Tagged: Physics Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:25 pm on May 10, 2021 Permalink | Reply
    Tags: "Physicists observe modified energy landscapes at the intersection of 2D materials", , Due to this "squeeze" 2D materials have enhanced optical and electronic properties that show great promise as next-generation ultrathin devices., , Modern 2D materials consist of single-atom layers where electrons can move in two dimensions but their motion in the third dimension is restricted., Physics,   

    From University of Bath (UK) : “Physicists observe modified energy landscapes at the intersection of 2D materials” 

    From University of Bath (UK)

    2D sheets intersect and twist on top of each other, modifying the energy landscape of the materials. Credit: Ventsislav Valev.

    In 1884, Edwin Abbott wrote the novel Flatland: A Romance in Many Dimensions as a satire of Victorian hierarchy. He imagined a world that existed only in two dimensions, where the beings are 2D geometric figures. The physics of such a world is somewhat akin to that of modern 2D materials, such as graphene and transition metal dichalcogenides, which include tungsten disulfide (WS2), tungsten diselenide (WSe2), molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2).

    Modern 2D materials consist of single-atom layers where electrons can move in two dimensions but their motion in the third dimension is restricted. Due to this “squeeze” 2D materials have enhanced optical and electronic properties that show great promise as next-generation ultrathin devices in the fields of energy, communications, imaging and quantum computing, among others.

    Typically, for all these applications, the 2D materials are envisioned in flat-lying arrangements. Unfortunately, however, the strength of these materials is also their greatest weakness—they are extremely thin. This means that when they are illuminated, light can interact with them only over a tiny thickness, which limits their usefulness. To overcome this shortcoming, researchers are starting to look for new ways to fold the 2D materials into complex 3D shapes.

    In our 3D universe, 2D materials can be arranged on top of each other. To extend the Flatland metaphor, such an arrangement would quite literally represent parallel worlds inhabited by people who are destined to never meet.

    Now, scientists from the Department of Physics at the University of Bath in the UK have found a way to arrange 2D sheets of WS2 (previously created in their lab) into a 3D configuration, resulting in an energy landscape that is strongly modified when compared to that of the flat-laying WS2 sheets. This particular 3D arrangement is known as a ‘nanomesh’: a webbed network of densely-packed, randomly distributed stacks, containing twisted and/or fused WS2 sheets.

    Modifications of this kind in Flatland would allow people to step into each other’s worlds. “We didn’t set out to distress the inhabitants of Flatland,” said Professor Ventsislav Valev who led the research, “But because of the many defects that we nanoengineered in the 2D materials, these hypothetical inhabitants would find their world quite strange indeed.

    “First, our WS2 sheets have finite dimensions with irregular edges, so their world would have a strangely shaped end. Also, some of the sulphur atoms have been replaced by oxygen, which would feel just wrong to any inhabitant. Most importantly, our sheets intersect and fuse together, and even twist on top of each other, which modifies the energy landscape of the materials. For the Flatlanders, such an effect would look like the laws of the universe had suddenly changed across their entire landscape.”

    Dr. Adelina Ilie, who developed the new material together with her former Ph.D. student and post-doc Zichen Liu, said: “The modified energy landscape is a key point for our study. It is proof that assembling 2D materials into a 3D arrangement does not just result in ‘thicker’ 2D materials—it produces entirely new materials. Our nanomesh is technologically simple to produce, and it offers tunable material properties to meet the demands of future applications.”

    Professor Valev added: “The nanomesh has very strong nonlinear optical properties—it efficiently converts one laser colour into another over a broad palette of colours. Our next goal is to use it on Si waveguides for developing quantum optical communications.”

    Ph.D. student Alexander Murphy, also involved in the research, said: “In order to reveal the modified energy landscape, we devised new characterisation methods and I look forward to applying these to other materials. Who knows what else we could discover?”

    Science paper:
    Laser & Photonics Reviews

    See the full article here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Bath is a public research university located in Bath, Somerset, United Kingdom. It received its royal charter in 1966, along with a number of other institutions following the Robbins Report. Like the University of Bristol and University of the West of England, Bath can trace its roots to the Merchant Venturers’ Technical College, established in Bristol as a school in 1595 by the Society of Merchant Venturers. The university’s main campus is located on Claverton Down, a site overlooking the city of Bath, and was purpose-built, constructed from 1964 in the modernist style of the time.

    In the 2014 Research Excellence Framework, 32% of Bath’s submitted research activity achieved the highest possible classification of 4*, defined as world-leading in terms of originality, significance and rigour. 87% was graded 4*/3*, defined as world-leading/internationally excellent. The annual income of the institution for 2017–18 was £287.9 million of which £37.0 million was from research grants and contracts, with an expenditure of £283.1 million.

    The university is a member of the Association of Commonwealth Universities, the Association of MBAs, the European Quality Improvement System, the European University Association (EU), Universities UK and GW4.

  • richardmitnick 12:45 pm on May 8, 2021 Permalink | Reply
    Tags: "Antarctic ice model shows unstoppable sea level rise if Paris target is not met", , , , , Physics,   

    From Pennsylvania State University and UMass Amherst : “Antarctic ice model shows unstoppable sea level rise if Paris target is not met” 

    Penn State Bloc

    From Pennsylvania State University


    U Mass Amherst

    UMass Amherst

    May 06, 2021

    A’ndrea Elyse Messer

    Study is the first to use physics-based model of ice sheet to test Paris Agreement target.

    The Helheim Glacier is a possible analog for the future behavior of the much larger glaciers on Antarctica. Image: Knut Christianson.

    The world is currently on track to exceed 3 degrees Celsius (5.4 degrees Fahrenheit) of global warming by the year 2100, and new research shows that such a scenario would drastically accelerate the pace of sea-level rise. If the rate of global warming continues on its current trajectory, we will reach a tipping point by 2060, past which these consequences would be “irreversible on multi-century timescales,” according to researchers.

    The research team, led by the University of Massachusetts Amherst’s (US) Rob DeConto, co-director of the School of Earth & Sustainability, and including David Pollard, research professor emeritus, Earth and Environmental Systems Institute, and Richard B. Alley, Evan Pugh University Professor of Geosciences, both at Penn State, modeled the impact of several different warming scenarios on the Antarctic Ice Sheet, including the Paris Agreement target of two degrees Celsius (3.6 degrees Fahrenheit) of warming, an aspirational 1.5 (2.7) degree scenario, and our current course which, if not altered, will yield 3 or more degrees of warming. They reported their results in Nature.

    If the world either achieves the more optimistic 1.5-degree or the 2-degree Paris Agreement temperature target, the Antarctic Ice Sheet would contribute between 6 and 11 centimeters (2.4 and 4.3 inches) of sea level rise by 2100. But if the current course toward 3 degrees is maintained, the model points to a major jump in melting. Unless ambitious action to rein in warming begins by 2060, no human intervention, including geoengineering, would be able to stop 17 to 21 centimeters (6.7 to 8.3 inches) of sea-level rise from Antarctic ice melt alone by 2100, according to the researchers.

    The implications of exceeding Paris Agreement warming targets become even more stark on longer timescales. Antarctica contributes about 1 meter (39.4 inches) of sea level rise by 2300 if warming is limited to 2 degrees or less, but reaches globally catastrophic levels of 10 meters (32.8 feet) or more under a more extreme warming scenario with no mitigation of greenhouse-gas emissions.

    DeConto and colleagues’ research shows the very architecture of the Antarctic Ice Sheet itself plays a key role in ice loss. Ice flows slowly downhill, and the Antarctic Ice Sheet naturally creeps into the ocean, where it begins to melt. What keeps that ocean-bound ice flowing slowly is a ring of buttressing ice shelves, which float in the ocean but hold back the upstream glacial ice by scraping on shallow sea-floor features. Those buttressing ice shelves act both as dams that keep the sheet from sliding rapidly into the ocean, and as supports that keep the edges of the ice sheet from collapsing.

    But as warming increases, the ice shelves thin and become more fragile. Meltwater on their surfaces can deepen crevasses and cause them to disintegrate entirely. This not only lets the ice sheet flow toward the warming ocean more quickly, it allows the exposed edges of the ice sheet to break off or “calve” into the ocean, adding to sea level rises. These processes of melting and ice shelf loss, followed by faster glacial flow and rapid calving are seen on Greenland today, but they have not become widespread on the colder Antarctic ice sheet — at least not yet.

    DeConto points out that “if the world continues to warm, the huge glaciers on Antarctica might begin behaving like their smaller counterparts on Greenland, which would be disastrous in terms of sea level rise.”

    The authors of the study, which was supported by funding from the National Science Foundation and the NASA Sea Level Change Science Team, write that missing Paris Agreement temperature targets and allowing extensive loss of the buttressing ice shelves “represents a possible tipping point in Antarctica’s future.”

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Mass Amherst campus

    UMass Amherst, the Commonwealth’s flagship campus, is a nationally ranked public research university offering a full range of undergraduate, graduate and professional degrees.

    As the flagship campus of America’s education state University of Massachusetts Amherst is the leader of the public higher education system of the Commonwealth, making a profound, transformative impact to the common good. Founded in 1863, we are the largest public research university in New England, distinguished by the excellence and breadth of our academic, research and community outreach programs. We rank 29th among the nation’s top public universities, moving up 11 spots in the past two years in the U.S. News & World Report’s annual college guide.

    The University of Massachusetts Amherst is a public land-grant research university in Amherst, Massachusetts. Founded in 1863 as an agricultural college, it is the flagship and the largest campus in the University of Massachusetts system, as well as the first established. It is also a member of the Five College Consortium, along with four other colleges in the Pioneer Valley: Amherst College (US) , Smith College, Mount Holyoke College (US), and Hampshire College (US).

    UMass Amherst has an annual enrollment of more than 30,000 students, along with approximately 1,300 faculty members. It is the third largest university in Massachusetts, behind Boston University (US) and Harvard University (US). The university offers academic degrees in 109 undergraduate, 77 master’s and 48 doctoral programs. Programs are coordinated in nine schools and colleges. The University of Massachusetts Amherst is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation (US), the university spent $211 million on research and development in 2018.

    The university’s 21 varsity athletic teams compete in NCAA Division I and are collectively known as the Minutemen and Minutewomen. The university is a member of the Atlantic 10 Conference, while playing ice hockey in Hockey East and football as an FBS Independent.

    Past and present students and faculty include 4 Nobel Prize laureates, a National Humanities Medal winner, numerous Fulbright, Goldwater, Churchill, Truman, and Gates Scholars, Olympic Gold Medalists, a United States Poet Laureate, as well as several Pulitzer Prize recipients and Grammy, Emmy, and Academy Award winners.

    The university was founded in 1863 under the provisions of the Federal Morrill Land-Grant Colleges Act to provide instruction to Massachusetts citizens in “agricultural, mechanical, and military arts.” Accordingly, the university was initially named the Massachusetts Agricultural College, popularly referred to as “Mass Aggie” or “M.A.C.” In 1867, the college had yet to admit any students, been through two Presidents, and had still not completed any college buildings. In that year, William S. Clark was appointed President of the college and Professor of Botany. He quickly appointed a faculty, completed the construction plan, and, in the fall of 1867, admitted the first class of approximately 50 students. Clark became the first president to serve longterm after the schools opening and is often regarded the primary founding father of the college. Of the school’s founding figures, there are a traditional “founding four”- Clark, Levi Stockbridge, Charles Goessmann, and Henry Goodell, described as “the botanist, the farmer, the chemist, [and] the man of letters.”

    The original buildings consisted of Old South College (a dormitory located on the site of the present South College), North College (a second dormitory once located just south of today’s Machmer Hall), the Chemistry Laboratory, also known as College Hall (once located on the present site of Machmer Hall), the Boarding House (a small dining hall located just north of the present Campus Parking Garage), the Botanic Museum (located on the north side of the intersection of Stockbridge Road and Chancellor’s Hill Drive) and the Durfee Plant House (located on the site of the new Durfee Conservatory).

    Although enrollment was slow during the 1870s, the fledgling college built momentum under the leadership of President Henry Hill Goodell. In the 1880s, Goodell implemented an expansion plan, adding the College Drill Hall in 1883 (the first gymnasium), the Old Chapel Library in 1885 (one of the oldest extant buildings on campus and an important symbol of the University), and the East and West Experiment Stations in 1886 and 1890. The Campus Pond, now the central focus of the University Campus, was created in 1893 by damming a small brook. The early 20th century saw great expansion in terms of enrollment and the scope of the curriculum. The first female student was admitted in 1875 on a part-time basis and the first full-time female student was admitted in 1892. In 1903, Draper Hall was constructed for the dual purpose of a dining hall and female housing. The first female students graduated with the class of 1905. The first dedicated female dormitory, the Abigail Adams House (on the site of today’s Lederle Tower) was built in 1920.

    By the start of the 20th century, the college was thriving and quickly expanded its curriculum to include the liberal arts. The Education curriculum was established in 1907. In recognition of the higher enrollment and broader curriculum, the college was renamed Massachusetts State College in 1931.

    Following World War II, the G.I. Bill, facilitating financial aid for veterans, led to an explosion of applicants. The college population soared and Presidents Hugh Potter Baker and Ralph Van Meter labored to push through major construction projects in the 1940s and 1950s, particularly with regard to dormitories (now Northeast and Central Residential Areas). Accordingly, the name of the college was changed in 1947 to the University of Massachusetts.

    By the 1970s, the University continued to grow and gave rise to a shuttle bus service on campus as well as many other architectural additions; this included the Murray D. Lincoln Campus Center complete with a hotel, office space, fine dining restaurant, campus store, and passageway to the parking garage, the W. E. B. Du Bois Library, and the Fine Arts Center.

    Over the course of the next two decades, the John W. Lederle Graduate Research Center and the Conte National Polymer Research Center were built and UMass Amherst emerged as a major research facility. The Robsham Memorial Center for Visitors welcomed thousands of guests to campus after its dedication in 1989. For athletic and other large events, the Mullins Center was opened in 1993, hosting capacity crowds as the Minutemen basketball team ranked at number one for many weeks in the mid-1990s, and reached the Final Four in 1996.

    UMass Amherst entered the 21st century with 19,061 students enrolled. In 2003, for the first time, the Massachusetts State Legislature legally designated UMass Amherst as a Research University and the “flagship campus of the UMass system. The university was named a top producer of Fulbright Award winners in the 2008–2009 academic year. Additionally, in 2010, it was named one of the “Top Colleges and Universities Contributing to Teach For America’s 2010 Teaching Corps.”

    Five College Consortium

    UMass Amherst is part of the Five Colleges Consortium, which allows its students to attend classes, borrow books, work with professors, etc., at four other Pioneer Valley institutions: Amherst, Hampshire, Mount Holyoke, and Smith Colleges.

    All five colleges are located within 10 miles of Amherst center, and are accessible by public bus. The five share an astronomy department and some other undergraduate and graduate departments.

    UMass Amherst holds the license for WFCR, the National Public Radio affiliate for Western Massachusetts. In 2014, the station moved its main operations to the Fuller Building on Main Street in Springfield, but retained some offices in Hampshire House on the UMass campus.


    UMass research activities totaled more than $200 million in fiscal year 2014. In 2016 the faculty adopted an open-access policy to make its scholarship publicly accessible online.

    Researchers at the university made several high-profile achievements in recent years. In a bi-national collaboration, National Institute of Astrophysics, Optics and Electronics and the University of Massachusetts at Amherst came together and built Large Millimeter Telescope. It was inaugurated in Mexico in 2006 (on top of Sierra Negra).

    A team of scientists at UMass led by Vincent Rotello has developed a molecular nose that can detect and identify various proteins. The research appeared in the May 2007 issue of Nature Nanotechnology, and the team is currently focusing on sensors, which will detect malformed proteins made by cancer cells.

    Also, UMass Amherst scientists Richard Farris, Todd Emrick and Bryan Coughlin led a research team that developed a synthetic polymer that does not burn. This polymer is a building block of plastic, and the new flame-retardant plastic will not need to have flame-retarding chemicals added to their composition. These chemicals have recently been found in many different areas from homes and offices to fish, and there are environmental and health concerns regarding the additives. The newly developed polymers would not require addition of the potentially hazardous chemicals.

    List of research centers at the University of Massachusetts Amherst
    College of Natural Sciences

    Apiary Laboratory (entomology, microbiology)
    Genomic Resource Laboratory (molecular biology)
    Massachusetts Center for Renewable Energy Science and Technology
    Amherst Center for Fundamental Interactions (http://www.physics.umass.edu/acfi/)
    Center for Applied Mathematics and Mathematical Computation
    Center for Geometry, Analysis, Numerics, and Graphics (www.gang.umass.edu)
    Pediatric Physical Activity Laboratory (PPAL)

    College of Engineering (CoE)
    Electrical and Computer Engineering (ECE) labs

    Antennas and Propagation Laboratory
    Architecture and Real-Time Systems Laboratory
    Center for Advanced Sensor and Communication Antennas (CASCA)
    Complex Systems Modeling and Control Laboratory
    Emerging Nanoelectronics Laboratory
    Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA)
    Feedback Control Systems Lab
    High-Dimensional Signal Processing Lab
    Information Systems Laboratory
    Integrated Nanobiotechnology Lab
    Laboratory for Millimeter Wavelength Devices and Applications
    Microwave Remote Sensing Laboratory (MIRSL)
    Multimedia Networks Laboratory
    Multimedia Networks and Internet Laboratory
    Nanodevices and Integrated Systems Laboratory
    Nanoelectronics Theory and Simulation Laboratory
    Nanoscale Computing Fabrics & Cognitive Architectures Lab
    Network Systems Laboratory
    Photonics Laboratory
    Reconfigurable Computing Laboratory
    Sustainable Computing Lab
    VLSI CAD Laboratory
    VLSI Circuits and Systems Laboratory
    Wireless Systems Laboratory
    Yield and Reliability of VLSI Circuits

    Mechanical and Industrial Engineering (MIE) Labs

    Arbella Insurance Human Performance Laboratory (Engineering Laboratory Building)
    Center for Energy Efficiency and Renewable Energy
    Multi-Phase Flow Simulation Laboratory
    Soil Mechanics Laboratories (located at Marston Hall and ELAB-II)
    Wind Energy Center (formerly the Renewable Energy Research Laboratory)

    College of Information & Computer Sciences (CICS)

    Autonomous Learning Laboratory
    Center for Intelligent Information Retrieval
    Center for e-Design
    Knowledge Discovery Laboratory
    Laboratory For Perceptual Robotics
    Resource-Bounded Reasoning Laboratory


    Center for Economic Development
    Center for Education Policy
    Labor Relations and Research Center
    National Center for Digital Governance
    Political Economy Research Institute
    Scientific Reasoning Research Institute
    The Environmental Institute
    Virtual Center for Supernetworks

    Penn State Campus

    The Pennsylvania State University is a public state-related land-grant research university with campuses and facilities throughout Pennsylvania. Founded in 1855 as the Farmers’ High School of Pennsylvania, Penn State became the state’s only land-grant university in 1863. Today, Penn State is a major research university which conducts teaching, research, and public service. Its instructional mission includes undergraduate, graduate, professional and continuing education offered through resident instruction and online delivery. In addition to its land-grant designation, it also participates in the sea-grant, space-grant, and sun-grant research consortia; it is one of only four such universities (along with Cornell University(US), Oregon State University(US), and University of Hawaiʻi at Mānoa(US)). Its University Park campus, which is the largest and serves as the administrative hub, lies within the Borough of State College and College Township. It has two law schools: Penn State Law, on the school’s University Park campus, and Dickinson Law, in Carlisle. The College of Medicine is in Hershey. Penn State is one university that is geographically distributed throughout Pennsylvania. There are 19 commonwealth campuses and 5 special mission campuses located across the state. The University Park campus has been labeled one of the “Public Ivies,” a publicly funded university considered as providing a quality of education comparable to those of the Ivy League.
    Annual enrollment at the University Park campus totals more than 46,800 graduate and undergraduate students, making it one of the largest universities in the United States. It has the world’s largest dues-paying alumni association. The university offers more than 160 majors among all its campuses.

    Annually, the university hosts the Penn State IFC/Panhellenic Dance Marathon (THON), which is the world’s largest student-run philanthropy. This event is held at the Bryce Jordan Center on the University Park campus. The university’s athletics teams compete in Division I of the NCAA and are collectively known as the Penn State Nittany Lions, competing in the Big Ten Conference for most sports. Penn State students, alumni, faculty and coaches have received a total of 54 Olympic medals.

    Early years

    The school was sponsored by the Pennsylvania State Agricultural Society and founded as a degree-granting institution on February 22, 1855, by Pennsylvania’s state legislature as the Farmers’ High School of Pennsylvania. The use of “college” or “university” was avoided because of local prejudice against such institutions as being impractical in their courses of study. Centre County, Pennsylvania, became the home of the new school when James Irvin of Bellefonte, Pennsylvania, donated 200 acres (0.8 km2) of land – the first of 10,101 acres (41 km^2) the school would eventually acquire. In 1862, the school’s name was changed to the Agricultural College of Pennsylvania, and with the passage of the Morrill Land-Grant Acts, Pennsylvania selected the school in 1863 to be the state’s sole land-grant college. The school’s name changed to the Pennsylvania State College in 1874; enrollment fell to 64 undergraduates the following year as the school tried to balance purely agricultural studies with a more classic education.

    George W. Atherton became president of the school in 1882, and broadened the curriculum. Shortly after he introduced engineering studies, Penn State became one of the ten largest engineering schools in the nation. Atherton also expanded the liberal arts and agriculture programs, for which the school began receiving regular appropriations from the state in 1887. A major road in State College has been named in Atherton’s honor. Additionally, Penn State’s Atherton Hall, a well-furnished and centrally located residence hall, is named not after George Atherton himself, but after his wife, Frances Washburn Atherton. His grave is in front of Schwab Auditorium near Old Main, marked by an engraved marble block in front of his statue.

    Early 20th century

    In the years that followed, Penn State grew significantly, becoming the state’s largest grantor of baccalaureate degrees and reaching an enrollment of 5,000 in 1936. Around that time, a system of commonwealth campuses was started by President Ralph Dorn Hetzel to provide an alternative for Depression-era students who were economically unable to leave home to attend college.

    In 1953, President Milton S. Eisenhower, brother of then-U.S. President Dwight D. Eisenhower, sought and won permission to elevate the school to university status as The Pennsylvania State University. Under his successor Eric A. Walker (1956–1970), the university acquired hundreds of acres of surrounding land, and enrollment nearly tripled. In addition, in 1967, the Penn State Milton S. Hershey Medical Center, a college of medicine and hospital, was established in Hershey with a $50 million gift from the Hershey Trust Company.

    Modern era

    In the 1970s, the university became a state-related institution. As such, it now belongs to the Commonwealth System of Higher Education. In 1975, the lyrics in Penn State’s alma mater song were revised to be gender-neutral in honor of International Women’s Year; the revised lyrics were taken from the posthumously-published autobiography of the writer of the original lyrics, Fred Lewis Pattee, and Professor Patricia Farrell acted as a spokesperson for those who wanted the change.

    In 1989, the Pennsylvania College of Technology in Williamsport joined ranks with the university, and in 2000, so did the Dickinson School of Law. The university is now the largest in Pennsylvania. To offset the lack of funding due to the limited growth in state appropriations to Penn State, the university has concentrated its efforts on philanthropy.

  • richardmitnick 11:07 am on May 8, 2021 Permalink | Reply
    Tags: , , Carl von Ossietzky University of Oldenburg [Carl von Ossietzky Universität Oldenburg] (DE), Exciton-polaritons combine interesting properties of electrons and photons and behave in a similar way to certain physical particles called bosons., , Physics, The study focuses on quasi particles consisting of both matter and light known as exciton-polaritons – a strong couplings between excited electrons in solids and light particles (photons).   

    From Carl von Ossietzky University of Oldenburg [Carl von Ossietzky Universität Oldenburg] (DE): “Homing in on the smallest possible laser” 

    From Carl von Ossietzky University of Oldenburg [Carl von Ossietzky Universität Oldenburg] (DE)


    A cage for light: a two-dimensional crystal (middle) was placed between two layers of mirror-like materials. When cooled to a few degrees above absolute zero and stimulated by short pulses of laser light above a certain theshold, the crystals began to emit coherent light (red). The researchers concluded that a Bose-Einstein Condensate out of exciton-polaritons had formed. Graphics: Johannes Michl.

    An international team of researchers led by Oldenburg physicists has succeeded in generating an unusual quantum state in ultrathin semiconductor sheets. The team reports in Nature Materials that this process produces light similar to that of a laser.

    At extremely low temperatures, matter often behaves differently than in normal conditions. At temperatures only a few degrees above absolute zero (-273 degrees Celsius), physical particles may give up their independence and merge for a short time into a single object in which all the particles share the same properties. Such structures are known as Bose-Einstein Condensates, and they represent a special aggregate state of matter.

    An international team of researchers led by Oldenburg physicists Dr Carlos Anton-Solanas and Professor Christian Schneider has now succeeded for the first time in generating this unusual quantum state in charge carrier complexes that are closely linked to light particles and located in ultrathin semiconductor sheets consisting of a single layer of atoms. As the team reports in the scientific journal Nature Materials, this process produces light similar to that generated by a laser. This means that the phenomenon could be used to create the smallest possible solid-state lasers.

    The work is the result of a collaboration between the Oldenburg researchers and the research groups of Professor Sven Höfling and Professor Sebastian Klembt from the Julius Maximilian University of Würzburg [Julius-Maximilians-Universität Würzburg] (DE), Professor Sefaattin Tongay from Arizona State University (US), Professor Alexey Kavokin from Westlake University [西湖大学] (CN), and Professor Takashi Taniguchi and Professor Kenji Watanabe from the NIMS National Institute for Materials Science [物質・材料研究機構] (JP).

    Quasi particles made of matter and light

    The study focuses on quasi particles that consist of both matter and light known as exciton-polaritons – the product of strong couplings between excited electrons in solids and light particles (photons). They form when electrons are stimulated by laser light into a higher energy state. After a short time in the order of one trillionth of a second, the electrons return to their ground state by re-emitting light particles. When these particles are trapped between two mirrors, they can in turn excite new electrons – a cycle that repeats until the light particle escapes the trap. The light-matter hybrid particles that are created in this process are called exciton-polaritons.

    They combine interesting properties of electrons and photons and behave in a similar way to certain physical particles called bosons. “Devices that can control these novel light-matter states hold the promise of a technological leap in comparison with current electronic circuits,” said lead author Anton-Solanas, a postdoctoral researcher in the Quantum Materials Group at the University of Oldenburg’s Institute of Physics. Such optoelectronic circuits, which operate using light instead of electric current, could be better and faster at processing information than today’s processors.

    In the new study, the team led by Anton-Solanas and Schneider looked at exciton-polaritons in ultrathin crystals consisting of a single layer of atoms. These two-dimensional crystals often have unusual physical properties. For example, the semiconductor material used here, molybdenum diselenide, is highly reactive to light. The researchers constructed sheets of molybdenum diselenide less than one nanometre (a billionth of a metre) thick and sandwiched the two-dimensional crystal between two layers of other materials that reflect light particles like mirrors do. “This structure acts like a cage for light,” Anton-Solanas explained. Physicists call it a “microcavity”.

    Coherent light sources based on just a single layer of atoms

    Anton-Solanas and his colleagues cooled their setup to a few degrees above absolute zero and stimulated the formation of exciton-polaritons using short pulses of laser light. Above a certain intensity they observed a sudden increase in the light emissions from their sample. This, together with other evidence, allowed them to conclude that they had succeeded in creating a Bose-Einstein Condensate out of exciton-polaritons. “In theory, this phenomenon could be used to construct coherent light sources based on just a single layer of atoms,” said Anton-Solanas. “This would mean we had created the smallest possible solid-state laser.” The researchers are confident that with other materials the effect could also be produced at room temperature, so that in the long term it would also be suitable for practical applications. The team’s first experiments heading in this direction have already been successful.

    The study is a result of the “unlimit2D” project led by Christian Schneider, which is funded by a Starting Grant from the European Research Council (ERC) (EU). The experiments were conducted at the University of Würzburg

    See the full article here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Carl von Ossietzky University of Oldenburg [Carl von Ossietzky Universität Oldenburg] is a university located in Oldenburg, Germany. It is one of the most important and highly regarded educational facilities in northwestern Germany and specialises in interdisciplinary and sustainable development studies and renewable energy studies with focus on solar and wind energy.

    The university offers 95 courses of study. Due to the Bologna Process, in 2004 Oldenburg adopted Bachelor and Masters degrees in place of the former Diplom and Magister. One main focus of the university is teacher training, which was established during the 1970s and remains a strong presence with master’s degrees in teaching offered in all faculties. The PhD program Didactical reconstruction is especially renowned, as is the research in sustainable development, encompassing several academic disciplines. The university is also allowed to confer Doctorates and oversee Habilitations.

    The campus is split into two locations, the major one being Uhlhornsweg, where the main library, the mensa and the administration along with most of the departments is housed. Having used the buildings of the former teaching college during the first years, the main buildings of the university were inaugurated in 1982, with ongoing extensions since then, including the main lecture hall in 2001. The Wechloy campus, also first opened in 1982, is home to the studies of natural sciences as well as the library of natural sciences.

    As part of the Universities Excellence Initiative, the university was awarded a Cluster of Excellence for its initiative Hearing4all. The cluster deals with research into the improvement of speech understanding in background noise and has a funding of €34 million.

  • richardmitnick 11:52 am on May 7, 2021 Permalink | Reply
    Tags: "Changing what is possible in fusion drives ORNL’s FERMI project", , , Physics   

    From DOE’s Oak Ridge National Laboratory : “Changing what is possible in fusion drives ORNL’s FERMI project” 

    From DOE’s Oak Ridge National Laboratory

    Vittorio Badalassi, left, of Oak Ridge National Laboratory leads the Fusion Energy Reactor Models Integrator, or FERMI, project, and collaborates with ORNL computational physicist David Green. FERMI applies fission platforms to fusion reactor design. Credit: Commonwealth Fusion Systems and Colby Earles/ORNL, U.S. Dept. of Energy.

    May 10, 2021

    Oak Ridge National Laboratory expertise in fission and fusion has come together to form a new collaboration, the Fusion Energy Reactor Models Integrator, or FERMI, which aims to apply a suite of predictive simulation platforms originally created for fission nuclear reactors to the challenges of designing the first generation of fusion reactors.

    The FERMI project, headed by Vittorio Badalassi in collaboration with David Kropaczek, Dave Pointer and David Green, is funded jointly by the Department of Energy’s Office of Science and the Advanced Research Projects Agency–Energy (ARPA-E) to support research and development in the technical and commercial viability of fusion energy. FERMI will benefit from ORNL’s previous expertise honed through CASL, the Consortium for Advanced Simulation of Light Water Reactors, as the new project has the potential to significantly speed up the process of bringing a commercial fusion power plant online through modeling and simulation.

    “We are leveraging proven fission tools to significantly shorten the overall design cycle of a fusion reactor,” said Badalassi, a distinguished R&D researcher in ORNL’s Nuclear Energy and Fuel Cycle Division’s Thermal Hydraulics Group. “The benefit to society is that FERMI will help bring about electricity production from a carbon-free fusion reactor more quickly.”

    The collaboration illustrates the synergy gained by merging fusion and fission researchers together in one organization.

    “By merging fusion, fission and US ITER, we have joined together a set of capabilities on one site and in one organization that is unique. Ultimately, it enables us to be a powerful force for advancing the world toward a carbon-free energy supply,” said Kathy McCarthy, associate laboratory director of the Fusion and Fission Energy and Science Directorate at ORNL.

    The name FERMI was coined to commemorate Italian physicist Enrico Fermi, who is widely credited as the inventor of the first nuclear reactor located in Chicago and who was a key scientific contributor to the Manhattan Project, which gave birth to what is now ORNL.

    “This type of collaboration, together with the ability to perform the required multi-physics, multi-scale engineering calculations using ORNL’s leadership-class computing facilities, is unique to ORNL,” said David Green, group leader for Plasma Theory and Modeling in the lab’s Fusion Energy Division.

    FERMI’s conversion of proven, established, predictive simulation and modeling tools for fission reactors to new applications in fusion will help overcome current gaps in fusion technology design.

    “For fusion, many of our predictive tools are focused on the energy-producing plasma core. This is especially true for the type of integrated modeling required to design a reactor,” said Green. “To make fusion power generation commercial, there are equally important – and integrated – engineering and technology challenges outside the core which must be solved to enable efficient energy extraction.”

    FERMI is one of 14 projects nationwide selected for a competitive program funded jointly by the DOE Office of Science’s Fusion Energy Science program and ARPA-E, whose motto is “Changing What’s Possible.” The program, Galvanizing Advances in Market-aligned fusion for an Overabundance of Watts (or GAMOW), seeks to bridge gaps in technology needed to deliver a net-energy-gain fusion core and establish the technical and commercial viability of fusion energy. GAMOW’s charge specifically targets the cross-cutting R&D that FERMI represents.

    The FERMI team’s focus for GAMOW is to develop an integrated simulation environment to aid in designing a fusion reactor’s blanket component. This capability is essential to delivering a fully integrated simulation platform for future fusion systems that simultaneously considers the complex plasma physics of the fusion core and the stringent engineering and functional constraints of the blanket.

    “The blanket is where we capture the energy emitted from the fusion reaction, resulting in heat that is removed by a coolant and then converted to electricity using a turbine,” Badalassi said. “Designing the blanket is one of the toughest technological challenges we face as it requires materials that can survive very high temperatures and a harsh operating environment. The blanket also must be designed to serve the dual purpose of helping keep the fusion reaction going by generating tritium.”

    To tackle this project, Badalassi assembled a multidisciplinary team that includes fission and fusion experts not only from ORNL but also from Commonwealth Fusion Systems, a spinoff company from Massachusetts Institute of Technology; HyPerComp Inc.; and Lawrence Livermore National Laboratory.

    “Now is the time for fission and fusion experts to work together,” Badalassi said. “The synergies will be huge as fusion R&D moves from plasma challenges of the inner core to the engineering that figures out how to extract the energy from fusion for commercial production of electricity.”

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Established in 1942, DOE’s Oak Ridge National Laboratory (US) is the largest science and energy national laboratory in the Department of Energy system (by size) and third largest by annual budget. It is located in the Roane County section of Oak Ridge, Tennessee. Its scientific programs focus on materials, neutron science, energy, high-performance computing, systems biology and national security, sometimes in partnership with the state of Tennessee, universities and other industries.

    ORNL has several of the world’s top supercomputers, including Summit, ranked by the TOP500 as Earth’s second-most powerful.

    IBM AC922 SUMMIT supercomputer, was No.1 on the TOP500. Credit: Carlos Jones, DOE’s Oak Ridge National Laboratory (US).

    The lab is a leading neutron and nuclear power research facility that includes the Spallation Neutron Source and High Flux Isotope Reactor.

    It hosts the Center for Nanophase Materials Sciences, the BioEnergy Science Center, and the Consortium for Advanced Simulation of Light Water Nuclear Reactors.

    ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

    Areas of research

    ORNL conducts research and development activities that span a wide range of scientific disciplines. Many research areas have a significant overlap with each other; researchers often work in two or more of the fields listed here. The laboratory’s major research areas are described briefly below.

    Chemical sciences – ORNL conducts both fundamental and applied research in a number of areas, including catalysis, surface science and interfacial chemistry; molecular transformations and fuel chemistry; heavy element chemistry and radioactive materials characterization; aqueous solution chemistry and geochemistry; mass spectrometry and laser spectroscopy; separations chemistry; materials chemistry including synthesis and characterization of polymers and other soft materials; chemical biosciences; and neutron science.
    Electron microscopy – ORNL’s electron microscopy program investigates key issues in condensed matter, materials, chemical and nanosciences.
    Nuclear medicine – The laboratory’s nuclear medicine research is focused on the development of improved reactor production and processing methods to provide medical radioisotopes, the development of new radionuclide generator systems, the design and evaluation of new radiopharmaceuticals for applications in nuclear medicine and oncology.
    Physics – Physics research at ORNL is focused primarily on studies of the fundamental properties of matter at the atomic, nuclear, and subnuclear levels and the development of experimental devices in support of these studies.
    Population – ORNL provides federal, state and international organizations with a gridded population database, called Landscan, for estimating ambient population. LandScan is a raster image, or grid, of population counts, which provides human population estimates every 30 x 30 arc seconds, which translates roughly to population estimates for 1 kilometer square windows or grid cells at the equator, with cell width decreasing at higher latitudes. Though many population datasets exist, LandScan is the best spatial population dataset, which also covers the globe. Updated annually (although data releases are generally one year behind the current year) offers continuous, updated values of population, based on the most recent information. Landscan data are accessible through GIS applications and a USAID public domain application called Population Explorer.

  • richardmitnick 11:16 am on May 7, 2021 Permalink | Reply
    Tags: "Exploring the strong interaction in the universe", , , , Physics   

    From GSI Helmholtz Centre for Heavy Ion Research [GSI Helmholtz Zentrum für Schwerionenforschung] GmbH (DE): “Exploring the strong interaction in the universe” 

    GSI Helmholtz Centre for Heavy Ion Research GmbH, Darmstadt, Germany (DE),

    From GSI Helmholtz Centre for Heavy Ion Research [GSI Helmholtz Zentrum für Schwerionenforschung] GmbH (DE)


    Achim Schwenk, Professor of Physics at the Technical University of Darmstadt [Technische Universität Darmstadt] (DE) and Max Planck Fellow at the MPG Institute for Nuclear Physics [MPG Institut für Kernphysik] (DE) in Heidelberg, has been awarded a prestigious Advanced Grant by the European Research Council (ERC). His research project Exploring the Universe through Strong Interactions (EUSTRONG) will be funded with around 2.3 million euros over a period of five years. This is already the second ERC grant for Professor Schwenk.

    The goal of the EUSTRONG project is to explore the Strong Interaction, one of the four fundamental forces of nature, in the Universe. The Strong Interaction is responsible for holding neutrons and protons together in the atomic nucleus and for understanding the densest observable matter inside neutron stars. In addition, atomic nuclei play a key role in the search for dark matter and in the study of the lightest neutrino particles. EUSTRONG will enable new discoveries in the physics of the Strong Interaction by developing innovative theories and methods.

    The equation of state of dense nuclear matter, for example, sets the scale for the mass and radius of neutron stars. At extreme densities beyond those achieved in atomic nuclei, astrophysical observations are particularly interesting. For example, information about the radius of neutron stars, which is sensitive to high densities, can be obtained from LIGO/Virgo observations of gravitational waves from neutron star mergers, as well as from new observations with NASA’s NICER instrument on the International Space Station.

    Caltech/MIT Advanced aLigo at Hanford, WA(US), Livingston, LA(US) and VIRGO Gravitational Wave interferometer, near Pisa(IT).

    “So far, this fits very well with our understanding about the equation of state of nuclear matter,” explains Professor Schwenk. “With EUSTRONG, we want to for the first time derive direct constraints on the dense-matter interactions from these astrophysical observations, and thus develop a unified description of matter in nuclei and stars.”

    Another milestone of the ERC project is the acceleration of many-body calculations with new emulation and network methods to enable systematic and global ab initio calculations based on the Strong Interaction for heavy nuclei. One focus are extremely neutron-rich heavy nuclei (around neutron number 126), which play a central role in the synthesis of elements in the Universe. The accelerator facility FAIR (Facility for Antiproton and Ion Research: FAIR (DE) ) in Darmstadt will be leading in this region of the nuclear chart.

    Based on these new developments, Professor Schwenk and his team also want to investigate key nuclei that are used in extremely sensitive detectors that search for dark matter and for the discovery of coherent neutrino scattering, which was recently achieved for the first time. In the exploration of dark matter in the Universe and of new physics beyond the Standard Model, the Strong Interaction therefore also plays an essential role.

    “The second award by the ERC underlines how outstanding Professor Achim Schwenk’s research achievements are,” emphasizes Professor Barbara Albert, Vice President for Research and Young Scientists at TU Darmstadt. Professor Schwenk is particularly excited to be working with excellent young scientists in the new EUSTRONG team, “because the conditions in nuclear physics are unique here and the students and postdocs are great”. (TUD/CP)

    See the full article here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    GSI Helmholtz Centre for Heavy Ion Research GmbH, Darmstadt, Germany (DE),

    GSI Helmholtz Centre for Heavy Ion Research [GSI Helmholtz Zentrum für Schwerionenforschung] GmbH (DE) is a federally and state co-funded heavy ion (Schwerion [de]) research center in the Wixhausen suburb of Darmstadt, Germany. It was founded in 1969 as the Society for Heavy Ion Research (German: Gesellschaft für Schwerionenforschung), abbreviated GSI, to conduct research on and with heavy-ion accelerators. It is the only major user research center in the State of Hesse.

    The laboratory performs basic and applied research in physics and related natural science disciplines. Main fields of study include plasma physics, atomic physics, nuclear structure and reactions research, biophysics and medical research. The lab is a member of the Helmholtz Association of German Research Centres [Helmholtz-Gemeinschaft Deutscher Forschungszentren] (DE).

    Shareholders are the German Federal Government (90%) and the State of Hesse, Thuringia and Rhineland-Palatinate. As a member of the Helmholtz Association, the current name was given to the facility on 7 October 2008 in order to bring it sharper national and international awareness.[1]

    The GSI Helmholtz Centre for Heavy Ion Research has strategic partnerships with the Technical University of Darmstadt [Technische Universität Darmstadt](DE), Goethe University Frankfurt [Goethe-Universität](DE), Johannes Gutenberg University Mainz [Johannes Gutenberg-Universität Mainz](DE)and the Frankfurt Institute for Advanced Studies.

  • richardmitnick 9:01 am on May 7, 2021 Permalink | Reply
    Tags: "Physicists Find a Novel Way to Switch Antiferromagnetism On and Off", , , , Physics   

    From DOE’s Brookhaven National Laboratory (US) and From MIT : “Physicists Find a Novel Way to Switch Antiferromagnetism On and Off” 

    From DOE’s Brookhaven National Laboratory (US)


    MIT News

    From MIT

    May 6, 2021
    Jennifer Chu, Massachusetts Institute of Technology (US)

    The findings could lead to faster, more secure memory storage, in the form of antiferromagnetic bits.

    In turning antiferromagnetism on and off, physicists may have found a route toward faster, denser, and more secure memory devices. Credit: stock image.

    When you save an image to your smartphone, those data are written onto tiny transistors that are electrically switched on or off in a pattern of “bits” to represent and encode that image. Most transistors today are made from silicon, an element that scientists have managed to switch at ever-smaller scales, enabling billions of bits, and therefore large libraries of images and other files, to be packed onto a single memory chip.

    But growing demand for data, and the means to store them, is driving scientists to search beyond silicon for materials that can push memory devices to higher densities, speeds, and security.

    Now MIT physicists have shown preliminary evidence that data might be stored as faster, denser, and more secure bits made from antiferromagnets.

    Antiferromagnetic, or AFM materials are the lesser-known cousins to ferromagnets, or conventional magnetic materials. Where the electrons in ferromagnets spin in synchrony — a property that allows a compass needle to point north, collectively following the Earth’s magnetic field — electrons in an antiferromagnet prefer the opposite spin to their neighbor, in an “antialignment” that effectively quenches magnetization even at the smallest scales.

    The absence of net magnetization in an antiferromagnet makes it impervious to any external magnetic field. If they were made into memory devices, antiferromagnetic bits could protect any encoded data from being magnetically erased. They could also be made into smaller transistors and packed in greater numbers per chip than traditional silicon.

    Now the MIT team has found that by doping extra electrons into an antiferromagnetic material, they can turn its collective antialigned arrangement on and off, in a controllable way. They found this magnetic transition is reversible, and sufficiently sharp, similar to switching a transistor’s state from 0 to 1. The results, published today in Physical Review Letters, demonstrate a potential new pathway to use antiferromagnets as a digital switch.

    “An AFM memory could enable scaling up the data storage capacity of current devices — same volume, but more data,” says the study’s lead author Riccardo Comin, assistant professor of physics at MIT.

    Comin’s MIT co-authors include lead author and graduate student Jiarui Li, along with Zhihai Zhu, Grace Zhang, and Da Zhou; as well as Roberg Green of the University of Saskatchewan (CA); Zhen Zhang, Yifei Sun, and Shriram Ramanathan of Purdue University (US); Ronny Sutarto and Feizhou He of Canadian Light Source [Centre Canadien de rayonnement synchrotron] (CA); and Jerzy Sadowski at Brookhaven National Laboratory.

    “An AFM memory could enable scaling up the data storage capacity of current devices — same volume, but more data,” says the study’s lead author Riccardo Comin, assistant professor of physics at Massachusetts Institute of Technology (US).

    Magnetic memory

    To improve data storage, some researchers are looking to MRAM, or magnetoresistive RAM, a type of memory system that stores data as bits made from conventional magnetic materials. In principle, an MRAM device would be patterned with billions of magnetic bits. To encode data, the direction of a local magnetic domain within the device is flipped, similar to switching a transistor from 0 to 1.

    MRAM systems could potentially read and write data faster than silicon-based devices and could run with less power. But they could also be vulnerable to external magnetic fields.

    “The system as a whole follows a magnetic field like a sunflower follows the sun, which is why, if you take a magnetic data storage device and put it in a moderate magnetic field, information is completely erased,” Comin says.

    Antiferromagnets, in contrast, are unaffected by external fields and could therefore be a more secure alternative to MRAM designs. An essential step toward encodable AFM bits is the ability to switch antiferromagnetism on and off. Researchers have found various ways to accomplish this, mostly by using electric current to switch a material from its orderly antialignment, to a random disorder of spins.

    “With these approaches, switching is very fast,” says Li. “But the downside is, everytime you need a current to read or write, that requires a lot of energy per operation. When things get very small, the energy and heat generated by running currents are significant.”

    Doped disorder

    Comin and his colleagues wondered whether they could achieve antiferromagnetic switching in a more efficient manner. In their new study, they work with neodymium nickelate, an antiferromagnetic oxide grown in the Ramanathan lab. This material exhibits nanodomains that consist of nickel atoms with an opposite spin to that of its neighbor, and held together by oxygen and neodymium atoms. The researchers had previously mapped the material’s fractal properties.

    Since then, the researchers have looked to see if they could manipulate the material’s antiferromagnetism via doping — a process that intentionally introduces impurities in a material to alter its electronic properties. In their case, the researchers doped neodymium nickel oxide by stripping the material of its oxygen atoms.

    When an oxygen atom is removed, it leaves behind two electrons, which are redistributed among the other nickel and oxygen atoms. The researchers wondered whether stripping away many oxygen atoms would result in a domino effect of disorder that would switch off the material’s orderly antialignment.

    To test their theory, they grew 100-nanometer-thin films of neodymium nickel oxide and placed them in an oxygen-starved chamber, then heated the samples to temperatures of 400 degrees Celsius to encourage oxygen to escape from the films and into the chamber’s atmosphere.

    As they removed progressively more oxygen, they studied the films using advanced magnetic X-ray crystallography techniques to determine whether the material’s magnetic structure was intact, implying that its atomic spins remained in their orderly antialignment, and therefore retained antiferomagnetism. If their data showed a lack of an ordered magnetic structure, it would be evidence that the material’s antiferromagnetism had switched off, due to sufficient doping.

    Through their experiments, the researchers were able to switch off the material’s antiferromagnetism at a certain critical doping threshold. They could also restore antiferromagnetism by adding oxygen back into the material.

    Now that the team has shown doping effectively switches AFM on and off, scientists might use more practical ways to dope similar materials. For instance, silicon-based transistors are switched using voltage-activated “gates,” where a small voltage is applied to a bit to alter its electrical conductivity. Comin says that antiferromagnetic bits could also be switched using suitable voltage gates, which would require less energy than other antiferromagnetic switching techniques.

    “This could present an opportunity to develop a magnetic memory storage device that works similarly to silicon-based chips, with the added benefit that you can store information in AFM domains that are very robust and can be packed at high densities,” Comin says. “That’s key to addressing the challenges of a data-driven world.”

    This research was supported, in part, by the Air Force Office of Scientific Research Young Investigator Program and the Natural Sciences and Engineering Research Council of Canada. This research used resources of the Center for Functional Nanomaterials and National Synchrotron Light Source II, both U.S. Department of Energy Office of Science User Facilities located at Brookhaven National Laboratory.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    Massachusetts Institute of Technology (MIT)(US) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory, the Bates Center, and the Haystack Observatory, as well as affiliated laboratories such as the Broad and Whitehead Institutes.

    MIT Haystack Observatory, Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, MIT adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with MIT. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. MIT is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia, wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after MIT was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst. In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    MIT was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, MIT faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the MIT administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.
    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, MIT catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at MIT that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    MIT’s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at MIT’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, MIT became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected MIT profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of MIT between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, MIT no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and MIT’s defense research. In this period MIT’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. MIT ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six MIT students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at MIT over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, MIT’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    MIT has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the OpenCourseWare project has made course materials for over 2,000 MIT classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    MIT was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, MIT launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, MIT announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the MIT faculty adopted an open-access policy to make its scholarship publicly accessible online.

    MIT has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the MIT community with thousands of police officers from the New England region and Canada. On November 25, 2013, MIT announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the MIT community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Laser Interferometer Gravitational-Wave Observatory (LIGO) was designed and constructed by a team of scientists from California Institute of Technology, MIT, and industrial contractors, and funded by the National Science Foundation.

    MIT/Caltech Advanced aLigo .

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and MIT physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an MIT graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Energy research
    Structural biology
    Accelerator physics


    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.


    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 (mission need) from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.
    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.
    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years.[19] NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.
    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.
    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University.
    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).

    It is currently operating at CERN near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory, Tennessee.

    Brookhaven plays a role in a range of neutrino research projects around the world, including theDaya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Brookhaven Campus.

  • richardmitnick 9:16 pm on May 6, 2021 Permalink | Reply
    Tags: "Space weather and solar blobs- Scientists receive funding to study conditions that can disrupt communications satellites", , , , Physics,   

    From DOE’s Princeton Plasma Physics Laboratory (US) : “Space weather and solar blobs- Scientists receive funding to study conditions that can disrupt communications satellites” 

    From DOE’s Princeton Plasma Physics Laboratory (US)


    Princeton University

    Princeton University (US)

    May 6, 2021
    Raphael Rosen

    An artist’s conception of coronal mass ejections and magnetic reconnection above photos of PPPL physicists, from left, Masaaki Yamada, Hantao Ji, and Jongsoo Yoo (Astrophysical images courtesy of National Aeronautics and Space Administration (US) / headshots and collage courtesy of Elle Starkman.

    Scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have received more than $2 million from the National Aeronautics and Space Administration (NASA) to conduct research that could help predict the potentially damaging effects of blasts of subatomic particles from the sun.

    The three three-year awards will fund research into a process known as magnetic reconnection, the coming together and explosive separation of magnetic field lines in plasma, that occurs throughout the universe. Scientists conjecture that magnetic reconnection helps cause the blasts, which produce vast amounts of electrically charged subatomic particles known as plasma. The onrush of particles, part of what is known as space weather, can interfere with communications satellites and electrical grids on Earth.

    The awards will also support research into a type of plasma blob that can periodically bubble up on the solar surface and emit an energetic variety of x-ray light.

    Two of the awards will help PPPL scientists investigate whether a type of electromagnetic wave can cause magnetic reconnection. “This research will be an extension of my previous experiments involving these lower hybrid drift waves,” said PPPL research physicist Jongsoo Yoo, referring to previous research on the strong plasma waves who received one of the awards. “If we can show that these waves lead to fast magnetic reconnection, that would be a big breakthrough. Finding out what causes the onset of fast magnetic reconnection is very important for space weather forecasting.”

    Yoo and a researcher from the University of Maryland-College Park will analyze data produced by NASA’s Magnetospheric Multiscale Mission (MMS), a group of four spacecraft flying in formation to study reconnection in the magnetosphere, the magnetic field that surrounds Earth.

    The team will determine which MMS information could be important to consider for laboratory experiments using PPPL’s Magnetic Reconnection Experiment (MRX), a device resembling an enormous silvery barrel tipped on its side.

    Using MRX, the team hopes to recreate conditions in the magnetosphere that occur in conjunction with reconnection and study which phenomena might be responsible. Yoo’s hunch is that lower hybrid drift waves could heat electrons in the plasma and cause the onset of fast magnetic reconnection. “We would be thrilled if we could eventually say that if you detect these waves in space, you could reasonably predict that reconnection will follow.”

    This research follows up experiments from 20 years ago, when scientists came to a different conclusion. “We first observed these waves in MRX in 2001 and in 2010 concluded that they did not contribute much to reconnection,” said principal PPPL physicist Hantao Ji, a professor of astrophysical sciences at Princeton University and recipient of a award for related research. “Now, 10 years later, we found that the waves can indeed be important under certain conditions. So, we decided to revisit the same subject after a 20-year hiatus but under new conditions and with new data from both MMS and MRX.”

    The third award was given to PPPL principal physicist Masaaki Yamada, distinguished research fellow and principal investigator of the MRX. He will use the award to run tests using MRX to determine whether a kind of magnetic configuration could help explain the blobs of plasma that bubble up on the sun’s surface and emit x-ray light.

    Yamada and his research team will shoot a smoke-ring-shaped puff of plasma with a pattern of magnetic fields known as a spheromak into MRX using a kind of gun. They will then study the plasma to determine whether it emits high-energy particles, like x-rays.

    The spheromak was originally designed for fusion reactors. “I worked on the concept almost 30 years ago,” said Yamada. “We confirmed that a device based on the spheromak idea could help lead to fusion. We built a device known as S-1, but it did not confine the plasma well.”

    Now, the spheromak concept has reappeared as a possible explanation for solar events. “Dr. Spiro Antiochos from NASA Goddard Space Flight Center (US) gave a talk at PPPL a few years ago about giant, dome-shaped flares the size of Earth that appear on the sun and emit x-rays,” Yamada said. “No one has yet discovered a clear mechanism to explain why these emissions happen. Since the spheromak configuration can occur in nature, I thought similar configurations on the sun might spur these blobs to form.”

    After the talk, Yamada, PPPL physicist Elena Belova and undergraduate Princeton University student Joshua Latham ran computer simulations investigating whether the spheromak magnetic configuration could lead to x-ray emitting blobs that occur on the sun, and confirmed that they could. The team will use their award to conduct real-life experiments verifying the simulation results using MRX.

    Unlike tokamaks, a popular type of fusion reactor shaped like a doughnut that is used around the world, a spheromak does not have a central hole for a large magnet that creates magnetic fields to help confine the plasma. Instead, a spheromak is more like a unitary fireball and creates necessary magnetic fields from the electrical currents that naturally flow through it.

    The three awards will extend PPPL’s extensive history in space and astrophysical research involving reconnection. The Laboratory, which has been collaborating with the MMS mission since it launched in 2015, is now installing the Facility for Laboratory Reconnection Experiment (FLARE), a new and more powerful version of MRX. The $4.3 million device will probe facets of magnetic reconnection that have never before been accessible to laboratory experiments.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    PPPL campus

    Princeton Plasma Physics Laboratory (US) is a U.S. Department of Energy national laboratory managed by Princeton University. PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit https://energy.gov/science.

    Princeton University

    Princeton University

    See the full article here .


    About Princeton: Overview

    Princeton University is a private Ivy League research university in Princeton, New Jersey(US). Founded in 1746 in Elizabeth as the College of New Jersey, Princeton is the fourth-oldest institution of higher education in the United States and one of the nine colonial colleges chartered before the American Revolution. The institution moved to Newark in 1747, then to the current site nine years later. It was renamed Princeton University in 1896.

    Princeton provides undergraduate and graduate instruction in the humanities, social sciences, natural sciences, and engineering. It offers professional degrees through the Princeton School of Public and International Affairs, the School of Engineering and Applied Science, the School of Architecture and the Bendheim Center for Finance. The university also manages the DOE’s Princeton Plasma Physics Laboratory. Princeton has the largest endowment per student in the United States.

    As of October 2020, 69 Nobel laureates, 15 Fields Medalists and 14 Turing Award laureates have been affiliated with Princeton University as alumni, faculty members or researchers. In addition, Princeton has been associated with 21 National Medal of Science winners, 5 Abel Prize winners, 5 National Humanities Medal recipients, 215 Rhodes Scholars, 139 Gates Cambridge Scholars and 137 Marshall Scholars. Two U.S. Presidents, twelve U.S. Supreme Court Justices (three of whom currently serve on the court) and numerous living billionaires and foreign heads of state are all counted among Princeton’s alumni body. Princeton has also graduated many prominent members of the U.S. Congress and the U.S. Cabinet, including eight Secretaries of State, three Secretaries of Defense and the current Chairman of the Joint Chiefs of Staff.

    Princeton University, founded as the College of New Jersey, was considered the successor of the “Log College” founded by the Reverend William Tennent at Neshaminy, PA in about 1726. New Light Presbyterians founded the College of New Jersey in 1746 in Elizabeth, New Jersey. Its purpose was to train ministers. The college was the educational and religious capital of Scottish Presbyterian America. Unlike Harvard University(US), which was originally “intensely English” with graduates taking the side of the crown during the American Revolution, Princeton was founded to meet the religious needs of the period and many of its graduates took the American side in the war. In 1754, trustees of the College of New Jersey suggested that, in recognition of Governor Jonathan Belcher’s interest, Princeton should be named as Belcher College. Belcher replied: “What a name that would be!” In 1756, the college moved its campus to Princeton, New Jersey. Its home in Princeton was Nassau Hall, named for the royal House of Orange-Nassau of William III of England.

    Following the untimely deaths of Princeton’s first five presidents, John Witherspoon became president in 1768 and remained in that post until his death in 1794. During his presidency, Witherspoon shifted the college’s focus from training ministers to preparing a new generation for secular leadership in the new American nation. To this end, he tightened academic standards and solicited investment in the college. Witherspoon’s presidency constituted a long period of stability for the college, interrupted by the American Revolution and particularly the Battle of Princeton, during which British soldiers briefly occupied Nassau Hall; American forces, led by George Washington, fired cannon on the building to rout them from it.

    In 1812, the eighth president of the College of New Jersey, Ashbel Green (1812–23), helped establish the Princeton Theological Seminary next door. The plan to extend the theological curriculum met with “enthusiastic approval on the part of the authorities at the College of New Jersey.” Today, Princeton University and Princeton Theological Seminary maintain separate institutions with ties that include services such as cross-registration and mutual library access.

    Before the construction of Stanhope Hall in 1803, Nassau Hall was the college’s sole building. The cornerstone of the building was laid on September 17, 1754. During the summer of 1783, the Continental Congress met in Nassau Hall, making Princeton the country’s capital for four months. Over the centuries and through two redesigns following major fires (1802 and 1855), Nassau Hall’s role shifted from an all-purpose building, comprising office, dormitory, library, and classroom space; to classroom space exclusively; to its present role as the administrative center of the University. The class of 1879 donated twin lion sculptures that flanked the entrance until 1911, when that same class replaced them with tigers. Nassau Hall’s bell rang after the hall’s construction; however, the fire of 1802 melted it. The bell was then recast and melted again in the fire of 1855.

    James McCosh became the college’s president in 1868 and lifted the institution out of a low period that had been brought about by the American Civil War. During his two decades of service, he overhauled the curriculum, oversaw an expansion of inquiry into the sciences, and supervised the addition of a number of buildings in the High Victorian Gothic style to the campus. McCosh Hall is named in his honor.

    In 1879, the first thesis for a Doctor of Philosophy (Ph.D.) was submitted by James F. Williamson, Class of 1877.

    In 1896, the college officially changed its name from the College of New Jersey to Princeton University to honor the town in which it resides. During this year, the college also underwent large expansion and officially became a university. In 1900, the Graduate School was established.

    In 1902, Woodrow Wilson, graduate of the Class of 1879, was elected the 13th president of the university. Under Wilson, Princeton introduced the preceptorial system in 1905, a then-unique concept in the United States that augmented the standard lecture method of teaching with a more personal form in which small groups of students, or precepts, could interact with a single instructor, or preceptor, in their field of interest.

    In 1906, the reservoir Carnegie Lake was created by Andrew Carnegie. A collection of historical photographs of the building of the lake is housed at the Seeley G. Mudd Manuscript Library on Princeton’s campus. On October 2, 1913, the Princeton University Graduate College was dedicated. In 1919 the School of Architecture was established. In 1933, Albert Einstein became a lifetime member of the Institute for Advanced Study with an office on the Princeton campus. While always independent of the university, the Institute for Advanced Study occupied offices in Jones Hall for 6 years, from its opening in 1933, until its own campus was finished and opened in 1939.


    In 1969, Princeton University first admitted women as undergraduates. In 1887, the university actually maintained and staffed a sister college, Evelyn College for Women, in the town of Princeton on Evelyn and Nassau streets. It was closed after roughly a decade of operation. After abortive discussions with Sarah Lawrence College to relocate the women’s college to Princeton and merge it with the University in 1967, the administration decided to admit women and turned to the issue of transforming the school’s operations and facilities into a female-friendly campus. The administration had barely finished these plans in April 1969 when the admissions office began mailing out its acceptance letters. Its five-year coeducation plan provided $7.8 million for the development of new facilities that would eventually house and educate 650 women students at Princeton by 1974. Ultimately, 148 women, consisting of 100 freshmen and transfer students of other years, entered Princeton on September 6, 1969 amidst much media attention. Princeton enrolled its first female graduate student, Sabra Follett Meservey, as a PhD candidate in Turkish history in 1961. A handful of undergraduate women had studied at Princeton from 1963 on, spending their junior year there to study “critical languages” in which Princeton’s offerings surpassed those of their home institutions. They were considered regular students for their year on campus, but were not candidates for a Princeton degree.

    As a result of a 1979 lawsuit by Sally Frank, Princeton’s eating clubs were required to go coeducational in 1991, after Tiger Inn’s appeal to the U.S. Supreme Court was denied. In 1987, the university changed the gendered lyrics of “Old Nassau” to reflect the school’s co-educational student body. From 2009 to 2011, Princeton professor Nannerl O. Keohane chaired a committee on undergraduate women’s leadership at the university, appointed by President Shirley M. Tilghman.

    The main campus sits on about 500 acres (2.0 km^2) in Princeton. In 2011, the main campus was named by Travel+Leisure as one of the most beautiful in the United States. The James Forrestal Campus is split between nearby Plainsboro and South Brunswick. The University also owns some property in West Windsor Township. The campuses are situated about one hour from both New York City and Philadelphia.

    The first building on campus was Nassau Hall, completed in 1756 and situated on the northern edge of campus facing Nassau Street. The campus expanded steadily around Nassau Hall during the early and middle 19th century. The McCosh presidency (1868–88) saw the construction of a number of buildings in the High Victorian Gothic and Romanesque Revival styles; many of them are now gone, leaving the remaining few to appear out of place. At the end of the 19th century much of Princeton’s architecture was designed by the Cope and Stewardson firm (same architects who designed a large part of Washington University in St Louis (US) and University of Pennsylvania(US)) resulting in the Collegiate Gothic style for which it is known today. Implemented initially by William Appleton Potter and later enforced by the University’s supervising architect, Ralph Adams Cram, the Collegiate Gothic style remained the standard for all new building on the Princeton campus through 1960. A flurry of construction in the 1960s produced a number of new buildings on the south side of the main campus, many of which have been poorly received. Several prominent architects have contributed some more recent additions, including Frank Gehry (Lewis Library), I. M. Pei (Spelman Halls), Demetri Porphyrios (Whitman College, a Collegiate Gothic project), Robert Venturi and Denise Scott Brown (Frist Campus Center, among several others), and Rafael Viñoly (Carl Icahn Laboratory).

    A group of 20th-century sculptures scattered throughout the campus forms the Putnam Collection of Sculpture. It includes works by Alexander Calder (Five Disks: One Empty), Jacob Epstein (Albert Einstein), Henry Moore (Oval with Points), Isamu Noguchi (White Sun), and Pablo Picasso (Head of a Woman). Richard Serra’s The Hedgehog and The Fox is located between Peyton and Fine halls next to Princeton Stadium and the Lewis Library.

    At the southern edge of the campus is Carnegie Lake, an artificial lake named for Andrew Carnegie. Carnegie financed the lake’s construction in 1906 at the behest of a friend who was a Princeton alumnus. Carnegie hoped the opportunity to take up rowing would inspire Princeton students to forsake football, which he considered “not gentlemanly.” The Shea Rowing Center on the lake’s shore continues to serve as the headquarters for Princeton rowing.

    Cannon Green

    Buried in the ground at the center of the lawn south of Nassau Hall is the “Big Cannon,” which was left in Princeton by British troops as they fled following the Battle of Princeton. It remained in Princeton until the War of 1812, when it was taken to New Brunswick. In 1836 the cannon was returned to Princeton and placed at the eastern end of town. It was removed to the campus under cover of night by Princeton students in 1838 and buried in its current location in 1840.

    A second “Little Cannon” is buried in the lawn in front of nearby Whig Hall. This cannon, which may also have been captured in the Battle of Princeton, was stolen by students of Rutgers University in 1875. The theft ignited the Rutgers-Princeton Cannon War. A compromise between the presidents of Princeton and Rutgers ended the war and forced the return of the Little Cannon to Princeton. The protruding cannons are occasionally painted scarlet by Rutgers students who continue the traditional dispute.

    In years when the Princeton football team beats the teams of both Harvard University and Yale University in the same season, Princeton celebrates with a bonfire on Cannon Green. This occurred in 2012, ending a five-year drought. The next bonfire happened on November 24, 2013, and was broadcast live over the Internet.


    Princeton’s grounds were designed by Beatrix Farrand between 1912 and 1943. Her contributions were most recently recognized with the naming of a courtyard for her. Subsequent changes to the landscape were introduced by Quennell Rothschild & Partners in 2000. In 2005, Michael Van Valkenburgh was hired as the new consulting landscape architect for the campus. Lynden B. Miller was invited to work with him as Princeton’s consulting gardening architect, focusing on the 17 gardens that are distributed throughout the campus.


    Nassau Hall

    Nassau Hall is the oldest building on campus. Begun in 1754 and completed in 1756, it was the first seat of the New Jersey Legislature in 1776, was involved in the battle of Princeton in 1777, and was the seat of the Congress of the Confederation (and thus capitol of the United States) from June 30, 1783, to November 4, 1783. It now houses the office of the university president and other administrative offices, and remains the symbolic center of the campus. The front entrance is flanked by two bronze tigers, a gift of the Princeton Class of 1879. Commencement is held on the front lawn of Nassau Hall in good weather. In 1966, Nassau Hall was added to the National Register of Historic Places.

    Residential colleges

    Princeton has six undergraduate residential colleges, each housing approximately 500 freshmen, sophomores, some juniors and seniors, and a handful of junior and senior resident advisers. Each college consists of a set of dormitories, a dining hall, a variety of other amenities—such as study spaces, libraries, performance spaces, and darkrooms—and a collection of administrators and associated faculty. Two colleges, First College and Forbes College (formerly Woodrow Wilson College and Princeton Inn College, respectively), date to the 1970s; three others, Rockefeller, Mathey, and Butler Colleges, were created in 1983 following the Committee on Undergraduate Residential Life (CURL) report, which suggested the institution of residential colleges as a solution to an allegedly fragmented campus social life. The construction of Whitman College, the university’s sixth residential college, was completed in 2007.

    Rockefeller and Mathey are located in the northwest corner of the campus; Princeton brochures often feature their Collegiate Gothic architecture. Like most of Princeton’s Gothic buildings, they predate the residential college system and were fashioned into colleges from individual dormitories.

    First and Butler, located south of the center of the campus, were built in the 1960s. First served as an early experiment in the establishment of the residential college system. Butler, like Rockefeller and Mathey, consisted of a collection of ordinary dorms (called the “New New Quad”) before the addition of a dining hall made it a residential college. Widely disliked for their edgy modernist design, including “waffle ceilings,” the dormitories on the Butler Quad were demolished in 2007. Butler is now reopened as a four-year residential college, housing both under- and upperclassmen.

    Forbes is located on the site of the historic Princeton Inn, a gracious hotel overlooking the Princeton golf course. The Princeton Inn, originally constructed in 1924, played regular host to important symposia and gatherings of renowned scholars from both the university and the nearby Institute for Advanced Study for many years. Forbes currently houses nearly 500 undergraduates in its residential halls.

    In 2003, Princeton broke ground for a sixth college named Whitman College after its principal sponsor, Meg Whitman, who graduated from Princeton in 1977. The new dormitories were constructed in the Collegiate Gothic architectural style and were designed by architect Demetri Porphyrios. Construction finished in 2007, and Whitman College was inaugurated as Princeton’s sixth residential college that same year.

    The precursor of the present college system in America was originally proposed by university president Woodrow Wilson in the early 20th century. For over 800 years, however, the collegiate system had already existed in Britain at Cambridge and Oxford Universities. Wilson’s model was much closer to Yale University(US)’s present system, which features four-year colleges. Lacking the support of the trustees, the plan languished until 1968. That year, Wilson College was established to cap a series of alternatives to the eating clubs. Fierce debates raged before the present residential college system emerged. The plan was first attempted at Yale, but the administration was initially uninterested; an exasperated alumnus, Edward Harkness, finally paid to have the college system implemented at Harvard in the 1920s, leading to the oft-quoted aphorism that the college system is a Princeton idea that was executed at Harvard with funding from Yale.

    Princeton has one graduate residential college, known simply as the Graduate College, located beyond Forbes College at the outskirts of campus. The far-flung location of the GC was the spoil of a squabble between Woodrow Wilson and then-Graduate School Dean Andrew Fleming West. Wilson preferred a central location for the college; West wanted the graduate students as far as possible from the campus. Ultimately, West prevailed. The Graduate College is composed of a large Collegiate Gothic section crowned by Cleveland Tower, a local landmark that also houses a world-class carillon. The attached New Graduate College provides a modern contrast in architectural style.

    McCarter Theatre

    The Tony-award-winning McCarter Theatre was built by the Princeton Triangle Club, a student performance group, using club profits and a gift from Princeton University alumnus Thomas McCarter. Today, the Triangle Club performs its annual freshmen revue, fall show, and Reunions performances in McCarter. McCarter is also recognized as one of the leading regional theaters in the United States.

    Art Museum

    The Princeton University Art Museum was established in 1882 to give students direct, intimate, and sustained access to original works of art that complement and enrich instruction and research at the university. This continues to be a primary function, along with serving as a community resource and a destination for national and international visitors.

    Numbering over 92,000 objects, the collections range from ancient to contemporary art and concentrate geographically on the Mediterranean regions, Western Europe, China, the United States, and Latin America. There is a collection of Greek and Roman antiquities, including ceramics, marbles, bronzes, and Roman mosaics from faculty excavations in Antioch. Medieval Europe is represented by sculpture, metalwork, and stained glass. The collection of Western European paintings includes examples from the early Renaissance through the 19th century, with masterpieces by Monet, Cézanne, and Van Gogh, and features a growing collection of 20th-century and contemporary art, including iconic paintings such as Andy Warhol’s Blue Marilyn.

    One of the best features of the museums is its collection of Chinese art, with important holdings in bronzes, tomb figurines, painting, and calligraphy. Its collection of pre-Columbian art includes examples of Mayan art, and is commonly considered to be the most important collection of pre-Columbian art outside of Latin America. The museum has collections of old master prints and drawings and a comprehensive collection of over 27,000 original photographs. African art and Northwest Coast Indian art are also represented. The Museum also oversees the outdoor Putnam Collection of Sculpture.

    University Chapel

    The Princeton University Chapel is located on the north side of campus, near Nassau Street. It was built between 1924 and 1928, at a cost of $2.3 million [approximately $34.2 million in 2020 dollars]. Ralph Adams Cram, the University’s supervising architect, designed the chapel, which he viewed as the crown jewel for the Collegiate Gothic motif he had championed for the campus. At the time of its construction, it was the second largest university chapel in the world, after King’s College Chapel, Cambridge. It underwent a two-year, $10 million restoration campaign between 2000 and 2002.

    Measured on the exterior, the chapel is 277 feet (84 m) long, 76 feet (23 m) wide at its transepts, and 121 feet (37 m) high. The exterior is Pennsylvania sandstone, with Indiana limestone used for the trim. The interior is mostly limestone and Aquia Creek sandstone. The design evokes an English church of the Middle Ages. The extensive iconography, in stained glass, stonework, and wood carvings, has the common theme of connecting religion and scholarship.

    The Chapel seats almost 2,000. It hosts weekly ecumenical Christian services, daily Roman Catholic mass, and several annual special events.

    Murray-Dodge Hall

    Murray-Dodge Hall houses the Office of Religious Life (ORL), the Murray Dodge Theater, the Murray-Dodge Café, the Muslim Prayer Room and the Interfaith Prayer Room. The ORL houses the office of the Dean of Religious Life, Alison Boden, and a number of university chaplains, including the country’s first Hindu chaplain, Vineet Chander; and one of the country’s first Muslim chaplains, Sohaib Sultan.


    Published in 2008, Princeton’s Sustainability Plan highlights three priority areas for the University’s Office of Sustainability: reduction of greenhouse gas emissions; conservation of resources; and research, education, and civic engagement. Princeton has committed to reducing its carbon dioxide emissions to 1990 levels by 2020: Energy without the purchase of offsets. The University published its first Sustainability Progress Report in November 2009. The University has adopted a green purchasing policy and recycling program that focuses on paper products, construction materials, lightbulbs, furniture, and electronics. Its dining halls have set a goal to purchase 75% sustainable food products by 2015. The student organization “Greening Princeton” seeks to encourage the University administration to adopt environmentally friendly policies on campus.


    The Trustees of Princeton University, a 40-member board, is responsible for the overall direction of the University. It approves the operating and capital budgets, supervises the investment of the University’s endowment and oversees campus real estate and long-range physical planning. The trustees also exercise prior review and approval concerning changes in major policies, such as those in instructional programs and admission, as well as tuition and fees and the hiring of faculty members.

    With an endowment of $26.1 billion, Princeton University is among the wealthiest universities in the world. Ranked in 2010 as the third largest endowment in the United States, the university had the greatest per-student endowment in the world (over $2 million for undergraduates) in 2011. Such a significant endowment is sustained through the continued donations of its alumni and is maintained by investment advisers. Some of Princeton’s wealth is invested in its art museum, which features works by Claude Monet, Vincent van Gogh, Jackson Pollock, and Andy Warhol among other prominent artists.


    Undergraduates fulfill general education requirements, choose among a wide variety of elective courses, and pursue departmental concentrations and interdisciplinary certificate programs. Required independent work is a hallmark of undergraduate education at Princeton. Students graduate with either the Bachelor of Arts (A.B.) or the Bachelor of Science in Engineering (B.S.E.).

    The graduate school offers advanced degrees spanning the humanities, social sciences, natural sciences, and engineering. Doctoral education is available in most disciplines. It emphasizes original and independent scholarship whereas master’s degree programs in architecture, engineering, finance, and public affairs and public policy prepare candidates for careers in public life and professional practice.

    The university has ties with the Institute for Advanced Study, Princeton Theological Seminary and the Westminster Choir College of Rider University(US).


    Undergraduate courses in the humanities are traditionally either seminars or lectures held 2 or 3 times a week with an additional discussion seminar that is called a “precept.” To graduate, all A.B. candidates must complete a senior thesis and, in most departments, one or two extensive pieces of independent research that are known as “junior papers.” Juniors in some departments, including architecture and the creative arts, complete independent projects that differ from written research papers. A.B. candidates must also fulfill a three or four semester foreign language requirement and distribution requirements (which include, for example, classes in ethics, literature and the arts, and historical analysis) with a total of 31 classes. B.S.E. candidates follow a parallel track with an emphasis on a rigorous science and math curriculum, a computer science requirement, and at least two semesters of independent research including an optional senior thesis. All B.S.E. students must complete at least 36 classes. A.B. candidates typically have more freedom in course selection than B.S.E. candidates because of the fewer number of required classes. Nonetheless, in the spirit of a liberal arts education, both enjoy a comparatively high degree of latitude in creating a self-structured curriculum.

    Undergraduates agree to adhere to an academic integrity policy called the Honor Code, established in 1893. Under the Honor Code, faculty do not proctor examinations; instead, the students proctor one another and must report any suspected violation to an Honor Committee made up of undergraduates. The Committee investigates reported violations and holds a hearing if it is warranted. An acquittal at such a hearing results in the destruction of all records of the hearing; a conviction results in the student’s suspension or expulsion. The signed pledge required by the Honor Code is so integral to students’ academic experience that the Princeton Triangle Club performs a song about it each fall. Out-of-class exercises fall under the jurisdiction of the Faculty-Student Committee on Discipline. Undergraduates are expected to sign a pledge on their written work affirming that they have not plagiarized the work.


    The Graduate School has about 2,600 students in 42 academic departments and programs in social sciences; engineering; natural sciences; and humanities. These departments include the Department of Psychology; Department of History; and Department of Economics.

    In 2017–2018, it received nearly 11,000 applications for admission and accepted around 1,000 applicants. The University also awarded 319 Ph.D. degrees and 170 final master’s degrees. Princeton has no medical school, law school, business school, or school of education. (A short-lived Princeton Law School folded in 1852.) It offers professional graduate degrees in architecture; engineering; finance and public policy- the last through the Princeton School of Public and International Affairs founded in 1930 as the School of Public and International Affairs and renamed in 1948 after university president (and U.S. president) Woodrow Wilson, and most recently renamed in 2020.


    The Princeton University Library system houses over eleven million holdings including seven million bound volumes. The main university library, Firestone Library, which houses almost four million volumes, is one of the largest university libraries in the world. Additionally, it is among the largest “open stack” libraries in existence. Its collections include the autographed manuscript of F. Scott Fitzgerald’s The Great Gatsby and George F. Kennan’s Long Telegram. In addition to Firestone library, specialized libraries exist for architecture, art and archaeology, East Asian studies, engineering, music, public and international affairs, public policy and university archives, and the sciences. In an effort to expand access, these libraries also subscribe to thousands of electronic resources.


    High Meadows Environmental Institute

    The High Meadows Environmental Institute is an “interdisciplinary center of environmental research, education, and outreach” at the university. The institute was started in 1994. About 90 faculty members at Princeton University are affiliated with it.

    The High Meadows Environmental Institute has the following research centers:

    Carbon Mitigation Initiative (CMI): This is a 15-year-long partnership between PEI and British Petroleum with the goal of finding solutions to problems related to climate change. The Stabilization Wedge Game has been created as part of this initiative.
    Center for BioComplexity (CBC)
    Cooperative Institute for Climate Science (CICS): This is a collaboration with the National Oceanographic and Atmospheric Administration’s Geophysical Fluid Dynamics Laboratory.
    Energy Systems Analysis Group
    Grand Challenges

    Princeton Plasma Physics Laboratory

    The Princeton Plasma Physics Laboratory, PPPL, was founded in 1951 as Project Matterhorn, a top secret cold war project aimed at achieving controlled nuclear fusion. Princeton astrophysics professor Lyman Spitzer became the first director of the project and remained director until the lab’s declassification in 1961 when it received its current name.

    PPPL currently houses approximately half of the graduate astrophysics department, the Princeton Program in Plasma Physics. The lab is also home to the Harold P. Furth Plasma Physics Library. The library contains all declassified Project Matterhorn documents, included the first design sketch of a stellarator by Lyman Spitzer.

    Princeton is one of five US universities to have and to operate a Department of Energy(US) national laboratory.

    Student life and culture

    University housing is guaranteed to all undergraduates for all four years. More than 98% of students live on campus in dormitories. Freshmen and sophomores must live in residential colleges, while juniors and seniors typically live in designated upperclassman dormitories. The actual dormitories are comparable, but only residential colleges have dining halls. Nonetheless, any undergraduate may purchase a meal plan and eat in a residential college dining hall. Recently, upperclassmen have been given the option of remaining in their college for all four years. Juniors and seniors also have the option of living off-campus, but high rent in the Princeton area encourages almost all students to live in university housing. Undergraduate social life revolves around the residential colleges and a number of coeducational eating clubs, which students may choose to join in the spring of their sophomore year. Eating clubs, which are not officially affiliated with the university, serve as dining halls and communal spaces for their members and also host social events throughout the academic year.

    Princeton’s six residential colleges host a variety of social events and activities, guest speakers, and trips. The residential colleges also sponsor trips to New York for undergraduates to see ballets, operas, Broadway shows, sports events, and other activities. The eating clubs, located on Prospect Avenue, are co-ed organizations for upperclassmen. Most upperclassmen eat their meals at one of the eleven eating clubs. Additionally, the clubs serve as evening and weekend social venues for members and guests. The eleven clubs are Cannon; Cap and Gown; Charter; Cloister; Colonial; Cottage; Ivy; Quadrangle; Terrace; Tiger; and Tower.

    Princeton hosts two Model United Nations conferences, PMUNC in the fall for high school students and PDI in the spring for college students. It also hosts the Princeton Invitational Speech and Debate tournament each year at the end of November. Princeton also runs Princeton Model Congress, an event that is held once a year in mid-November. The four-day conference has high school students from around the country as participants.

    Although the school’s admissions policy is need-blind, Princeton, based on the proportion of students who receive Pell Grants, was ranked as a school with little economic diversity among all national universities ranked by U.S. News & World Report. While Pell figures are widely used as a gauge of the number of low-income undergraduates on a given campus, the rankings article cautions “the proportion of students on Pell Grants isn’t a perfect measure of an institution’s efforts to achieve economic diversity,” but goes on to say that “still, many experts say that Pell figures are the best available gauge of how many low-income undergrads there are on a given campus.”

    TigerTrends is a university-based student run fashion, arts, and lifestyle magazine.


    Princeton has made significant progress in expanding the diversity of its student body in recent years. The 2019 freshman class was one of the most diverse in the school’s history, with 61% of students identifying as students of color. Undergraduate and master’s students were 51% male and 49% female for the 2018–19 academic year.

    The median family income of Princeton students is $186,100, with 57% of students coming from the top 10% highest-earning families and 14% from the bottom 60%.

    In 1999, 10% of the student body was Jewish, a percentage lower than those at other Ivy League schools. Sixteen percent of the student body was Jewish in 1985; the number decreased by 40% from 1985 to 1999. This decline prompted The Daily Princetonian to write a series of articles on the decline and its reasons. Caroline C. Pam of The New York Observer wrote that Princeton was “long dogged by a reputation for anti-Semitism” and that this history as well as Princeton’s elite status caused the university and its community to feel sensitivity towards the decrease of Jewish students. At the time many Jewish students at Princeton dated Jewish students at the University of Pennsylvania in Philadelphia because they perceived Princeton as an environment where it was difficult to find romantic prospects; Pam stated that there was a theory that the dating issues were a cause of the decline in Jewish students.

    In 1981, the population of African Americans at Princeton University made up less than 10%. Bruce M. Wright was admitted into the university in 1936 as the first African American, however, his admission was a mistake and when he got to campus he was asked to leave. Three years later Wright asked the dean for an explanation on his dismissal and the dean suggested to him that “a member of your race might feel very much alone” at Princeton University.


    Princeton enjoys a wide variety of campus traditions, some of which, like the Clapper Theft and Nude Olympics, have faded into history:

    Arch Sings – Late-night concerts that feature one or several of Princeton’s undergraduate a cappella groups, such as the Princeton Nassoons; Princeton Tigertones; Princeton Footnotes; Princeton Roaring 20; and The Princeton Wildcats. The free concerts take place in one of the larger arches on campus. Most are held in Blair Arch or Class of 1879 Arch.

    Bonfire – Ceremonial bonfire that takes place in Cannon Green behind Nassau Hall. It is held only if Princeton beats both Harvard University and Yale University at football in the same season. The most recent bonfire was lighted on November 18, 2018.

    Bicker – Selection process for new members that is employed by selective eating clubs. Prospective members, or bickerees, are required to perform a variety of activities at the request of current members.

    Cane Spree – An athletic competition between freshmen and sophomores that is held in the fall. The event centers on cane wrestling, where a freshman and a sophomore will grapple for control of a cane. This commemorates a time in the 1870s when sophomores, angry with the freshmen who strutted around with fancy canes, stole all of the canes from the freshmen, hitting them with their own canes in the process.

    The Clapper or Clapper Theft – The act of climbing to the top of Nassau Hall to steal the bell clapper, which rings to signal the start of classes on the first day of the school year. For safety reasons, the clapper has been removed permanently.

    Class Jackets (Beer Jackets) – Each graduating class designs a Class Jacket that features its class year. The artwork is almost invariably dominated by the school colors and tiger motifs.

    Communiversity – An annual street fair with performances, arts and crafts, and other activities that attempts to foster interaction between the university community and the residents of Princeton.

    Dean’s Date – The Tuesday at the end of each semester when all written work is due. This day signals the end of reading period and the beginning of final examinations. Traditionally, undergraduates gather outside McCosh Hall before the 5:00 PM deadline to cheer on fellow students who have left their work to the very last minute.

    FitzRandolph Gates – At the end of Princeton’s graduation ceremony, the new graduates process out through the main gate of the university as a symbol of the fact that they are leaving college. According to tradition, anyone who exits campus through the FitzRandolph Gates before his or her own graduation date will not graduate.

    Holder Howl – The midnight before Dean’s Date, students from Holder Hall and elsewhere gather in the Holder courtyard and take part in a minute-long, communal primal scream to vent frustration from studying with impromptu, late night noise making.

    Houseparties – Formal parties that are held simultaneously by all of the eating clubs at the end of the spring term.

    Ivy stones – Class memorial stones placed on the exterior walls of academic buildings around the campus.

    Lawnparties – Parties that feature live bands that are held simultaneously by all of the eating clubs at the start of classes and at the conclusion of the academic year.

    Princeton Locomotive – Traditional cheer in use since the 1890s. It is commonly heard at Opening Exercises in the fall as alumni and current students welcome the freshman class, as well as the P-rade in the spring at Princeton Reunions. The cheer starts slowly and picks up speed, and includes the sounds heard at a fireworks show.

    Hip! Hip!
    Rah, Rah, Rah,
    Tiger, Tiger, Tiger,
    Sis, Sis, Sis,
    Boom, Boom, Boom, Ah!
    Princeton! Princeton! Princeton!

    Or if a class is being celebrated, the last line consists of the class year repeated three times, e.g. “Eighty-eight! Eighty-eight! Eighty-eight!”

    Newman’s Day – Students attempt to drink 24 beers in the 24 hours of April 24. According to The New York Times, “the day got its name from an apocryphal quote attributed to Paul Newman: ’24 beers in a case, 24 hours in a day. Coincidence? I think not.'” Newman had spoken out against the tradition, however.

    Nude Olympics – Annual nude and partially nude frolic in Holder Courtyard that takes place during the first snow of the winter. Started in the early 1970s, the Nude Olympics went co-educational in 1979 and gained much notoriety with the American press. For safety reasons, the administration banned the Olympics in 2000 to the chagrin of students.

    Prospect 11 – The act of drinking a beer at all 11 eating clubs in a single night.

    P-rade – Traditional parade of alumni and their families. They process through campus by class year during Reunions.

    Reunions – Massive annual gathering of alumni held the weekend before graduation.


    Princeton supports organized athletics at three levels: varsity intercollegiate, club intercollegiate, and intramural. It also provides “a variety of physical education and recreational programs” for members of the Princeton community. According to the athletics program’s mission statement, Princeton aims for its students who participate in athletics to be “‘student athletes’ in the fullest sense of the phrase. Most undergraduates participate in athletics at some level.

    Princeton’s colors are orange and black. The school’s athletes are known as Tigers, and the mascot is a tiger. The Princeton administration considered naming the mascot in 2007, but the effort was dropped in the face of alumni opposition.


    Princeton is an NCAA Division I school. Its athletic conference is the Ivy League. Princeton hosts 38 men’s and women’s varsity sports. The largest varsity sport is rowing, with almost 150 athletes.

    Princeton’s football team has a long and storied history. Princeton played against Rutgers University in the first intercollegiate football game in the U.S. on Nov 6, 1869. By a score of 6–4, Rutgers won the game, which was played by rules similar to modern rugby. Today Princeton is a member of the Football Championship Subdivision of NCAA Division I. As of the end of the 2010 season, Princeton had won 26 national football championships, more than any other school.

    Club and intramural

    In addition to varsity sports, Princeton hosts about 35 club sports teams. Princeton’s rugby team is organized as a club sport. Princeton’s sailing team is also a club sport, though it competes at the varsity level in the MAISA conference of the Inter-Collegiate Sailing Association.

    Each year, nearly 300 teams participate in intramural sports at Princeton. Intramurals are open to members of Princeton’s faculty, staff, and students, though a team representing a residential college or eating club must consist only of members of that college or club. Several leagues with differing levels of competitiveness are available.


    Notable among a number of songs commonly played and sung at various events such as commencement, convocation, and athletic games is Princeton Cannon Song, the Princeton University fight song.

    Bob Dylan wrote Day of The Locusts (for his 1970 album New Morning) about his experience of receiving an honorary doctorate from the University. It is a reference to the negative experience he had and it mentions the Brood X cicada infestation Princeton experienced that June 1970.

    “Old Nassau”

    Old Nassau has been Princeton University’s anthem since 1859. Its words were written that year by a freshman, Harlan Page Peck, and published in the March issue of the Nassau Literary Review (the oldest student publication at Princeton and also the second oldest undergraduate literary magazine in the country). The words and music appeared together for the first time in Songs of Old Nassau, published in April 1859. Before the Langlotz tune was written, the song was sung to Auld Lang Syne’s melody, which also fits.

    However, Old Nassau does not only refer to the university’s anthem. It can also refer to Nassau Hall, the building that was built in 1756 and named after William III of the House of Orange-Nassau. When built, it was the largest college building in North America. It served briefly as the capitol of the United States when the Continental Congress convened there in the summer of 1783. By metonymy, the term can refer to the university as a whole. Finally, it can also refer to a chemical reaction that is dubbed “Old Nassau reaction” because the solution turns orange and then black.
    Princeton Shield

  • richardmitnick 1:44 pm on May 6, 2021 Permalink | Reply
    Tags: "LS2 Report: FASER is born", , , , FASER is designed to study the interactions of high-energy neutrinos and search for new as-yet-undiscovered light and weakly interacting particles., , , , Physics   

    From European Organization for Nuclear Research (Organisation européenne pour la recherche nucléaire)(EU) [CERN]: “LS2 Report: FASER is born” 

    Cern New Bloc

    Cern New Particle Event

    From European Organization for Nuclear Research (Organisation européenne pour la recherche nucléaire)(EU) [CERN]

    24 March, 2021 [Just now in social media.]
    Anaïs Schaeffer

    The final elements of FASER were put into place this month. (Image: CERN)

    FASER* (Forward Search Experiment), CERN’s newest experiment, is now in place in the LHC tunnel, only two years after its approval by CERN’s Research Board in March 2019. FASER is designed to study the interactions of high-energy neutrinos and search for new as-yet-undiscovered light and weakly interacting particles. Such particles are dominantly produced along the beam collision axis and may be long-lived particles, travelling hundreds of metres before decaying. The existence of such new particles is predicted by many models beyond the Standard Model that attempt to solve some of the biggest puzzles in physics, such as the nature of dark matter and the origin of neutrino masses.

    FASER is located along the beam collision axis, 480 m from the ATLAS interaction point, in an unused service tunnel that formerly connected the SPS to the LEP collider – an optimal position for detecting the particles into which light and weakly interacting particles will decay.

    The first civil engineering works started in May 2020. “Because of the sloped geometry of the tunnel, the beam collision axis was actually passing under the ground,” says Jamie Boyd, FASER co-spokesperson. “Measurements from the CERN survey team showed that, by excavating a 50-cm-deep trench, sufficient space would be created to house the 5-m-long FASER detector.” In the summer, the first services and power systems were installed, and in November, FASER’s three magnets were put in place in the trench.

    The installation of FASER’s three magnets took place in November, in the narrow trench excavated by CERN’s SCE team. (Image: CERN)

    A pretty simple experiment
    At the entrance to the detector, two scintillator stations are used to veto charged particles coming through the cavern wall from the ATLAS interaction point; these are primarily high-energy muons. The veto stations are followed by a 1.5-m-long dipole magnet. This is the decay volume for long-lived particles decaying into a pair of oppositely charged particles. After the decay volume is a spectrometer consisting of two 1-m-long dipole magnets with three tracking stations, which are located at either end and in between the magnets. Each tracking station is composed of layers of precision silicon strip detectors. Scintillator stations for triggering and precision time measurements are located at the entrance and exit of the spectrometer.

    The final component is the electromagnetic calorimeter. This will identify high-energy electrons and photons and measure the total electromagnetic energy. The whole detector is cooled down to 15 °C by an independent cooling station.

    “FASER uses spare pieces from the ATLAS (for the tracker) and LHCb (for the calorimeter) experiments, which made possible its installation during Long Shutdown 2, so quickly after its approval,” highlights Jamie Boyd.

    FASER will also have a subdetector called FASERν, which is specifically designed to detect neutrinos. No neutrino produced at a particle collider has ever been detected, despite colliders producing them in huge numbers and at high energies. FASERν is made up of emulsion films and tungsten plates to act as both the target and the detector to see the neutrino interactions. FASERν should be ready for installation by the end of the year. The whole experiment will start taking data during Run 3 of the LHC, starting in 2022.

    “We are extremely excited to see this project come to life so quickly and smoothly,” says Jamie Boyd. “Of course, this would not have been possible without the expert help of the many CERN teams involved!”

    FASER is designed to study the interactions of high-energy neutrinos and search for new as-yet-undiscovered light and weakly interacting particles. Such particles are dominantly produced along the beam collision axis and may be long-lived particles, travelling hundreds of metres before decaying. The existence of such new particles is predicted by many models beyond the Standard Model that attempt to solve some of the biggest puzzles in physics, such as the nature of dark matter and the origin of neutrino masses.

    See the full article here.

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries

    Cern Courier








    European Organization for Nuclear Research (Organisation européenne pour la recherche nucléaire)(EU)[CERN] AEGIS.

  • richardmitnick 9:06 am on May 6, 2021 Permalink | Reply
    Tags: "The superconducting coils for the 11T dipoles have been delivered", , , CERN (CH) Accelerating News, , , , Physics   

    From CERN (CH) Accelerating News : “The superconducting coils for the 11T dipoles have been delivered” 

    From CERN (CH) Accelerating News

    28 April, 2021
    Anaïs Schaeffer (European Organization for Nuclear Research (Organisation européenne pour la recherche nucléaire)(CH) [CERN])

    35 niobium–tin superconducting coils have been manufactured as part of a fruitful collaboration with the company General Electric. They will be used in the 11 T dipoles for the HL-LHC.

    Control samples fitted to the ends of the niobium–tin coils’ heat-treatment mould to check the conformity of the electrical performance. (Image: CERN).

    Starting in 2018, a team of experts from the company General Electric (GE) worked with the Magnets, Superconductors and Cryogenics (TE-MSC) group at CERN to manufacture superconducting coils for the new 11 T dipoles being developed for the HL-LHC project. In January, following three years of fruitful collaboration, the 15-strong team left the Laboratory.

    The 11 T dipoles are based on superconducting niobium–tin (Nb3Sn). They are just six metres long but, thanks to their higher field, they might be able to replace some of the main 15-metre-long LHC dipoles in strategic parts of the accelerator, notably at Point 7, freeing up space for new collimators. The plan is to install a total of four 11 T dipoles for the HL-LHC.

    “From the very beginning, we established a relationship of trust between the CERN and GE teams to ensure knowledge transfer and cross-fertilisation,” explains Arnaud Devred, leader of the Magnets, Superconductors and Cryogenics group. “We have learned from their industrial approach and their organisational structure, using production units, which has helped us to improve our quality assurance. As for GE, they have developed specific skills in the manufacture of superconducting magnets thanks to their work on the 11 T dipoles, a new technology that is still evolving.”

    A total of 35 coils have been manufactured and assembled in the Large Magnet Facility on the Meyrin site, using tools provided by CERN. They will form part of the 11 T dipoles, which may be installed in the LHC during a future technical stop.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    CERN (CH) Accelerating News is a quarterly online publication for the accelerator community.
    ISSN: 2296-6536

    The publication showcases news and results from the biggest accelerator research and development projects such as ARIES, HL-LHC, TIARA, FCC study, EuroCirCol, EUPRAXIA, EASITrain as well as interesting stories on other accelerator applications. The newsletter also collects upcoming accelerator research conferences and events.

    Accelerating News is published 4 times a year, in mid March, mid June, mid September and mid December.

    You can read Accelerating News via the homepage http://www.acceleratingnews.eu or by email.

    To subscribe to Accelerating News, enter your email in the “Subscribe to our newsletter” box in the footer.


    Accelerating News evolved from the EuCARD quarterly project newsletter (see past issues), which was first published in June 2009 to a subscription list of approximately 200. Initiated by EuCARD and in collaboration with additional FP7 co-funded projects, the first edition of Accelerating News was published in April 2012 to an initial distribution list of about 800 subscribers. Currently more than 1750 members receive the quarterly issues.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: