Tagged: “phys.org” Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:37 pm on February 3, 2023 Permalink | Reply
    Tags: "Astronomers find rare Earth-mass rocky planet suitable for the search for signs of life", "phys.org", A newly discovered exoplanet could be worth searching for signs of life., A planet that orbits its home star-the red dwarf Wolf 1069 in the habitable zone., , , , , Of the more than 5000 exoplanets they have discovered so far only about a dozen have an Earth-like mass and populate the habitable zone.,   

    From The MPG Institute for Astronomy [MPG Institut für Astronomie] (DE) Via “phys.org” : “Astronomers find rare Earth-mass rocky planet suitable for the search for signs of life” 

    MPG Institut für Astronomie (DE)

    From The MPG Institute for Astronomy [MPG Institut für Astronomie] (DE)

    Via

    “phys.org”

    2.3.23

    Dr. Markus Nielbock
    Press and public relations officer
    Max Planck Institute for Astronomy, Heidelberg
    +49 6221 528-134
    pr@mpia.de

    Dr. Diana Kossakowski
    Max Planck Institute for Astronomy, Heidelberg
    kossakowski@mpia.de

    Dr. Martin Kürster
    Leitung der technischen Abteilungen
    Max Planck Institute for Astronomy, Heidelberg
    +49 6221 528-214
    kuerster@mpia.de

    1
    Artist’s conception of a rocky Earth-mass exoplanet like Wolf 1069 b orbiting a red dwarf star. If the planet had retained its atmosphere, chances are high that it would feature liquid water and habitable conditions over a wide area of its dayside. Credit: Daniel Rutter/NASA/Ames Research Center.

    A newly discovered exoplanet could be worth searching for signs of life. Analyses by a team led by astronomer Diana Kossakowski of the Max Planck Institute for Astronomy describe a planet that orbits its home star-the red dwarf Wolf 1069 in the habitable zone.

    This zone includes distances around the star for which liquid water can exist on the surface of the planet. In addition, the planet named Wolf 1069 b has an Earth-like mass. Very likely, this planet is a rocky planet that may also have an atmosphere. This makes the planet one of the few promising targets to search for signs of life-friendly conditions and biosignatures.

    When astronomers search for planets outside our solar system, they are particularly interested in Earth-like planets. Of the more than 5000 exoplanets they have discovered so far only about a dozen have an Earth-like mass and populate the habitable zone, the range in a planetary system where water can maintain its liquid form on the planet’s surface. With Wolf 1069 b, the number of such exoplanets on which life could have evolved has increased by one candidate.

    A planet with eternal day and night

    Detecting such low-mass planets is still a major challenge. Diana Kossakowski and her team at the Max Planck Institute for Astronomy in Heidelberg have taken on this task. As part of the Carmenes project, an instrument was developed specifically for the search of potentially habitable worlds. The Carmenes team is using this apparatus at the Calar Alto Observatory in Spain.


    “When we analyzed the data of the star Wolf 1069, we discovered a clear, low-amplitude signal of what appears to be a planet of roughly Earth mass,” says Diana Kossakowski. “It orbits the star within 15.6 days at a distance equivalent to one-fifteenth of the separation between the Earth and the sun,” The results of the study have now been published in the journal Astronomy & Astrophysics [below].

    2
    Simulated surface temperature map of Wolf 1069 b, assuming an Earth-like atmosphere. The map is centered at point that always faces the star. The temperatures are given in Kelvin. 273.15 Kelvin corresponds to zero degree Celsius. Liquid water would be possible on the planet’s surface inside the red circle. Credit: Kossakowski et al (2023) / MPIA

    According to the study, the surface of the dwarf star is relatively cool and thus appears orange-reddish. “As a result, the so-called habitable zone is shifted inwards,” Kossakowski explains. Despite its close distance to the central star, the planet Wolf 1069 b therefore receives only about 65% of the incident radiant power of what Earth receives from the sun. These special conditions make planets around red dwarf stars like Wolf 1069 potentially friendly to life.

    In addition, they may all share a special property. Their rotation is probably tidally locked to the orbit of its host star. In other words, the star always faces the same side of the planet. So there is eternal day, while on the other side it is always night. This is also the reason why we always face the same side of the moon.

    Climate simulations for exoplanets

    If Wolf 1069 b is assumed to be a bare and rocky planet, the average temperature even on the side facing the star would be just minus 23 degrees Celsius. However, according to existing knowledge, it is quite possible that Wolf 1069 b has formed an atmosphere. Under this assumption its temperature could have increased to plus 13 degrees, as computer simulations with climate models show. Under these circumstances, water would remain liquid and life-friendly conditions could prevail, because life as we know it depends on water.

    An atmosphere is not only a precondition for the emergence of life from a climatic point of view. It would also protect Wolf 1069 b from high-energy electromagnetic radiation and particles that would destroy possible biomolecules. The radiation and particles either stem from interstellar space or from the central star. If the star’s radiation is too intense, it can also strip off a planet’s atmosphere, as it did for Mars. But as red dwarf, Wolf 1069 emits only relatively weak radiation.

    Thus, an atmosphere may have been preserved on the newly discovered planet. It is even possible that the planet has a magnetic field that protects it from charged stellar wind particles. Many rocky planets have a liquid core, which generates a magnetic field via the dynamo effect, similar to planet Earth.

    3
    Illustration that compares three exoplanet systems of red dwarf stars hosting Earth-mass planets. The green rings indicate the individual habitable zones. Credit: J. Neidel/ MPIA graphics department.

    The difficult search for Earth-mass exoplanets

    There has been immense progress in the search for exoplanets since the first of its kind was discovered 30 years ago. Still, the signatures that astronomers look for to detect planets with Earth-like masses and diameters are relatively weak and hard to extract from the data. The Carmenes team is looking for small periodic frequency shifts in the stellar spectra. These shifts are expected to arise when a companion pulls on the host star by its gravity, causing it to wobble. As a result. the frequency of the light measured on Earth changes due to the Doppler effect.

    In the case of Wolf 1069 and its newly discovered planet, these fluctuations are large enough to be measured. One of the reasons is that the mass difference between the star and planet is relatively small, causing the star to wobble around the shared center of mass more prominently than in other cases. From the periodic signal, the mass of the planet can be estimated, as well.

    Only a handful of candidates for future exoplanet characterization

    At a distance of 31 light-years, Wolf 1069 b is the sixth closest Earth-mass planet in the habitable zone around its host star. It belongs to a small group of objects, such as Proxima Centauri b and Trappist-1 e, that are candidates for biosignature searches. However, such observations are currently beyond the capabilities of astronomical research.

    “We will probably have to wait another ten years for this,” Kossakowski points out. The Extremely Large Telescope (ELT), currently under construction in Chile, may be able to study the composition of the atmospheres of those planets and possibly even detect molecular evidence of life.

    Astronomy & Astrophysics

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The MPG Institute for Astronomy campus, Heidelberg (DE)
    The MPG Institute for Astronomy [MPG Institut für Astronomie] (DE) is a research institute of The MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] (DE). It is located in Heidelberg, Baden-Württemberg, Germany near the top of the Königstuhl, adjacent to the historic Landessternwarte Heidelberg-Königstuhl astronomical observatory. The institute primarily conducts basic research in the natural sciences in the field of astronomy.

    In addition to its own astronomical observations and astronomical research, the Institute is also actively involved in the development of observation instruments. The instruments or parts of them are manufactured in the institute’s own workshops.

    The founding of the institute in 1967 resulted from the insight that a supra-regional institute equipped with powerful telescopes was necessary in order to conduct internationally competitive astronomical research. Hans Elsässer, an astronomer, became the founding director in 1968. In February 1969, a first group of 5 employees started work in the buildings of the neighbouring Königstuhl State Observatory. The institute, which was completed in 1975, was initially dedicated to the preparation and evaluation of astronomical observations and the development of new measurement methods.

    From 1973 to 1984, it operated the Calar Alto Observatory on Calar Alto near Almería together with Spanish authorities.


    The Calar Alto Astronomical Observatory 3.5 meter Telescope, located in Almería province in Spain on Calar Alto, a 2,168-meter-high (7,113 ft) mountain in Sierra de Los Filabres(ES)

    This largest observatory on the European mainland was used equally by astronomers from both countries until 2019. On 23 May 2019, the regional government of Andalusia and the MPG signed a transfer agreement for the 50% share in the observatory. Since then, it has been owned exclusively by Spain.

    Since 2005, The MPG Institute for Astronomy has been operating the Large Binocular Telescope (LBT) together with partners from Germany, Italy and the USA and equipping it with measuring instruments.

    LBT-University of Arizona Large Binocular Telescope Interferometer, or LBTI, is a ground-based instrument connecting two 8-meter class telescopes on Mount Graham, Arizona, Altitude 3,221 m (10,568 ft.) to form the largest single-mount telescope in the world. The interferometer is designed to detect and study stars and planets outside our solar system. Credit: NASA/JPL-Caltech.

    Two scientific questions are given priority at The MPG Institute for Astronomy. One is the formation and development of stars and planets in our cosmic neighborhood. The resonating question is: Is the Sun with its inhabited planet Earth unique, or are there also conditions in the vicinity of other stars, at least the numerous sun-like ones among them, that are conducive to life? On the other hand, the area of galaxies and cosmology is about understanding the development of today’s richly structured Universe with its galaxies and stars and its emergence from the simple initial state after the Big Bang.

    The research topics at a glance:
    • Star formation and young objects, planet formation, astrobiology, interstellar matter, astrochemistry
    • Structure and evolution of the Milky Way, quasars and active galaxies, evolution of galaxies, galaxy clusters, cosmology

    Together with the Center for Astronomy at The Ruprecht Karl University of Heidelberg [Ruprecht-Karls-Universität Heidelberg](DE), the Heidelberg Institute for Theoretical Studies (HITS) and the Department of Astro- and Particle Physics of the MPI for Nuclear Physics (MPIK), the MPIA in Heidelberg is a globally renowned centre of astronomical research.

    Since 2015, the MPIA has been running the “Heidelberg Initiative for the Origins of Life” (HIFOL) together with the MPIK, the HITS, the Institute of Geosciences at Heidelberg University and the Department of Chemistry at The Ludwig Maximilians University of Munich [Ludwig-Maximilians-Universität München](DE). HIFOL brings together top researchers from astrophysics, geosciences, chemistry and the life sciences to promote, strengthen and combine scientific research towards the prerequisites for the emergence of life.

    Structure
    • Galaxies and Cosmology Department

    • Planet and Star Formation Department

    • Atmospheric Physics of Exoplanets
    • Technical Departments

    Instrumentation
    The MPIA also builds instruments or parts of them for ground-based telescopes and satellites, including the following:
    • Calar Alto Observatory (Spain)[above]
    • La Silla Observatory of the European Southern Observatory (The European Southern Observatory [La Observatorio Europeo Austral] [Observatoire européen austral][Europäische Südsternwarte](EU)(CL))
    European Southern Observatory(EU) La Silla Observatory 600 km north of Santiago de Chile at an altitude of 2400 metres.
    • Paranal Observatory and E-ELT (ESO)

    The Paranal Observatory pictured with Cerro Paranal in the background. The mountain is home to one of the most advanced ground-based telescopes in the world, the VLT. The VLT telescope consists of four unit telescopes with mirrors measuring 8.2 meters in diameter and work together with four smaller auxiliary telescopes to make interferometric observations. Each of the 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye.

    The European Southern Observatory(EU) ELT 39 meter telescope to be on top of Cerro Armazones in the Atacama Desert of northern Chile at an altitude of 3,060 metres (10,040 ft).

    • Large Binocular Telescope [above]
    • Infrared Space Observatory (The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU))

    ESA Infrared Space Observatory.

    • Herschel Space Observatory (ESA, The National Aeronautics and Space Agency)

    European Space Agency Herschel spacecraft active from 2009 to 2013.
    • James Webb Space Telescope (NASA, ESA.CSA)

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) James Webb Infrared Space Telescope(US) annotated, finally launched December 25, 2021, ten years late.

    The MPIA is also participating in the Gaia mission.

    European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganisation](EU) GAIA satellite.

    Gaia is a space mission of The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU), in which the exact positions, distances and velocities of around one billion Milky Way stars are determined.

    The MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.](DE) is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the Max Planck Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

    According to its primary goal, the MPG Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) MPG Institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.

    The MPG Institutes focus on excellence in research. The MPG Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the MPG institutes fifth worldwide in terms of research published in Nature journals (after Harvard University, The Massachusetts Institute of Technology, Stanford University and The National Institutes of Health). In terms of total research volume (unweighted by citations or impact), the Max Planck Society is only outranked by The Chinese Academy of Sciences [中国科学院](CN), The Russian Academy of Sciences [Росси́йская акаде́мия нау́к](RU) and Harvard University. The Thomson Reuters-Science Watch website placed the MPG Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.

    The MPG Society and its predecessor Kaiser Wilhelm Society hosted several renowned scientists in their fields, including Otto Hahn, Werner Heisenberg, and Albert Einstein.

    History

    The organization was established in 1911 as the Kaiser Wilhelm Society, or Kaiser-Wilhelm-Gesellschaft (KWG), a non-governmental research organization named for the then German emperor. The KWG was one of the world’s leading research organizations; its board of directors included scientists like Walther Bothe, Peter Debye, Albert Einstein, and Fritz Haber. In 1946, Otto Hahn assumed the position of President of KWG, and in 1948, the society was renamed the Max Planck Society (MPG) after its former President (1930–37) Max Planck, who died in 1947.

    The MPG Society has a world-leading reputation as a science and technology research organization. In 2006, the Times Higher Education Supplement rankings of non-university research institutions (based on international peer review by academics) placed the MPG Society as No.1 in the world for science research, and No.3 in technology research (behind AT&T Corporation and The DOE’s Argonne National Laboratory.

    The domain mpg.de attracted at least 1.7 million visitors annually by 2008 according to a Compete.com study.

    MPG Institutes and research groups

    The MPG Society consists of over 80 research institutes. In addition, the society funds a number of Max Planck Research Groups (MPRG) and International Max Planck Research Schools (IMPRS). The purpose of establishing independent research groups at various universities is to strengthen the required networking between universities and institutes of the Max Planck Society.
    The research units are primarily located across Europe with a few in South Korea and the U.S. In 2007, the Society established its first non-European centre, with an institute on the Jupiter campus of Florida Atlantic University (US) focusing on neuroscience.
    The MPG Institutes operate independently from, though in close cooperation with, the universities, and focus on innovative research which does not fit into the university structure due to their interdisciplinary or transdisciplinary nature or which require resources that cannot be met by the state universities.

    Internally, MPG Institutes are organized into research departments headed by directors such that each MPI has several directors, a position roughly comparable to anything from full professor to department head at a university. Other core members include Junior and Senior Research Fellows.

    In addition, there are several associated institutes:

    International Max Planck Research Schools

    International Max Planck Research Schools

    Together with the Association of Universities and other Education Institutions in Germany, the Max Planck Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:

    • Cologne Graduate School of Ageing Research, Cologne
    • International Max Planck Research School for Intelligent Systems, at the Max Planck Institute for Intelligent Systems located in Tübingen and Stuttgart
    • International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
    • International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
    • International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPI for Astronomy
    • International Max Planck Research School for Astrophysics, Garching at the MPI for Astrophysics
    • International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
    • International Max Planck Research School for Computer Science, Saarbrücken
    • International Max Planck Research School for Earth System Modeling, Hamburg
    • International Max Planck Research School for Elementary Particle Physics, Munich, at the MPI for Physics
    • International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the Max Planck Institute for Terrestrial Microbiology
    • International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
    • International Max Planck Research School “From Molecules to Organisms”, Tübingen at the Max Planck Institute for Developmental Biology
    • International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
    • International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPI for Gravitational Physics
    • International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the Max Planck Institute for Heart and Lung Research
    • International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
    • International Max Planck Research School for Language Sciences, Nijmegen
    • International Max Planck Research School for Neurosciences, Göttingen
    • International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
    • International Max Planck Research School for Marine Microbiology (MarMic), joint program of the Max Planck Institute for Marine Microbiology in Bremen, the University of Bremen, the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen
    • International Max Planck Research School for Maritime Affairs, Hamburg
    • International Max Planck Research School for Molecular and Cellular Biology, Freiburg
    • International Max Planck Research School for Molecular and Cellular Life Sciences, Munich
    • International Max Planck Research School for Molecular Biology, Göttingen
    • International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
    • International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster and the Max Planck Institute for Molecular Biomedicine
    • International Max Planck Research School on Multiscale Bio-Systems, Potsdam
    • International Max Planck Research School for Organismal Biology, at the University of Konstanz and the Max Planck Institute for Ornithology
    • International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion
    • International Max Planck Research School for Science and Technology of Nano-Systems, Halle at Max Planck Institute of Microstructure Physics
    • International Max Planck Research School for Solar System Science at the University of Göttingen hosted by MPI for Solar System Research
    • International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPI for Radio Astronomy (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
    • International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
    • International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at Max Planck Institute for Iron Research GmbH
    • International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg

    Max Planck Schools

    • Max Planck School of Cognition
    • Max Planck School Matter to Life
    • Max Planck School of Photonics

    Max Planck Center

    • The Max Planck Centre for Attosecond Science (MPC-AS), POSTECH Pohang
    • The Max Planck POSTECH Center for Complex Phase Materials, POSTECH Pohang

    Max Planck Institutes

    Among others:
    • Max Planck Institute for Neurobiology of Behavior – caesar, Bonn
    • Max Planck Institute for Aeronomics in Katlenburg-Lindau was renamed to Max Planck Institute for Solar System Research in 2004;
    • Max Planck Institute for Biology in Tübingen was closed in 2005;
    • Max Planck Institute for Cell Biology in Ladenburg b. Heidelberg was closed in 2003;
    • Max Planck Institute for Economics in Jena was renamed to the Max Planck Institute for the Science of Human History in 2014;
    • Max Planck Institute for Ionospheric Research in Katlenburg-Lindau was renamed to Max Planck Institute for Aeronomics in 1958;
    • Max Planck Institute for Metals Research, Stuttgart
    • Max Planck Institute of Oceanic Biology in Wilhelmshaven was renamed to Max Planck Institute of Cell Biology in 1968 and moved to Ladenburg 1977;
    • Max Planck Institute for Psychological Research in Munich merged into the Max Planck Institute for Human Cognitive and Brain Sciences in 2004;
    • Max Planck Institute for Protein and Leather Research in Regensburg moved to Munich 1957 and was united with the Max Planck Institute for Biochemistry in 1977;
    • Max Planck Institute for Virus Research in Tübingen was renamed as Max Planck Institute for Developmental Biology in 1985;
    • Max Planck Institute for the Study of the Scientific-Technical World in Starnberg (from 1970 until 1981 (closed)) directed by Carl Friedrich von Weizsäcker and Jürgen Habermas.
    • Max Planck Institute for Behavioral Physiology
    • Max Planck Institute of Experimental Endocrinology
    • Max Planck Institute for Foreign and International Social Law
    • Max Planck Institute for Physics and Astrophysics
    • Max Planck Research Unit for Enzymology of Protein Folding
    • Max Planck Institute for Biology of Ageing

     
  • richardmitnick 10:11 pm on February 2, 2023 Permalink | Reply
    Tags: "Astronomers identify 20 ultraviolet-emitting supernova remnants in the Andromeda Galaxy", "phys.org", , , , , , The University of Calgary (CA)   

    From The University of Calgary (CA) Via “phys.org” : “Astronomers identify 20 ultraviolet-emitting supernova remnants in the Andromeda Galaxy” 

    From The University of Calgary (CA)

    Via

    “phys.org”

    2.2.23

    1
    Positions of the 20 SNRs with detected diffuse UV emission (red squares) and of the 5 SNRs with likely, but confused, diffuse emission (blue squares), overlaid on the image of the Andromeda Galaxy in the F148W filter. Credit: Leahy et al, 2023.

    Using the AstroSat satellite, astronomers from the University of Calgary, Canada, have identified 20 supernova remnants (SNRs) in the Andromeda Galaxy, which exhibit diffuse ultraviolet emission.

    The finding, presented in a research paper [below] published January 25 , could help us better understand the origin and properties of ultraviolet emission in SNRs.

    SNRs are diffuse, expanding structures resulting from a supernova explosion. They contain ejected material expanding from the explosion and other interstellar material that has been swept up by the passage of the shockwave from the exploded star.

    Studies of supernova remnants are important for astronomers, as they play a key role in the evolution of galaxies, dispersing the heavy elements made in the supernova explosion and providing the energy needed for heating up the interstellar medium. SNRs are also believed to be responsible for the acceleration of galactic cosmic rays.

    Although many extragalactic SNRs have been detected to date, the ones showcasing ultraviolet (UV) emission are difficult to find, mainly due to the strong interstellar extinction for our galaxy in the UV. What is noteworthy, despite the recent progress in UV-based SNR research, is that there does not yet exist a catalog of extragalactic UV-emitting SNRs.

    That is why a team of astronomers led by Denis Leahy decided to conduct a search for UV-emitting SNRs in the nearby Andromeda Galaxy (also known as Messier 31, or M31), with the aim of generating the first catalog of such objects in another galaxy. For this purpose they employed AstroSat’s Ultraviolet Imaging Telescope (UVIT).

    “UV images of M31 were obtained by the Ultraviolet Imaging Telescope on the AstroSat satellite, and the list of SNRs was obtained from X-ray, optical and radio catalogs of SNRs in M31. We used the UVIT images to find SNRs with diffuse emission, omitting those too contaminated with stellar emission,” the researchers wrote in the paper.

    The team initially selected 177 SNRs in order to investigate whether or not they showcase diffuse ultraviolet emission. Out of the whole sample, 20 supernova remnants turned out to be UV emitters. The identified sources exhibit diffuse emission which is not associated with stars, although the strength of the diffuse emission varies.

    The astronomers compared the band luminosities of these 20 SNRs to the band luminosities of seven previously known UV-emitting SNRs in the Milky Way, Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC). In result, they found similar spectral shapes between the known SNRs and the SNRs in the Andromeda Galaxy. The finding suggests that the UV emission from the supernova remnants reported in the paper is dominated by line emission and that this emission is associated with the SNRs.

    The authors of the study propose spectroscopic observations to confirm the line nature of the UV emission from the newly identified SNRs. However, they noted that it will be difficult to perform spectroscopy for the typically crowded regions in the Andromeda Galaxy where these SNRs are located.

    research paper

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Calgary (CA) is a public research university located in Calgary, Alberta, Canada. The University of Calgary started in 1944 as the Calgary branch of the University of Alberta (CA), founded in 1908, prior to being instituted into a separate, autonomous university in 1966. It is composed of 14 faculties and over 85 research institutes and centres. The main campus is located in the northwest quadrant of the city near the Bow River and a smaller south campus is located in the city centre. The main campus houses most of the research facilities and works with provincial and federal research and regulatory agencies, several of which are housed next to the campus such as the Geological Survey of Canada. The main campus covers approximately 200 hectares (490 acres).

    A member of the U15, the University of Calgary is also one of Canada’s top research universities (based on the number of Canada Research Chairs). The university has a sponsored research revenue of $380.4 million, with total revenues exceeding $1.2 billion. The university maintains close ties to the petroleum and geoscience industry through the Department of Geosciences and the Schulich School of Engineering. The university also maintains several other departments and faculties, including the Cumming School of Medicine, the Faculty of Arts, the School of Public Policy, the Faculty of Law, and the Haskayne School of Business.

    Notable former students include Canadian Prime Minister Stephen Harper, Java computer language inventor James Gosling, Uber co-founder Garrett Camp, astronaut Robert Thirsk, and Lululemon Athletica founder Chip Wilson. The university has produced over 170,000 alumni who reside in 152 countries.

    The university offers 250 programs in post-secondary education awarding bachelors, masters, and doctorate (PhD) degrees. The University of Calgary has developed a wide range of undergraduate and graduate programs. The campus has an area of 200 hectares (490 acres) and hosts 14 faculties, 55 departments and 85 research institutes and centres (see Canadian university scientific research organizations).

    The university is accredited through Alberta’s Post-Secondary Learning Act and is considered a “comprehensive academic and research university” (CARU). CARUs offer a range of academic and professional programs, which generally lead to undergraduate and graduate level credentials, and have a strong research focus.

    The University of Calgary’s faculties are:

    Cumming School of Medicine
    Faculty of Arts
    School of Architecture, Planning and Landscape (SAPL)
    Faculty of Graduate Studies
    Faculty of Kinesiology
    Faculty of Law
    Faculty of Nursing
    Faculty of Science
    Faculty of Social Work
    Faculty of Veterinary Medicine
    Haskayne School of Business
    Schulich School of Engineering
    Werklund School of Education

    The University of Calgary has ranked in a number of post-secondary rankings. In the 2022 Academic Ranking of World Universities rankings, the university ranked 151–200 in the world and 7–8 in Canada. The 2023 QS World University Rankings ranked the university 242nd in the world, and tenth in Canada. The 2023 Times Higher Education World University Rankings ranked the university 201–250 in the world, and 8–10 in Canada. In the 2022–23 U.S. News & World Report Best Global University Ranking, the university ranked 175th in the world, and seventh in Canada. Maclean’s placed Calgary ninth in its 2023 Canadian medical-doctoral universities rankings. The university was ranked in spite of having opted out — along with several other universities in Canada — of participating in Maclean’s graduate survey since 2006.

    The university’s research performance has been noted in several bibliometric university rankings, which uses citation analysis to evaluates the impact a university has on academic publications. In 2019, the Performance Ranking of Scientific Papers for World Universities ranked the university 132nd in the world, and seventh in Canada. The University Ranking by Academic Performance 2018–19 rankings placed the university 139th in the world, and seventh in Canada.

    Along with academic and research-based rankings, the university has also been ranked by publications that evaluate the employment prospects of its graduates. In QS’s 2022 graduate employability ranking, the university ranked 131–140 in the world, and seventh in Canada.
    ===
    Newspaper

    The university has two main newspapers, UToday, and The Gauntlet. UToday is the online source for news about the University of Calgary, published by the department of University Relations in collaboration with the university’s 14 faculties. Created in September 2008, UToday reports on research discoveries at the university, major events and milestones, campus happenings and personalities, and opportunities to get involved in learning or activities. It is published every weekday throughout the year. UToday’s readers include students, faculty, staff, alumni, news media, donors, community leaders and partners, and residents at large.

    The Gauntlet is the University of Calgary’s monthly magazine publication, covering the campus and the Calgary community. First published in 1960 as a weekly student newspaper before its transition into a monthly magazine in 2017, it is primarily focused towards undergraduates.

    The university also prints Libin Life, which is published by the Libin Cardiovascular Institute of Alberta.

    Radio

    CJSW is the university’s campus radio station, broadcasting at 90.9 MHz FM. CJSW is a member of the National Campus and Community Radio Association and the University of Calgary Tri-Media Alliance in partnership with NUTV (the campus television station) and The Gauntlet (the campus newspaper). CJSW is a non-profit society maintained and operated by a group of four staff members and over 200 volunteers drawn from both the University of Calgary student body and the wider city of Calgary population. CJSW broadcasts music, spoken word and multicultural programming.

    In addition to the FM broadcast, the station can be heard at 106.9 MHz cable FM, and via Ogg Vorbis stream from its web site. Select shows are also available for podcast download.

    Television

    NUTV is one of the oldest university-based television production societies in Canada. Established in 1983 and incorporated in 1991, NUTV is a campus-based non-profit organization. NUTV offers the opportunity to University of Calgary students and community members to explore the medium of television by learning the various stages of production. This includes reporting/interviewing; hosting; writing; camera operation; lighting; sound mixing; Final Cut Pro & Adobe Creative Suite editing; producing; and directing. NUTV is part of the University of Calgary Tri-Media Alliance, comprising print The Gauntlet, radio CJSW 90.9, and television (NUTV). The University of Calgary is unique in that it is the only Canadian university that houses three media operations on-campus.

    Book publishing

    The University of Calgary Press was founded in 1981 and to date has published over 400 titles. Special emphasis is placed on three areas: works concerning the geographic regions spanning the Canadian Northwest and the American West; innovative and experimental works that challenge the established canons, subjects and formats, with special interest in art and architecture; and internationally focused manuscripts with particular attention to Latin America, World Heritage Sites, international relations and public policy.

     
  • richardmitnick 8:42 pm on February 2, 2023 Permalink | Reply
    Tags: "CDR" uses the ocean's natural ability to take up carbon on a large scale and amplifies it., "phys.org", "The ocean twilight zone could eventually store vast amounts of carbon captured from the atmosphere", , , It is the "soil" of the ocean where organic carbon and nutrients accumulate and are recycled by microbes., , , The ocean is really the only arrow in our quiver that has the ability to take up and store carbon at the scale and urgency required.,   

    From The Woods Hole Oceanographic Institution Via “phys.org” : “The ocean twilight zone could eventually store vast amounts of carbon captured from the atmosphere” 

    From The Woods Hole Oceanographic Institution

    Via

    “phys.org”

    2.2.23

    1
    A large robot, loaded with sensors and cameras, designed to explore the ocean twilight zone. Credit: Marine Imaging Technologies, LLC, Woods Hole Oceanographic Institution.

    Deep below the ocean surface, the light fades into a twilight zone where whales and fish migrate and dead algae and zooplankton rain down from above. This is the heart of the ocean’s carbon pump, part of the natural ocean processes that capture about a third of all human-produced carbon dioxide and sink it into the deep sea, where it remains for hundreds of years.

    There may be ways to enhance these processes so the ocean pulls more carbon out of the atmosphere to help slow climate change. Yet little is known about the consequences.

    Peter de Menocal, a marine paleoclimatologist and director of Woods Hole Oceanographic Institution, discussed ocean carbon dioxide removal at a recent TEDxBoston: Planetary Stewardship event. In this interview, he dives deeper into the risks and benefits of human intervention and describes an ambitious plan to build a vast monitoring network of autonomous sensors in the ocean to help humanity understand the impact.

    First, what is ocean carbon dioxide removal, and how does it work in nature?

    The ocean is like a big carbonated beverage. Although it doesn’t fizz, it has about 50 times more carbon than the atmosphere. So, for taking carbon out of the atmosphere and storing it someplace where it won’t continue to warm the planet, the ocean is the single biggest place it can go.

    Ocean carbon dioxide removal, or ocean CDR uses the ocean’s natural ability to take up carbon on a large scale and amplifies it.

    2
    Methods of ocean carbon storage. Credit: Natalie Renier/Woods Hole Oceanographic Institution.

    Carbon gets into the ocean from the atmosphere in two ways.

    In the first, air dissolves into the ocean surface. Winds and crashing waves mix it into the upper half-mile or so, and because seawater is slightly alkaline, the carbon dioxide is absorbed into the ocean.

    The second involves the biologic pump. The ocean is a living medium—it has algae and fish and whales, and when that organic material is eaten or dies, it gets recycled. It rains down through the ocean and makes its way to the ocean twilight zone, a level around 650 to 3,300 feet (roughly 200 to 1,000 meters) deep.

    The ocean twilight zone sustains biologic activity in the oceans. It is the “soil” of the ocean where organic carbon and nutrients accumulate and are recycled by microbes. It is also home to the largest animal migration on the planet. Each day trillions of fish and other organisms migrate from the depths to the surface to feed on plankton and one another, and go back down, acting like a large carbon pump that captures carbon from the surface and shunts it down into the deep oceans where it is stored away from the atmosphere.

    3
    Credit: The Conversation.

    Why is ocean CDR drawing so much attention right now?

    The single most shocking sentence I have read in my career was in the Intergovernmental Panel on Climate Change’s Sixth Assessment Report, released in 2021. It said that we have delayed action on climate change for so long that removing carbon dioxide from the atmosphere is now necessary for all pathways to keep global warming under 1.5 degrees Celsius (2.7 F). Beyond that, climate change’s impacts become increasingly dangerous and unpredictable.

    Because of its volume and carbon storage potential, the ocean is really the only arrow in our quiver that has the ability to take up and store carbon at the scale and urgency required.

    A 2022 report by the national academies outlined a research strategy for ocean carbon dioxide removal. The three most promising methods all explore ways to enhance the ocean’s natural ability to take up more carbon.

    The first is ocean alkalinity enhancement. The oceans are salty—they’re naturally alkaline, with a pH of about 8.1. Increasing alkalinity by dissolving certain powdered rocks and minerals makes the ocean a chemical sponge for atmospheric CO2.

    A second method adds micronutrients to the surface ocean, particularly soluble iron. Very small amounts of soluble iron can stimulate greater productivity, or algae growth, which drives a more vigorous biologic pump. Over a dozen of these experiments have been done, so we know it works.

    Third is perhaps the easiest to understand—grow kelp in the ocean, which captures carbon at the surface through photosynthesis, then bale it and sink it to the deep ocean.

    But all of these methods have drawbacks for large-scale use, including cost and unanticipated consequences.

    I’m not advocating for any one of these, or for ocean CDR more generally. But I do believe accelerating research to understand the impacts of these methods is essential. The ocean is essential for everything humans depend on—food, water, shelter, crops, climate stability. It’s the lungs of the planet. So we need to know if these ocean-based technologies to reduce carbon dioxide and climate risk are viable, safe and scalable.

    You’ve talked about building an ‘internet of the ocean’ to monitor changes there. What would that involve?

    The ocean is changing rapidly, and it is the single biggest cog in Earth’s climate engine, yet we have almost no observations of the subsurface ocean to understand how these changes are affecting the things we care about. We’re basically flying blind at a time when we most need observations. Moreover, if we were to try any of these carbon removal technologies at any scale right now, we wouldn’t be able to measure or verify their effectiveness or assess impacts on ocean health and ecosystems.

    4
    Top predators such as whales, tuna, swordfish and sharks rely on the twilight zone for food, diving down hundreds or even thousands of feet to catch their prey. Credit: Eric S. Taylor/Woods Hole Oceanographic Institution.

    So, we are leading an initiative at Woods Hole Oceanographic Institution to build the world’s first internet for the ocean, called the Ocean Vital Signs Network. It’s a large network of moorings and sensors that provides 4D eyes on the oceans—the fourth dimension being time—that are always on, always connected to monitor these carbon cycling processes and ocean health.

    Right now, there is about one ocean sensor in the global Argo program for every patch of ocean the size of Texas. These go up and down like pogo sticks, mostly measuring temperature and salinity.

    We envision a central hub in the middle of an ocean basin where a dense network of intelligent gliders and autonomous vehicles measure ocean properties including carbon and other vital signs of ocean and planetary health. These vehicles can dock, repower, upload data they’ve collected and go out to collect more. The vehicles would be sharing information and making intelligent sampling decisions as they measure the chemistry, biology and environmental DNA for a volume of the ocean that’s really representative of how the ocean works.

    Having that kind of network of autonomous vehicles, able to come back in and power up in the middle of the ocean from wave or solar or wind energy at the mooring site and send data to a satellite, could launch a new era of ocean observing and discovery.

    Does the technology needed for this level of monitoring exist?

    1
    Mesobot starts its descent toward the ocean twilight zone. Credit: Marine Imaging Technologies, LLC, Woods Hole Oceanographic Institution.

    We’re already doing much of this engineering and technology development. What we haven’t done yet is stitch it all together.

    For example, we have a team that works with blue light lasers for communicating in the ocean. Underwater, you can’t use electromagnetic radiation as cellphones do, because seawater is conductive. Instead, you have to use sound or light to communicate underwater.

    We also have an acoustics communications group that works on swarming technologies and communications between nearby vehicles. Another group works on how to dock vehicles into moorings in the middle of the ocean. Another specializes in mooring design. Another is building chemical sensors and physical sensors that measure ocean properties and environmental DNA.

    This summer, 2023, an experiment in the North Atlantic called the Ocean Twilight Zone Project will image the larger functioning of the ocean over a big piece of real estate at the scale at which ocean processes actually work.

    We’ll have acoustic transceivers that can create a 4D image over time of these dark, hidden regions, along with gliders, new sensors we call “minions” that will be looking at ocean carbon flow, nutrients and oxygen changes. “Minions” are basically sensors the size of a soda bottle that go down to a fixed depth, say 1,000 meters (0.6 miles), and use essentially an iPhone camera pointing up to take pictures of all the material floating down through the water column. That lets us quantify how much organic carbon is making its way into this old, cold deep water, where it can remain for centuries.


    The Ocean Twilight Zone: Earth’s Final Frontier.
    Premiered Mar 11, 2020
    The mysteries of the ocean twilight zone are waiting to be explored. What was once thought to be desert-like isn’t a desert at all. Where the deep sea creatures lurk there are incredible biomass and biodiversity. The ocean twilight zone is a huge habitat that is very difficult to explore. Woods Hole Oceanographic Institution is poised to change this because we have the engineers that can help us overcome these challenges. Making new discoveries in ocean exploration is more important now than ever.

    For the first time we’ll be able to see just how patchy productivity is in the ocean, how carbon gets into the ocean and if we can quantify those carbon flows.

    That’s a game-changer. The results can help establish the effectiveness and ground rules for using CDR. It’s a Wild West out there—nobody is watching the oceans or paying attention. This network makes observation possible for making decisions that will affect future generations.

    Do you believe ocean CDR is the right answer?

    Humanity doesn’t have a lot of time to reduce carbon emissions and to lower carbon dioxide concentrations in the atmosphere.

    The reason scientists are working so diligently on this is not because we’re big fans of CDR, but because we know the oceans may be able to help. With an ocean internet of sensors, we can really understand how the ocean works including the risks and benefits of ocean CDR.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Mission Statement

    The Woods Hole Oceanographic Institution is dedicated to advancing knowledge of the ocean and its connection with the Earth system through a sustained commitment to excellence in science, engineering, and education, and to the application of this knowledge to problems facing society.

    Vision & Mission

    The ocean is a defining feature of our planet and crucial to life on Earth, yet it remains one of the planet’s last unexplored frontiers. For this reason, WHOI scientists and engineers are committed to understanding all facets of the ocean as well as its complex connections with Earth’s atmosphere, land, ice, seafloor, and life—including humanity. This is essential not only to advance knowledge about our planet, but also to ensure society’s long-term welfare and to help guide human stewardship of the environment. WHOI researchers are also dedicated to training future generations of ocean science leaders, to providing unbiased information that informs public policy and decision-making, and to expanding public awareness about the importance of the global ocean and its resources.

    The Institution is organized into six departments, the Cooperative Institute for Climate and Ocean Research, and a marine policy center. Its shore-based facilities are located in the village of Woods Hole, Massachusetts and a mile and a half away on the Quissett Campus. The bulk of the Institution’s funding comes from grants and contracts from the National Science Foundation and other government agencies, augmented by foundations and private donations.

    WHOI scientists, engineers, and students collaborate to develop theories, test ideas, build seagoing instruments, and collect data in diverse marine environments. Ships operated by WHOI carry research scientists throughout the world’s oceans. The WHOI fleet includes two large research vessels (R/V Atlantis and R/V Neil Armstrong); the coastal craft Tioga; small research craft such as the dive-operation work boat Echo; the deep-diving human-occupied submersible Alvin; the tethered, remotely operated vehicle Jason/Medea; and autonomous underwater vehicles such as the REMUS and SeaBED.
    WHOI offers graduate and post-doctoral studies in marine science. There are several fellowship and training programs, and graduate degrees are awarded through a joint program with the Massachusetts Institute of Technology. WHOI is accredited by the New England Association of Schools and Colleges . WHOI also offers public outreach programs and informal education through its Exhibit Center and summer tours. The Institution has a volunteer program and a membership program, WHOI Associate.

    On October 1, 2020, Peter B. de Menocal became the institution’s eleventh president and director.

    History

    In 1927, a National Academy of Sciences committee concluded that it was time to “consider the share of the United States of America in a worldwide program of oceanographic research.” The committee’s recommendation for establishing a permanent independent research laboratory on the East Coast to “prosecute oceanography in all its branches” led to the founding in 1930 of the Woods Hole Oceanographic Institution.

    A $2.5 million grant from the Rockefeller Foundation supported the summer work of a dozen scientists, construction of a laboratory building and commissioning of a research vessel, the 142-foot (43 m) ketch R/V Atlantis, whose profile still forms the Institution’s logo.

    WHOI grew substantially to support significant defense-related research during World War II, and later began a steady growth in staff, research fleet, and scientific stature. From 1950 to 1956, the director was Dr. Edward “Iceberg” Smith, an Arctic explorer, oceanographer and retired Coast Guard rear admiral.

    In 1977 the institution appointed the influential oceanographer John Steele as director, and he served until his retirement in 1989.

    On 1 September 1985, a joint French-American expedition led by Jean-Louis Michel of IFREMER and Robert Ballard of the Woods Hole Oceanographic Institution identified the location of the wreck of the RMS Titanic which sank off the coast of Newfoundland 15 April 1912.

    On 3 April 2011, within a week of resuming of the search operation for Air France Flight 447, a team led by WHOI, operating full ocean depth autonomous underwater vehicles (AUVs) owned by the Waitt Institute discovered, by means of sidescan sonar, a large portion of debris field from flight AF447.

    In March 2017 the institution effected an open-access policy to make its research publicly accessible online.

    The Institution has maintained a long and controversial business collaboration with the treasure hunter company Odyssey Marine. Likewise, WHOI has participated in the location of the San José galleon in Colombia for the commercial exploitation of the shipwreck by the Government of President Santos and a private company.

    In 2019, iDefense reported that China’s hackers had launched cyberattacks on dozens of academic institutions in an attempt to gain information on technology being developed for the United States Navy. Some of the targets included the Woods Hole Oceanographic Institution. The attacks have been underway since at least April 2017.

     
  • richardmitnick 11:45 pm on February 1, 2023 Permalink | Reply
    Tags: "phys.org", "The bubbling universe - A previously unknown phase transition in the early universe", , , , , , The University of Southern Denmark[Syddansk Universitet](DK)   

    From The University of Southern Denmark[Syddansk Universitet](DK) [[lit. ”South Danish University”] Via “phys.org” : “The bubbling universe – A previously unknown phase transition in the early universe” 

    From The University of Southern Denmark[Syddansk Universitet](DK) [[lit. ”South Danish University”]

    Via

    “phys.org”

    2.1.23

    1
    AI generated illustration of colliding bubbles in early universe. Credit: Birgitte Svennevig, University of Southern Denmark.

    Think of bringing a pot of water to the boil: As the temperature reaches the boiling point, bubbles form in the water, burst and evaporate as the water boils. This continues until there is no more water changing phase from liquid to steam.

    This is roughly the idea of what happened in the very early universe, right after the Big Bang, 13.7 billion years ago.

    The idea comes from particle physicists Martin S. Sloth from the Center for Cosmology and Particle Physics Phenomenology at University of Southern Denmark and Florian Niedermann from the Nordic Institute for Theoretical Physics (NORDITA) in Stockholm. Niedermann is a previous postdoc in Sloth’s research group. In this new scientific article, they present an even stronger basis for their idea.

    Many bubbles crashing into each other

    “One must imagine that bubbles arose in various places in the early universe. They got bigger and they started crashing into each other. In the end, there was a complicated state of colliding bubbles, which released energy and eventually evaporated,” said Martin S. Sloth.

    The background for their theory of phase changes in a bubbling universe is a highly interesting problem with calculating the so-called Hubble constant; a value for how fast the universe is expanding. Sloth and Niedermann believe that the bubbling universe plays a role here.

    The Hubble constant can be calculated very reliably by, for example, analyzing cosmic background radiation or by measuring how fast a galaxy or an exploding star is moving away from us. According to Sloth and Niedermann, both methods are not only reliable, but also scientifically recognized. The problem is that the two methods do not lead to the same Hubble constant. Physicists call this problem “the Hubble tension.”

    Is there something wrong with our picture of the early universe?

    “In science, you have to be able to reach the same result by using different methods, so here we have a problem. Why don’t we get the same result when we are so confident about both methods?” said Florian Niedermann.

    Sloth and Niedermann believe they have found a way to get the same Hubble constant, regardless of which method is used. The path starts with a phase transition and a bubbling universe—and thus an early, bubbling universe is connected to “the Hubble tension.” “If we assume that these methods are reliable—and we think they are—then maybe the methods are not the problem. Maybe we need to look at the starting point, the basis, that we apply the methods to. Maybe this basis is wrong.”

    2
    AI generated illustration of colliding bubbles in the universe. Credit: Birgitte Svennevig, University of Southern Denmark.

    An unknown dark energy

    The basis for the methods is the so-called Standard Model, which assumes that there was a lot of radiation and matter, both normal and dark, in the early universe, and that these were the dominant forms of energy. The radiation and the normal matter were compressed in a dark, hot and dense plasma; the state of the universe in the first 380.000 years after Big Bang.

    The Universe according to the Standard Model © lower left edge.

    When you base your calculations on the Standard Model, you arrive at different results for how fast the universe is expanding—and thus different Hubble constants.

    But maybe a new form of dark energy was at play in the early universe? Sloth and Niedermann think so.

    If you introduce the idea that a new form of dark energy in the early universe suddenly began to bubble and undergo a phase transition, the calculations agree. In their model, Sloth and Niedermann arrive at the same Hubble constant when using both measurement methods. They call this idea New Early Dark Energy—NEDE.

    Change from one phase to another—like water to steam

    Sloth and Niedermann believe that this new, dark energy underwent a phase transition when the universe expanded, shortly before it changed from the dense and hot plasma state to the universe we know today.

    “This means that the dark energy in the early universe underwent a phase transition, just as water can change phase between frozen, liquid and steam. In the process, the energy bubbles eventually collided with other bubbles and along the way released energy,” said Niedermann.

    “It could have lasted anything from an insanely short time—perhaps just the time it takes two particles to collide—to 300,000 years. We don’t know, but that is something we are working to find out,” added Sloth.

    Do we need new physics?

    So, the phase transition model is based on the fact that the universe does not behave as the Standard Model tells us. It may sound a little scientifically crazy to suggest that something is wrong with our fundamental understanding of the universe; that you can just propose the existence of hitherto unknown forces or particles to solve the Hubble tension.

    “But if we trust the observations and calculations, we must accept that our current model of the universe cannot explain the data, and then we must improve the model. Not by discarding it and its success so far, but by elaborating on it and making it more detailed so that it can explain the new and better data,” said Martin S. Sloth, adding, “It appears that a phase transition in the dark energy is the missing element in the current Standard Model to explain the differing measurements of the universe’s expansion rate.”

    The findings are published in the journal Physics Letters B.
    https://www.sciencedirect.com/science/article/pii/S037026932200689X

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Southern Denmark [Syddansk Universitet](DK) [lit. ”South Danish University”[Syddansk Universitet], abbr. SDU] is a university in Denmark that has campuses located in Southern Denmark and on Zealand.

    The university offers a number of joint programmes in co-operation with The University of Flensburg [Europa-Universität Flensburg] (DE) and the Christian-Albrecht University of Kiel [Christian-Albrechts-Universität zu Kiel](DE). Contacts with regional industries and the international scientific community are strong.

    With its 29,674 enrolled students (as of 2016), the university is both the third-largest and, given its roots in Odense University, the third-oldest Danish university (fourth if one includes The Technical University of Denmark [Danmarks Tekniske Universitet](DK)). Since the introduction of the ranking systems in 2012, the University of Southern Denmark has consistently been ranked as one of the top 50 young universities in the world by both the Times Higher Education World University Rankings of the Top 100 Universities Under 50 and the QS World University Rankings of the Top 50 Universities Under 50.

    The University of Southern Denmark was established in 1998 when Odense University, the Southern Denmark School of Business and Engineering and the South Jutland University Centre were merged. The University Library of Southern Denmark was also merged with the university in 1998. As the original Odense University was established in 1966, the University of Southern Denmark celebrated their 50-year anniversary on September 15, 2016.

    In 2006, the Odense University College of Engineering was merged into the university and renamed as the Faculty of Engineering. After being located in different parts of Odense for several years, a brand new Faculty of Engineering building physically connected to the main Odense Campus was established and opened in 2015. In 2007, the Business School Centre in Slagelse (Handelshøjskolecentret Slagelse) and the National Institute of Public Health (Statens Institut for Folkesundhed) were also merged into the University of Southern Denmark.

    Princess Marie took over the role of the patron of the university in 2009.
    ===
    As a national institution the University of Southern Denmark (SDU) comprises five faculties – Humanities, Science, Engineering, Social Sciences and Health Sciences totaling 32 departments, 11 research centers and a university library. University Library of Southern Denmark is also a part of the university.

    Research activities and student education make up the core activities of the university. The University of Southern Denmark also has widespread cooperation with business and industry in the region and considerable activities within continuing education. The university offers a number of degrees taught in English; examples include European Studies and American Studies.

    The faculty of all six campuses comprises approximately 1,200 researchers in Odense, Kolding, Esbjerg, Sønderborg, Slagelse and Copenhagen; approximately 18,000 students are enrolled. The University of Southern Denmark offers programmes in five different faculties – Humanities, Science, Engineering, Social Sciences, and Health Sciences. It incorporates approximately 35 institutes, 30 research centres, and a well-equipped university library.

    The university offers a wide range of traditional disciplines as well as a broad selection of business and engineering studies. In recent years the number of options available has been considerably expanded. Examples include the introduction of a very successful Journalism programme in Odense, Information Science in Kolding, and a Mechatronics Engineering programme in Sønderborg. The educational environments on the Jutland campuses have also been strengthened through the creation of new programmes such as a bachelor’s degree in Sociology and Cultural Analysis, a bachelor’s degree in Business Administration with Sports Management, a bachelor’s in Public Health Science in Esbjerg, Danish and English Language Studies in Kolding, and a variety of engineering programmes and European Studies in Sønderborg. Moreover, the University of Southern Denmark is the only university in Scandinavia that offers a degree programme in chiropractic studies (Clinical Biomechanics).

    The university focuses on areas such as communication, information technology, and biotechnology. Other areas of research are pursued through a number of national research centres at the university. Examples include The Hans Christian Andersen Center, the Centre for Sound Communication, and the Danish Biotechnology Instrument Centre. Odense in particular focuses on research within the field of geriatrics.

    Co-operation with the business community has resulted in three substantial donations from some of the giants in Danish industry: Odense is the home of the Maersk Mc-Kinney Moller Institute for Production Technology, where robot technology is one of the many research areas. The Mads Clausen Institute in Sønderborg is engaged in the design and development of software for integration in the intelligent products of the future. Thanks to funding from Kompan and Lego, a research environment for the investigation of child behaviour and development has also been established.

    The university is also hosting the Danish Institute for Advanced Study (DIAS), which brings outstanding researchers together in an interdisciplinary centre for fundamental research and intellectual inquiry. The Danish IAS exists to encourage and support curiosity-driven research in the sciences and humanities, and thereby unlock new revolutionary ideas.

     
  • richardmitnick 10:47 am on February 1, 2023 Permalink | Reply
    Tags: "Climate change may cut US forest inventory by a fifth this century", "phys.org", , , ,   

    From The North Carolina State University Via “phys.org” : “Climate change may cut US forest inventory by a fifth this century” 

    NC State bloc

    From The North Carolina State University

    Via

    “phys.org”

    1.31.23

    1
    Mountain forests. Credit: Alek Kalinowski on Unsplash.

    A study led by a North Carolina State University researcher found that under more severe climate warming scenarios, the inventory of trees used for timber in the continental United States could decline by as much as 23% by 2100. The largest inventory losses would occur in two of the leading timber regions in the U.S., which are both in the South.

    Researchers say their findings show modest impacts on forest product prices through the end of the century, but suggest bigger impacts in terms of storing carbon in U.S. forests. Two-thirds of U.S. forests are classified as timberlands.

    “We already see some inventory decline at baseline in our analysis, but relative to that, you could lose, additionally, as much as 23% of the U.S. forest inventory,” said the study’s lead author Justin Baker, associate professor of forestry and environmental resources at North Carolina State University. “That’s a pretty dramatic change in standing forests.”

    In the study, which is published in Forest Policy and Economics [below], researchers used computer modeling to project how 94 individual tree species in the continental United States will grow under six climate warming scenarios through 2100. They also considered the impact of two different economic scenarios on demand growth for forestry products. The researchers compared their outcomes for forest inventory, harvest, prices and carbon sequestration to scenarios with no climate change. Researchers said their methods could provide a more nuanced picture of the future forest sector under high-impact climate change scenarios compared to other models.

    “Many past studies show a pretty optimistic picture for forests under climate change because they see a big boost in forest growth from additional carbon dioxide in the atmosphere,” Baker said. “The effect that carbon dioxide has on photosynthesis in some of those models tends to outweigh the losses you see from precipitation and temperature induced changes in forest productivity and tree mortality. We have a model that is specific to individual tree species, and that allows us to better understand how climate factors influence growth rates and mortality.”

    Researchers found that in certain regions trees would grow more slowly in higher temperatures, and die faster. Combined with increasing harvest levels and greater development pressures, that led to declines in the total tree inventory. They projected the largest losses would be in the Southeast and South-Central regions, which are two of the three most productive timber supply regions in the U.S. Those regions could see tree inventories shrink by as much as 40% by 2095 compared to one of their baseline scenarios. Due to declines in pine products, the researchers projected softwood lumber prices could increase as much as 32% by 2050.

    “We found pretty high levels of sensitivity to warming and precipitation changes for productive pine species in the South, especially when climate change is combined with high forest product demand growth,” Baker said.

    However, the researchers projected gains in tree supplies in the Rocky Mountain and Pacific Southwest regions, driven by higher rates of death of certain trees that lead to larger harvests initially, followed by the growth of more heat-tolerant species.

    “These are regions losing a lot of inventory right now due to pests and fire disturbance,” Baker said. “What you’re seeing is a higher level of replacement with climate adaptive species like juniper, which are more tolerant to future growing conditions.”

    Combining the effects from all the regions, researchers projected total losses of U.S. tree inventory of 3 to 23% compared to baseline. They projected losses in carbon sequestration in most scenarios, and estimated the value of lost carbon stored in U.S. forests up to $5.5 billion per year.

    They found the economic impact of climate change on the overall U.S. forest products industry value could range from a loss of as much as $2.6 billion per year—representing 2.5% of the value of the industry—or a gain in value of more than $200 million per year.

    “We saw that the markets could be more resilient than the forests themselves,” Baker said. “Your market effects may seem modest in terms of the effect it has on the consumers and producers, but those impacts are small compared to the carbon sequestration value that forests provide on an annual basis.”

    Researchers say more studies are needed to bring the future of U.S. forestry into sharper focus.

    “We don’t know a lot about how disturbance-related mortality or loss in tree productivity is going to bear out across the landscape as temperatures get warmer,” Baker said. “We did our best to address a couple pieces of the puzzle with temperature and precipitation changes, and interactions between climate and market demand, but a lot more work needs to be done to get a good handle on climate change and forestry.”

    Forest Policy and Economics

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NC State campus

    The North Carolina State University was founded with a purpose: to create economic, societal and intellectual prosperity for the people of North Carolina and the country. We began as a land-grant institution teaching the agricultural and mechanical arts. Today, we’re a pre-eminent research enterprise that excels in science, technology, engineering, math, design, the humanities and social sciences, textiles and veterinary medicine.

    North Carolina State University students, faculty and staff take problems in hand and work with industry, government and nonprofit partners to solve them. Our 34,000-plus high-performing students apply what they learn in the real world by conducting research, working in internships and co-ops, and performing acts of world-changing service. That experiential education ensures they leave here ready to lead the workforce, confident in the knowledge that NC State consistently rates as one of the best values in higher education.

    North Carolina State University is a public land-grant research university in Raleigh, North Carolina. Founded in 1887 and part of the University of North Carolina system, it is the largest university in the Carolinas. The university forms one of the corners of the “Research Triangle” together with Duke University in Durham and the University of North Carolina-Chapel Hill. It is classified among “R1: Doctoral Universities – Very high research activity”.

    The North Carolina General Assembly established the North Carolina College of Agriculture and Mechanic Arts, now North Carolina State University, on March 7, 1887, originally as a land-grant college. The college underwent several name changes and officially became North Carolina State University at Raleigh in 1965, and by longstanding convention, the “at Raleigh” portion was omitted. Today, North Carolina State University has an enrollment of more than 35,000 students, making it among the largest in the country. North Carolina State University has historical strengths in engineering, statistics, agriculture, life sciences, textiles, and design and offers bachelor’s degrees in 106 fields of study. The graduate school offers master’s degrees in 104 fields, doctoral degrees in 61 fields, and a Doctor of Veterinary Medicine.

    North Carolina State University athletic teams are known as the Wolfpack. The name was adopted in 1922 when a disgruntled fan described the behavior of the student body at athletic events as being “like a wolf pack.” They compete in NCAA Division I and have won eight national championships: two NCAA championships, two AIAW championships, and four titles under other sanctioning bodies.

    The North Carolina General Assembly founded North Carolina State University on March 7, 1887 as a land-grant college under the name “North Carolina College of Agriculture and Mechanic Arts,” or “North Carolina A&M” for short. In the segregated system, it was open only to white students. As a land-grant college, North Carolina A&M would provide a liberal and practical education while focusing on military tactics, agriculture, and the mechanical arts without excluding classical studies. Since its founding, the university has maintained these objectives while building on them. After opening in 1889, North Carolina A&M saw its enrollment fluctuate and its mandate expand. In 1917, it changed its name to “North Carolina State College of Agriculture and Engineering”—or “North Carolina State” for short. During the Great Depression, the North Carolina state government, under Governor O. Max Gardner, administratively combined the University of North Carolina, the Woman’s College (now the University of North Carolina-Greensboro), and North Carolina State University. This conglomeration became the University of North Carolina in 1931. In 1937 Blake R Van Leer joined as Dean and started the graduate program for engineering. Following World War II, the university grew and developed. The G.I. Bill enabled thousands of veterans to attend college, and enrollment shot past the 5,000 mark in 1947.

    State College created new academic programs, including the School of Architecture and Landscape Design in 1947 (renamed as the School of Design in 1948), the School of Education in 1948, and the School of Forestry in 1950. In the summer of 1956, following the US Supreme Court ruling in Brown v. Board of Education (1954) that segregated public education was unconstitutional, North Carolina State College enrolled its first African-American undergraduates, Ed Carson, Manuel Crockett, Irwin Holmes, and Walter Holmes.

    In 1962, State College officials desired to change the institution’s name to North Carolina State University. Consolidated university administrators approved a change to the University of North Carolina at Raleigh, frustrating many students and alumni who protested the change with letter writing campaigns. In 1963, State College officially became North Carolina State of the University of North Carolina. Students, faculty, and alumni continued to express dissatisfaction with this name, however, and after two additional years of protest, the name was changed to the current North Carolina State University at Raleigh. However, by longstanding convention, the “at Raleigh” portion is omitted, and the shorter names “North Carolina State University” and “NC State University” are accepted on first reference in news stories. Indeed, school officials discourage using “at Raleigh” except when absolutely necessary, as the full name implies that there is another branch of the university elsewhere in the state.

    In 1966, single-year enrollment reached 10,000. In the 1970s enrollment surpassed 19,000 and the School of Humanities and Social Sciences was added.

    Celebrating its centennial in 1987, North Carolina State University reorganized its internal structure, renaming all its schools to colleges (e.g. School of Engineering to the College of Engineering). Also in this year, it gained 700 acres (2.8 km^2) of land that was developed as Centennial Campus. Since then, North Carolina State University has focused on developing its new Centennial Campus. It has invested more than $620 million in facilities and infrastructure at the new campus, with 62 acres (0.3 km^2) of space being constructed. Sixty-one private and government agency partners are located on Centennial Campus.

    North Carolina State University has almost 8,000 employees, nearly 35,000 students, a $1.495 billion annual budget, and a $1.4 billion endowment. It is the largest university in the state and one of the anchors of North Carolina’s Research Triangle, together with Duke University and the University of North Carolina- Chapel Hill.

    In 2009, North Carolina State University canceled a planned appearance by the Dalai Lama to speak on its Raleigh campus, citing concerns about a Chinese backlash and a shortage of time and resources.

    North Carolina State University Libraries Special Collections Research Center, located in D.H. Hill Library, maintains a website devoted to NC State history entitled Historical State.

    North Carolina State University is one of 17 institutions that constitute the University of North Carolina system. Each campus has a high degree of independence, but each submits to the policies of the UNC system Board of Governors. The 32 voting members of the Board of Governors are elected by the North Carolina General Assembly for four-year terms. President Thomas W. Ross heads the system.

    The Board of Trustees of North Carolina State University has thirteen members and sets all policies for the university. The UNC system Board of Governors elects eight of the trustees and the Governor of North Carolina appoints four. The student body president serves on the Board of Trustees as a voting member. The UNC system also elects the Chancellor of North Carolina State University.

    The Board of Trustees administers North Carolina State University’s eleven academic colleges. Each college grants its own degrees with the exception of the First Year College which provides incoming freshmen the opportunity to experience several disciplines before selecting a major. The College of Agriculture and Life Sciences is the only college to offer associate’s degrees and the College of Veterinary Medicine does not grant undergraduate degrees. Each college is composed of numerous departments that focus on a particular discipline or degree program, for example Food Science, Civil Engineering, Genetics or Accounting. There are a total of 66 departments administered by all eleven NC State colleges.

    In total, North Carolina State University offers nine associate’s degrees in agriculture, bachelor’s degrees in 102 areas of study, master’s degrees in 108 areas and doctorate degrees in 60 areas. North Carolina State University is known for its programs in agriculture, engineering, textiles, and design. The textile and paper engineering programs are notable, given the uniqueness of the subject area.

    As of the 2018-2019 school year, North Carolina State University has the following colleges and academic departments:

    College of Agriculture and Life Sciences
    College of Design
    College of Education
    College of Engineering
    College of Humanities and Social Sciences
    College of Natural Resources
    Poole College of Management
    College of Sciences
    Wilson College of Textiles
    College of Veterinary Medicine
    The Graduate School
    University College

    In 2014 – 2015 North Carolina State University became part of only fifty-four institutions in the U.S. to have earned the “Innovation and Economic Prosperity University” designation by the Association of Public and Land-grant Universities.

    For 2020, U.S. News & World Report ranks North Carolina State University tied for 84th out of all national universities and tied for 34th out of public universities in the U.S., tied at 31st for “most innovative” and 69th for “best value” schools.

    North Carolina State University’s College of Engineering was tied for 24th by U.S. News & World Report, with many of its programs ranking in the top 30 nationally. North Carolina State University’s Nuclear Engineering program is considered to be one of the best in the world and in 2020, was ranked 3rd in the country (behind The Massachusetts Institute of Technology and the University of Michigan-Ann Arbor ). The biological and agricultural engineering programs are also widely recognized and were ranked 4th nationally. In 2019 North Carolina State University’s manufacturing and industrial engineering program was ranking 13th in the nation, and material science at 15th. Other notable programs included civil engineering at 20th, environmental engineering tied at 21st, chemical engineering tied for 22nd, computer engineering at 28th, and biomedical engineering ranking 28th nationally in 2019. In 2019, the Academic Ranking of World Universities ranked NC State’s electrical engineering program 9th internationally and chemical engineering 20th. In 2020, The Princeton Review ranked NC State 36th for game design.

    North Carolina State University is also home to the only college dedicated to textiles in the country, the Wilson College of Textiles, which is a partner of the National Council of Textile Organizations and is widely regarded as one of the best textiles programs in the world. In 2020 the textile engineering program was ranked 1st nationally by College Factual. In 2017, Business of Fashion Magazine ranked the college’s fashion and apparel design program 8th in the country and 30th in the world. In 2018, Fashion Schools ranked the college’s fashion and textile management program 11th in the nation.

    North Carolina State University’s Masters program in Data Analytics was the first in the United States. Launched in 2007, it is part of the Institute for Advanced Analytics and was created as a university-wide multidisciplinary initiative to meet the rapidly growing demand in the labor market for analytics professionals. In 2012, Thomas H. Davenport and D.J. Patil highlighted the MSA program in Harvard Business Review as one of only a few sources of talent with proven strengths in data science.

    North Carolina State University is known for its College of Veterinary Medicine and in 2020 it was ranked 4th nationally, by U.S. News & World Report, 25th internationally by NTU Ranking and 36th internationally by the Academic Ranking of World Universities.

    In 2020, North Carolina State University’s College of Design was ranked 25th by College Factual. In 2018, the Animation Career Review ranked North Carolina State University’s Graphic Design program 4th in the country and best among public universities.

    In 2020, the College of Education tied for 45th in the U.S. and the Poole College of Management is tied for 52nd among business schools. North Carolina State University’s Entrepreneurship program is ranked 10th internationally among undergraduate programs by The Princeton Review in 2020. For 2010 the Wall Street Journal surveyed recruiters and ranked NC State number 19 among the top 25 recruiter picks. In 2018, U.S. News & World Report ranked the Department of Statistics 16th (tied) in the nation.

    In fiscal year 2019, North Carolina State University received 95 awards and $29,381,782 in National Institutes of Health (NIH) Funds for Research. For fiscal year 2017, NC State was ranked 45th in total research expenditure by the National Science Foundation.

    Kiplinger’s Personal Finance placed North Carolina State University 9th in its 2018 ranking of best value public colleges in the United States.

     
  • richardmitnick 10:25 pm on January 31, 2023 Permalink | Reply
    Tags: "New protocluster of massive quiescent galaxies discovered", "phys.org", , , , , Keck I telescope,   

    From The University of Tokyo [(東京大学](JP) Via “phys.org” : “New protocluster of massive quiescent galaxies discovered” 

    From The University of Tokyo [(東京大学](JP)

    Via

    “phys.org”

    1.32.23

    1
    Spectra of four quiescent galaxies in the protocluster QO-1000 with significant absorption lines. Credit: Ito et al, 2023
    Figure 2. Left panel: Spectra of four quiescent galaxies with significant absorption lines. The object spectra are shown with orange shading, and the noise spectra are shown in dark shading on each panel. In addition to QG301560 and QG280611, whose spectral analyses were conducted with binned spectra, the others’ spectra are also re-binned over 4 pixels just for illustrative purposes. The blue lines are the best fit from SLINEFIT. The gray-masked regions are not observed or largely affected by the skylines and not used for the fitting. Right panel: Blue and black lines indicate the probability distribution of the spectroscopicredshift from SLINEFIT and the photometric redshift from MIZUKI, respectively.

    An international team of astronomers reports the detection of a new protocluster of galaxies. The newfound protocluster, designated QO-1000, contains at least 14 massive quiescent galaxies. The finding was detailed in a paper published January 21 for The Astrophysical Journal Letters [below].

    Galaxy clusters contain from hundreds to thousands of galaxies bound together by gravity. They are the largest known gravitationally bound structures in the universe, and could serve as excellent laboratories for studying galaxy evolution and cosmology.

    Astronomers are especially interested in studies of protoclusters of galaxies, the progenitors of clusters. Such objects, found at high redshifts (over 2.0), could provide essential information about the universe at its early stages.

    Now, a new high-redshift protocluster has been found by a group of astronomers led by Kei Ito of the University of Tokyo, Japan. The discovery is a result of an analysis of the data from the Cosmic Evolution Survey (COSMOS) and spectroscopic observations using the Keck I telescope.

    “We search overdense structures of quiescent galaxies at z ∼ 3 in the COSMOS field in ∼ 2 deg2 based on the projected distribution of quiescent galaxies,” the researchers explained.

    In result, they found such an overdensity of 14 quiescent galaxies at a redshift of 2.77. The protocluster, which received designation QO-1000, includes four massive galaxies with low specific star formation rates. The results suggest that this structure is at least 68 times denser in quiescent galaxies than in the general field and that its quiescent fraction is about three times higher than the average value at this redshift.

    The astronomers noted that the high stellar mass of spectroscopically confirmed quiescent galaxies of QO-1000 indicates they are hosted in a massive halo. They added that the structure is likely to be hosted by a much more massive halo than the other typical quiescent galaxies with the same stellar mass.

    The researchers assume that QO-1000 is therefore a more mature protocluster than most known protoclusters and is likely in a transition phase from star-forming protoclusters to local quenched clusters. According to the authors of the paper, their finding proves that even at a redshift of almost 3.0, protocluster galaxies can be quenched, and quiescent galaxies can form an overdense structure. They hope that further studies of QO-1000 will help us advance our knowledge regarding the evolution of protoclusters.

    “This structure will be an ideal laboratory to explore the evolutionary history of (proto)clusters and galaxies therein. More detailed investigations of member quiescent galaxies in this structure will be conducted in our future studies, such as constraining star formation history based on the spectra and multi-band photometry, investigating morphology using HST/F160W images (3D-DASH Mowla et al. 2022), estimating dynamical mass, and comparing them with simulations,” the scientists concluded.

    The Astrophysical Journal Letters

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Tokyo [(東京大学](JP) aims to be a world-class platform for research and education, contributing to human knowledge in partnership with other leading global universities. The University of Tokyo aims to nurture global leaders with a strong sense of public responsibility and a pioneering spirit, possessing both deep specialism and broad knowledge. The University of Tokyo aims to expand the boundaries of human knowledge in partnership with society. Details about how the University is carrying out this mission can be found in the University of Tokyo Charter and the Action Plans.

    The university has ten faculties, 15 graduate schools and enrolls about 30,000 students, 2,100 of whom are international students. Its five campuses are in Hongō, Komaba, Kashiwa, Shirokane and Nakano. It is among the top echelon of the select Japanese universities assigned additional funding under the MEXT’s Top Global University Project to enhance Japan’s global educational competitiveness.

    University of Tokyo is considered to be the most selective and prestigious university in Japan and is counted as one of the best universities in the world. As of 2018, University of Tokyo’s alumni, faculty members and researchers include seventeen Prime Ministers, sixteen Nobel Prize laureates, three Pritzker Prize laureates, three astronauts, and a Fields Medalist.

    The university was chartered by the Meiji government in 1877 under its current name by amalgamating older government schools for medicine, various traditional scholars and modern learning. It was renamed “the Imperial University [帝國大學]” in 1886, and then Tokyo Imperial University [東京帝國大學]] in 1897 when the Imperial University system was created. In September 1923, an earthquake and the following fires destroyed about 700,000 volumes of the Imperial University Library. The books lost included the Hoshino Library [星野文庫], a collection of about 10,000 books. The books were the former possessions of Hoshino Hisashi before becoming part of the library of the university and were mainly about Chinese philosophy and history.

    In 1947 after Japan’s defeat in World War II it re-assumed its original name. With the start of the new university system in 1949, Todai swallowed up the former First Higher School (today’s Komaba campus) and the former Tokyo Higher School, which thenceforth assumed the duty of teaching first- and second-year undergraduates, while the faculties on Hongo main campus took care of third- and fourth-year students.

    Although the university was founded during the Meiji period, it has earlier roots in the Astronomy Agency [天文方] 1684), Shoheizaka Study Office [昌平坂学問所] 1797), and the Western Books Translation Agency [蕃書和解御用] 1811). These institutions were government offices established by the Tokugawa shogunate [徳川幕府] (1603–1867), and played an important role in the importation and translation of books from Europe.

    In the fall of 2012 and for the first time, the University of Tokyo started two undergraduate programs entirely taught in English and geared toward international students—Programs in English at Komaba (PEAK)—the International Program on Japan in East Asia and the International Program on Environmental Sciences. In 2014, the School of Science at the University of Tokyo introduced an all-English undergraduate transfer program called Global Science Course (GSC).

    Research

    The University of Tokyo is considered a top research institution of Japan. It receives the largest amount of national grants for research institutions, Grants-in-Aid for Scientific Research, receiving 40% more than the University with 2nd largest grants and 90% more than the University with 3rd largest grants. This massive financial investment from the Japanese government directly affects Todai’s research outcomes. According to Thomson Reuters, Todai is the best research university in Japan. Its research excellence is especially distinctive in Physics (1st in Japan, 2nd in the world); Biology & Biochemistry (1st in Japan, 3rd in the world); Pharmacology & Toxicology (1st in Japan, 5th in the world); Materials Science (3rd in Japan, 19th in the world); Chemistry (2nd in Japan, 5th in the world); and Immunology (2nd in Japan, 20th in the world).

    In another ranking, Nikkei Shimbun on 16 February 2004 surveyed about the research standards in Engineering studies based on Thomson Reuters, Grants in Aid for Scientific Research and questionnaires to heads of 93 leading Japanese Research Centers. Todai was placed 4th (research planning ability 3rd/informative ability of research outcome; 10th/ability of business-academia collaboration 3rd) in this ranking. Weekly Diamond also reported that Todai has the 3rd highest research standard in Japan in terms of research fundings per researchers in COE Program. In the same article, it is also ranked 21st in terms of the quality of education by GP funds per student.

    Todai also has been recognized for its research in the social sciences and humanities. In January 2011, Repec ranked Todai’s Economics department as Japan’s best economics research university. And it is the only Japanese university within world top 100. Todai has produced 9 presidents of the Japanese Economic Association, the largest number in the association. Asahi Shimbun summarized the number of academic papers in Japanese major legal journals by university, and Todai was ranked top during 2005–2009.

    Research institutes

    Institute of Medical Science
    Earthquake Research Institute
    Institute of Advanced Studies on Asia
    Institute of Social Science
    Institute of Industrial Science
    Historiographical Institute
    Institute of Molecular and Cellular Biosciences
    Institute for Cosmic Ray Research
    Institute for Solid State Physics
    Atmosphere and Ocean Research Institute
    Research Center for Advanced Science and Technology

    The University’s School of Science and the Earthquake Research Institute are both represented on the national Coordinating Committee for Earthquake Prediction.

     
  • richardmitnick 9:38 pm on January 30, 2023 Permalink | Reply
    Tags: "phys.org", "Study inspects gamma-ray emission from HESS J1809−193", , , , , ,   

    From MPG Institute for Nuclear Physics [MPG Institut für Kernphysik] (DE) Via “phys.org” : “Study inspects gamma-ray emission from HESS J1809−193” 

    From MPG Institute for Nuclear Physics [MPG Institut für Kernphysik] (DE)

    Via

    “phys.org”

    1.30.23

    1
    Map showing the 𝛾-ray flux above 0.27 TeV from HESS J1809−193.(a) full region. (b) zoom-in on core region. Credit: Mohrmann et al, 2023. Figure 1: Map showing the 𝛾-ray flux above 0•27 TeV from HESS J1809-193. (a) full region. (b) zoom-in on core region. The position of PSR J1809-1917 is marked with a black triangle, cyan circles denote the positions of SNRs. The green/purple dot and lines display the position and extent of the two components (A/B) of HESS J1809-193 (cf. also Fig. 2 in the science paper). The grey dashed line marks the Galactic plane.

    Using the High Energy Stereoscopic System (H.E.S.S.), German astronomers have investigated a very-high-energy (VHE) gamma-ray source known as HESS J1809−193. Results of the study, published January 18 for Proceedings of Science [below], deliver important insights into the properties of gamma-ray emission from this source.

    Sources emitting gamma radiation with photon energies between 100 GeV and 100 TeV are called very-high energy (VHE) gamma-ray sources, while those with photon energies above 0.1 PeV are known as ultra-high energy (UHE) gamma-ray sources. The nature of these sources is still not well understood; therefore, astronomers are constantly searching for new objects of this type to characterize them, which could shed more light on their properties in general.

    Discovered in 2007 as part of the H.E.S.S. Galactic Plane Survey (HGPS), HESS J1809−193 is an unassociated VHE (over 100 GeV) gamma-ray source. Previous observations of HESS J1809−193 have found that the source is located in a rich environment, with an energetic pulsar (designated PSR J1809−1917) at a distance of some 10,750 light years, X-ray pulsar wind nebula (PWN), several supernova remnants (SNRs), and molecular clouds.

    Recently, gamma-ray emission up to energies of about 100 TeV has been detected from HESS J1809−193 with the High Altitude Water Čerenkov (HAWC) observatory. The finding means that this source may be capable of accelerating cosmic rays up to PeV energies.

    In order to verify this assumption, a team of astronomers led by Lars Mohrmann of the Max Planck Institute for Nuclear Physics in Heidelberg, Germany, has conducted follow-up observations of HESS J1809−193 using the H.E.S.S. array of Čerenkov telescopes. Their study was complemented by data from NASA’s Fermi spacecraft.


    “We present a new analysis of the TeV gamma-ray emission of HESS J1809−193 with H.E.S.S., based on improved analysis techniques…. We used 93.2 h of data taken on HESS J1809−193 with the four 12 m diameter telescopes. For the high-level analysis, we have employed the Gammapy package and carried out a spectro-morphological likelihood analysis that uses as input a background model constructed from archival H.E.S.S. observations,” the researchers explained.

    The team managed to resolve the emission from HESS J1809−193 into two components (A and B) that exhibit distinct spectra and morphologies. The spectral indices of components A and B were measured to be at a level of 2.24 and 1.98, respectively. However, the astronomers noted that the upper limits at high energies for component A indicate that the spectrum may cut off before reaching 100 TeV.

    According to the authors of the paper, the results suggest that the extended component A of HESS J1809−193 is compatible with a halo of old electrons surrounding a compact PWN. When it comes to the component B, they suppose that it could plausibly be of either leptonic or hadronic origin.

    The researchers added that the presence of supernova remnants and molecular clouds in the HESS J1809−193 region indicates that a hadronic scenario should be considered, in which part of the emission may be due to cosmic-ray nuclei accelerated by the SNRs and interacting with gas in the clouds.

    Proceedings of Science

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The MPG Institute for Nuclear Physics [MPG Institut für Kernphysik](DE) is a research institute in Heidelberg, Germany.

    The institute is one of the 80 institutes of the Max-Planck-Gesellschaft (Max Planck Society), an independent, non-profit research organization. The MPG Institute for Nuclear Physics was founded in 1958 under the leadership of Wolfgang Gentner. Its precursor was the Institute for Physics at the MPI for Medical Research.

    Today, the institute’s research areas are: crossroads of particle physics and astrophysics (astroparticle physics) and many-body dynamics of atoms and molecules (quantum dynamics).

    The research field of Astroparticle Physics combines questions related to macrocosm and microcosm. Unconventional methods of observation for gamma rays and neutrinos open new windows to the universe. What lies behind “dark matter” and “dark energy” is theoretically investigated.

    The research field of Quantum Dynamics is represented by the divisions of Klaus Blaum, Christoph Keitel and Thomas Pfeifer. Using reaction microscopes, simple chemical reactions can be “filmed”. Storage rings and traps allow precision experiments almost under space conditions. The interaction of intense laser light with matter is investigated using quantum-theoretical methods.

    Further research fields are cosmic dust, atmospheric physics as well as fullerenes and other carbon molecules.

    Scientists at the MPIK collaborate with other research groups in Europe and all over the world and are involved in numerous international collaborations, partly in a leading role. Particularly close connections to some large-scale facilities like GSI Helmholtz Centre for Heavy Ion Research [GSI Helmholtzzentrum für Schwerionenforschung] (DE), DESY Electron Synchrotron[ Deütsches Elektronen-Synchrotron](DE), European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN], TRIUMF-Canadian national particle accelerator center (CA), and INFN-LNGS – Gran Sasso National Laboratory (IT) exist. The institute has about 390 employees, as well as many diploma students and scientific guests.

    In the local region, the Institute cooperates closely with The Ruprecht Karl University of Heidelberg, [Ruprecht-Karls-Universität Heidelberg] (DE), where the directors and further members of the Institute are teaching. Three International Max Planck Research Schools (IMPRS) and a graduate school serve to foster young scientists.

    The institute operates a cryogenic ion storage ring (CSR) dedicated to the study of molecular ions under interstellar space conditions. Several Penning ion traps are used to measure fundamental constants of nature, such as the atomic mass of the electron and of nuclei. A facility containing several electron beam ion traps (EBIT) that produce and store highly charged ions is dedicated to fundamental atomic structure as well as astrophysical investigations. Large cameras for gamma-ray telescopes (H.E.S.S. – The High Energy Stereoscopic System (NM), CTA Consortium – Čerenkov Telescope Array), Dark Matter (Gran Sasso XENON1T Dark Matter Search (IT), DARWIN – Dark Matter WIMP Search With Liquid Xenon The University of Zürich [Universität Zürich ](CH)), and neutrino detectors are developed and tested on-site.

    MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the Max Planck Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

    According to its primary goal, the MPG Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) MPG Institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.

    The MPG Institutes focus on excellence in research. The MPG Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the MPG institutes fifth worldwide in terms of research published in Nature journals (after Harvard University, The Massachusetts Institute of Technology, Stanford University and The National Institutes of Health). In terms of total research volume (unweighted by citations or impact), the Max Planck Society is only outranked by The Chinese Academy of Sciences [中国科学院](CN), The Russian Academy of Sciences [Росси́йская акаде́мия нау́к](RU) and Harvard University. The Thomson Reuters-Science Watch website placed the MPG Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.

    The MPG Society and its predecessor Kaiser Wilhelm Society hosted several renowned scientists in their fields, including Otto Hahn, Werner Heisenberg, and Albert Einstein.

    History

    The organization was established in 1911 as the Kaiser Wilhelm Society, or Kaiser-Wilhelm-Gesellschaft (KWG), a non-governmental research organization named for the then German emperor. The KWG was one of the world’s leading research organizations; its board of directors included scientists like Walther Bothe, Peter Debye, Albert Einstein, and Fritz Haber. In 1946, Otto Hahn assumed the position of President of KWG, and in 1948, the society was renamed the Max Planck Society (MPG) after its former President (1930–37) Max Planck, who died in 1947.

    The MPG Society has a world-leading reputation as a science and technology research organization. In 2006, the Times Higher Education Supplement rankings of non-university research institutions (based on international peer review by academics) placed the MPG Society as No.1 in the world for science research, and No.3 in technology research (behind AT&T Corporation and The DOE’s Argonne National Laboratory.

    The domain mpg.de attracted at least 1.7 million visitors annually by 2008 according to a Compete.com study.

    MPG Institutes and research groups

    The MPG Society consists of over 80 research institutes. In addition, the society funds a number of Max Planck Research Groups (MPRG) and International Max Planck Research Schools (IMPRS). The purpose of establishing independent research groups at various universities is to strengthen the required networking between universities and institutes of the Max Planck Society.
    The research units are primarily located across Europe with a few in South Korea and the U.S. In 2007, the Society established its first non-European centre, with an institute on the Jupiter campus of Florida Atlantic University (US) focusing on neuroscience.
    The MPG Institutes operate independently from, though in close cooperation with, the universities, and focus on innovative research which does not fit into the university structure due to their interdisciplinary or transdisciplinary nature or which require resources that cannot be met by the state universities.

    Internally, MPG Institutes are organized into research departments headed by directors such that each MPI has several directors, a position roughly comparable to anything from full professor to department head at a university. Other core members include Junior and Senior Research Fellows.

    In addition, there are several associated institutes:

    International Max Planck Research Schools

    International Max Planck Research Schools

    Together with the Association of Universities and other Education Institutions in Germany, the Max Planck Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:

    • Cologne Graduate School of Ageing Research, Cologne
    • International Max Planck Research School for Intelligent Systems, at the Max Planck Institute for Intelligent Systems located in Tübingen and Stuttgart
    • International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
    • International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
    • International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPI for Astronomy
    • International Max Planck Research School for Astrophysics, Garching at the MPI for Astrophysics
    • International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
    • International Max Planck Research School for Computer Science, Saarbrücken
    • International Max Planck Research School for Earth System Modeling, Hamburg
    • International Max Planck Research School for Elementary Particle Physics, Munich, at the MPI for Physics
    • International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the Max Planck Institute for Terrestrial Microbiology
    • International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
    • International Max Planck Research School “From Molecules to Organisms”, Tübingen at the Max Planck Institute for Developmental Biology
    • International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
    • International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPI for Gravitational Physics
    • International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the Max Planck Institute for Heart and Lung Research
    • International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
    • International Max Planck Research School for Language Sciences, Nijmegen
    • International Max Planck Research School for Neurosciences, Göttingen
    • International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
    • International Max Planck Research School for Marine Microbiology (MarMic), joint program of the Max Planck Institute for Marine Microbiology in Bremen, the University of Bremen, the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen
    • International Max Planck Research School for Maritime Affairs, Hamburg
    • International Max Planck Research School for Molecular and Cellular Biology, Freiburg
    • International Max Planck Research School for Molecular and Cellular Life Sciences, Munich
    • International Max Planck Research School for Molecular Biology, Göttingen
    • International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
    • International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster and the Max Planck Institute for Molecular Biomedicine
    • International Max Planck Research School on Multiscale Bio-Systems, Potsdam
    • International Max Planck Research School for Organismal Biology, at the University of Konstanz and the Max Planck Institute for Ornithology
    • International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion
    • International Max Planck Research School for Science and Technology of Nano-Systems, Halle at Max Planck Institute of Microstructure Physics
    • International Max Planck Research School for Solar System Science at the University of Göttingen hosted by MPI for Solar System Research
    • International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPI for Radio Astronomy (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
    • International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
    • International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at Max Planck Institute for Iron Research GmbH
    • International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg

    Max Planck Schools

    • Max Planck School of Cognition
    • Max Planck School Matter to Life
    • Max Planck School of Photonics

    Max Planck Center

    • The Max Planck Centre for Attosecond Science (MPC-AS), POSTECH Pohang
    • The Max Planck POSTECH Center for Complex Phase Materials, POSTECH Pohang

    Max Planck Institutes

    Among others:
    • Max Planck Institute for Neurobiology of Behavior – caesar, Bonn
    • Max Planck Institute for Aeronomics in Katlenburg-Lindau was renamed to Max Planck Institute for Solar System Research in 2004;
    • Max Planck Institute for Biology in Tübingen was closed in 2005;
    • Max Planck Institute for Cell Biology in Ladenburg b. Heidelberg was closed in 2003;
    • Max Planck Institute for Economics in Jena was renamed to the Max Planck Institute for the Science of Human History in 2014;
    • Max Planck Institute for Ionospheric Research in Katlenburg-Lindau was renamed to Max Planck Institute for Aeronomics in 1958;
    • Max Planck Institute for Metals Research, Stuttgart
    • Max Planck Institute of Oceanic Biology in Wilhelmshaven was renamed to Max Planck Institute of Cell Biology in 1968 and moved to Ladenburg 1977;
    • Max Planck Institute for Psychological Research in Munich merged into the Max Planck Institute for Human Cognitive and Brain Sciences in 2004;
    • Max Planck Institute for Protein and Leather Research in Regensburg moved to Munich 1957 and was united with the Max Planck Institute for Biochemistry in 1977;
    • Max Planck Institute for Virus Research in Tübingen was renamed as Max Planck Institute for Developmental Biology in 1985;
    • Max Planck Institute for the Study of the Scientific-Technical World in Starnberg (from 1970 until 1981 (closed)) directed by Carl Friedrich von Weizsäcker and Jürgen Habermas.
    • Max Planck Institute for Behavioral Physiology
    • Max Planck Institute of Experimental Endocrinology
    • Max Planck Institute for Foreign and International Social Law
    • Max Planck Institute for Physics and Astrophysics
    • Max Planck Research Unit for Enzymology of Protein Folding
    • Max Planck Institute for Biology of Ageing

     
  • richardmitnick 1:34 pm on January 28, 2023 Permalink | Reply
    Tags: "Assessing weathering conditions around the globe to understand rate-limiting factors for major rock types", "phys.org", , , ,   

    From The Pennsylvania State University Via “phys.org” : “Assessing weathering conditions around the globe to understand rate-limiting factors for major rock types” 

    Penn State Bloc

    From The Pennsylvania State University

    Via

    “phys.org”

    1.27.23

    1
    Credit: Pixabay/CC0 Public Domain.

    A quartet of researchers at Pennsylvania State University has assessed differing weathering conditions around the globe in an attempt to better understand the rate-limiting factors for major rock types.

    In their paper published in the journal Science [below], S. L. Brantley, Andrew Shaughnessy, Marina Lebedeva and Victor Balashov describe comparing experimental results with tests conducted in the real world to learn more about how much carbon dioxide is pulled from the air by rock weathering. Robert Hilton, with the University of Oxford, has published a Perspective piece in the same journal issue outlining the work done by the team on this new effort.

    Prior research has shown that as rock is exposed to natural weathering elements such as heat, cold, wind, rain and ice, it releases minerals that eventually sequester atmospheric carbon, but the amount has been difficult to measure. In this new study, the researchers carried out testing at a large number of sites to estimate global carbon dioxide sequestration.

    When carbon dioxide gas comes into contact with wet rock, carbonic acid is formed. Over time, it leads to the creation of soluble minerals and bicarbonate, a type of carbon. Such products slowly make their way through rivers, streams and groundwater to the ocean, where the minerals and their carbon are locked away. This process has been going on for millions of years, the researchers note, and it explains why the planet has not grown much hotter from all the carbon dioxide spewed into the atmosphere by volcanoes.

    To gain a better estimate of how much carbon is naturally sequestered by rock weathering, the researchers subjected many types of rocks to artificially induced weather conditions in the lab. They then collected soil samples from 45 sites around the world and analyzed them, comparing their makeup with the materials weathered in the lab.

    They more clearly identified the factors that inform the amount of carbon that is released or sequestered. They found, for example, that less carbon is released from minerals in cooler places, where mineral supplies are low and where there is little rainfall. More work is required before they can make global estimates, but the researchers note that initial calculations suggest that rock weathering sequestration of carbon dioxide is not nearly enough to offset the amount of carbon dioxide being released into the air by human activities.

    Science

    Science

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.

    Penn State Campus

    The The Pennsylvania State University is a public state-related land-grant research university with campuses and facilities throughout Pennsylvania. Founded in 1855 as the Farmers’ High School of Pennsylvania, Penn State became the state’s only land-grant university in 1863. Today, Penn State is a major research university which conducts teaching, research, and public service. Its instructional mission includes undergraduate, graduate, professional and continuing education offered through resident instruction and online delivery. In addition to its land-grant designation, it also participates in the sea-grant, space-grant, and sun-grant research consortia; it is one of only four such universities (along with Cornell University, Oregon State University, and University of Hawaiʻi at Mānoa). Its University Park campus, which is the largest and serves as the administrative hub, lies within the Borough of State College and College Township. It has two law schools: Penn State Law, on the school’s University Park campus, and Dickinson Law, in Carlisle. The College of Medicine is in Hershey. Penn State is one university that is geographically distributed throughout Pennsylvania. There are 19 commonwealth campuses and 5 special mission campuses located across the state. The University Park campus has been labeled one of the “Public Ivies,” a publicly funded university considered as providing a quality of education comparable to those of the Ivy League.
    The Pennsylvania State University is a member of The Association of American Universities an organization of American research universities devoted to maintaining a strong system of academic research and education.

    Annual enrollment at the University Park campus totals more than 46,800 graduate and undergraduate students, making it one of the largest universities in the United States. It has the world’s largest dues-paying alumni association. The university offers more than 160 majors among all its campuses.

    Annually, the university hosts the Penn State IFC/Panhellenic Dance Marathon (THON), which is the world’s largest student-run philanthropy. This event is held at the Bryce Jordan Center on the University Park campus. The university’s athletics teams compete in Division I of the NCAA and are collectively known as the Penn State Nittany Lions, competing in the Big Ten Conference for most sports. Penn State students, alumni, faculty and coaches have received a total of 54 Olympic medals.

    Early years

    The school was sponsored by the Pennsylvania State Agricultural Society and founded as a degree-granting institution on February 22, 1855, by Pennsylvania’s state legislature as the Farmers’ High School of Pennsylvania. The use of “college” or “university” was avoided because of local prejudice against such institutions as being impractical in their courses of study. Centre County, Pennsylvania, became the home of the new school when James Irvin of Bellefonte, Pennsylvania, donated 200 acres (0.8 km2) of land – the first of 10,101 acres (41 km^2) the school would eventually acquire. In 1862, the school’s name was changed to the Agricultural College of Pennsylvania, and with the passage of the Morrill Land-Grant Acts, Pennsylvania selected the school in 1863 to be the state’s sole land-grant college. The school’s name changed to the Pennsylvania State College in 1874; enrollment fell to 64 undergraduates the following year as the school tried to balance purely agricultural studies with a more classic education.

    George W. Atherton became president of the school in 1882, and broadened the curriculum. Shortly after he introduced engineering studies, Penn State became one of the ten largest engineering schools in the nation. Atherton also expanded the liberal arts and agriculture programs, for which the school began receiving regular appropriations from the state in 1887. A major road in State College has been named in Atherton’s honor. Additionally, Penn State’s Atherton Hall, a well-furnished and centrally located residence hall, is named not after George Atherton himself, but after his wife, Frances Washburn Atherton. His grave is in front of Schwab Auditorium near Old Main, marked by an engraved marble block in front of his statue.

    Early 20th century

    In the years that followed, Penn State grew significantly, becoming the state’s largest grantor of baccalaureate degrees and reaching an enrollment of 5,000 in 1936. Around that time, a system of commonwealth campuses was started by President Ralph Dorn Hetzel to provide an alternative for Depression-era students who were economically unable to leave home to attend college.

    In 1953, President Milton S. Eisenhower, brother of then-U.S. President Dwight D. Eisenhower, sought and won permission to elevate the school to university status as The Pennsylvania State University. Under his successor Eric A. Walker (1956–1970), the university acquired hundreds of acres of surrounding land, and enrollment nearly tripled. In addition, in 1967, the Penn State Milton S. Hershey Medical Center, a college of medicine and hospital, was established in Hershey with a $50 million gift from the Hershey Trust Company.

    Modern era

    In the 1970s, the university became a state-related institution. As such, it now belongs to the Commonwealth System of Higher Education. In 1975, the lyrics in Penn State’s alma mater song were revised to be gender-neutral in honor of International Women’s Year; the revised lyrics were taken from the posthumously-published autobiography of the writer of the original lyrics, Fred Lewis Pattee, and Professor Patricia Farrell acted as a spokesperson for those who wanted the change.

    In 1989, the Pennsylvania College of Technology in Williamsport joined ranks with the university, and in 2000, so did the Dickinson School of Law. The university is now the largest in Pennsylvania. To offset the lack of funding due to the limited growth in state appropriations to Penn State, the university has concentrated its efforts on philanthropy.

    Research

    Penn State is classified among “R1: Doctoral Universities – Very high research activity”. Over 10,000 students are enrolled in the university’s graduate school (including the law and medical schools), and over 70,000 degrees have been awarded since the school was founded in 1922.

    Penn State’s research and development expenditure has been on the rise in recent years. For fiscal year 2013, according to institutional rankings of total research expenditures for science and engineering released by the National Science Foundation , Penn State stood second in the nation, behind only Johns Hopkins University and tied with the Massachusetts Institute of Technology , in the number of fields in which it is ranked in the top ten. Overall, Penn State ranked 17th nationally in total research expenditures across the board. In 12 individual fields, however, the university achieved rankings in the top ten nationally. The fields and sub-fields in which Penn State ranked in the top ten are materials (1st), psychology (2nd), mechanical engineering (3rd), sociology (3rd), electrical engineering (4th), total engineering (5th), aerospace engineering (8th), computer science (8th), agricultural sciences (8th), civil engineering (9th), atmospheric sciences (9th), and earth sciences (9th). Moreover, in eleven of these fields, the university has repeated top-ten status every year since at least 2008. For fiscal year 2011, the National Science Foundation reported that Penn State had spent $794.846 million on R&D and ranked 15th among U.S. universities and colleges in R&D spending.

    For the 2008–2009 fiscal year, Penn State was ranked ninth among U.S. universities by the National Science Foundation, with $753 million in research and development spending for science and engineering. During the 2015–2016 fiscal year, Penn State received $836 million in research expenditures.

    The Applied Research Lab (ARL), located near the University Park campus, has been a research partner with the Department of Defense since 1945 and conducts research primarily in support of the United States Navy. It is the largest component of Penn State’s research efforts statewide, with over 1,000 researchers and other staff members.

    The Materials Research Institute was created to coordinate the highly diverse and growing materials activities across Penn State’s University Park campus. With more than 200 faculty in 15 departments, 4 colleges, and 2 Department of Defense research laboratories, MRI was designed to break down the academic walls that traditionally divide disciplines and enable faculty to collaborate across departmental and even college boundaries. MRI has become a model for this interdisciplinary approach to research, both within and outside the university. Dr. Richard E. Tressler was an international leader in the development of high-temperature materials. He pioneered high-temperature fiber testing and use, advanced instrumentation and test methodologies for thermostructural materials, and design and performance verification of ceramics and composites in high-temperature aerospace, industrial, and energy applications. He was founding director of the Center for Advanced Materials (CAM), which supported many faculty and students from the College of Earth and Mineral Science, the Eberly College of Science, the College of Engineering, the Materials Research Laboratory and the Applied Research Laboratories at Penn State on high-temperature materials. His vision for Interdisciplinary research played a key role in creating the Materials Research Institute, and the establishment of Penn State as an acknowledged leader among major universities in materials education and research.

    The university was one of the founding members of the Worldwide Universities Network (WUN), a partnership that includes 17 research-led universities in the United States, Asia, and Europe. The network provides funding, facilitates collaboration between universities, and coordinates exchanges of faculty members and graduate students among institutions. Former Penn State president Graham Spanier is a former vice-chair of the WUN.

    The Pennsylvania State University Libraries were ranked 14th among research libraries in North America in the 2003–2004 survey released by The Chronicle of Higher Education. The university’s library system began with a 1,500-book library in Old Main. In 2009, its holdings had grown to 5.2 million volumes, in addition to 500,000 maps, five million microforms, and 180,000 films and videos.

    The university’s College of Information Sciences and Technology is the home of CiteSeerX, an open-access repository and search engine for scholarly publications. The university is also the host to the Radiation Science & Engineering Center, which houses the oldest operating university research reactor. Additionally, University Park houses the Graduate Program in Acoustics, the only freestanding acoustics program in the United States. The university also houses the Center for Medieval Studies, a program that was founded to research and study the European Middle Ages, and the Center for the Study of Higher Education (CSHE), one of the first centers established to research postsecondary education.

     
  • richardmitnick 12:59 pm on January 28, 2023 Permalink | Reply
    Tags: "Development of the first chip-sized titanium-doped sapphire laser", "phys.org", A breakthrough with applications ranging from atomic clocks to quantum computing and spectroscopic sensors., , , The innovation led to fundamental discoveries and countless applications in physics and biology and chemistry., When the titanium-doped sapphire laser was introduced in the 1980s it was a major advance in the field of lasers.,   

    From Yale University Via “phys.org” : “Development of the first chip-sized titanium-doped sapphire laser” 

    From Yale University

    Via

    “phys.org”

    1.27.23

    1
    Lasing linewidth measurement. a. Schematics of the optical set-up for photonic circuit integrated Ti:Sa laser. Heterodyne beatnote measurement using commercial Ti:Sa laser (M2laser) allows measurement of laser linewidth using a fast photodetector (PD) and electrical signal analyser (ESA). b. Heterodyne beating signal between the on-chip Ti:Sa laser and the reference laser with a full-wave half maximum of 120 kHz. Credit: Nature Photonics (2023)

    A team of researchers has developed the first chip-scale titanium-doped sapphire laser—a breakthrough with applications ranging from atomic clocks to quantum computing and spectroscopic sensors.

    The work was led by Hong Tang, the Llewellyn West Jones, Jr. Professor of Electrical Engineering, Applied Physics & Physics. The results are published in Nature Photonics [below].

    When the titanium-doped sapphire laser was introduced in the 1980s it was a major advance in the field of lasers. Critical to its success was the material used as its gain medium—that is, the material that amplifies the laser’s energy. Sapphire doped with titanium ions proved to be particularly powerful, providing a much wider laser emission bandwidth than conventional semiconductor lasers. The innovation led to fundamental discoveries and countless applications in physics, biology, and chemistry.

    2
    The first chip-scale titanium-doped sapphire laser. Credit: Yale University.

    The table-top titanium-sapphire laser is a must-have for many academic and industrial labs. However, the large bandwidth of this laser comes at the cost of a relatively high threshold—that is, the amount of power that it requires. As a result, these lasers are costly and take up a lot of space, largely limiting their use to laboratory research. Without overcoming this limitation, said Yubo Wang, lead author of the study and a graduate student in Tang’s lab, titanium-sapphire lasers will remain limited to niche customers.

    The combination of the performance of titanium-sapphire lasers with the small size of a chip could drive applications that are limited by how much power or space they can consume, such as atomic clocks, portable sensors, visible light communication devices, and even quantum computing chips.

    To that end, the Tang lab has demonstrated the world’s first titanium-doped sapphire laser integrated with a chip-scale photonic circuit, which provides the widest gain spectrum yet seen on a chip—paving the way for numerous new applications.

    The key is in the laser’s low threshold. While conventional titanium-doped sapphire lasers have a threshold of more than 100 milliwatts, the Tang lab’s system had a threshold of about 6.5 milliwatts. With further tweaking, they believe they can further reduce it to 1 milliwatt. The system they developed is also compatible with the family of gallium nitride optoelectronics, which are widely used in blue LEDs and lasers.

    Nature Photonics

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Yale University is a private Ivy League research university in New Haven, Connecticut. Founded in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and one of the nine Colonial Colleges chartered before the American Revolution. The Collegiate School was renamed Yale College in 1718 to honor the school’s largest private benefactor for the first century of its existence, Elihu Yale. Yale University is consistently ranked as one of the top universities and is considered one of the most prestigious in the nation.

    Chartered by Connecticut Colony, the Collegiate School was established in 1701 by clergy to educate Congregational ministers before moving to New Haven in 1716. Originally restricted to theology and sacred languages, the curriculum began to incorporate humanities and sciences by the time of the American Revolution. In the 19th century, the college expanded into graduate and professional instruction, awarding the first PhD in the United States in 1861 and organizing as a university in 1887. Yale’s faculty and student populations grew after 1890 with rapid expansion of the physical campus and scientific research.

    Yale is organized into fourteen constituent schools: the original undergraduate college, the Yale Graduate School of Arts and Sciences and twelve professional schools. While the university is governed by the Yale Corporation, each school’s faculty oversees its curriculum and degree programs. In addition to a central campus in downtown New Haven, the university owns athletic facilities in western New Haven, a campus in West Haven, Connecticut, and forests and nature preserves throughout New England. As of June 2020, the university’s endowment was valued at $31.1 billion, the second largest of any educational institution. The Yale University Library, serving all constituent schools, holds more than 15 million volumes and is the third-largest academic library in the United States. Students compete in intercollegiate sports as the Yale Bulldogs in the NCAA Division I – Ivy League.

    As of October 2020, 65 Nobel laureates, five Fields Medalists, four Abel Prize laureates, and three Turing award winners have been affiliated with Yale University. In addition, Yale has graduated many notable alumni, including five U.S. Presidents, 19 U.S. Supreme Court Justices, 31 living billionaires, and many heads of state. Hundreds of members of Congress and many U.S. diplomats, 78 MacArthur Fellows, 252 Rhodes Scholars, 123 Marshall Scholars, and nine Mitchell Scholars have been affiliated with the university.

    Research

    Yale is a member of the Association of American Universities (AAU) and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation , Yale spent $990 million on research and development in 2018, ranking it 15th in the nation.

    Yale’s faculty include 61 members of the National Academy of Sciences , 7 members of the National Academy of Engineering and 49 members of the American Academy of Arts and Sciences . The college is, after normalization for institution size, the tenth-largest baccalaureate source of doctoral degree recipients in the United States, and the largest such source within the Ivy League.

    Yale’s English and Comparative Literature departments were part of the New Criticism movement. Of the New Critics, Robert Penn Warren, W.K. Wimsatt, and Cleanth Brooks were all Yale faculty. Later, the Yale Comparative literature department became a center of American deconstruction. Jacques Derrida, the father of deconstruction, taught at the Department of Comparative Literature from the late seventies to mid-1980s. Several other Yale faculty members were also associated with deconstruction, forming the so-called “Yale School”. These included Paul de Man who taught in the Departments of Comparative Literature and French, J. Hillis Miller, Geoffrey Hartman (both taught in the Departments of English and Comparative Literature), and Harold Bloom (English), whose theoretical position was always somewhat specific, and who ultimately took a very different path from the rest of this group. Yale’s history department has also originated important intellectual trends. Historians C. Vann Woodward and David Brion Davis are credited with beginning in the 1960s and 1970s an important stream of southern historians; likewise, David Montgomery, a labor historian, advised many of the current generation of labor historians in the country. Yale’s Music School and Department fostered the growth of Music Theory in the latter half of the 20th century. The Journal of Music Theory was founded there in 1957; Allen Forte and David Lewin were influential teachers and scholars.

    In addition to eminent faculty members, Yale research relies heavily on the presence of roughly 1200 Postdocs from various national and international origin working in the multiple laboratories in the sciences, social sciences, humanities, and professional schools of the university. The university progressively recognized this working force with the recent creation of the Office for Postdoctoral Affairs and the Yale Postdoctoral Association.

    Notable alumni

    Over its history, Yale has produced many distinguished alumni in a variety of fields, ranging from the public to private sector. According to 2020 data, around 71% of undergraduates join the workforce, while the next largest majority of 16.6% go on to attend graduate or professional schools. Yale graduates have been recipients of 252 Rhodes Scholarships, 123 Marshall Scholarships, 67 Truman Scholarships, 21 Churchill Scholarships, and 9 Mitchell Scholarships. The university is also the second largest producer of Fulbright Scholars, with a total of 1,199 in its history and has produced 89 MacArthur Fellows. The U.S. Department of State Bureau of Educational and Cultural Affairs ranked Yale fifth among research institutions producing the most 2020–2021 Fulbright Scholars. Additionally, 31 living billionaires are Yale alumni.

    At Yale, one of the most popular undergraduate majors among Juniors and Seniors is political science, with many students going on to serve careers in government and politics. Former presidents who attended Yale for undergrad include William Howard Taft, George H. W. Bush, and George W. Bush while former presidents Gerald Ford and Bill Clinton attended Yale Law School. Former vice-president and influential antebellum era politician John C. Calhoun also graduated from Yale. Former world leaders include Italian prime minister Mario Monti, Turkish prime minister Tansu Çiller, Mexican president Ernesto Zedillo, German president Karl Carstens, Philippine president José Paciano Laurel, Latvian president Valdis Zatlers, Taiwanese premier Jiang Yi-huah, and Malawian president Peter Mutharika, among others. Prominent royals who graduated are Crown Princess Victoria of Sweden, and Olympia Bonaparte, Princess Napoléon.

    Yale alumni have had considerable presence in U.S. government in all three branches. On the U.S. Supreme Court, 19 justices have been Yale alumni, including current Associate Justices Sonia Sotomayor, Samuel Alito, Clarence Thomas, and Brett Kavanaugh. Numerous Yale alumni have been U.S. Senators, including current Senators Michael Bennet, Richard Blumenthal, Cory Booker, Sherrod Brown, Chris Coons, Amy Klobuchar, Ben Sasse, and Sheldon Whitehouse. Current and former cabinet members include Secretaries of State John Kerry, Hillary Clinton, Cyrus Vance, and Dean Acheson; U.S. Secretaries of the Treasury Oliver Wolcott, Robert Rubin, Nicholas F. Brady, Steven Mnuchin, and Janet Yellen; U.S. Attorneys General Nicholas Katzenbach, John Ashcroft, and Edward H. Levi; and many others. Peace Corps founder and American diplomat Sargent Shriver and public official and urban planner Robert Moses are Yale alumni.

    Yale has produced numerous award-winning authors and influential writers, like Nobel Prize in Literature laureate Sinclair Lewis and Pulitzer Prize winners Stephen Vincent Benét, Thornton Wilder, Doug Wright, and David McCullough. Academy Award winning actors, actresses, and directors include Jodie Foster, Paul Newman, Meryl Streep, Elia Kazan, George Roy Hill, Lupita Nyong’o, Oliver Stone, and Frances McDormand. Alumni from Yale have also made notable contributions to both music and the arts. Leading American composer from the 20th century Charles Ives, Broadway composer Cole Porter, Grammy award winner David Lang, and award-winning jazz pianist and composer Vijay Iyer all hail from Yale. Hugo Boss Prize winner Matthew Barney, famed American sculptor Richard Serra, President Barack Obama presidential portrait painter Kehinde Wiley, MacArthur Fellow and contemporary artist Sarah Sze, Pulitzer Prize winning cartoonist Garry Trudeau, and National Medal of Arts photorealist painter Chuck Close all graduated from Yale. Additional alumni include architect and Presidential Medal of Freedom winner Maya Lin, Pritzker Prize winner Norman Foster, and Gateway Arch designer Eero Saarinen. Journalists and pundits include Dick Cavett, Chris Cuomo, Anderson Cooper, William F. Buckley, Jr., and Fareed Zakaria.

    In business, Yale has had numerous alumni and former students go on to become founders of influential business, like William Boeing (Boeing, United Airlines), Briton Hadden and Henry Luce (Time Magazine), Stephen A. Schwarzman (Blackstone Group), Frederick W. Smith (FedEx), Juan Trippe (Pan Am), Harold Stanley (Morgan Stanley), Bing Gordon (Electronic Arts), and Ben Silbermann (Pinterest). Other business people from Yale include former chairman and CEO of Sears Holdings Edward Lampert, former Time Warner president Jeffrey Bewkes, former PepsiCo chairperson and CEO Indra Nooyi, sports agent Donald Dell, and investor/philanthropist Sir John Templeton.

    Yale alumni distinguished in academia include literary critic and historian Henry Louis Gates, economists Irving Fischer, Mahbub ul Haq, and Nobel Prize laureate Paul Krugman; Nobel Prize in Physics laureates Ernest Lawrence and Murray Gell-Mann; Fields Medalist John G. Thompson; Human Genome Project leader and National Institutes of Health director Francis S. Collins; brain surgery pioneer Harvey Cushing; pioneering computer scientist Grace Hopper; influential mathematician and chemist Josiah Willard Gibbs; National Women’s Hall of Fame inductee and biochemist Florence B. Seibert; Turing Award recipient Ron Rivest; inventors Samuel F.B. Morse and Eli Whitney; Nobel Prize in Chemistry laureate John B. Goodenough; lexicographer Noah Webster; and theologians Jonathan Edwards and Reinhold Niebuhr.

    In the sporting arena, Yale alumni include baseball players Ron Darling and Craig Breslow and baseball executives Theo Epstein and George Weiss; football players Calvin Hill, Gary Fenick, Amos Alonzo Stagg, and “the Father of American Football” Walter Camp; ice hockey players Chris Higgins and Olympian Helen Resor; Olympic figure skaters Sarah Hughes and Nathan Chen; nine-time U.S. Squash men’s champion Julian Illingworth; Olympic swimmer Don Schollander; Olympic rowers Josh West and Rusty Wailes; Olympic sailor Stuart McNay; Olympic runner Frank Shorter; and others.

     
  • richardmitnick 11:02 am on January 26, 2023 Permalink | Reply
    Tags: "phys.org", "Venice recruits next generation in flooding fight", , , MOSE flood defense system   

    From “phys.org” : “Venice recruits next generation in flooding fight” 

    From “phys.org”

    1.25.23

    1
    The landmark St Mark’s Square is regularly flooded by ‘acqua alta’ or high water events, caused by abnormally high tides.

    As rising waters fuel fears that Venice may one day be entirely submerged, local children are being educated on how to protect the lagoon, a fragile ecosystem threatened by climate change.

    On Torcello, an island located in the northern part of the lagoon, around 40 five-year-olds this week attended an outdoor lesson on the shores damaged by the waves from motorboats speeding to and from Venice.

    As part of an initiative from UNESCO, the UN cultural agency, they splashed in the mud, made fish from recycled papier mache, took samples of sea water and drew pictures of the nature around them.

    “We want the children to learn to observe nature and the lagoon, to learn to understand it, to love it and learn how better protect it,” said programme coordinator Francesca Santoro.

    Venice is one of the world’s most extraordinary cities, a UNESCO heritage site that draws millions of tourists each year.

    But it is slowly drowning.

    The landmark St Mark’s Square is regularly flood by “acqua alta”, high water events caused by abnormally high tides, providing good photos for visitors but threatening the city’s foundations.

    UNESCO warned in 2021 that it might place Venice on its endangered list, saying there was a need to manage tourist numbers. The city avoided that indignity by agreeing to ban large cruise ships in the lagoon.

    With the education initiative, UNESCO hopes to encourage the next generation to think more deeply about how Venice can be preserved—and take action.

    Raising the barriers

    The project is part of a wider UNESCO educational programme launched in 2019, sponsored by luxury fashion brand Prada. Dubbed “Sea Beyond”, it is dedicated to the preservation of the sea and involves school children across the world.

    The Venice scheme is backed by Georg Umgiesser, director of research at Venice’s ISMAR-CNR institute of marine science, who believes this kind of hands-on experience with the lagoon will help people understand the impact of rising water levels.

    “As a result of subsidence in Venice and rising waters, the average sea level has risen by 30 centimetres (12 inches, or 1 foot) in the last 150 years and is expected to rise by another 50 centimetres by the end of the century,” he told AFP.

    St Mark’s Square, located in the lowest part of the city, is always first to flood, said the German oceanographer, who has lived in the Italian city for 40 years. “In 2100, half of Venice risks being under water,” he warned.

    2
    St Mark’s Square, in the lowest part of the city, is always first to flood.

    The long-awaited MOSE flood defense system has been in place since October 2020, raising sluice gates to protect the lagoon when the waters in the Adriatic Sea reach 110 cm above normal levels.

    But this system was developed in the 1980s, before the acceleration of global warming. There are questions as to whether it will be enough to protect Venice in the decades to come.

    “The MOSE was designed to close a maximum of 50 times a year,” said Umgiesser. “If sea levels continue to rise at this rate, from 2100, it would need to be triggered 300 to 400 times a year.”

    ‘Act now’

    At that point, the lagoon would essentially be closed off, preventing the exchange of water with the sea, which is essential for biodiversity.

    Another solution would be to raise Venice above the waves by 30 to 50 cm by injecting sea water into the foundations of the city, but for now this idea remains entirely theoretical.

    3
    Since October 2020, the MOSE flood defense system has been raising sluice gates to protect the Venice lagoon.

    4
    The island of San Giorgio, Venice and its lagoon, in May 2012.

    In the meantime, Jane da Mosto, head of environmental non-profit We Are Here Venice, is relying on salt marshes in the lagoon to slow the acqua alta and ease the currents.

    Restoring these wetlands, decimated by climate change and urbanisation, could be a natural solution to Venice’s problems, she argues.

    “The salt marshes act as a sponge, so they can slow down the way the water flows into the lagoon,” da Mosto said.

    But she added: “It’s a race against time. We need to act now—it’s what we do today what matters.

    “We are in the climate emergency, the catastrophe is already happening.”

    © 2023 AFP

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    About Science X in 100 words
    Science X is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004 (Physorg.com), Science X’s readership has grown steadily to include 5 million scientists, researchers, and engineers every month. Science X publishes approximately 200 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Science X community members enjoy access to many personalized features such as social networking, a personal home page set-up, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

    Mission: 12 reasons for reading daily news on Science X Organization Key editors and writers include 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: