

    From astrobites : “Meet the AAS Keynote Speakers: Prof. Jocelyn Bell Burnell” A Very Special Introduction to a Unique Scientist- Dame Susan Jocelyn Bell Burnell 

    Astrobites bloc

    From astrobites

    Jun 11, 2022
    Graham Doskoch

    Becoming proficient with a sledgehammer is not typically part of doing a PhD in astronomy. Then again, neither is discovering an entirely new class of astronomical objects. In 1967, a graduate student at Cambridge University named Jocelyn Bell did both. Her story is one of both unexpected discovery and her struggles against the all-too-expected sexism she faced in the astronomy community.

    _______________________________________________________

    Women in STEM – Dame Susan Jocelyn Bell Burnell Discovered pulsars

    Dame Susan Jocelyn Bell Burnell discovered pulsars with radio astronomy. Jocelyn Bell at the Mullard Radio Astronomy Observatory, Cambridge University, taken for the Daily Herald newspaper in 1968. Denied the Nobel.

    Dame Susan Jocelyn Bell Burnell at work on first plusar chart 1967 pictured working at the Four Acre Array in 1967. Image courtesy of Mullard Radio Astronomy Observatory.

    Dame Susan Jocelyn Bell Burnell 2009

    Dame Susan Jocelyn Bell Burnell (1943 – ), still working from http://www. famousirishscientists.weebly.com

    Biography

    British astrophysicist, scholar and trailblazer Jocelyn Bell Burnell discovered the space-based phenomena known as pulsars, going on to establish herself as an esteemed leader in her field.Who Is Jocelyn Bell Burnell?
    Jocelyn Bell Burnell is a British astrophysicist and astronomer. As a research assistant, she helped build a large radio telescope and discovered pulsars, providing the first direct evidence for the existence of rapidly spinning neutron stars. In addition to her affiliation with Open University, she has served as dean of science at the University of Bath and president of the Royal Astronomical Society. Bell Burnell has also earned countless awards and honors during her distinguished academic career.

    Early Life

    Jocelyn Bell Burnell was born Susan Jocelyn Bell on July 15, 1943, in Belfast, Northern Ireland. Her parents were educated Quakers who encouraged their daughter’s early interest in science with books and trips to a nearby observatory. Despite her appetite for learning, however, Bell Burnell had difficulty in grade school and failed an exam intended to measure her readiness for higher education.

    Undeterred, her parents sent her to England to study at a Quaker boarding school, where she quickly distinguished herself in her science classes. Having proven her aptitude for higher learning, Bell Burnell attended the University of Glasgow, where she earned a bachelor’s degree in physics in 1965.

    Little Green Men

    In 1965, Bell Burnell began her graduate studies in radio astronomy at Cambridge University. One of several research assistants and students working under astronomers Anthony Hewish, her thesis advisor, and Martin Ryle, over the next two years she helped construct a massive radio telescope designed to monitor quasars. By 1967, it was operational and Bell Burnell was tasked with analyzing the data it produced. After spending endless hours pouring over the charts, she noticed some anomalies that did not fit with the patterns produced by quasars and called them to Hewish’s attention.

    Over the ensuing months, the team systematically eliminated all possible sources of the radio pulses—which they affectionately labeled Little Green Men, in reference to their potentially artificial origins—until they were able to deduce that they were made by neutron stars, fast-spinning collapsed stars too small to form black holes.

    Pulsars and Nobel Prize Controversy

    Their findings were published in the February 1968 issue of Nature and caused an immediate sensation. Intrigued as much by the novelty of a woman scientist as by the astronomical significance of the team’s discovery, which was labeled pulsars—for pulsating radio stars—the press picked up the story and showered Bell Burnell with attention. That same year, she earned her Ph.D. in radio astronomy from Cambridge University.

    However, in 1974, only Hewish and Ryle received the Nobel Prize for Physics for their work. Many in the scientific community raised their objections, believing that Bell Burnell had been unfairly snubbed. However, Bell Burnell humbly rejected the notion, feeling that the prize had been properly awarded given her status as a graduate student, though she has also acknowledged that gender discrimination may have been a contributing factor.

    Life on the Electromagnetic Spectrum

    Nobel Prize or not, Bell Burnell’s depth of knowledge regarding radio astronomy and the electromagnetic spectrum has earned her a lifetime of respect in the scientific community and an esteemed career in academia. After receiving her doctorate from Cambridge, she taught and studied gamma ray astronomy at the University of Southampton. Bell Burnell then spent eight years as a professor at University College London, where she focused on x-ray astronomy.

    During this same time, she began her affiliation with Open University, where she would later work as a professor of physics while studying neurons and binary stars, and also conducted research in infrared astronomy at the Royal Observatory, Edinburgh. She was the Dean of Science at the University of Bath from 2001 to 2004, and has been a visiting professor at such esteemed institutions as Princeton University and Oxford University.

    Array of Honors and Achievements

    In recognition of her achievements, Bell Burnell has received countless awards and honors, including Commander and Dame of the Order of the British Empire in 1999 and 2007, respectively; an Oppenheimer prize in 1978; and the 1989 Herschel Medal from the Royal Astronomical Society, for which she would serve as president from 2002 to 2004. She was president of the Institute of Physics from 2008 to 2010, and has served as president of the Royal Society of Edinburgh since 2014. Bell Burnell also has honorary degrees from an array of universities too numerous to mention.

    Personal Life

    In 1968, Jocelyn married Martin Burnell, from whom she took her surname, with the two eventually divorcing in 1993. The two have a son, Gavin, who has also become a physicist.

    A documentary on Bell Burnell’s life, Northern Star, aired on the BBC in 2007.


    Dame Susan Jocelyn Bell Purnell at Perimeter Institute Oct 26, 2018.
    _______________________________________________________

    The physics-minded daughter of an architect who helped design the Armagh Planetarium, Bell was exposed to astronomy at a young age through books like Fred Hoyle’s Frontiers of Astronomy, which she read cover to cover. Bell says that when she made the mental connection between the rotation of galaxies and her lessons on circular motion in school, “I suddenly thought, yeah, I like physics, I can be an astronomer.” She liked physics enough to obtain her undergraduate degree in physics from the University of Glasgow. The university caught her attention because of its astronomy classes, but when she found that they focused largely on positional astronomy, Bell changed her focus to astrophysics.

    In the 1960s, like previous decades, women attempting to study astronomy faced hostility and exclusion. For instance, ten years earlier, Margaret Burbidge – a coauthor, along with Fred Hoyle and two others, of a groundbreaking paper on stellar nucleosynthesis – had been rejected from multiple positions because of her gender. Bell did not expect to be treated any better. There were only two options for graduate school in astronomy in Britain at the time, Cambridge University and Jodrell Bank Observatory at the University of Manchester.

    U Cambridge Campus
    The University of Cambridge (UK)

    Bell had spent a summer at Jodrell Bank, but “the grad students there had said, you know, they won’t take a woman [as a PhD student],” Bell remembers. Thinking she would be rejected by Cambridge, she applied to Jodrell Bank nonetheless but never heard back – a snub which she interpreted as “their way of not taking a woman.” While considering options for study in Australia, Bell decided to apply to Cambridge anyway – and was accepted.

    At Cambridge, graduate students were expected to join a research group quickly. Bell’s research experience at Jodrell Bank gave her a head start over the others. Interested in quasars, she joined the group led by Antony Hewish. Quasars were a hot topic of research in the 1950s and ’60s. Today we know them to be supermassive black holes with accretion disks and energetic relativistic jets. When they were first discovered, however, they appeared more star-like; the term “quasar” comes from the descriptor “quasi-stellar radio source”. More and more quasars were being detected, but much about them remained mysterious. Astronomers hoped that more discoveries could lead to answers. The Cambridge quasar group planned to search for quasars by looking for scintillation, “twinkling” from radio waves passing through the solar wind. First, though, they needed to build a telescope.

    At first glance, the Interplanetary Scintillation Array may appear to be a jumble of wooden posts and wires. Unlike the dishes of most radio telescope, it’s an array antenna, consisting of thousands of thin dipole antennas spread over several acres of fields. Constructive interference enhances the radio signal, which allowed the Cambridge quasar group to look for scintillating sources.

    Building the IPS Array was a difficult task – both technically and physically. Bell was in charge of the electrical wiring, installing spark plugs and transistors. Most of the 1000 or so posts were left to the men in the group to hammer, but Bell “did enough that I could swing a sledgehammer – not one of the normal qualifications of a PhD.” She laughs. “I was playing field hockey at the time, and I could hit the ball from one end of the pitch to the other, which my teammates did not appreciate.”

    The IPS Array was completed in two years, and Bell became the first and primary operator. She spent three weeks debugging and six months performing observations. “The telescope was a transit instrument with all the wooden poles,” she explains. “You couldn’t steer it in right ascension, but you could steer it in declination, and observe different strip declination strips of the sky.” The IPS Array’s data was written out by a chart recorder onto pieces of paper, plotting the intensity of the signal recorded by the telescope. “I think I ended up with five kilometers of that chart paper, if I remember, after six months observing,” Bell remembers.

    Bell became skilled at distinguishing between signals from quasars and radio interference. Occasionally, however, she noticed a burst she couldn’t classify as either, marking it with a question mark. After seeing the same “piece of scruff” again and again, she pored through the shoe boxes containing data from earlier in her observing run. Bell and Hewish noticed that the source appeared in the same position in the sky. At her advisor’s suggestion, she increased the time resolution of the chart recorder – and saw that the scruff was actually a sequence of regularly spaced pulses. This raised eyebrows: could it be a satellite in a strange orbit? Had Bell made a mistake with the wiring?

    Two things convinced the team that the scruff was a real astronomical source. First, another radio telescope at Cambridge also picked up the signal. Second, Bell found three other bits of scruff that looked similar, at different positions in the sky. These sources were dubbed “pulsars” due to the train of pulses that appeared at high time resolution. We now know that pulsars are the remains of some of the most massive stars, some spinning hundreds of times per second. Their powerful magnetic fields create beams of radio waves that sweep across the cosmos like lighthouses, creating the illusion of short pulses as the pulsar rotates.

    While Bell found the first four pulsars and paved the way for the discovery of over 3,000 more, she did not stay in pulsar astronomy – nor did she initially receive the credit she deserved. Bell’s results were eventually published, but when the media covered her work, she was depicted as the “human interest” part of the story, while Hewish received most of the credit and eventually, unbelievably, a Novel Prize. Even her PhD thesis was ultimately on the quasars she had begun to study from her first weeks at Cambridge. Bell recalls, “My supervisor said it was too late to change the title of the thesis. . . From what I now know of university systems, I’m pretty certain he was wrong. . . But I was determined that the pulsars would go in somewhere, so they went in an appendix to the thesis.”

    Not long after graduating, the newly-minted Dr. Bell married – becoming Dr. Jocelyn Bell Burnell – and had a child. The family moved every five or six years because of her husband’s job. “Both of those things enormously compromised my career,” she says. Forced to continuously find new positions, “I went from radio astronomy to gamma ray astronomy to X-ray astronomy to infrared and millimeter wave astronomy.” It would be about 20 years before Dr. Bell Burnell could pick a job she described as “my first choice, rather than fitting with somebody else’s. I became head of the physics department to fairly new university called the Open University and set up a group studying energetic binary stars at whatever wavelength was most useful. That group remains and has done very well.”

    Prof. Bell Burnell’s work on pulsars led to the creation of an entire subfield of astronomy, and she continues to follow cutting-edge pulsar research, but her talk at AAS 240 will be on another subject which has been intertwined with her career: the prospects for women in astronomy. She mentions that data on the demographics of members of the International Astronomical Union shows that there has been a steady increase in the gender balance of the field. There are plenty of ongoing concerted efforts to address systemic inequity, including some led by Prof. Bell Burnell herself. In 2018, she was awarded the Special Breakthrough Prize in Fundamental Physics and chose to donate the more than $2 million she received to establish the Bell Burnell Graduate Scholarship Fund, administered by the Institute of Physics. It’s “for people from underrepresented groups. So in physics that in Britain that tends to mean women, people of color, people with disabilities, etc. The program’s now in its second year.” Prof. Bell Burnell mentions that she actually met with a group of recipients of the scholarship earlier today. “They’re in all branches of physics, but there are two or three in astrophysics.”

    Still, Prof. Bell Burnell emphasizes a point that is clear to this day: in astronomy, like other fields, “the USA doesn’t do too well on gender, and Britain does even worse.” Astronomy may be far past the era when even prominent scientists like her and Burbidge were treated as second-class citizens simply because they were women, but there is a long, hard road to anything like true gender equality. In the meantime, I ask Prof. Burnell Bell for her advice – both about what she would have told herself back in the 1960s, and what she would tell graduate students today. She smiles. “Hang in there. You will survive.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    What do we do?

    Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
    Why read Astrobites?

    Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.

    Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

     
  • richardmitnick 12:13 pm on May 31, 2022 Permalink | Reply
    Tags: "This newly discovered neutron star might light the way for a whole new class of stellar object", , , , , , , It could be that PSR J0941-4046 is an “ultra-long period magnetar”., Magnetars are neutron stars with very powerful magnetic fields of which only a handful are known to emit in the radio part of the spectrum., Pulsars, , The newly discovered object named PSR J0941-4046   

    From “The Conversation (AU)” : “This newly discovered neutron star might light the way for a whole new class of stellar object” 

    From “The Conversation (AU)”

    May 30, 2022
    Manisha Caleb | Lecturer, University of Sydney

    1
    Shutterstock.

    The discovery of a neutron star emitting unusual radio signals is rewriting our understanding of these unique star systems.

    “My colleagues and I (the MeerTRAP team) made the discovery when observing the Vela-X 1 region of the Milky Way about 1,300 light years away from Earth, using the MeerKAT radio telescope in South Africa. We spotted a strange-looking flash or “pulse” that lasted about 300 milliseconds.

    The flash had some characteristics of a radio-emitting neutron star. But this wasn’t like anything we’d seen before.

    Intrigued, we scoured through older data from the region in hopes of finding similar pulses. Interestingly, we did identify more such pulses which had previously been missed by our real-time pulse detection system (since we typically only search for pulses lasting some 20-30 milliseconds).

    A quick analysis of the times of arrival of the pulses showed them to be repeating about every 76 seconds – whereas most neutron star pulses cycle through within a few seconds, or even milliseconds.

    2
    Neutron stars are the collapsed cores of massive stars. Those that emit beams of electromagnetic radiation are classified as “pulsars”. Shutterstock

    Our observation showed PSR J0941-4046 had some of the characteristics of a “pulsar” or even a “magnetar”. Pulsars are the extremely dense remnants of collapsed giant stars which usually emit radio waves from their poles. As they rotate, the radio pulses can be measured from Earth, a bit like how you’d see a lighthouse periodically flash in the distance.

    However, the longest known rotation period for a pulsar before this was 23.5 seconds – which means we might have found a completely new class of radio-emitting object. Our findings are published today in Nature Astronomy.

    An anomaly among neutron stars?

    Using all the data available to us from the MeerTRAP and ThunderKAT projects at MeerKAT, we managed to pinpoint the object’s position with excellent accuracy. After this we carried our more sensitive follow-up observations to study the source of the pulses.

    The newly discovered object named PSR J0941-4046, is a peculiar radio-emitting galactic neutron star which rotates extremely slowly compared to other pulsars. Pulsar pulse rates are incredibly consistent, and our follow-up observations allowed us to predict the arrival time of each pulse to a 100-millionth of a second.

    Apart from the unexpected pulse rate, PSR J0941-4046 is also unique as it resides in the neutron star “graveyard”. This is a region of space where we don’t expect to detect any radio emissions at all, since it’s theorised the neutron stars here are at the end of their life cycle and therefore not active (or less active). PSR J0941-4046 challenges our understanding of how neutron stars are born and evolve.

    It’s also fascinating as it appears to produce at least seven distinctly different pulse shapes, whereas most neutron stars don’t exhibit such variety. This diversity in pulse shape, and also pulse intensity, is likely related to the unknown physical emission mechanism of the object.

    One particular type of pulse shows a strongly “quasi-periodic” structure, which suggests some kind of oscillation is driving the radio emission. These pulses may provide us with valuable information about the inner workings of PSR J0941-4046.

    These quasi-periodic pulses bear some resemblance to enigmatic fast radio bursts, which are short radio bursts of unknown origin. However, it’s not yet clear whether PSR J0941-4046 emits the kind of energies observed in fast radio bursts. If we find it does, then it could be that PSR J0941-4046 is an “ultra-long period magnetar”.

    Magnetars are neutron stars with very powerful magnetic fields of which only a handful are known to emit in the radio part of the spectrum. While we’ve yet to actually identify an ultra-long period magnetar, they are theorized to be a possible source of fast radio bursts.

    Brief encounters

    It’s unclear how long PSR J0941-4046 has been active and emitting in the radio spectrum, since radio surveys typically don’t usually search for periods this long.

    We don’t know how many of these sources might exist in the galaxy. Also, we can only detect radio emissions from PSR J0941-4046 for 0.5% of its rotation period – so it’s only visible to us for a fraction of a second. It’s pretty lucky we were able to spot it in the first place.

    Detecting similar sources is challenging, which implies there may be a larger undetected population waiting to be discovered. Our finding also adds to the possibility of a new class of radio transient: the ultra-long period neutron star. Future searches for similar objects will be vital to our understanding of the neutron star population.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Conversation (AU) launched as a pilot project in October 2014. It is an independent source of news and views from the academic and research community, delivered direct to the public.
    Our team of professional editors work with university and research institute experts to unlock their knowledge for use by the wider public.
    Access to independent, high quality, authenticated, explanatory journalism underpins a functioning democracy. Our aim is to promote better understanding of current affairs and complex issues. And hopefully allow for a better quality of public discourse and conversation.

     
  • richardmitnick 1:16 pm on December 6, 2021 Permalink | Reply
    Tags: "RIT scientists develop machine learning techniques to shed new light on pulsars", , , , , Pulsars, The Argentine Institute of Radio Astronomy [Instituto Argentino de Radioastronomía ](AR),   

    From The Rochester Institute of Technology (US) : “RIT scientists develop machine learning techniques to shed new light on pulsars” 

    From The Rochester Institute of Technology (US)

    December 6, 2021
    Luke Auburn
    luke.auburn@rit.edu

    Researchers share new methods in a MNRAS paper.

    1
    RIT scientists developed new machine learning techniques to study the Vela pulsar. Photo credit: X-ray: The NASA Chandra X-ray Center (US)/ M.Durant et al The University of Toronto (CA) /; Optical: Davide De Martin/ The STScI Digitized Sky Survey (US).

    New machine learning techniques developed by scientists at Rochester Institute of Technology are revealing important information about how pulsars—rapidly rotating neutron stars—behave. In a new study published by MNRAS, the researchers outlined their new techniques and how they applied to study Vela, the brightest pulsar in the sky.

    Pulsars can provide astrophysicists extremely accurate clocks because they emit beams of electromagnetic radiation, often at extraordinarily precise rates. But each pulse is different, and the sheer volume of pulses emitted leaves a lot for scientists to sift through to understand their characteristics. For example, Vela rotates about 11 times per second, providing about 120,000 pulses for scientists to analyze during a three-hour span using radio telescopes in Argentina operated by RIT and The Instituto Argentino de Radioastronomía (AR).

    2
    December 12, 2019. Upgraded radio telescopes enable scientists to study pulsars from the southern hemisphere.
    The Argentine Institute of Radio Astronomy [Instituto Argentino de Radioastronomía ](AR)
    RIT and Insituto Argentino de Radioastronomía upgraded two radio telescopes in in the Pereyra Iraola provincial park near the city of La Plata, Buenos Aires, in order to study pulsars.

    “We wanted to look at the statistics of these pulses, but to do this in human terms takes a lot of time and results in a lot of mistakes,” said Carlos Lousto, lead author of the paper and a professor in the School of Mathematical Sciences. “The technology we have developed opens up a plethora of applications in astrophysics. I’m particularly excited for the students involved in this project—they have a brilliant future and will have the right preparation and background to make an impact on science with these very powerful techniques.”

    The study revealed that pulsars can be categorized into four clusters that emit regions at different heights in the pulsar magnetosphere, and that several times each day the pulsars emit so-called mini-giant pulses, with about 10 times the average pulse amplitude.

    Lousto said their techniques could also help scientists learn more about “glitches,” large, sporadic disruptions in the rotation speed young pulsars like Vela as they cool down. While the observing run of this study occurred over four days in January and March, Vela experienced a glitch in July that the researchers plan to investigate further.

    The techniques can also be used to study millisecond pulsars, which rotate much more rapidly than pulsars like Vela. Millisecond pulsar timing can be used to detect and analyze gravitational waves.

    Lousto said several students made key contributions to the project, notably Ryan Missell ’20 (computer science), a computing and information sciences Ph.D. student advised by Professor Linwei Wang; Harshkumar Prajapati, an imaging science Ph.D. student advised by Associate Professor Nathan Cahill; and Valentina Sosa Fiscella, an astrophysical sciences and technology Ph.D. student advised by Lousto.

    Dame Susan Jocelyn Bell Burnell, discovered pulsars with radio astronomy. Jocelyn Bell at the Mullard Radio Astronomy Observatory, University of Cambridge(UK), taken for the Daily Herald newspaper in 1968. Denied the Nobel.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Rochester Institute of Technology (US) is a private doctoral university within the town of Henrietta in the Rochester, New York metropolitan area.

    RIT is composed of nine academic colleges, including National Technical Institute for the Deaf(RIT)(US). The Institute is one of only a small number of engineering institutes in the State of New York, including New York Institute of Technology, SUNY Polytechnic Institute, and Rensselaer Polytechnic Institute(US). It is most widely known for its fine arts, computing, engineering, and imaging science programs; several fine arts programs routinely rank in the national “Top 10” according to US News & World Report.

    The university offers undergraduate and graduate degrees, including doctoral and professional degrees and online masters as well.

    The university was founded in 1829 and is the tenth largest private university in the country in terms of full-time students. It is internationally known for its science; computer; engineering; and art programs as well as for the National Technical Institute for the Deaf- a leading deaf-education institution that provides educational opportunities to more than 1000 deaf and hard-of-hearing students. RIT is known for its Co-op program that gives students professional and industrial experience. It has the fourth oldest and one of the largest Co-op programs in the world. It is classified among “R2: Doctoral Universities – High research activity”.

    RIT’s student population is approximately 19,000 students, about 16,000 undergraduate and 3000 graduate. Demographically, students attend from all 50 states in the United States and from more than 100 countries around the world. The university has more than 4000 active faculty and staff members who engage with the students in a wide range of academic activities and research projects. It also has branches abroad, its global campuses, located in China, Croatia and United Arab Emirates (Dubai).

    Fourteen RIT alumni and faculty members have been recipients of the Pulitzer Prize.

    History

    The university began as a result of an 1891 merger between Rochester Athenæum, a literary society founded in 1829 by Colonel Nathaniel Rochester and associates and The Mechanics Institute- a Rochester school of practical technical training for local residents founded in 1885 by a consortium of local businessmen including Captain Henry Lomb- co-founder of Bausch & Lomb. The name of the merged institution at the time was called Rochester Athenæum and Mechanics Institute (RAMI). The Mechanics Institute however, was considered as the surviving school by taking over The Rochester Athenaeum’s charter. From the time of the merger until 1944 RAMI celebrated The former Mechanics Institute’s 1885 founding charter. In 1944 the school changed its name to Rochester Institute of Technology and re-established The Athenaeum’s 1829 founding charter and became a full-fledged research university.

    The university originally resided within the city of Rochester, New York, proper, on a block bounded by the Erie Canal; South Plymouth Avenue; Spring Street; and South Washington Street (approximately 43.152632°N 77.615157°W). Its art department was originally located in the Bevier Memorial Building. By the middle of the twentieth century, RIT began to outgrow its facilities, and surrounding land was scarce and expensive. Additionally in 1959 the New York Department of Public Works announced a new freeway- the Inner Loop- was to be built through the city along a path that bisected the university’s campus and required demolition of key university buildings. In 1961 an unanticipated donation of $3.27 million ($27,977,071 today) from local Grace Watson (for whom RIT’s dining hall was later named) allowed the university to purchase land for a new 1,300-acre (5.3 km^2) campus several miles south along the east bank of the Genesee River in suburban Henrietta. Upon completion in 1968 the university moved to the new suburban campus, where it resides today.

    In 1966 RIT was selected by the Federal government to be the site of the newly founded National Technical Institute for the Deaf (NTID). NTID admitted its first students in 1968 concurrent with RIT’s transition to the Henrietta campus.

    In 1979 RIT took over Eisenhower College- a liberal arts college located in Seneca Falls, New York. Despite making a 5-year commitment to keep Eisenhower open RIT announced in July 1982 that the college would close immediately. One final year of operation by Eisenhower’s academic program took place in the 1982–83 school year on the Henrietta campus. The final Eisenhower graduation took place in May 1983 back in Seneca Falls.

    In 1990 RIT started its first PhD program in Imaging Science – the first PhD program of its kind in the U.S. RIT subsequently established PhD programs in six other fields: Astrophysical Sciences and Technology; Computing and Information Sciences; Color Science; Microsystems Engineering; Sustainability; and Engineering. In 1996 RIT became the first college in the U.S to offer a Software Engineering degree at the undergraduate level.

    Colleges

    RIT has nine colleges:

    RIT College of Engineering Technology
    Saunders College of Business
    B. Thomas Golisano College of Computing and Information Sciences
    Kate Gleason College of Engineering
    RIT College of Health Sciences and Technology
    College of Art and Design
    RIT College of Liberal Arts
    RIT College of Science
    National Technical Institute for the Deaf

    There are also three smaller academic units that grant degrees but do not have full college faculties:

    RIT Center for Multidisciplinary Studies
    Golisano Institute for Sustainability
    University Studies

    In addition to these colleges, RIT operates three branch campuses in Europe, one in the Middle East and one in East Asia:

    RIT Croatia (formerly the American College of Management and Technology) in Dubrovnik and Zagreb, Croatia
    RIT Kosovo (formerly the American University in Kosovo) in Pristina, Kosovo
    RIT Dubai in Dubai, United Arab Emirates
    RIT China-Weihai Campus

    RIT also has international partnerships with the following schools:

    Yeditepe University İstanbul Eğitim ve Kültür Vakfı] (TR) in Istanbul, Turkey
    Birla Institute of Technology and Science [बिरला इंस्टिट्यूट ऑफ़ टेक्नोलॉजी एंड साइंस] (IN) in India
    Mother and Teacher Pontifical Catholic University[Pontificia Universidad Católica Madre y Maestra] (DO)
    Santo Domingo Institute of Technology[Instituto Tecnológico de Santo Domingo – INTEC] (DO) in Dominican Republic
    Central American Technological University [La universidad global de Honduras] (HN)
    University of the North [Universidad del Norte] (COL)in Colombia
    Peruvian University of Applied Sciences [Universidad Peruana de Ciencias Aplicadas] (PE) (UPC) in Peru
    Research

    RIT’s research programs are rapidly expanding. The total value of research grants to university faculty for fiscal year 2007–2008 totaled $48.5 million- an increase of more than twenty-two percent over the grants from the previous year. The university currently offers eight PhD programs: Imaging science; Microsystems Engineering; Computing and Information Sciences; Color science; Astrophysical Sciences and Technology; Sustainability; Engineering; and Mathematical modeling.

    In 1986 RIT founded the Chester F. Carlson Center for Imaging Science and started its first doctoral program in Imaging Science in 1989. The Imaging Science department also offers the only Bachelors (BS) and Masters (MS) degree programs in imaging science in the country. The Carlson Center features a diverse research portfolio; its major research areas include Digital Image Restoration; Remote Sensing; Magnetic Resonance Imaging; Printing Systems Research; Color Science; Nanoimaging; Imaging Detectors; Astronomical Imaging; Visual Perception; and Ultrasonic Imaging.

    The Center for Microelectronic and Computer Engineering was founded by RIT in 1986. The university was the first university to offer a bachelor’s degree in Microelectronic Engineering. The Center’s facilities include 50,000 square feet (4,600 m^2) of building space with 10,000 square feet (930 m^2) of clean room space. The building will undergo an expansion later this year. Its research programs include nano-imaging; nano-lithography; nano-power; micro-optical devices; photonics subsystems integration; high-fidelity modeling and heterogeneous simulation; microelectronic manufacturing; microsystems integration; and micro-optical networks for computational applications.

    The Center for Advancing the Study of CyberInfrastructure (CASCI) is a multidisciplinary center housed in the College of Computing and Information Sciences. The Departments of Computer science; Software Engineering; Information technology; Computer engineering; Imaging Science; and Bioinformatics collaborate in a variety of research programs at this center. RIT was the first university to launch a Bachelor’s program in Information technology in 1991; the first university to launch a Bachelor’s program in Software Engineering in 1996 and was also among the first universities to launch a Computer science Bachelor’s program in 1972. RIT helped standardize the Forth programming language and developed the CLAWS software package.

    The Center for Computational Relativity and Gravitation was founded in 2007. The CCRG comprises faculty and postdoctoral research associates working in the areas of general relativity; gravitational waves; and galactic dynamics. Computing facilities in the CCRG include gravitySimulator, a novel 32-node supercomputer that uses special-purpose hardware to achieve speeds of 4TFlops in gravitational N-body calculations, and newHorizons [image N/A], a state-of-the art 85-node Linux cluster for numerical relativity simulations.

    2
    Gravity Simulator at the Center for Computational Relativity and Gravitation, RIT, Rochester, New York, USA.

    The Center for Detectors was founded in 2010. The CfD designs; develops; and implements new advanced sensor technologies through collaboration with academic researchers; industry engineers; government scientists; and university/college students. The CfD operates four laboratories and has approximately a dozen funded projects to advance detectors in a broad array of applications, e.g. astrophysics; biomedical imaging; Earth system science; and inter-planetary travel. Center members span eight departments and four colleges.

    RIT has collaborated with many industry players in the field of research as well, including IBM; Xerox; Rochester’s Democrat and Chronicle; Siemens; National Aeronautics Space Agency(US); and the Defense Advanced Research Projects Agency (US) (DARPA). In 2005, it was announced by Russell W. Bessette- Executive Director New York State Office of Science Technology & Academic Research (NYSTAR), that RIT will lead the SUNY University at Buffalo (US) and Alfred University (US) in an initiative to create key technologies in microsystems; photonics; nanomaterials; and remote sensing systems and to integrate next generation IT systems. In addition, the collaboratory is tasked with helping to facilitate economic development and tech transfer in New York State. More than 35 other notable organizations have joined the collaboratory, including Boeing, Eastman Kodak, IBM, Intel, SEMATECH, ITT, Motorola, Xerox, and several Federal agencies, including as NASA.

    RIT has emerged as a national leader in manufacturing research. In 2017, the U.S. Department of Energy selected RIT to lead its Reducing Embodied-Energy and Decreasing Emissions (REMADE) Institute aimed at forging new clean energy measures through the Manufacturing USA initiative. RIT also participates in five other Manufacturing USA research institutes.

     
  • richardmitnick 2:29 pm on November 15, 2021 Permalink | Reply
    Tags: "​LIMITS ON WEAK SUPERNOVA EXPLOSIONS FROM ISOLATED STARS", , , , , , Many of the massive stars that produce neutron stars are born in stellar binaries., , Pulsars   

    From ARC Centres of Excellence for Gravitational Wave Discovery – OzGrav (AU) : “​LIMITS ON WEAK SUPERNOVA EXPLOSIONS FROM ISOLATED STARS” 

    arc-centers-of-excellence-bloc

    From ARC Centres of Excellence for Gravitational Wave Discovery – OzGrav (AU)

    15/11/2021
    Reinhold Wilcox, Monash University (AU)

    1
    Artist’s illustration of a supernova – Carl Knox, OzGrav-The Swinburne University of Technology (AU)

    Many of the heaviest stars in the Universe will end their lives in a bright explosion, known as a supernova, which briefly outshines the rest of its host galaxy, allowing us to view these rare events out to great distances. At the lower end of this mass range, the supernova explosion will squeeze the core of the star into a dense ball of neutrons that is much denser than what can be reproduced in laboratories. So, scientists must rely on theoretical models and astronomical observations to study these objects, known as neutron stars.

    At the very low end of this range, the supernova explosions are thought to be weaker and dimmer, but even for state-of-the-art supernova simulations, it’s challenging to test this hypothesis. In our recently published study [The Astrophysical Journal Letters], we found a new way to test these weaker supernovae: by associating weaker supernova explosions with slowly moving neutron star remnants, neutron star speeds could accurately estimate the weaker supernovae, without the need for expensive simulations.

    Neutron stars don’t shine bright like other stars, but instead produce a very narrow beam of radio waves which may (if we’re lucky) point toward the Earth. As the neutron star rotates, the beam of light appears to flash on and off, creating a lighthouse effect. When this effect is observed, , we refer to it as a pulsating star, or pulsar. Recent advances in radio telescopes allow for precise measurements of pulsar velocities. We combined our measurements with simulations of millions of stars and found that the typically high pulsar speeds did not allow for many weak supernovae.

    However, there is a caveat: many of the massive stars that produce neutron stars are born in stellar binaries. If a normal supernova occurs in a stellar binary, the neutron star remnant will experience a large recoil kick—like a cannonball rushing away from the exploding gunpowder—and it will likely eject away from its companion star where it may later be observed as a single pulsar. But if the supernova is weak, the neutron star may not have enough energy to escape the gravitational tug of its companion star, and the stellar binary system will remain intact. This is a necessary step in the formation of neutron star binaries, so the existence of these binaries proves that some supernova explosions must be weak.

    We found that to explain both the existence of neutron star binaries and the absence of slow-moving pulsars, weak supernovae can only occur in very close stellar binaries, not in single, isolated stars. This is useful for modelling supernova simulations and adds to a growing body of research suggesting that weak supernovae may only happen in stellar binaries which have previously interacted with each other. Studies like this, which simulate many stars in relatively low detail, are key to understanding the effects of uncertain physics on stellar populations, which is unfeasible with highly-detailed simulations.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    OzGrav (AU)


    ARC Centres of Excellence for Gravitational Wave Discovery OzGrav (AU)
    A new window of discovery.
    A new age of gravitational wave astronomy.
    One hundred years ago, Albert Einstein produced one of the greatest intellectual achievements in physics, the theory of general relativity. In general relativity, spacetime is dynamic. It can be warped into a black hole. Accelerating masses create ripples in spacetime known as gravitational waves (GWs) that carry energy away from the source. Recent advances in detector sensitivity led to the first direct detection of gravitational waves in 2015. This was a landmark achievement in human discovery and heralded the birth of the new field of gravitational wave astronomy. This was followed in 2017 by the first observations of the collision of two neutron-stars. The accompanying explosion was subsequently seen in follow-up observations by telescopes across the globe, and ushered in a new era of multi-messenger astronomy.

    The mission of the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) is to capitalise on the historic first detections of gravitational waves to understand the extreme physics of black holes and warped spacetime, and to inspire the next generation of Australian scientists and engineers through this new window on the Universe.

    OzGrav is funded by the Australian Government through the Australian Research Council Centres of Excellence funding scheme, and is a partnership between Swinburne University of Technology (AU) (host of OzGrav headquarters), the Australian National University (AU), Monash University (AU), University of Adelaide (AU), University of Melbourne (AU), and University of Western Australia (AU), along with other collaborating organisations in Australia and overseas.
    ________________________________________________________

    The objectives for the ARC Centres of Excellence are to:

    undertake highly innovative and potentially transformational research that aims to achieve international standing in the fields of research envisaged and leads to a significant advancement of capabilities and knowledge

    link existing Australian research strengths and build critical mass with new capacity for interdisciplinary, collaborative approaches to address the most challenging and significant research problems

    develope relationships and build new networks with major national and international centres and research programs to help strengthen research, achieve global competitiveness and gain recognition for Australian research

    build Australia’s human capacity in a range of research areas by attracting and retaining, from within Australia and abroad, researchers of high international standing as well as the most promising research students

    provide high-quality postgraduate and postdoctoral training environments for the next generation of researchers

    offer Australian researchers opportunities to work on large-scale problems over long periods of time

    establish Centres that have an impact on the wider community through interaction with higher education institutes, governments, industry and the private and non-profit sector.

     
  • richardmitnick 10:50 am on June 1, 2021 Permalink | Reply
    Tags: , , , , , Pulsars, Women in STEM- Victoria M Kaspi and Chryssa Kouveliotou Receive the 2021 Shaw Prize in Astronomy   

    From International Astronomical Union (FR) : “Women in STEM- Victoria M Kaspi and Chryssa Kouveliotou Receive the 2021 Shaw Prize in Astronomy” 

    From International Astronomical Union (FR)

    1 June 2021

    1
    Victoria M Kaspi and Chryssa Kouveliotou Receive the 2021 Shaw Prize in Astronomy.

    The Shaw Prize in Astronomy 2021 is shared equally by Victoria M. Kaspi, Professor of Physics and Director of McGill Space Institute, McGill University (CA), Canada and Chryssa Kouveliotou, Professor and Chair, Department of Physics at George Washington University (US) for their contributions to our understanding of magnetars, a class of highly magnetised neutron stars that are linked to a wide range of spectacular, transient astrophysical phenomena.


    This prestigious award is one way in which the Shaw Prize Foundation seeks to promote astronomy, a mission shared by the IAU and one which the two organisations have ongoing collaborations to pursue.

    Through the development of new and precise observational techniques, Victoria M. Kaspi and Chryssa Kouvelioto confirmed the existence of neutron stars with ultra-strong magnetic fields and characterised their physical properties. Their work has established magnetars as a new and important class of astrophysical objects.

    Neutron stars are the ultra-compact remnants of stellar explosions.

    Most are rapidly rotating with periods of milli-seconds to seconds and emit powerful beams of electromagnetic radiation (observed as pulsars).

    As such they are accurate ‘cosmic clocks’ that enable tests of fundamental physics in the presence of a gravitational field many billion times stronger than Earth’s. Reflecting their importance, the Nobel Prize in Physics has been awarded twice for work on pulsars (in 1974 and 1993).

    Pulsars also have strong magnetic fields, since the magnetic field lines in the progenitor star are ‘frozen in’ in the stellar remnant as it collapses to become a neutron star. These magnetic fields funnel jets of particles along the magnetic poles, but classical radio pulsars are powered mainly by rotational energy and slowly spin down over their lifetimes.

    The research carried out by Kaspi and Kouveliotou was motivated by the theoretical prediction that neutron stars with extreme magnetic fields up to a thousand times stronger than those in regular pulsars could form if dynamo action were efficient during the first few seconds after gravitational collapse in the core of the supernova. Such objects (termed magnetars) would be powered by their large reservoirs of magnetic energy, rather than by rotation, and were predicted to produce highly-energetic bursts of gamma-rays through the generation of highly energetic ionised particle pairs at their centres.

    From observations of a class of X-ray/gamma-ray sources called “soft gamma-ray repeaters” (SGRs) Chryssa Kouveliotou and her colleagues in 1998–99 established the existence of magnetars and provided a stunning confirmation of the magnetar model. By developing new techniques for pulse timing at X-ray wavelengths and applying these to data from the Rossi X-ray timing satellite (RXTE), Kouveliotou in 1998 was able to detect X-ray pulses with a period of 7.5 seconds within the persistent X-ray emission of SGR 1806-20.

    She then measured a spin-down rate for the pulsar, and derived both the pulsar age and the dipolar magnetic field strength — which lay within the range of values predicted for magnetars, close to 1014 gauss (1010 T). The spin-down measurements were extremely challenging because of the faintness of the pulsed signal and the need to correct the rotation phase across multiple epochs.

    Victoria Kaspi showed that a second class of rare X-ray emitting pulsars, the anomalous X-ray pulsars (AXPs), were also magnetars. Kaspi took the techniques used by radio astronomers to maintain phase coherence in pulsar timing and adapted them to work in the much more challenging X-ray domain. This allowed her to make extremely accurate timing measurements of X-ray pulsars with full phase coherence across intervals of months to years, and hence to measure spin-down rates far smaller than those seen in SGR 1806-20. Kaspi has also made fundamental contributions to the characterisation of magnetars as a population, through the elucidation of their physical properties and their relationship to the classical radio pulsars. Her work has cemented the recognition of magnetars as a distinct source class. Today, magnetars are routinely invoked to explain the physics underlying a diverse range of astrophysical transients including gamma-ray bursts, superluminous supernovae and nascent neutron stars.

    Magnetars probe extreme physical conditions inaccessible on Earth, such as strong gravity, ultra-nuclear densities and the strongest magnetic fields in the Universe. In this high energy environment particle-antiparticle pairs are created from the vacuum, and unique tests of general relativity and quantum electrodynamics become possible. In 2020–2021, the first associations of a Galactic magnetar with millisecond duration outbursts of radio emission, so called Fast Radio Bursts (FRBs), were established. These results may suggest that “flaring” magnetars are the central engines of at least some of the spectacular extragalactic FRBs. Future studies will undoubtedly shed further light on these exciting discoveries.

    The Shaw Prize 2021 recognises the seminal contributions of Victoria M. Kaspi and Chryssa Kouveliotou to the understanding of the enigmatic properties of magnetars, pulsars and gamma-ray bursts.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The International Astronomical Union [astronomique internationale] (FR) exists to promote and safeguard the science of astronomy through international cooperation, assign official names and designations to celestial bodies, and liaise with organizations that include amateur astronomers. Founded in 1919 and based in Paris, the IAU is a member of the International Science Council.

    The International Astronomical Union is an international association of professional astronomers, at the PhD level and beyond, active in professional research and education in astronomy. Among other activities, it acts as the recognized authority for assigning designations and names to celestial bodies (stars, planets, asteroids, etc.) and any surface features on them.

    The IAU is a member of the International Science Council (ISC). Its main objective is to promote and safeguard the science of astronomy in all its aspects through international cooperation. The IAU maintains friendly relations with organizations that include amateur astronomers in their membership. The IAU has its head office on the second floor of the Institute of Astrophysics of Paris [Institut Astrophysique de Paris] (FR) in the 14th arrondissement of Paris.

    This organisation has many working groups. For example, the Working Group for Planetary System Nomenclature (WGPSN), which maintains the astronomical naming conventions and planetary nomenclature for planetary bodies, and the Working Group on Star Names (WGSN), which catalogues and standardizes proper names for stars. The IAU is also responsible for the system of astronomical telegrams which are produced and distributed on its behalf by the Central Bureau for Astronomical Telegrams at Harvard (US). The Minor Planet Center also operates under the IAU, and is a “clearinghouse” for all non-planetary or non-moon bodies in the Solar System.

     
  • richardmitnick 5:34 pm on February 23, 2021 Permalink | Reply
    Tags: "Reclusive Neutron Star May Have Been Found in Famous Supernova", , , , , For decades scientists have searched for a neutron star in SN 1987A-i.e. a dense collapsed core that should have been left behind by the explosion., If this result is upheld by future observations it would confirm the existence of a neutron star in SN 1987A., , , Pulsars, , This latest study shows that a "pulsar wind nebula" created by such a neutron star may be present.   

    From NASA Chandra and From NASA NuSTAR: “Reclusive Neutron Star May Have Been Found in Famous Supernova” 

    NASA Chandra Banner

    NASA Chandra X-ray Space Telescope

    From NASA Chandra

    February 23, 2021

    Media contacts:
    Megan Watzke
    Chandra X-ray Center, Cambridge, Mass.
    617-496-7998
    mwatzke@cfa.harvard.edu

    Molly Porter
    Marshall Space Flight Center, Huntsville, Alabama
    256-544-0034
    molly.a.porter@nasa.gov

    Astronomers now have evidence from two X-ray telescopes (Chandra and NuSTAR) for a key component of a famous supernova remnant.

    NASA/DTU/ASI NuSTAR X-ray telescope.

    Supernova 1987A was discovered on Earth on February 24, 1987, making it the first such event witnessed during the telescopic age.

    SN 1987A remnant, imaged by ALMA. The inner region is contrasted with the outer shell, lacy white and blue circles, where the blast wave from the supernova is colliding with the envelope of gas ejected from the star prior to its powerful detonation. Image credit: ALMA / ESO / NAOJ / NRAO / Alexandra Angelich, NRAO / AUI / NSF.

    SN1987A. Credit: NASA/ESA Hubble Space Telescope in January, 2017 using its Wide Field Camera 3 (WFC3).

    NASA/ESA Hubble WFC3

    NASA/ESA Hubble Telescope.

    For decades, scientists have searched for a neutron star in SN 1987A, i.e. a dense collapsed core that should have been left behind by the explosion.

    This latest study shows that a “pulsar wind nebula” created by such a neutron star may be present.
    ________________________________________________________________________________________________________

    Astronomers have found evidence for the existence of a neutron star at the center of Supernova 1987A (SN 1987A), which scientists have been seeking for over three decades. As reported in our latest press release, SN 1987A was discovered on February 24, 1987. The panel on the left contains a 3D computer simulation, based on Chandra data, of the supernova debris from SN 1987A crashing into a surrounding ring of material. The artist’s illustration (right panel) depicts a so-called pulsar wind nebula, a web of particles and energy blown away from a pulsar, which is a rotating, highly magnetized neutron star. Data collected from NASA’s Chandra X-ray Observatory and NuSTAR in a new study support the presence of a pulsar wind nebula at the center of the ring.

    If this result is upheld by future observations, it would confirm the existence of a neutron star in SN 1987A, the collapsed core that astronomers expect would be present after the star exploded. The pulsar would also be the youngest one ever found.

    3
    NuSTAR and Chandra images of Supernova 1987A. Credit: NASA.

    When a star explodes, it collapses onto itself before the outer layers are blasted into space. The compression of the core turns it into an extraordinarily dense object, with the mass of the Sun squeezed into an object only about 10 miles across. Neutron stars, as they were dubbed because they are made nearly exclusively of densely packed neutrons, are laboratories of extreme physics that cannot be duplicated here on Earth. Some neutron stars have strong magnetic fields and rotate rapidly, producing a beam of light akin to a lighthouse. Astronomers call these objects “pulsars,” and they sometimes blow winds of charged particles that can create pulsar wind nebulas.

    Dame Susan Jocelyn Bell Burnell, discovered pulsars with radio astronomy. Jocelyn Bell at the Mullard Radio Astronomy Observatory, Cambridge University, taken for the Daily Herald newspaper in 1968. Denied the Nobel.

    With Chandra and NuSTAR, the team found relatively low-energy X-rays from the supernova debris crashing into surrounding material. The team also found evidence of high-energy particles, using NuSTAR’s ability to detect higher-energy X-rays.

    There are two likely explanations for this energetic X-ray emission: either a pulsar wind nebula, or particles being accelerated to high energies by blast wave of the explosion. The latter effect doesn’t require the presence of a pulsar and occurs over much larger distances from the center of the explosion.

    The latest X-ray study supports the case for the pulsar wind nebula on a couple of fronts. First, the brightness of the higher energy X-rays remained about the same between 2012 and 2014, while the radio emission increased. This goes against expectations in the scenario of energetic particles in the explosion debris. Next, authors estimate it would take almost 400 years to accelerate the electrons up to the highest energies seen in the NuSTAR data, which is over ten times older than the age of the remnant.

    The Chandra and NuSTAR data also support a 2020 result from the Atacama Large Millimeter Array (ALMA) that provided possible evidence for the structure of a pulsar wind nebula in the radio band.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres.

    While this “blob” had other potential explanations, its identification as a pulsar wind nebula could be substantiated with the new X-ray data.

    The center of SN 1987A is surrounded by gas and dust. The authors used state-of-the-art simulations to understand how this material would absorb X-rays at different energies, enabling more accurate interpretation of the X-ray spectrum, that is, the spread of X-rays over wavelength. This enables them to estimate what the spectrum of the central regions of SN 1987A is without the obscuring material.

    A paper describing these results is being published this week in The Astrophysical Journal Letters. The authors of the paper are Emanuele Greco and Marco Miceli (University of Palermo[Università degli Studi di Palermo](IT)), Salvatore Orlando, Barbara Olmi and Fabrizio Bocchino (Palermo Astronomical Observatory[Giuseppe S. Vaiana Astronomical Observatory](IT), an Italian National Institute for Astrophysics [Istituto Nazionale di Astrofisica](IT) research facility); Shigehiro Nagataki and Masaomi Ono (Astrophysical Big Bang Laboratory, RIKEN Institute of Physical and Chemical Research [Kokuritsu Kenkyū Kaihatsu Hōjin Rikagaku Kenkyūsho (国立研究開発法人理化学研究所](JP) ); Akira Dohi (Kyushu University[九州大学, Kyūshū Daigaku](JP), and Giovanni Peres (University of Palermo).

    NuSTAR is a Small Explorer mission led by Caltech and managed by NASA’s Jet Propulsion Laboratory for the agency’s Science Mission Directorate in Washington. NuSTAR was developed in partnership with the Technical University of Denmark[Danmarks Tekniske Universitet](DK) and the ASI Italian Space Agency [Agenzia Spaziale Italiana](IT). The spacecraft was built by Orbital Sciences Corporation in Dulles, Virginia(US) (now part of Northrop Grumman). NuSTAR’s mission operations center is at UC Berkeley(US), and the official data archive is at NASA’s High Energy Astrophysics Science Archive Research Center(US). ASI provides the mission’s ground station and a mirror archive. JPL is a division of Caltech.


    Quick Look: Supernova 1987A Pulsar Wind Nebula

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NuSTAR is a Small Explorer mission led by Caltech and managed by NASA’s Jet Propulsion Laboratory for the agency’s Science Mission Directorate in Washington. NuSTAR was developed in partnership with the Technical University of Denmark[Danmarks Tekniske Universitet](DK) and the ASI Italian Space Agency [Agenzia Spaziale Italiana](IT). The spacecraft was built by Orbital Sciences Corporation in Dulles, Virginia(US) (now part of Northrop Grumman). NuSTAR’s mission operations center is at UC Berkeley(US), and the official data archive is at NASA’s High Energy Astrophysics Science Archive Research Center(US). ASI provides the mission’s ground station and a mirror archive. JPL is a division of Caltech.


    NuSTAR’s mission operations center is at UC Berkeley, with the ASI providing its equatorial ground station located at Malindi, Kenya. The mission’s outreach program is based at Sonoma State University, Rohnert Park, Calif. NASA’s Explorer Program is managed by Goddard. JPL is managed by Caltech for NASA.

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 10:16 pm on February 2, 2021 Permalink | Reply
    Tags: "Einstein@Home reveals true identity of mysterious gamma-ray source", , , , , , , Pulsars, The rapidly rotating neutron star- a pulsar- PSR J2039−5617   

    From MPG Institute for Gravitational Physics [MPG Institut für Gravitationsphysik] (Albert Einstein Institut) (DE): “Einstein@Home reveals true identity of mysterious gamma-ray source” 

    From MPG Institute for Gravitational Physics [MPG Institut für Gravitationsphysik] (Albert Einstein Institut) (DE)

    February 02, 2021

    Media Contact

    Dr. Benjamin Knispel
    Press Officer
    AEI Hannover
    +49 511 762-19104
    benjamin.knispel@aei.mpg.de

    Science Contacts
    Dr. Lars Nieder
    Junior Scientist/Postdoc
    +49 511 762-17491
    lars.nieder@aei.mpg.de

    Prof. Bruce Allen
    Director
    Tel:+49 511 762-17148
    Fax:+49 511 762-17182
    bruce.allen@aei.mpg.de

    Distributed volunteer computing project finds neutron star rotating 377 times a second in an exotic binary system using data from NASA’s Fermi Space Telescope.


    Einstein@home is a project running on BOINC software from The Space Science Laboratory at UC Berkeley.

    My BOINC


    As you can see above, I participated in this project when I was BOINC “cruncher”.

    An international research team including members from the Max Planck Institute for Gravitational Physics (Albert Einstein Institute; AEI) in Hannover has shown that a rapidly rotating neutron star is at the core of a celestial object now known as PSR J2039−5617. They used novel data analysis methods and the enormous computing power of the citizen science project Einstein@home to track down the neutron star’s faint gamma-ray pulsations in data from NASA’s Fermi Space Telescope.

    NASA/Fermi LAT.


    NASA/Fermi Gamma Ray Space Telescope.

    Their results show that the pulsar is in orbit with a stellar companion about a sixth of the mass of our Sun. The pulsar is slowly but surely evaporating this star. The team also found that the companion’s orbit varies slightly and unpredictably over time. Using their search method, they expect to find more such systems with einstein@home in the future.

    1
    Artist’s impression of PSR J2039−5617 and its companion. The binary system consists of a rapidly rotating neutron star (right) and a stellar companion about a sixth of the mass of our Sun (left). The star is deformed by the neutron star’s strong tidal forces and it is heated by the neutron stars gamma radiation (magenta). The modelled surface temperature of the star is shown in brown (cooler) to yellow (hotter) color. The radiation from the neutron star slowly but surely evaporates the star and creates clouds of plasma in the binary system, which hamper observation at radio wavelengths. Credit: Knispel/Clark/Max Planck Institute for Gravitational Physics/NASA GSFC.

    “It had been suspected for years that there is a pulsar, a rapidly rotating neutron star, at the heart of the source we now know as PSR J2039−5617,” says Lars Nieder, a PhD student at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute; AEI) in Hannover and co-author of the study published today in MNRAS. “But it was only possible to lift the veil and discover the gamma-ray pulsations with the computing power donated by tens of thousands of volunteers to Einstein@Home,” he adds.

    The celestial object has been known since 2014 as a source of X-rays, gamma rays, and light. All evidence obtained so far pointed at a rapidly rotating neutron star in orbit with a light-weight star being at the heart of the source. But clear proof was missing.

    Precision observations with optical telescopes

    The first step to solving this riddle were new observations of the stellar companion with optical telescopes.

    Optical telescopes used in this work are the 3.5-m New Technology Telescope (NTT) at ESO La Silla; the 2.2-metre MPG/ESO telescope at ESO’s La Silla Observatory;the 4.2 m SOAR telescope; the Victor M. Blanco 4-meter Telescope at the NOIRLab NOAO CTIO Cerro Tololo Inter-American Observatory; the ESO Visible and Infrared Survey Telescope for Astronomy (VISTA).


    ESO/NTT at Cerro La Silla, Chile, at an altitude of 2400 metres.


    MPG/ESO 2.2 meter telescope at Cerro La Silla, Chile, 600 km north of Santiago de Chile at an altitude of 2400 metres.


    NOIRLab NOAO Southern Astrophysical Research [SOAR ] telescope situated on Cerro Pachón, just to the southeast of Cerro Tololo on the NOIRLab NOAO AURA site at an altitude of 2,700 meters (8,775 feet) above sea level.


    NOIRLab NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet.

    Also involved were NASA’s Swift spacecraft and ESA’s XMM-Newton X-ray space telescope.

    NASA Neil Gehrels Swift Observatory.

    ESA/XMM Newton X-ray telescope (EU).

    They provided precise knowledge about the binary system without which a gamma-ray pulsar search (even with Einstein@Home’s huge computing power) would be unfeasible.

    The system’s brightness varies during an orbital period depending on which side of the neutron star’s companion is facing the Earth. “For J2039-5617, there are two main processes at work,” explains Dr. Colin Clark from Jodrell Bank Centre for Astrophysics, lead author of the study and former PhD student at AEI Hannover. “The pulsar heats up one side of the light-weight companion, which appears brighter and more bluish. Additionally, the companion is distorted by the pulsar’s gravitational pull causing the apparent size of the star to vary over the orbit.” These observations allowed the team to get the most precise measurement possible of the binary star’s 5.5-hour orbital period, as well as other properties of the system.

    Searching with the help of tens of thousands of volunteers

    With this information and the precise sky position from Gaia data, the team used the aggregated computing power of the distributed volunteer computing project Einstein@Home for a new search of about 11 years of archival observations of NASA’s Fermi Gamma-ray Space Telescope.

    ESA (EU)/GAIA satellite .

    Improving on earlier methods they had developed for this purpose, they enlisted the help of tens of thousands of volunteers to search Fermi data for periodic pulsations in the gamma-ray photons registered by the Large Area Telescope onboard the space telescope. The volunteers donated idle compute cycles on their computers’ CPUs and GPUs to Einstein@Home.

    This search required combing very finely through the data in order not to miss any possible signals. The computing power required is enormous. The search would have taken 500 years to complete on a single computer core. By using a part of the Einstein@Home resources it was done in 2 months.

    With the computing power donated by the Einstein@Home volunteers, the team discovered gamma-ray pulsations from the rapidly rotating neutron star. This gamma-ray pulsar, now known as J2039−5617, rotates about 377 times each second.

    Surprising changes of the orbit

    “We found that the companion’s orbital period varies slightly and unpredictably over the 11 years. It only changes by up to about ten milliseconds, but since we know the arrival time of every single gamma photon from the pulsar to microsecond precision, even this little is a lot!” says Nieder. These variations of the orbital period could be linked to tiny changes in the shape of the companion caused by its magnetic activity. Similar to our Sun the companion might be going through activity cycles. The changing magnetic field interacts with the plasma inside the star and deforms it. As the shape of the star varies its gravitational field also changes, which in turn affects the pulsar orbit. This could explain the observed orbital period variations.

    “Spidery” pulsars consume their mates

    While the light-weight stellar companion is orbiting the pulsar, the strong radiation and particle wind from the pulsar evaporate the companion. “This is the reason that astronomers call systems like this one ‘redbacks’ in reference to the Australian redback spiders whose females consume the males after mating,” explains Nieder. In the case of J2039−5617 the matter ablated from the star forms clouds of charged particles in the binary system that absorb radio waves. This is one of the reasons that previous searches for pulsating radio emission from the neutron star failed. With the precise determination of the orbit from the gamma-ray data, it was also possible to detect radio pulsations and this will be published in a separate paper.

    Dame Susan Jocelyn Bell Burnell, discovered pulsars with radio astronomy. Jocelyn Bell at the Mullard Radio Astronomy Observatory, Cambridge University, taken for the Daily Herald newspaper in 1968. Denied the Nobel.

    “We know dozens of similar gamma-ray sources found by the Fermi Space Telescope, for which the true identity is still unclear,” says Prof. Dr. Bruce Allen, director at the Max Planck Institute for Gravitational Physics in Hannover and director and founder of Einstein@Home. “Many might be pulsars hidden in binary systems and we will continue to chase after them with Einstein@Home,” he adds.

    Background information

    Who made the discovery? The discovery was enabled by tens of thousands of Einstein@Home volunteers who have donated their CPU and GPU time to the project. Without them this study could not have been performed and this discovery could not have been made. The team is especially grateful to those volunteers whose computers discovered the pulsar (where the volunteer’s name is unknown, we give the Einstein@Home username in quotation marks): “Peter”.

    Neutron stars are compact remnants from supernova explosions and consist of exotic, extremely dense matter. They measure about 20 kilometers across and weigh more than our Sun. Because of their strong magnetic fields and fast rotation they emit beamed radio waves and energetic gamma rays similar to a cosmic lighthouse. If these beams point towards Earth during the neutron star’s rotation, it becomes visible as a pulsating radio or gamma-ray source – a so-called pulsar.

    Einstein@Home is a distributed volunteer computing and connects computers and smartphones from the general public from all over the world. The project volunteers donate spare computing time on their devices. Until now more than 480,000 volunteers have contributed useful computing work, making Einstein@Home one of the largest projects of this kind. The current aggregate computing power contributed by about 36,000 computers from 22,000 active volunteers is about 7.2 petaFLOPS.

    Since 2005, Einstein@Home has analyzed data from the gravitational wave detectors within the LIGO Scientific and the Virgo Collaborations for gravitational waves from unknown, rapidly rotating neutron stars.

    As of March 2009, Einstein@Home has also been involved in the search for signals from radio pulsars in observational data from the Arecibo Observatory in Puerto Rico and the Parkes Observatory in Australia.

    NAIC Arecibo Observatory operated by University of Central Florida, Yang Enterprises and UMET, Altitude 497 m (1,631 ft), which has now collapsed.

    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia, 414.80m above sea level.

    Since the first discovery of a radio pulsar by Einstein@Home in August 2010, the global computer network has discovered 55 new radio pulsars. A search for gamma-ray pulsars in data of the Fermi satellite was added in August 2011. It has discovered 25 new gamma-ray pulsars as of today.

    Scientific supporters are the Max Planck Institute for Gravitational Physics (Albert Einstein Institute, Hannover) and the Center for Gravitation and Cosmology at the University of Wisconsin-Milwaukee with financial support from the National Science Foundation and the Max Planck Society.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    MPG Institute for Gravitational Physics [MPG Institut für Gravitationsphysik] (Albert Einstein Institut) (DE) is the largest research institute in the world specializing in general relativity and beyond. The institute is located in Potsdam-Golm and in Hannover where it is closely related to the Leibniz Universität Hannover.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: