Tagged: Penn Today Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:10 pm on January 18, 2022 Permalink | Reply
    Tags: "Protein controlled by both light and temperature can inform cell signal pathways", , , , , Compared to previous probes this research was based on a single protein called BcLOV4., , Penn Today, The field of optogenetics relies on such proteins to better understand and manipulate these processes., , The scientists serendipitously discovered that BcLOV4 could sense not only light but also temperature., This research will open new horizons for both basic science and translational research.   

    From Penn Today and The Penn School of Engineering and Applied Science (US): “Protein controlled by both light and temperature can inform cell signal pathways” 

    From Penn Today

    and

    2
    The Penn School of Engineering and Applied Science (US)

    at

    U Penn bloc

    University of Pennsylvania

    January 14, 2022
    Melissa Pappas

    Most organisms have proteins that react to light. Even creatures that don’t have eyes or other visual organs use these proteins to regulate many cellular processes, such as transcription, translation, cell growth and cell survival.

    1
    The brighter edges of the cells in the middle and upper right panels show the optogenetic proteins collecting at the membrane after light exposure. At higher temperatures, however, the proteins become rapidly inactivated and thus do not stay at the membrane, resulting in the duller edges seen in the bottom right panel. Image: Penn Engineering Today.

    The field of optogenetics relies on such proteins to better understand and manipulate these processes. Using lasers and genetically engineered versions of these naturally occurring proteins, known as probes, researchers can precisely activate and deactivate a variety of cellular pathways, just like flipping a switch.

    Now, Penn Engineering researchers have described a new type of optogenetic protein that can be controlled not only by light, but also by temperature, allowing for a higher degree of control in the manipulation of cellular pathways. The research will open new horizons for both basic science and translational research.

    Lukasz Bugaj, assistant professor in bioengineering, Bomyi Lim, assistant professor in chemical and biomolecular engineering, Brian Chow, associate professor in bioengineering, and graduate students William Benman in Bugaj’s lab, Hao Deng in Lim’s lab, and Erin Berlew and Ivan Kuznetsov in Chow’s lab, published their study in Nature Chemical Biology. Arndt Siekmann, associate professor of cell and developmental biology at the Perelman School of Medicine, and Caitlyn Parker, a research technician in his lab, also contributed to this research.

    “Compared to previous probes ours were based on a single protein called BcLOV4, which was recently described by Brian Chow’s lab,” says Bugaj. “As a single protein, BcLOV4 can stimulate signals in a manner that required multiple proteins in previous approaches, thus making it simpler and easier to use.”

    The authors successfully showed that BcLOV4-based probes could stimulate the Ras and PI3K pathways in mammalian cells, as well as in zebrafish and fruit flies, two common model organisms.

    “However, in the course of our experiments, we serendipitously discovered that BcLOV4 could sense not only light, but also temperature,” says Bugaj. “As far as we know, this type of dual light and temperature sensitivity is a completely new feature for photosensory proteins.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Pennsylvania School of Engineering and Applied Science, is an undergraduate and graduate school of the University of Pennsylvania. The School offers programs that emphasize hands-on study of engineering fundamentals (with an offering of approximately 300 courses) while encouraging students to leverage the educational offerings of the broader University. Engineering students can also take advantage of research opportunities through interactions with Penn’s School of Medicine, School of Arts and Sciences and the Wharton School.

    Penn Engineering offers bachelors, masters and Ph.D. degree programs in contemporary fields of engineering study. The nationally ranked bioengineering department offers the School’s most popular undergraduate degree program. The Jerome Fisher Program in Management and Technology, offered in partnership with the Wharton School, allows students to simultaneously earn a Bachelor of Science degree in Economics as well as a Bachelor of Science degree in Engineering. SEAS also offers several masters programs, which include: Executive Master’s in Technology Management, Master of Biotechnology, Master of Computer and Information Technology, Master of Computer and Information Science and a Master of Science in Engineering in Telecommunications and Networking.

    History

    The study of engineering at the University of Pennsylvania can be traced back to 1850 when the University trustees adopted a resolution providing for a professorship of “Chemistry as Applied to the Arts”. In 1852, the study of engineering was further formalized with the establishment of the School of Mines, Arts and Manufactures. The first Professor of Civil and Mining Engineering was appointed in 1852. The first graduate of the school received his Bachelor of Science degree in 1854. Since that time, the school has grown to six departments. In 1973, the school was renamed as the School of Engineering and Applied Science.

    The early growth of the school benefited from the generosity of two Philadelphians: John Henry Towne and Alfred Fitler Moore. Towne, a mechanical engineer and railroad developer, bequeathed the school a gift of $500,000 upon his death in 1875. The main administration building for the school still bears his name. Moore was a successful entrepreneur who made his fortune manufacturing telegraph cable. A 1923 gift from Moore established the Moore School of Electrical Engineering, which is the birthplace of the first electronic general-purpose Turing-complete digital computer, ENIAC, in 1946.

    During the latter half of the 20th century the school continued to break new ground. In 1958, Barbara G. Mandell became the first woman to enroll as an undergraduate in the School of Engineering. In 1965, the university acquired two sites that were formerly used as U.S. Army Nike Missile Base (PH 82L and PH 82R) and created the Valley Forge Research Center. In 1976, the Management and Technology Program was created. In 1990, a Bachelor of Applied Science in Biomedical Science and Bachelor of Applied Science in Environmental Science were first offered, followed by a master’s degree in Biotechnology in 1997.

    The school continues to expand with the addition of the Melvin and Claire Levine Hall for computer science in 2003, Skirkanich Hall for bioengineering in 2006, and the Krishna P. Singh Center for Nanotechnology in 2013.

    Academics

    Penn’s School of Engineering and Applied Science is organized into six departments:

    Bioengineering
    Chemical and Biomolecular Engineering
    Computer and Information Science
    Electrical and Systems Engineering
    Materials Science and Engineering
    Mechanical Engineering and Applied Mechanics

    The school’s Department of Bioengineering, originally named Biomedical Electronic Engineering, consistently garners a top-ten ranking at both the undergraduate and graduate level from U.S. News & World Report. The department also houses the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace (aka Biomakerspace) for training undergraduate through PhD students. It is Philadelphia’s and Penn’s only Bio-MakerSpace and it is open to the Penn community, encouraging a free flow of ideas, creativity, and entrepreneurship between Bioengineering students and students throughout the university.

    Founded in 1893, the Department of Chemical and Biomolecular Engineering is “America’s oldest continuously operating degree-granting program in chemical engineering.”

    The Department of Electrical and Systems Engineering is recognized for its research in electroscience, systems science and network systems and telecommunications.

    Originally established in 1946 as the School of Metallurgical Engineering, the Materials Science and Engineering Department “includes cutting edge programs in nanoscience and nanotechnology, biomaterials, ceramics, polymers, and metals.”

    The Department of Mechanical Engineering and Applied Mechanics draws its roots from the Department of Mechanical and Electrical Engineering, which was established in 1876.

    Each department houses one or more degree programs. The Chemical and Biomolecular Engineering, Materials Science and Engineering, and Mechanical Engineering and Applied Mechanics departments each house a single degree program.

    Bioengineering houses two programs (both a Bachelor of Science in Engineering degree as well as a Bachelor of Applied Science degree). Electrical and Systems Engineering offers four Bachelor of Science in Engineering programs: Electrical Engineering, Systems Engineering, Computer Engineering, and the Networked & Social Systems Engineering, the latter two of which are co-housed with Computer and Information Science (CIS). The CIS department, like Bioengineering, offers Computer and Information Science programs under both bachelor programs. CIS also houses Digital Media Design, a program jointly operated with PennDesign.

    Research

    Penn’s School of Engineering and Applied Science is a research institution. SEAS research strives to advance science and engineering and to achieve a positive impact on society. Faculty at Penn’s School of Engineering and Applied Science have created several centers for advanced study including.

    U Penn campus

    Academic life at University of Pennsylvania (US) is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania (US) is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences(US); 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University(US) and Columbia(US) Universities. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University(US), William & Mary(US), Yale Unversity(US), and The College of New Jersey(US)—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health(US).

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University(US) and Cornell University(US) (Harvard University(US) did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University(US)) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 11:33 am on December 21, 2021 Permalink | Reply
    Tags: "On the Galápagos an underwater exploration of marine life", , , , , Penn Today   

    From Penn Today : “On the Galápagos an underwater exploration of marine life” 

    From Penn Today

    at

    U Penn bloc

    University of Pennsylvania

    December 20, 2021
    Michele W. Berger

    1
    Since 2019, students have been going on dives in pairs, tallying every benthic species they see along a 30-meter transect line. Mostly they’ve encountered sea urchin and sea cucumbers, plus a few starfish and turtles.

    The waters around the Galápagos Islands are some of the world’s most unique, known for their exceptional marine life. Yet, for a variety of reasons—the cost to learn SCUBA diving, for example, or rules about the protections on the marine reserve—many locals rarely get the chance to experience those waters and the life they hold within.

    “Local people have to comply with all these regulations, but often never actually get to see the incredible flora and fauna that’s right at their doorstep,” says Maddie Tilyou, lab manager for the Galápagos Education and Research Alliance (GERA), an initiative co-directed by Penn researcher Michael Weisberg.

    Ivan Lopez, a local dive instructor and naturalist guide, had been trying to shift that dynamic by offering free SCUBA diving lessons to local middle schoolers. In 2019, he teamed up with Weisberg, Tilyou, and others to combine his training program with the underwater exploration branch of GERA’s community science initiative, called Projecto Laboratorio para Apreciar la Vida y el Ambiente or Project LAVA.

    Through LAVA-Mar, Lopez’s divers are helping the research team understand how humans are affecting the marine creatures in protected waters compared to those in the municipal waters of San Cristóbal, the easternmost island of the Galápagos. On more than a dozen trips, student diving pairs—led by Lopez, Tilyou, and LAVA-Mar project leader Olivia Fielding—have recorded every individual animal spotted along a 30-meter transect line.

    So far, in bay waters closest to shore, the team has tallied mostly sea urchin and sea cucumbers, plus a few starfish and turtles. When they traveled farther out to renowned dive site Kicker Rock, the marine life changed dramatically. “There’s a lot less pollution and human traffic and way more benthic cover,” says Fielding, a Perry World House climate change research fellow and recent Penn graduate. “The benthic cover signifies how healthy an area is.”

    2
    Sea cucumbers like the species here, Isostichopus fuscus, make up the bulk of creatures the LAVA-Mar divers see. As they travel farther from shore, the marine life changes, becoming much more colorful and varied.

    Though the pandemic took the training out of the water and moved it online, in recent months Weisberg and colleagues have picked up the in-person work again in earnest. They traveled to the Galápagos this past summer and completed one dive with the students. They’re also working with Penn marine biologist Katie Barott and locals to create a water health index, to better facilitate comparison across sites. And they plan to return to the islands throughout 2022, if it’s safe for all parties involved.

    “The science is important,” says Weisberg, the Bess W. Heyman President’s Distinguished Professor and chair of the Department of Philosophy. “But even more important is working with the community on conservation research and practices. Science is not just a tool that outsiders use to come in and extract knowledge.”

    “Social ecology”

    The Galápagos Education and Research Alliance, co-led by Weisberg, Deena Weisberg of Villanova University (US), and Galápagos naturalist guide Ernesto Vaca, has been working in and around the town of Puerto Baquerizo Moreno on San Cristóbal for the past seven years. Project LAVA is one of a handful of GERA’s initiatives.

    Earlier work in this area included LAVA-Lobos, which studies the impact of human presence on endangered sea lions. In the future, LAVA-Agua will focus on San Cristóbal’s domestic water supply; LAVA-Agro, on the effect of invasive plants and animals; and LAVA-Astro, on the night sky, in conjunction with the International Dark-Sky Association.

    All of this work happens in collaboration with locals. “The overall approach that we take is called social ecology. When we do conservation research or practice, we center local people’s involvement,” Weisberg says. “Just as the sea lion project was working with students, here we’re working with a different set of students.”

    Currently, 10 Galapagueños ranging from 11- to 16-years-old are involved in LAVA-Mar. Fielding and Tilyou, who helped get the project up and running in 2019, worked with Weisberg and Lopez to create the scientific protocol the students now use on each dive. It’s been an evolution, Tilyou says. “It’s been really cool to watch these students advance through their training. More than half are rescue divers now.”

    Conducting the science

    The aim of this project is to investigate how people affect marine life. Given that at the start, most participants didn’t even know how to SCUBA dive, Tilyou and Fielding understood the protocol had to be simple and straightforward.

    So, they came up with this: Students pair up, one with a GoPro camera, the other a slate and pencil usable underwater. Swimming above a 30-meter transect line being held by two adults—typically Lopez and one of his helpers—they record and tally any species they see within a meter of the line. Before the first dive, the students received training in the most common animals they’d likely encounter.

    3
    Currently, 10 Galapagueños ranging from 11- to 16-years-old are involved in LAVA-Mar, all trained by Ivan Lopez, a local dive instructor and naturalist guide that teamed up with the Penn group several years ago.

    “That’s the scientific part,” which typically takes about 10 to 15 minutes each time, Tilyou says. “Because they usually have air left in their tanks, they then go on a little treasure hunt and take photos.” At the end, they pick their favorite image to share. “Elements like that will become more important as we go,” Fielding says, “to make sure they’re not just coming out and counting sea urchins.”

    She and Tilyou are also working with Weisberg to make the data that’s collected more scientifically viable. That’s where the expertise of Barott, who studies the biology and ecology of coral reef systems, comes into play. “We’re working with Katie to create a health index,” Weisberg says. “We want to be able to turn what the students are seeing into something we can compare across sites.”

    That will lead to a much-needed baseline measurement, Tilyou adds. “Getting that data is really important, especially in the face of factors like climate change. If we don’t have a baseline, it’s going to be really hard to assess down the road what we’ve lost.”

    Marine stewardship

    The LAVA-Mar team has collected data since 2019. Now they need to figure out how to analyze it and what comes next. The local group will undoubtedly complete more dives, even if the Penn and Villanova teams cannot physically get to the Galápagos.

    The researchers are also working to get backing for dives that will take the participants farther from shore. “Getting beyond the bay has been the goal the whole time, but it requires more funding and logistics,” Fielding says. “We need comparative data from the less disturbed areas to really understand the data we have.”

    And yet, even in the bay, even in frigid waters and knowing that they’ll most likely observe sea urchins and possibly nothing else, the participants are always enthusiastic. Tilyou says she sees this as a sign that they’re starting to take ownership of the process, becoming guardians of the marine environment in their backyard.

    “Because it’s such an incredible space scientifically, scientists have always gone there, but traditionally in a pretty exploitative way,” Tilyou says. “We’re asking this population to be stewards of a really fragile marine ecosystem and yet they don’t know what they’re protecting. The root of this project is to make science more democratic in how it’s carried out.”

    One dive at a time, one sea urchin at a time, this underwater exploration broadens the understanding of precisely how humans are changing the waters around the Galápagos Islands and the benthic creatures below.

    4
    The diving project is part of a larger initiative called Projecto Laboratorio para Apreciar la Vida y el Ambiente or Project LAVA, which also includes research about the effect humans are having on sea lions in the Galápagos.

    Olivia Fielding is a Perry World House climate change research fellow and project manager for the Galápagos Education and Research Alliance. She graduated from Penn in 2021 with a double major in environmental science and political science.

    Maddie Tilyou is lab manager for the Galápagos Education and Research Alliance. She graduated from Penn in 2019 with a major in biology with a concentration in ecology and evolutionary biology and a minor in environmental science.

    Michael Weisberg is the Bess W. Heyman President’s Distinguished Professor and chair of the Philosophy Department in the School of Arts & Sciences at the University of Pennsylvania. He has co-directed the Galápagos Education and Research Alliance since 2017. He is also a senior faculty fellow and director of post-graduate programs at Perry World House.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at University of Pennsylvania (US) is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania (US) is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences(US); 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University(US) and Columbia(US) Universities. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University(US), William & Mary(US), Yale Unversity(US), and The College of New Jersey(US)—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health(US).

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University(US) and Cornell University(US) (Harvard University(US) did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University(US)) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 12:01 pm on December 8, 2021 Permalink | Reply
    Tags: "Investing in Penn’s data science ecosystem", Building on a foundation of existing expertise, Fostering a data science ecosystem, In addition to being a partner in the IDEAS initiative the School of Arts & Sciences has launched The Data Driven Discovery initiative (DDD)., Penn School of Engineering and Applied Science, Penn Today, Through the Innovation in Data Engineering and Science Initiative Penn aims to become a leader in data-driven approaches.   

    From Penn Today : “Investing in Penn’s data science ecosystem” 

    From Penn Today

    at

    U Penn bloc

    University of Pennsylvania

    December 7, 2021
    Erica K. Brockmeier

    Through the Innovation in Data Engineering and Science Initiative Penn aims to become a leader in data-driven approaches that can transform scientific discovery, engineering research, and technological innovation.

    2
    The Penn School of Engineering and Applied Science (US)

    From smartphones and fitness trackers to social media posts and COVID-19 cases, the past few years have seen an explosion in the amount and types of data that are generated daily. To help make sense of these large, complex datasets, the field of data science has grown, providing methodologies, tools, and perspectives across a wide range of academic disciplines.

    But the challenges that lie ahead for data scientists and engineers, from developing algorithms that don’t exacerbate biases to ensuring privacy protections, are equally complex and, in some instances, require entirely new ways of thinking.

    As part of its $750 million investment in science, engineering, and medicine, the University has committed to supporting the future needs of this field. To this end, the Innovation in Data Engineering and Science (IDEAS) initiative will help Penn become a leader in developing data-driven approaches that can transform scientific discovery, engineering research, and technological innovation.

    “The IDEAS initiative is game-changing for our University,” says President Amy Gutmann. “This new investment allows us to boost our interdisciplinary efforts across campus, recruit phenomenal additional team members, and generate an even more sound foundation for discovery, experimentation, and design. This initiative is a clear statement that Penn is committed to taking data science head-on.”

    Building on a foundation of existing expertise

    Led by the School of Engineering and Applied Science, the IDEAS initiative builds upon the steadily gathering momentum of its data-centric research. The Warren Center for Network and Data Sciences has been a major catalyst for this type of work, generating foundational research on ethical algorithms and data privacy, as well as collaborations that have drawn in faculty from the Wharton School, Law School, Perelman School of Medicine, and beyond.

    “One of the unique things about data science and data engineering is that it’s a very horizontal technology, one that is going to be impacting every department on campus,” says George Pappas, Electrical and Systems Engineering Department chair. “When you have a horizontal technology in a competitive area, we have to figure out specific areas where Penn can become a worldwide leader.”

    To do this, IDEAS aims to recruit new faculty across three research areas: artificial intelligence (AI) to transform scientific discovery, trustworthy AI for autonomous systems, and understanding connections between the human brain and AI.

    Penn already has a strong foundation in using AI for scientific discovery thanks in part to investments in basic research facilities such as the Singh Center for Nanotechnology and the Laboratory for Research on the Structure of Matter. Additionally, there are centers focused on connecting researchers from different fields to address complex scientific questions, including the Center for Soft and Living Matter, Center for Engineering Mechanobiology, and Penn Institute for Computational Science.

    Developing “trustworthy” algorithms, ones that work reliably outside of situations in which they are trained, is another key component of the IDEAS initiative. Ongoing research at the Penn Research in Embedded Computing and Integrated Systems Engineering (PRECISE) Center, the General Robotics, Automation, Sensing & Perception (GRASP) Lab, and DARPA-funded projects on the safety of AI-based aircraft control provide a starting point for furthering Penn’s research portfolio on safe, explainable, and trustworthy autonomous systems.

    3
    [2] From devices that interact with humans such as Quori (left) to autonomous fleets for oceanic exploration, developing trustworthy, data-driven AI is a critical component of future progress across a number of engineering fields.

    In the area of neuroscience and how the human brain is similar to AI and machine learning approaches, research from PIK Professor Konrad Kording and Dani Bassett’s Complex Systems lab exemplifies the types of cross-disciplinary efforts that are essential for addressing complex questions. By recruiting additional faculty in this area, IDEAS will help Penn make strides in bio-inspired computing and in future life-changing discoveries that could address cognitive disorders and nervous system diseases.

    Fostering a data science ecosystem

    In addition to the IDEAS initiative, Penn is also growing its existing data science ecosystem with the construction of Amy Gutmann Hall. Slated for completion in 2024, the University’s new data science hub will physically centralize resources, including software, hardware, and intellectual expertise, and will also provide a space for members of the campus community to connect with experts, get advice, and find potential collaborators.

    “Penn has an incredible opportunity to do data science in a different way, and I see IDEAS and Amy Gutmann Hall as very much being a part of that,” says Zack Ives, Computer and Information Science Department chair “One of the great things about Penn is that we have strong engagement across campus, whether it’s with medicine, humanities, physical or life sciences, and that will allow us to maximize the impact of these new resources and connections.”

    Data-driven discoveries in Arts & Sciences

    In addition to being a partner in the IDEAS initiative the School of Arts & Sciences has launched The Data Driven Discovery initiative (DDD), a central pillar of its strategic plan. Current activities coordinated by DDD include funding for data science-focused postdoctoral fellows in the natural and social sciences; Data Science for Social Good seed grants, which aim to fund early-stage projects that connect faculty, students, and agencies through data-driven projects; and the Summer Undergraduate Data Science Hangout to bring together students doing data driven research.

    Astronomy professor Bhuvnesh Jain, who will co-direct the DDD initiative with Greg Ridgeway, says that the growth of research on complex datasets in a way that cuts across a diverse set of fields, from humanities to the sciences, has helped spur campus-wide efforts like IDEAS.

    “Along the engineering-science connection, there are constantly emerging data science tools that we’re all excited to apply. We want to create the right environment to learn and share,” Jain says. “This is a new mode of research, where we tackle common problems involving data across very diverse disciplines.”

    Penn and the future of data science

    Jain is looking forward to the “exciting possibilities” that IDEAS and the growth of the data science ecosystem can provide to the Penn community. “We definitely believe that, whether it’s criminology and sociology on one side and astronomy and engineering on the other, we can make it happen on a much bigger scale and place Penn at the cutting edge,” he says.

    Vijay Kumar, Nemirovsky Family Dean of Penn Engineering, sees IDEAS and Amy Gutmann Hall as being pillars for the future of Penn Engineering and its role in the University’s mission to translate new knowledge into action for the public good.

    “This is a truly transformative initiative that will solidify Penn as the premier place for data science,” Kumar says. “The IDEAS initiative and Amy Gutmann Hall can make Penn a catalyzer for innovation impact in the area of data science and engineering, not only across campus but also across the region, through partnerships with Philadelphia schools and educational programs. By bringing data-driven thinking and learning to everyone, we can truly tackle the problems of the 21st century.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at University of Pennsylvania (US) is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania (US) is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences(US); 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University(US) and Columbia(US) Universities. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University(US), William & Mary(US), Yale Unversity(US), and The College of New Jersey(US)—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health(US).

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University(US) and Cornell University(US) (Harvard University(US) did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University(US)) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 12:02 pm on November 30, 2021 Permalink | Reply
    Tags: "From corals to humans-a shared trigger for sperm to get in motion", , , , , Penn Today   

    From Penn Today : “From corals to humans-a shared trigger for sperm to get in motion” 

    From Penn Today

    at

    U Penn bloc

    University of Pennsylvania

    November 22, 2021
    Katherine Unger Baillie

    1
    Hemaphroditic coral, like this Montipora capitata, release both eggs and sperm into the water. New findings from Penn biologists reveal that the mechanism by which sperm begin to move is both pH-dependent and similar to the pathways used in a variety of other creatures, including humans. Image: Courtesy of the Barott Laboratory.

    If sperm can’t swim, life can’t go on. And a new study suggests that when evolution hit upon an effective strategy for making sperm move, it stuck with it.

    A molecular pathway governing sperm motility is shared between corals, sea urchins, and even humans, according to research by a team from Penn’s School of Arts & Sciences. The mechanism is regulated by a pH sensor that signals when sperm are to begin swimming. The work, led by Kelsey Speer, a postdoctoral researcher in the lab of Katie Barott in the Department of Biology, appears in the journal PNAS.

    Climate change, which is making the oceans more not only warmer but also more acidic, and localized disturbances, such as sedimentation, may threaten the process.

    “When we started this project, nobody to our knowledge had looked at the mechanism that controlled coral sperm motility,” says Speer, the study’s first author. “We were really interested in what drives this process in the ocean, because that’s a part of their life cycle that is very vulnerable.”

    “There’s so much diversity in sperm between species, so to find that this pathway was as conserved as it was, was surprising,” adds Barott, senior author on the paper. “I think this work highlights how important it is to regulate this function. Animals are dependent on these pathways functioning in order to make the next generation. If sperm don’t work, that’s the end.”

    Sperm tend to be finicky and vulnerable, highly sensitive to their environment. Too warm? Males don’t produce sperm. Too acidic? Sperm don’t swim. Coral sperm have the odds stacked particularly tall against them. The hermaphroditic creatures only reproduce a few nights each year, timed with the new moon. They release both eggs and sperm into the open ocean, where sperm must swim through the water column, hoping for a fruitful match.

    2
    To capture sperm for their study, the Penn biologists conducted careful field work in Kaneohe Bay, Hawaii, where the coral Montipora capitata reproduce only a few nights each year. Image: Courtesy of Katie Barott.

    In contrast to coral sperm, which have been little studied, sea urchins serve as a model organism for studying sperm. But despite their appearance, sea urchins are much more closely related to humans than to coral, and the signalling cascade responsible for setting their sperm in motion is also highly similar to that of vertebrates. Thus the Penn team was curious to see how regulation of coral sperm motility compared.

    They started with a clue that corals may possess a similar mechanism.

    “There is a really ancient pH-sensing enzyme that our lab had studied for a while that was present in corals,” Speer says. “It’s present in human sperm and it’s present in sea urchin sperm and we wondered, ‘Hey, it’s present in coral sperm too. What could it be controlling?’”

    To find out, the researchers waited until one of those new-moon nights in Kaneohe Bay, Hawaii, to scoop up the egg-sperm bundles released by the coral Montipora capitata. Acting quickly, they took the sperm back to the lab, holding them in a sodium-free seawater. “What it does is it prevents all these signaling pathways from operating, so they’re frozen in an immobile state,” says Barott. “Then you can add a chemical to artificially raise their pH, and the sperm start swimming right away.”

    3
    The Penn team labeled the enzyme sAC in sperm with a green fluorescent marker, enabling them to track its activity in the lab. The genetic sequence encoding sAC in coral bore many similarities to the equivalent enzyme in sea urchins as well as vertebrates. Image: Courtesy of Kelsey Speer.

    Upon this activation, the researchers were able to monitor the activity of the enzyme of interest, soluble adenylyl cyclase (sAC) and cyclic AMP, the messenger molecule it produces, while also tracking how well the sperm were moving. Their experiments confirmed that sAC activity was required for sperm to swim; when the enzyme was blocked, the sperm flagella—the “tails”—moved weakly.

    Comparing the genetic sequence of the M. capitata sAC to the sAC from a sea urchin species, Speer, Barott, and colleagues noted significant similarities, with about 50% of the sequence being the same overall, and identical sequences at key sites for the enzyme’s catalytic activity.

    “We looked at previously published datasets that catalog every mRNA that would become a protein in these cells, so we could get an idea of the molecular machinery in place to regulate sperm motility in these species,” says Barott.

    Interestingly, M. capitata contained multiple different forms of sAC, some of which more closely resembled versions present in mammals. In follow-up work, the team hopes to explore how these different forms are operating in the corals, as well as in other model marine organisms.

    Looking at other molecular players in the sperm activation pathways initiated by sAC, the researchers found several shared by sea urchins as well as both other coral species, members of the Cnidarian phylum.

    “If you’re thinking about the difference in the last common ancestor between humans and Cnidarians—that was a heck of a long time ago,” Speer says. “The fact that the core of this mechanism has been conserved between these two species is really neat. I think it speaks to the fact that it’s a really good system, so nobody needed to replace it with something better.”

    With a basic picture of coral sperm motility in place, Barott’s lab hopes to pursue additional experiments that get at the question of how changing environmental conditions could alter the organism’s reproductive success.

    “Both us and colleagues who study this species of coral have seen huge differences in the amount of sperm become mobile from year to year, and it does look like climate change, especially heat stress, can play a big role in knocking down sperm motility,” Barott says. “Now that we have this toolkit, we can do these climate-change type of experiments and understand more about the dynamics of this pathway and how it changes in periods of stress.”

    4
    With coral reefs under threat from climate change, pollutants, sedimentation, and other factors, Barott and colleagues hope to continue investigating how such challenges may influence coral reproduction and persistence. Image: Courtesy of Kelsey Speer.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at University of Pennsylvania (US) is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania (US) is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences(US); 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University(US) and Columbia(US) Universities. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University(US), William & Mary(US), Yale Unversity(US), and The College of New Jersey(US)—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health(US).

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University(US) and Cornell University(US) (Harvard University(US) did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University(US)) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 9:07 am on August 25, 2021 Permalink | Reply
    Tags: "Evolutionary ‘arms race’ may help keep cell division honest", , , Eggs and sperm are special cells for many reasons-unlike other human cells which have two copies of 23 chromosomes these sex cells or gametes have only one., In a new study Penn biologists show how proteins have evolved to suppress cheating chromosomes and keep the odds close to even., Penn Today, Scientists looked to heterochromatin-tightly-packed DNA which is also known to recruit proteins to the centromere., Scientists uncover a force at work to balance the scales during meiosis-the cell-division process that gives rise to gametes., The findings illuminate the evolutionary battlefield present in our own bodies., The selfish centromeres were able to bias transmission by recruiting certain proteins that destabilized attachment to the spindle.   

    From Penn Today : “Evolutionary ‘arms race’ may help keep cell division honest” 

    From Penn Today

    at

    U Penn bloc

    University of Pennsylvania

    August 24, 2021
    Katherine Unger Baillie

    Research from the lab of Michael Lampson in the School of Arts & Sciences suggests that certain proteins may have evolved to reduce the likelihood of chromosomes ‘cheating’ to bias their chance of winding up in an egg during the cell-division process meiosis.

    1
    Normally, we think each copy of our 23 chromosomes has a 50-50 shot of getting in our reproductive cells—eggs and sperm—but that’s not the case. In a new study Penn biologists show how proteins have evolved to suppress cheating chromosomes and keep the odds close to even. Image: Jun Ma.

    Eggs and sperm are special cells for many reasons, but one of the characteristics that sets them apart is that, unlike other human cells which have two copies of 23 chromosomes, one from the mother and one from the father, these sex cells or gametes, have only one.

    Previous research, led by Michael Lampson of Penn’s School of Arts & Sciences, has shown that these chromosomes don’t get passed on to gametes by chance; certain factors can tip the scales, making it more likely that one of the two copies will be passed to the next generation.

    In a new paper, Lampson and colleagues uncover a force at work to balance the scales during meiosis-the cell-division process that gives rise to gametes, bringing the odds closer to 50-50 that a particular chromosome will get into a viable egg.

    The work, published in the journal Cell, finds that, while a mechanism exists to give certain chromosomes the upper hand during meiosis, a separate, parallel pathway acts to suppress that advantage. Proteins that act in the two pathways appear to be in an evolutionary arms race, the researchers say, potentially to avoid the possibility of biased chromosome inheritance leading to mistakes and abnormalities in eggs, such as aneuploidy, or having an abnormal number of chromosomes, which can result in birth defects.

    “If we think of these chromosomes that are getting in the egg as being selfish, selfish implies that they’re maximizing their own transmission at some cost to the organism overall,” says Lampson. “If there is a cost, then there might be other genes under pressure to suppress the selfish ones or suppress that cost.”

    The current work aimed to look for that suppressive pathway, building on a 2017 paper in Science in which Lampson and members of his lab laid out the mechanism by which an asymmetry arises in the meiotic spindle, a structure composed of microtubules that pulls chromosomes to opposite sides of a cell prior to division. This asymmetry led to biases in chromosome transmission. They found that “selfish” centromeres, the part of the chromosome that attaches to the spindle, were more likely than “unselfish” centromeres to be able to detach and reattach to the side of the cell that was destined to become a viable egg rather than the polar body, which is typically degraded.

    Then, in a 2019 paper in Cell, the researchers laid out more details of the process. They found that the selfish centromeres were able to bias transmission by recruiting certain proteins that destabilized attachment to the spindle, again increasing the chance of ending up in the egg rather than the polar body. These proteins played a role in enabling the centromeres’ detachment from the spindle.

    “We had gained this understanding of how selfishness works,” Lampson says, so in the new paper, “we wanted to understand how suppression works.”

    Earlier research had shown that some of the proteins acting on the centromere were evolving rapidly in various animal species. Lampson and colleagues hypothesized that this rapid evolution could be evidence of an “arms race” between selfish and suppressive factors, akin to what is seen in the immune system, which can quickly evolve to respond to changing threats from pathogens.

    “It was surprising to find a whole bunch of rapidly evolving proteins functioning at the centromere because you would probably expect those to be highly conserved because they’re so important in cell division,” Lampson says. “But it’s a signature of the arms race, just like we see in the immune system: If selfish centromeres are going to cheat, there are likely proteins evolving to tamp down that suppression.”

    The researchers already knew that effector proteins that bias chromosome transmission were recruited to the centromere by a route known as the kinetochore pathway. To find a suppressive pathway, they looked to heterochromatin-tightly-packed DNA which is also known to recruit proteins to the centromere. To test whether the heterochromatin pathway might be balancing out the biasing effect of the kinetochore pathway, the researchers selectively modified an enzyme that acted in each pathway.

    When they modified the protein CENP-C, disrupting the kinetochore pathway, they observed the bias between selfish and unselfish centromere decline, with chromosomes lining up more symmetrically in the cell prior to the completion of meiosis. In contrast, when they deleted the protein CENP-B, which is involved in recruiting proteins in the heterochromatin pathway, the asymmetry in the chromosomes became more pronounced, with selfish centromeres permitted to bias chromosome transmission to the egg.

    “There seem to be these subtle changes at work,” Lampson says, “because both of these pathways are essential. You can’t kill the kinetochore pathway because it’s fundamental for cell division, but at the same time you want to reduce the opportunity for centromeres to be selfish. So evolution seems to be acting to respond to these simultaneous pressures.”

    The findings illuminate the evolutionary battlefield present in our own bodies, Lampson says. “I think it’s really interesting that there are these selfish components of our own genomes that have essential roles. These very, very fundamental aspects of our cell biology actually reflect competing pressures.”

    He and colleagues hope to continue to explore in follow-up work whether the potential costs of selfish factors can result in impactful mistakes in gamete production or other problems in meiosis. “Females don’t make very many eggs,” Lampson says, “so you would think each one would be precious, and we don’t want to make any mistakes. But mistakes sometimes occur; sometimes too many chromosomes get in. So, are mistakes somehow related to these selfish factors?”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at University of Pennsylvania (US) is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania(US) is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences(US); 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University(US) and Columbia(US) Universities. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University(US), William & Mary(US), Yale Unversity(US), and The College of New Jersey(US)—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health(US).

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University(US) and Cornell University(US) (Harvard University(US) did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University(US)) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 12:16 pm on August 23, 2021 Permalink | Reply
    Tags: "How schools of ‘microswimmers’ can increase their cargo capacity", , Max Planck Institute for Dynamics and Self-Organisation, Penn Today,   

    From Penn Today : “How schools of ‘microswimmers’ can increase their cargo capacity” 

    From Penn Today

    at

    U Penn bloc

    University of Pennsylvania

    August 20, 2021
    Erica K. Brockmeier

    1
    Inspired by observations made at the Georgia Aquarium, a new study by Penn’s Arnold Mathijssen and colleagues at the MPG Institute for Dynamics and Self-Organization[MPG Institut für Dynamik und Selbstorganisation(DE) found that when a school of microscopic, self-propelled droplets known as “microswimmers” moves in the same direction inside a narrow channel, they can increase the cargo capacity—the number of particles they can carry—by tenfold.

    A new study published in Physical Review Letters describes a way to increase the cargo capacity of microscopic, self-propelled droplets known as “microswimmers.” Researchers from the University of Pennsylvania and the Max Planck Institute for Dynamics and Self-Organisation found that when a school of microswimmers move in the same direction inside a narrow channel, they can increase the number of particles they can carry by tenfold. Their findings have implications for applications ranging from drug delivery systems to materials with active coatings.

    Like many scientific endeavors, this one began with a simple observation. While attending a conference dinner at the Georgia Aquarium, physicist Arnold Mathijssen and his colleagues noticed that large schools of swimming fish seemed to be carrying small particles and debris in their wake. This happens because of hydrodynamic entrainment, a process where, as an object moves through liquid, it generates a flow and causes nearby objects to be dragged along with it.

    “We were wondering, as the fish in the aquarium are swimming forward, does a particle also get dragged forwards, or is it pushed backwards by their tails?” says Mathijssen. “Our central question was if these guys move things forward or not, and the hypothesis was that, if we can see this happening in the aquarium, maybe this is applicable under a microscope as well.”

    To answer the question, Max Planck Institute researchers Chenyu Jin, Yibo Chen, and Corinna Maass ran experiments using synthetic microswimmers, self-propelled droplets of oil and surfactant that are a model system for microscopic robots. Using their microswimmers, the researchers were able to measure the strength of the flows generated by an individual swimmer and the amount of material that an individual could carry with them as they travelled through a two-dimensional channel. Then, once the data were collected, Mathijssen and his group developed a theoretical model to help explain their findings.

    2
    Particle trajectories (shown as colored lines) as they being entrained by a swimming droplet (gray circle). Image: Arnold Mathijssen.

    One particular challenge for developing the model was devising a way to describe the effects of the walls of the microscopic channel because, unlike at the aquarium, this experiment was conducted in a confined space. “That confinement really affects the flows and, as a result, affects the total volume of stuff you can transport. There is quite a bit of literature in terms of modeling active particles, but it’s difficult to get it right in complex environments,” Mathijssen says.

    Using their data and newly-developed model, the researchers found that the transport capacity of an individual microswimmer could be increased by tenfold when they swam together inside a narrow channel. They also found that the entrainment velocity, or the speed at which particles move forwards, was much larger than initially anticipated.

    Compared to a more open system, like the aquarium, having a confined channel seems to enhance the movement of particles, says Mathijssen. “If you are in a three-dimensional world, the energy you inject into your system gets spread out in all directions. Here, where it gets focused into a two dimensional plane, the strength of the flows is larger. It’s almost as if you have a wake at the front and the back, so the effect is twice as strong, effectively,” he says.

    Another surprising finding was how powerful this effect could be even over long distances in a system like this one with a low Reynolds number, a value used by scientists to predict liquid flow patterns. Systems with low Reynolds numbers have smooth, laminar flow (like a waterfall), and those with high values are more turbulent.

    “Here, the differences between the low and high Reynolds numbers is that, at low Reynolds numbers, these flows tend to be very long-ranged. Even if you are 10 body lengths away, these flows are still significant. At higher Reynolds numbers, that is not necessarily true because you get a lot of turbulence, and that disturbs this entrainment effect,” Mathijssen says.

    The researchers think that this could be due to the front and back symmetry that occurs in a closed system. “At low Reynolds numbers, you have a pressure in front of the droplet, and that pressure is pushing the liquid forwards for a large distance,” says Mathijssen.

    Future experiments will look at how this effect plays out in systems that have higher Reynolds numbers. It’s thought that fish rely on a similar phenomenon when they swim close behind each other in large schools, akin to cyclists drafting off one another in a peloton, so the researchers think that a similar effect might be happening in other systems as well.

    And because the underlying physics described in this study applies to many others as well, these findings also have implications for a number of other fields, from designing drug-delivery systems, understanding how biofilms transport nutrients, and designing active materials, ones that have unique coatings or properties that imbue them with dynamic features.

    “The grander picture in terms of physics is to see how individual active components can work together in order to give rise to a shared functionality, what we call emergent phenomena, at a macroscopic scale,” says Mathijssen. “And there, there is no rule book, there are no laws of physics as of yet that describe these systems that are out of equilibrium, so there are fundamental theoretical physics questions that remain to be answered.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at University of Pennsylvania (US) is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania(US) is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences(US); 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University(US) and Columbia(US) Universities. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University(US), William & Mary(US), Yale Unversity(US), and The College of New Jersey(US)—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health(US).

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University(US) and Cornell University(US) (Harvard University(US) did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University(US)) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 1:36 pm on August 10, 2021 Permalink | Reply
    Tags: "Packaging-free design quadruples microbatteries’ energy density", New research from the School of Engineering and Applied Science has shown a new way to build and package microbatteries that maximizes energy density even at the smallest sizes., Penn Today, The extra space efficiency results in an energy density four times that of current state-of-the-art microbatteries., The researchers’ packing-free design could enable a host of otherwise impossible electronics., , With wireless-enabled electronics becoming smaller and more ubiquitous their designers must constantly find ways for batteries to store more power in less space.   

    From Penn Today and University of Pennsylvania Engineering and Applied Science: “Packaging-free design quadruples microbatteries’ energy density” 

    From Penn Today

    and

    University of Pennsylvania Engineering and Applied Science

    at

    U Penn bloc

    University of Pennsylvania

    August 9, 2021
    Evan Lerner

    With wireless-enabled electronics becoming smaller and more ubiquitous their designers must constantly find ways for batteries to store more power in less space. And because these devices are also increasingly mobile—in the form of wearables, robots and more—those batteries must be lighter while still being able to withstand the bumps and bruises of everyday life. Worse still, energy density gets exponentially harder to improve upon as a battery gets smaller, partially because larger portions of a battery’s footprint must be devoted to protective packaging.

    1
    Weighing about as much as two grains of rice but with the energy density of a much larger, heavier battery, the researchers’ packing-free design could enable a host of otherwise impossible electronics. Image: Penn Engineering Today.

    With that challenge in mind, new research from the School of Engineering and Applied Science has shown a new way to build and package microbatteries that maximizes energy density even at the smallest sizes.

    The researchers’ key developments were a new kind of current collector and cathode that increase the fraction of materials that store energy while simultaneously serving as a protective shell. This reduces the need for nonconductive packaging that normally protects a battery’s sensitive internal chemicals.

    “We essentially made current collectors that perform double duty,” says James Pikul, assistant professor in the Department of Mechanical Engineering and Applied Mechanics and a leader of the study. “They act as both an electron conductor and as the packaging that prevents water and oxygen from getting into the battery.”

    The study is published in the journal Advanced Materials.

    That extra space efficiency results in an energy density four times that of current state-of-the-art microbatteries. Light enough to be carried by an insect, the researchers’ microbattery design opens the door for smaller flying microrobots, implanted medical devices with longer lifespans and a variety of otherwise impossible devices for the Internet of Things.

    The study, published in the journal Advanced Materials [above], was led by Pikul, Xiujun Yue, a postdoctoral scholar in his lab, Paul Braun, professor in the Department of Materials Science and Engineering at The University of Illinois at Urbana Champaign (US), and John Cook, Director of R&D at Xerion Advanced Battery Corp.

    Batteries store energy in the form of chemical bonds, releasing that energy when those bonds are broken. To function properly, this reaction must occur only when power is needed, but then must react rapidly enough to deliver a useful amount of current.

    To address the latter half of these requirements, microbatteries have historically required thin electrodes. This thinness allows more electrons and ions to move quickly through the electrodes, but this comes at the cost of having less energy-storing chemicals and complex designs that are difficult to manufacture.

    The researchers developed a new way to make electrodes that allowed them to be thick while also allowing fast ion and electron transport. Conventional cathodes consist of crushed particles compressed together, a process that results in large spaces between electrodes and a random internal configuration that slows ions as they move through the battery.

    “Instead, we deposit the cathode directly from a bath of molten salts,” Cook says, “which gives us a huge advantage over conventional cathodes because ours have almost no porosity, or air gaps.”

    “This process also aligns the cathode’s ‘atomic highways,’” Pikul says, “meaning lithium ions can move via the fastest and most direct routes through the cathode and into the device, improving the microbattery’s power density while maintaining a high energy density.”

    These redesigned components are so efficient at transporting ions that they can be made thick enough to double the amount of energy-storing chemicals without sacrificing the speed necessary to actually power the devices they’re connected to. Combined with the new packaging, these microbatteries have the energy and power density of batteries that are a hundred times larger while only weighing as much as two grains of rice.

    The researchers will continue to study chemical and physical features that can be tuned to further improve the performance, while also building wearable devices and microrobots that take advantage of these new power sources.

    See the full articles 8.9.21 Penn Today here and 7.27.21 Penn School of Engineering and Applied Science here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at University of Pennsylvania (US) is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania(US) is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences(US); 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University(US) and Columbia(US) Universities. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University(US), William & Mary(US), Yale Unversity(US), and The College of New Jersey(US)—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health(US).

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University(US) and Cornell University(US) (Harvard University(US) did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University(US)) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 10:24 am on August 2, 2021 Permalink | Reply
    Tags: "Through the thin-film glass researchers spot a new liquid phase", , , Glasses that are made into ultrathin nanometer-scale films are widely used in applications such as OLED displays and optical fibers., , Penn Today, Using vapor deposition the researchers can create very dense thin-film glasses.   

    From Penn Today : “Through the thin-film glass, researchers spot a new liquid phase” 

    From Penn Today

    at

    U Penn bloc

    University of Pennsylvania

    July 26, 2021
    Erica K. Brockmeier

    1
    Research from the lab of Zahra Fakhraai describes a new liquid phase in thin films of a glass-forming molecule. These results demonstrate how these glasses and other similar materials can be fabricated to be denser and more stable, providing a framework for developing new applications and devices through better design.

    Research published in the PNAS describes a new type of liquid in thin films, which forms a high-density glass. Results generated in this study, conducted by researchers in Penn’s Department of Chemistry, demonstrate how these glasses and other similar materials can be fabricated to be denser and more stable, providing a framework for developing new applications and devices through better design.

    Glass is typically created through solidification, or falling out of equilibrium, of a liquid when it is cooled to a temperature where its motion arrests. The structure of a glass closely resembles the liquid phase, but its properties are similar to solids, akin to a crystal.

    Glasses that are made into ultrathin nanometer-scale films are widely used in applications such as OLED displays and optical fibers. But when these types of glasses are made into thin films, even at cold temperatures they behave more like a liquid, and the resulting material can be prone to droplet formation or crystallization, which limits the size of the smallest features that are possible.

    To make better glasses, researchers have used vapor deposition instead of cooling a liquid to produce a glass. In vapor deposition, a material is changed from a gas into a solid directly. While this method has allowed researchers to create denser types of bulk glasses, it was initially thought that thin glass films made using this method would still have the same liquid-like properties that would lead to degradation and instability.

    But Yi Jin, a recent Ph.D. graduate who worked in the lab of Zahra Fakhraai, ran experiments and found that this was not actually the case. “Yi kept discovering different properties, none of the data made sense, and so we dug deeper until we had enough data to put a picture together,” says Fakhraai.

    Jin spent several years conducting detailed experiments, from changing the glass substrate, properties, and deposition rates to ensuring that all of their equipment was thoroughly cleaned to rule out contamination or experimental error.

    After running all of the control experiments needed, the researchers were surprised to find that when using vapor deposition, they could access a different type of liquid, with a phase transition to the typical bulk liquid upon heating. A phase transition is when a material changes from from one state (gas, liquid, or solid) into another. ”The two liquids have distinct structures, akin to graphene and diamond which are both solids made of carbon but exist in very different solid forms.”

    “There are a lot of interesting properties that came out of nowhere, and nobody had thought that in thin films you would be able to see these phases,” says Fakhraai. “It’s a new type of material.”

    Using vapor deposition, the researchers can create very dense thin-film glasses, corresponding to the packing of this new liquid phase, with a density much higher than was predicted to be possible without applying immense amounts of pressure. Thin films of these glasses can have density values even higher than crystal.

    To confirm what they were seeing, the researchers also obtained detailed structural information showing how individual molecules are packed using equipment at DOE’s Brookhaven National Laboratory (US). This analysis helped the researchers confirm that what they were seeing was not merely a crystal but instead an entirely new phase in the glass.

    Another hypothesis based on the data they’ve collected so far is that the ability to access this unique phase is due to the glass’ geometry, which means that this work could have implications for other types of materials as well. “We’re developing materials that are trying to go down in terms of scale,” says Jin about his current work in the materials science industry. “From what we see in glasses, there could also be interesting phenomena that emerge from other materials, like metallic materials that are commonly used in semiconductors, for example.”

    Researchers in Fakhraai’s lab are already working on follow-up experiments to learn more about the crucial parameters that lead to this unique phase transition. This includes studying films during the deposition process and “zooming in” on the phase transition region to learn more about this newly-discovered phenomenon. This work is also crucial for gaining a better understanding of glasses as a whole, says Fakhraai, where there remains a disconnection between theories that could provide a predictive platform for developing new materials in applications and new technologies.

    “To package the Moderna or Pfizer vaccines, you need a glass that could go really low in temperature and not shatter, and the fact that that technology exists is a shoutout to how well we can engineer bulk glass mechanics,” she says. “Our hope is that this fundamental understanding motivates more applications and a better ability to design thin film glasses with similarly improved properties. If the structure-property relationships are understood in thin films, we can do better by design.”

    The complete author list includes Yi Jin, Aixi Zhang, Sarah E. Wolf, Shivajee Govind, Alex R. Moore, Ahmad Arabi Shamsabadi, and Zahra Fakhraai from the University of Pennsylvania and Mikhail Zhernenkov and Guillaume Freychet from Brookhaven National Laboratory.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at University of Pennsylvania (US) is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania(US) is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences(US); 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University(US) and Columbia(US) Universities. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University(US), William & Mary(US), Yale Unversity(US), and The College of New Jersey(US)—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health(US).

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University(US) and Cornell University(US) (Harvard University(US) did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University(US)) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 1:54 pm on June 23, 2021 Permalink | Reply
    Tags: "For early amphibians a new lifestyle meant a new spine", Aja Carter and colleagues found that amphibian vertebrae acquired modifications as their habitat shifted from water to land and back., , , How the shapes of the vertebrae affect how animals move., One thing that unites creatures as diverse as humans; dogs; snakes; and even Stegasaurus is the basic shape of their vertebrae., , Penn Today, They all have this hockey puck-shaped thing-the centrum-fused to these sticky-outy parts-the neural arch-the transverse processes., Vertebrate life began in the water but around 340-360 million years ago four-limbed creatures-tetrapods-made the transition onto land.   

    From Penn Today : “For early amphibians a new lifestyle meant a new spine” 

    From Penn Today

    at

    U Penn bloc

    University of Pennsylvania

    June 9, 2021 [Just now in social media.]
    Katherine Unger Baillie
    Eric Sucar-Photographer

    1
    Aja Carter and colleagues found that amphibian vertebrae acquired modifications as their habitat shifted from water to land and back. (Pre-pandemic photo).

    Vertebrate life began in the water but around 340-360 million years ago four-limbed creatures-tetrapods-made the transition onto land. In the years that followed, some species adapted to terrestrial life, while others turned back to the water and readapted to an aquatic lifestyle.

    A new study of these early amphibians, published in the journal PLOS ONE and led by Penn paleontologist Aja Carter, suggests that these environmental shifts left an impression—on the shape of the animals’ spines.

    “I’m interested in how the shapes of the vertebrae affect how animals move,” she says. “Our findings suggest that, in at least one part of the vertebrae, the shape of the bones correlated with the environment in which the animals were living.” Those associations, Carter says, may be a result of the different physical demands of living on land versus in the water.

    Diversity, now and then

    Many characteristics distinguish creatures as diverse as humans, dogs, snakes, and even Stegasaurus, but one thing that unites them is the basic shape of their vertebrae.

    “They all have this hockey puck-shaped thing-the centrum-fused to these sticky-outy parts-the neural arch-the transverse processes,” says Carter, a paleontologist who earned her doctoral degree from Penn’s Department of Earth and Environmental Science in the School of Arts & Sciences and is now a postdoctoral fellow in the School of Engineering and Applied Science. “But that’s not always how it’s been.”

    Go back further in evolutionary time, Carter says, starting even before dinosaurs arose, and one will find a highly diverse set of vertebral shapes. Yet it’s not clear why all this diversity was present, or why vertebrates today have landed on one basic vertebral structure almost without exception.

    Scientists have long debated whether a particular vertebral shape was important for these animals to colonize land or subsequently recolonize water. To explore the question, Carter focused on early amphibians, a group known as temnospondyls, which were the most diverse tetrapods living in the Carboniferous through the late Permian, or about 360 to 250 million years ago. Some lived exclusively on land, some exclusively in water, and some were amphibious. In addition, some that were known to be terrestrial had evolved from ancestors that were aquatic, and vice versa.

    “If we want to understand macro-evolutionary trends, we need a lot of specimens,” Carter says. “There are about 290 species of temnospondyls, and they come in different sizes, and we know a lot about them. So this was a great group to focus on.”

    Shapes by the numbers

    Though previous studies had used qualitative techniques to assess the relationship between vertebral form and a land- or water-based lifestyle, Carter and colleagues opted to use a quantitative approach known as geometric morphometrics. This strategy quantifies shape by assigning points to the outline of a structure. In the current study, they used a two-dimensional approach, imagining the outline of the vertebrae viewed from the side.

    The researchers focused in particular on the shape of two parts of the vertebrae, the intercentrum, a weight-bearing structure, and the neural arch, sites of muscle attachment. Many in the field presumed that a land-based lifestyle required a stiffer spine than one in water, so the team’s prediction was that terrestrial temnospondyls would have longer neural arches and longer intercentra to restrict flexibility through the spine.

    Yet that’s not what they discovered. Instead, they found no association between the neural arches and the environment in which they animals lived. “That suggests there is some plasticity,” Carter says. In other words, there is not just one type of neural arch that enables successful movement on land.

    2
    The research tracked the evolution of the intercentra and the neural arches of animals’ vertebrae, anatomical features that can have significant influence over movement. (Pre-pandemic photo.)

    The intercentrum shape, however, did correlate with environment and not in the way that that earlier scientists had predicted. Terrestrial species tended to have shorter, more curved intercentra, while aquatic and semi-aquatic animals had intercentra that were taller and flatter.

    “The intercentra are weight-bearing, and these seem to fall out based on environment,” says Carter. “But the neural arches’ shape don’t seem to bend to the constraints that we think of in terms of terrestrial versus aquatic.”

    Indeed, in terrestrial species, the researchers found some with a high degree of spinal flexibility, contrary to previous beliefs, Carter says. “In fact, in our results, a lot of terrestrial taxa seemed to have spines that were a lot less stiff than their aquatic counterparts.”

    In addition, aquatic species that were known to have ancestors that had lived on land maintained morphologies more akin to their terrestrial counterparts. “They don’t go back,” she says.

    Questions for the future

    Carter notes, however, that there are other ways to gain spinal flexibility, including increasing the total number of vertebrae, but the new findings still buck earlier notions of what morphologies enabled a successful move to the land.

    “This tells us there is more diversity than what these labels—terrestrial, aquatic—are saying, when it comes to vertebral composition and shape,” Carter says.

    Carter acknowledges that paleontological studies such as these leave a lot of room for doubt. Measurements are coming from fossils that may have been reshaped during the fossilization process, for example. Plus, muscle attachments, lost to the fossilization process, would have a significant impact on movement. So she won’t be surprised if future studies challenge these findings.

    “Science is both iterative and overturned all the time,” she says.

    Yet in the not-so-distant future, in her new position at Penn Engineering, Carter hopes to build paleontologically inspired robots in which she could test how differently formed vertebrae impact functional movement.

    “I’m learning that’s going to be a difficult challenge, but I’m excited to work on it,” she says.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at University of Pennsylvania (US) is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania(US) is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946.

    In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences(US); 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University(US) and Columbia(US) Universities. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University(US), William & Mary(US), Yale Unversity(US), and The College of New Jersey(US)—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health(US).

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University(US) and Cornell University(US) (Harvard University(US) did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University(US)) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 9:48 am on June 10, 2021 Permalink | Reply
    Tags: "Connecting a star’s chemical composition and planet formation", Apache Point Observatory Galactic Evolution Experiment (APOGEE-2), , , , , If planets can’t be detected around a star can their existence be inferred by studying the host star?, Penn Today, The goal is to answer whether planet-hosting stars look different than stars with no planets., The long-term goal is to identify large populations of exoplanets.   

    From Penn Today : “Connecting a star’s chemical composition and planet formation” 

    From Penn Today

    at

    U Penn bloc

    University of Pennsylvania

    June 9, 2021
    Erica K. Brockmeier

    Along with developing a new statistical method for studying exoplanets, researchers from Penn found that the majority of stars in their dataset are similar to the sun, implying that many stars in the Milky Way could host their own Earthlike planets.

    1
    An artist’s concept of a young star circled by planets and rings of dust that arise when newly-formed, rocky planets collide with one another. A new study presented at the 238th American Astronomical Society (US) conference describes a new method for quantifying the relationship between a star’s chemical composition and planet formation, work that could help researchers identify individual stars that have a higher likelihood of hosting planets. (Image: National Aeronautics Space Agency (US)/JPL-Caltech (US))

    Researchers from Penn’s Department of Physics and Astronomy have developed a new method for better understanding the relationship between a star’s chemical composition and planet formation. The study was led by recent graduate Jacob Nibauer for his senior thesis with Bhuvnesh Jain and was co-supervised by former Penn postdoc Eric Baxter. The researchers found that the majority of stars in their dataset are similar in composition to the sun, somewhat at odds with earlier work and implying that many stars in the Milky Way could host their own Earth-like planets. These results were presented at the 238th American Astronomical Society (US) conference and also published in The Astrophysical Journal.

    The most common technique for finding exoplanets, ones that exist outside of the solar system, involves the transit method, when an exoplanet moves between its star and the observer and causes a dip in the star’s brightness.

    While most of the known exoplanets have been discovered using this method, this approach is limited because exoplanets can only be detected when their orbit and the observer are perfectly aligned and have short enough orbiting periods. The second most powerful technique, the radial velocity or Doppler method, has other limitations in its ability to find planets.

    This raises the question, If planets can’t be detected around a star can their existence be inferred by studying the host star? The researchers found that the answer to this question is a qualified yes, with new methods helping astronomers better understand how the formation of exoplanets is related to the composition of the star they orbit.

    “The idea is that planets and stars are born out of the same natal cloud, so you can imagine a scenario where a rocky planet locks on to enough material to leave the late stellar surface depleted in those elements,” says Nibauer. “The goal is to answer whether planet-hosting stars look different than stars with no planets, and one way to do that is to search for signatures of planet formation in the composition of the stellar surface. Fortunately, the composition of a star, at least of its outer layers, can be inferred from its spectrum, the distribution of light intensity over different frequencies.”

    To do this, the researchers used data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE-2), focusing on 1,500 Milky Way galaxy stars with chemical composition data for five different elements. Nibauer’s novel contribution was to apply Bayesian statistics to measure the abundance of five rock-forming, or “refractory”, elements and objectively separate populations of stars based on their chemical compositions.

    1
    A projection of data from APOGEE, with orange points indicating stars used in this analysis (top) and the abundance ratios of a subset of chemical elements relative to iron in the population of Sun-like stars (bottom). (Image credit: Jacob Nibauer)

    Nibauer’s method allows researchers to look at stars with low signal-to-noise ratios, or where measurement background can be larger than the star’s own signal. “This framework, rather than focusing on a star-by-star basis, combines measurements across the entire population allowing us to characterize the global distribution of chemical abundances,” says Nibauer. “Because of that, we’re able to include much larger populations of stars compared with previous studies.”

    The researchers found that their dataset neatly separated stars into two populations. Depleted stars, which make up the majority of the sample, are missing refractory elements compared to the not-depleted population. This could indicate that the missing refractory material in the depleted population is locked up in rocky planets. These results are consistent with other smaller, targeted studies of stars that use more precise chemical-composition measurements. However, the interpretation of these results differs from previous studies in that the sun appears to belong to a population which makes up the majority of the sample.

    “Previous studies were sun-centric, so stars are either like the sun or not, but Jake developed a methodology to group similar stars without referencing the sun,” says Jain. “This is the first time that a method which ‘let the data speak’ had found two populations, and we could then place the sun in one of those groups, which turned out to be the depleted group.”

    This study also provides a promising avenue to identify individual stars which may have a higher likelihood of hosting their own planets, says Nibauer. “The long-term goal is to identify large populations of exoplanets, and any technique that can place a probabilistic constraint on whether a star is likely to be a planet host without having to rely on the usual transit method is very valuable,” he says.

    And if Milky Way stars being depleted is the norm, this could mean that the majority of these stars could be orbited by Earthlike planets, opening up the possibility that stars that are “missing” heavier elements simply have them locked up in orbiting rocky exoplanets, though other possible connections to exoplanets are also being explored. “This would be exciting if confirmed by future analyses of larger datasets,” says Jain.

    The complete list of co-authors for The Astrophysical Journal article includes Jacob Nibauer, Eric J. Baxter, and Bhuvnesh Jain from Penn; Jennifer L. Van Saders from the University of Hawaii (US); Rachael L. Beaton from Princeton University (US); and Johanna K. Teske from the Earth and Planets Laboratory Carnegie Institution of Washington (US).

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at University of Pennsylvania (US) is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania(US) is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences(US); 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University(US) and Columbia(US) Universities. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University(US), William & Mary(US), Yale Unversity(US), and The College of New Jersey(US)—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health(US).

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University(US) and Cornell University(US) (Harvard University(US) did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University(US)) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering. It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: