From The University of California-Santa Cruz: “Study pushes back the emergence of African grasslands by more than 10 million years”
From The University of California-Santa Cruz
4.13.23
Tim Stephens | UCSC
stephens@ucsc.edu
Kelly Craine | Baylor
Combined isotopic and geological evidence associated with fossil sites on Napak, in eastern Uganda, indicate a relatively open dry bushland to woodland environment with the presence of grasses, supporting the early evolution of grassy woodland habitats around 20 million years ago. (Image credit: John Kingston)
Today, the Songhor fossil site in western Kenya is covered by a mixture of grass and trees adjacent to a modern river. Evidence from this site indicates that it was likely a relatively closed tropical seasonal forest environment between 19 and 20 million years ago. (Image credit: John Kingston)
An international team of scientists has documented the earliest evidence for local abundance in eastern Africa of the types of grasses that now dominate grassland and savannah ecosystems in tropical and subtropical regions around the world.
Africa’s iconic grasslands are dominated by plants known as “C4 grasses,” which use a photosynthetic pathway adapted for warm, arid conditions. The emergence of these ecosystems is important for understanding the evolution of early apes and other mammals.
“This new study puts C4 grasses on the landscape more than 10 million years before these grasses came to dominate the landscapes where we see them today,” said Pratigya Polissar, associate professor of ocean sciences at UC Santa Cruz and a coauthor of the study, published April 13 in Science [below].
Researchers have often argued that during the early Miocene, between about 15 and 20 million years ago, equatorial Africa was covered by a semi-continuous forest and that open habitats with C4 grasses didn’t proliferate until about 8 to 10 million years ago. Yet there was some research indicating that C4 grasses were present in East Africa as early as 15 million years ago.
The new study sought to determine if this was an anomaly or a clue to the true diversity of ecosystems that occurred during the early Miocene. The findings would have important implications for understanding the features and adaptations of early apes and why there are tropical C4 grasslands and savanna ecosystems in Africa and around the world.
First author Daniel Peppe at Baylor University and an interdisciplinary team of scientists conducted research at nine Early Miocene fossil site complexes in the East African Rift of Kenya and Uganda as part of the Research on Eastern African Catarrhine and Hominoid Evolution (REACHE) project. The team focused on understanding the types of ecosystems that existed in the early Miocene, the prevalence of open environments and C4 grasses, and how these different environments could have potentially affected the evolution of early apes.
Polissar conducted isotopic analysis of fossil soils, focusing on molecular biomarkers from the plants that lived on those soils. “Our carbon isotope analysis of those soils provides unambiguous evidence for grasses with the C4 pathway living in these ancient environments,” he said. “This is a huge project and there were many other analyses that contributed to the overall findings as well.”
As participants exchanged information and expertise about geological features, isotopes, and plant and ape fossils found at the sites, the bigger picture came into focus. The paradigm that during the early Miocene period equatorial Africa was completely forested was wrong.
Further, the result of this decade-long research pushes back the oldest evidence of habitats dominated by C4 grasses—in Africa and globally—by more than 10 million years, calling for revised paleoecological interpretations of mammalian evolution.
“We suspected that we would find C4 plants at some sites, but we didn’t expect to find them at as many sites as we did, and in such high abundance,” Peppe said. “Multiple lines of evidence show that C4 grasses and open habitats were important parts of the early Miocene landscape and that early apes lived in a wide variety of habitats, ranging from closed canopy forests to open habitats like scrublands and wooded grasslands with C4 grasses. It really changes our understanding of what ecosystems looked like when the modern African plant and animal community was evolving.”
The research flourished through the uniqueness of the REACHE project, according to coauthor Kieran McNulty at the University of Minnesota, who played a central role in organizing the project.
“Working in the fossil record is challenging. We discover hints and clues about past life and need to figure out how to assemble and interpret them across space and time. Any one of the analyses in these papers would have made for an interesting study, and any one of them, alone, would have produced incomplete, inconclusive, or incorrect interpretations,” McNulty said. “That is the nature of paleontological research: it’s like putting together a 4D puzzle, but where each team member can only see some of the pieces. By combining these methods, we leverage the strength of one to shore up weaknesses or validate assumptions of another, resulting in a synthetic approach that challenges well-established theories.”
The team combined many different lines of evidence—from geology, fossil soils, isotopes, and phytoliths (plant silica microfossils)—to reach their conclusions.
“The history of grassland ecosystems in Africa prior to 10 million years had remained a mystery, in part because there were so few plant fossils, so it was exciting when it became clear that we had phytolith assemblages to add to the other lines of evidence,” said coauthor Caroline Strömberg at the University of Washington. “What we found was thrilling, and very different from what was the accepted story. We used to think tropical, C4-dominated grasslands only appeared in the last 8 million years or so, depending on the continent. Instead, both phytolith data and isotopic data showed that C4-dominated grassy environments appeared over 10 million years earlier, in the early Miocene in eastern Africa.”
This much earlier occurrence of C4 grasses and open habitats found at the same sites as early apes also allowed the researchers to assess the kinds of environments in which the early apes were living. One of the most advanced early apes, Morotopithecus, was found to inhabit open woodland environments with abundant grasses and to rely on leaves as an important component of its diet. This contradicts long-standing predictions that the unique features of apes, such as an upright torso, originated in forested environments to enable access to fruit resources. These findings are transformative, said Robin Bernstein, program director for biological anthropology at the U.S. National Science Foundation.
“For the first time, by combining diverse lines of evidence, this collaborative research team tied specific aspects of early ape anatomy to nuanced environmental changes in their habitat in eastern Africa, now revealed as more open and less forested than previously thought. The effort outlines a new framework for future studies regarding ape evolutionary origins,” Bernstein said.
The research team includes Daniel J. Peppe, Susanne M. Cote, Alan L. Deino, David L. Fox, John D. Kingston, Rahab N. Kinyanjui, William E. Lukens, Laura M. MacLatchy, Alice Novello, Caroline A.E. Strömberg, Steven G. Driese, Nicole D. Garrett, Kayla R. Hillis, Bonnie F. Jacobs, Kirsten E.H. Jenkins, Robert Kityo, Thomas Lehmann, Fredrick K. Manthi, Emma N. Mbua, Lauren A. Michel, Ellen R. Miller, Amon A.T. Mugume, Samuel N. Muteti, Isaiah O. Nengo, Kennedy O. Oginga, Samuel R. Phelps, Pratigya Polissar, James B. Rossie, Nancy J. Stevens, Kevin T. Uno, and Kieran P. McNulty.
This work was funded by the National Science Foundation.
See the full article here .
Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.
five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.
Stem Education Coalition
The University of California-Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.
The University of California-Santa Cruz is a public land-grant research university in Santa Cruz, California. It is one of the ten campuses in the University of California system. Located on Monterey Bay, on the edge of the coastal community of Santa Cruz, the campus lies on 2,001 acres (810 ha) of rolling, forested hills overlooking the Pacific Ocean.
Founded in 1965, The University of California-Santa Cruz began with the intention to showcase progressive, cross-disciplinary undergraduate education, innovative teaching methods and contemporary architecture. The residential college system consists of ten small colleges that were established as a variation of the Oxbridge collegiate university system.
Among the Faculty is 1 Nobel Prize Laureate, 1 Breakthrough Prize in Life Sciences recipient, 12 members from the National Academy of Sciences, 28 members of the American Academy of Arts and Sciences, and 40 members of the American Association for the Advancement of Science. Eight University of California-Santa Cruz alumni are winners of 10 Pulitzer Prizes. The University of California-Santa Cruz is classified among “R1: Doctoral Universities – Very high research activity”. It is a member of the Association of American Universities, an alliance of elite research universities in the United States and Canada.
The university has five academic divisions: Arts, Engineering, Humanities, Physical & Biological Sciences, and Social Sciences. Together, they offer 65 graduate programs, 64 undergraduate majors, and 41 minors.
Popular undergraduate majors include Art, Business Management Economics, Chemistry, Molecular and Cell Biology, Physics, and Psychology. Interdisciplinary programs, such as Computational Media, Feminist Studies, Environmental Studies, Visual Studies, Digital Arts and New Media, Critical Race & Ethnic Studies, and the History of Consciousness Department are also hosted alongside UCSC’s more traditional academic departments.
A joint program with The University of California-Hastings enables University of California-Santa Cruz students to earn a bachelor’s degree and Juris Doctor degree in six years instead of the usual seven. The “3+3 BA/JD” Program between University of California-Santa Cruz and The University of California-Hastings College of the Law in San Francisco accepted its first applicants in fall 2014. University of California-Santa Cruz students who declare their intent in their freshman or early sophomore year will complete three years at The University of California-Santa Cruz and then move on to The University of California-Hastings to begin the three-year law curriculum. Credits from the first year of law school will count toward a student’s bachelor’s degree. Students who successfully complete the first-year law course work will receive their bachelor’s degree and be able to graduate with their University of California-Santa Cruz class, then continue at The University of California-Hastings afterwards for two years.
According to the National Science Foundation, The University of California-Santa Cruz spent $127.5 million on research and development in 2018, ranking it 144th in the nation.
Although designed as a liberal arts-oriented university, The University of California-Santa Cruz quickly acquired a graduate-level natural science research component with the appointment of plant physiologist Kenneth V. Thimann as the first provost of Crown College. Thimann developed The University of California-Santa Cruz’s early Division of Natural Sciences and recruited other well-known science faculty and graduate students to the fledgling campus. Immediately upon its founding, The University of California-Santa Cruz was also granted administrative responsibility for the Lick Observatory, which established the campus as a major center for Astronomy research. Founding members of the Social Science and Humanities faculty created the unique History of Consciousness graduate program in The University of California-Santa Cruz’s first year of operation.
Famous former University of California-Santa Cruz faculty members include Judith Butler and Angela Davis.
The University of California-Santa Cruz’s organic farm and garden program is the oldest in the country, and pioneered organic horticulture techniques internationally.
As of 2015, The University of California-Santa Cruz’s faculty include 13 members of the National Academy of Sciences, 24 fellows of the American Academy of Arts and Sciences, and 33 fellows of the American Association for the Advancement of Science. The Baskin School of Engineering, founded in 1997, is The University of California-Santa Cruz’s first and only professional school. Baskin Engineering is home to several research centers, including the Center for Biomolecular Science and Engineering and Cyberphysical Systems Research Center, which are gaining recognition, as has the work that UCSC researchers David Haussler and Jim Kent have done on the Human Genome Project, including the widely used University of California-Santa Cruz Genome Browser. The University of California-Santa Cruz administers the National Science Foundation’s Center for Adaptive Optics.
Off-campus research facilities maintained by The University of California-Santa Cruz include the Lick and The W. M. Keck Observatory, Mauna Kea, Hawai’i and the Long Marine Laboratory. From September 2003 to July 2016, The University of California-Santa Cruz managed a University Affiliated Research System (UARC) for the NASA Ames Research Center under a task order contract valued at more than $330 million.
The University of California-Santa Cruz was tied for 58th in the list of Best Global Universities and tied for 97th in the list of Best National Universities in the United States by U.S. News & World Report’s 2021 rankings. In 2017 Kiplinger ranked The University of California-Santa Cruz 50th out of the top 100 best-value public colleges and universities in the nation, and 3rd in California. Money Magazine ranked The University of California-Santa Cruz 41st in the country out of the nearly 1500 schools it evaluated for its 2016 Best Colleges ranking. In 2016–2017, The University of California-Santa Cruz Santa Cruz was rated 146th in the world by Times Higher Education World University Rankings. In 2016 it was ranked 83rd in the world by the Academic Ranking of World Universities and 296th worldwide in 2016 by the QS World University Rankings.
In 2009, RePEc, an online database of research economics articles, ranked the The University of California-Santa Cruz Economics Department sixth in the world in the field of international finance. In 2007, High Times magazine placed The University of California-Santa Cruz as first among US universities as a “counterculture college.” In 2009, The Princeton Review (with Gamepro magazine) ranked The University of California-Santa Cruz’s Game Design major among the top 50 in the country. In 2011, The Princeton Review and Gamepro Media ranked The University of California-Santa Cruz’s graduate programs in Game Design as seventh in the nation. In 2012, The University of California-Santa Cruz was ranked No. 3 in the Most Beautiful Campus list of Princeton Review.
The University of California-Santa Cruz is the home base for the Lick Observatory.
UCO Lick Observatory’s 36-inch Great Refractor telescope housed in the South (large) Dome of main building.
The University of California-Santa Cruz Lick Observatory Since 1888 Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)
UC Observatories Lick Automated Planet Finder fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA.
The UCO Lick C. Donald Shane telescope is a 120-inch (3.0-meter) reflecting telescope located at the Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft).
Search for extraterrestrial intelligence expands at Lick Observatory
New instrument scans the sky for pulses of infrared light
March 23, 2015
By Hilary Lebow
Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at The University of California-Santa Cruz’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.
“Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at The University of California-San Diego who led the development of the new instrument while at The University of Toronto (CA)’s Dunlap Institute for Astronomy and Astrophysics (CA).
Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.
The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch.)
Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at University of California’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.
Alumna Shelley Wright, now an assistant professor of physics at The University of California- San Diego, discusses the dichroic filter of the NIROSETI instrument, developed at the University of Toronto Dunlap Institute for Astronomy and Astrophysics (CA) and brought to The University of California-San Diego and installed at the UC Santa Cruz Lick Observatory Nickel Telescope (Photo by Laurie Hatch).
“Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at The University of California-San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy and Astrophysics (CA).
NIROSETI team from left to right Rem Stone UCO Lick Observatory Dan Werthimer, UC Berkeley; Jérôme Maire, U Toronto; Shelley Wright, The University of California-San Diego Patrick Dorval, U Toronto; Richard Treffers, Starman Systems. (Image by Laurie Hatch).
Wright worked on an earlier SETI project at Lick Observatory as a University of California-Santa Cruz undergraduate, when she built an optical instrument designed by University of California-Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.
Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.
Frank Drake, professor emeritus of astronomy and astrophysics at The University of California-Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.
Frank Drake with his Drake Equation. Credit Frank Drake.
Drake Equation, Frank Drake, Seti Institute.
“The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.
The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”
Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.
“We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”
Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.
Reply