Tagged: Paul Scherrer Institute [Paul Scherrer Institut] (CH) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:23 pm on September 25, 2021 Permalink | Reply
    Tags: "X-ray microscopy with 1000 tomograms per second", Paul Scherrer Institute [Paul Scherrer Institut] (CH), Tomoscopy is an imaging method in which three-dimensional images of the inside of materials are reconstructed in rapid succession.   

    From Paul Scherrer Institute [Paul Scherrer Institut] (CH) : “X-ray microscopy with 1000 tomograms per second” 

    From Paul Scherrer Institute [Paul Scherrer Institut] (CH)

    24 September 2021

    Dr. Christian Schlepütz
    X-ray Tomography Group
    Paul Scherrer Institute
    +41 56 310 40 95
    christian.schlepuetz@psi.ch [German, English]

    1
    Christian Schlepütz at the Tomcat beamline of the Swiss Light Source SLS, where a team of scientists have developed a 3D imaging method capable of recording 1,000 tomograms per second.
    (Photo: Mahir Dzambegovic/Paul Scherrer Institute.

    Tomoscopy is an imaging method in which three-dimensional images of the inside of materials are reconstructed in rapid succession. A new world record has now been set at the Swiss Light Source at the Paul Scherrer Institute: with 1000 tomograms per second, it is now possible to non-destructively capture very fast processes and structural changes in materials on the micrometre scale, such as the burning of a sparkler or the foaming of a metal alloy for the production of stable lightweight materials.

    Most people are familiar with computed tomography from medicine: a part of the body is X-rayed from all sides and a three-dimensional image is then calculated, from which any sectional images can be created for diagnosis.

    This method is also very useful for material analysis, non-destructive quality testing or in the development of new functional materials. However, to examine such materials with high spatial resolution and in the shortest possible time, the particularly intense X-ray light of a synchrotron light source is required. In the synchrotron light, even rapid changes and processes in material samples can be visualised if it is possible to capture 3-dimensional images in a very short time sequence.

    A team led by Francisco García Moreno from the Berlin Helmholtz Center for Materials and Energy [Helmholtz-Zentrum für Materialien und Energie] (HZB) (DE) is working on this, together with researchers from the Swiss Light Source SLS at the Paul Scherrer Institute (PSI).

    Two years ago, they managed a record 200 tomograms per second, calling the method of fast imaging “tomoscopy”. Now the team has achieved a new world record: with 1000 tomograms per second, they can now record even faster processes in materials or during the manufacturing process. This is achieved without any major compromises in the other parameters: the spatial resolution is still very good at several micrometres, the field of view is several square millimetres and continuous recording periods of up to several minutes are possible.

    Special table reaches 500 rotations per second

    For the X-ray images, the sample is placed on a high-speed rotary table developed in-house, whose angular speed can be perfectly synchronised with the camera’s acquisition speed. “We used particularly lightweight components for this rotary table so that it can turn around its axis 500 times per second and still remain stable,” García Moreno explains.

    Creating a 3D image from 40 projections per millisecond

    At the Tomcat beamline at the SLS, which is specialised in time-resolved X-ray imaging, PSI physicist Christian Schlepütz used a new high-speed camera and special optics. “This increases the sensitivity very significantly, so that we can take 40 2D projections in one millisecond, from which we create a tomogram,” Schlepütz explains. One 3D image is therefore created every millisecond, in other words 1,000 3D images per second. With the planned SLS2.0 upgrade, even faster measurements with higher spatial resolution should be possible from 2025.

    The team demonstrated the power of tomoscopy with various examples from materials research: the images show the extremely rapid changes during the burning of a sparkler, the formation of dendrites during the solidification of casting alloys or the growth and coalescence of bubbles in a liquid metal foam. Such metal foams based on aluminium alloys are being investigated as lightweight materials, for example for the construction of electric cars. The morphology, size and cross-linking of the bubbles are important to achieve the desired mechanical properties such as strength and stiffness in large components.

    “This method opens a door for the non-destructive study of fast processes in materials, which is what many research groups and also industry have been waiting for,” says García Moreno.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Paul Scherrer Institute [Paul Scherrer Institut] (CH) is the largest research institute for natural and engineering sciences within Switzerland. We perform world-class research in three main subject areas: Matter and Material; Energy and the Environment; and Human Health. By conducting fundamental and applied research, we work on long-term solutions for major challenges facing society, industry and science.

    The Paul Scherrer Institute (PSI) is a multi-disciplinary research institute for natural and engineering sciences in Switzerland. It is located in the Canton of Aargau in the municipalities Villigen and Würenlingen on either side of the River Aare, and covers an area over 35 hectares in size. Like ETH Zurich [Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH) and EPFL [EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH)], PSI belongs to the Swiss Federal Institutes of Technology Domain of the Swiss Confederation [https://www.sbfi.admin.ch/sbfi/en/home/ihe/higher-education/domain-of-the-federal-institutes-of-technology/bodies-and-institutes-within-the-eth-domain.html]. The PSI employs around 2100 people. It conducts basic and applied research in the fields of matter and materials, human health, and energy and the environment. About 37% of PSI’s research activities focus on material sciences, 24% on life sciences, 19% on general energy, 11% on nuclear energy and safety, and 9% on particle physics.

    PSI develops, builds and operates large and complex research facilities and makes them available to the national and international scientific communities. In 2017, for example, more than 2500 researchers from 60 different countries came to PSI to take advantage of the concentration of large-scale research facilities in the same location, which is unique worldwide. About 1900 experiments are conducted each year at the approximately 40 measuring stations in these facilities.

    In recent years, the institute has been one of the largest recipients of money from the Swiss lottery fund.

    Research and specialist areas

    PSI develops, builds and operates several accelerator facilities, e. g. a 590 MeV high-current cyclotron, which in normal operation supplies a beam current of about 2.2 mA. PSI also operates four large-scale research facilities: a synchrotron light source (SLS), which is particularly brilliant and stable, a spallation neutron source (SINQ), a muon source (SμS) and an X-ray free-electron laser (SwissFEL). This makes PSI currently (2020) the only institute in the world to provide the four most important probes for researching the structure and dynamics of condensed matter (neutrons, muons and synchrotron radiation) on a campus for the international user community. In addition, HIPA’s target facilities also produce pions that feed the muon source and the Ultracold Neutron source UCN produces very slow, ultracold neutrons. All these particle types are used for research in particle physics.

     
  • richardmitnick 4:52 pm on August 4, 2021 Permalink | Reply
    Tags: "First light at Furka-The experiments can begin", Femtosecond: a millionth [1 x 10^−6] billionth [1 x 10^−9] = [1 x 10 ^-15] of a second., For reference one unit of Planck time (tP) is the time required for light to travel a distance of 1 Planck length in a vacuum which is approximately 5.39×10^−44 second., Paul Scherrer Institute [Paul Scherrer Institut] (CH), SwissFEL, The X-ray free-electron laser SwissFEL is unique in the world. It delivers pulsed X-ray light and the pulses are unimaginably short-in the range of femtoseconds or even less., ,   

    From Paul Scherrer Institute [Paul Scherrer Institut] (CH) : “First light at Furka-The experiments can begin” 

    From Paul Scherrer Institute [Paul Scherrer Institut] (CH)

    4 August 2021

    Elia Razzoli, PhD
    Head of the Furka Group
    Laboratory for Advanced Photonics
    Paul Scherrer Institute [CH]
    elia.razzoli@psi.ch

    1
    Elia Razzoli, 36, did his doctoral research at EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH) and PSI. Two years ago, following research stays abroad, he returned to PSI, where he works at the Furka experiment station. In January 2021 he became the head of the newly established Furka Group. Photo: Paul Scherrer Institute/Mahir Dzambegovic.

    It’s another milestone on the path to full operation of the SwissFEL | Paul Scherrer Institut (PSI) [freies Elektron ][électron libre](CH) with five experiment stations in all: “First light” at the experiment station Furka. It clears the way for experimental possibilities that are unique worldwide. Team leader Elia Razzoli explains what the Furka Group is planning to do.

    Why is “first light” such an important occasion for your team?

    Elia Razzoli: It means we’re in business. Or to be more specific: Now we can begin working on the first experiments.

    The general public might imagine that you simply flip a switch, and then the light is there. But presumably it’s not that simple in your case…

    No, it is a complex task. When we at SwissFEL talk about light, we do not mean visible light, but rather X-ray light with characteristics that are unique in the world. To generate that light, and for research to be able to use it, several teams at PSI have to work together. With the Furka experiment station we are, so to speak, at the end of the food chain. To generate the X-ray light of SwissFEL, electrons must be forced onto a sinuous track with the aid of magnets. In the process, they emit the X-ray light that we need to carry out the actual investigations. The magnets that redirect the electrons in this way are called undulators. And they are precisely what makes the whole thing so difficult, because they have to work exactly in sync; otherwise the X-ray light doesn’t have the quality that we need. The complexity of the system grows exponentially with the number and length of the undulators. That is why first light at Furka is already a masterful technical and organisational feat.

    What comes next?

    The first test experiments are currently under way, in which we vary parameters to see whether everything behaves as desired. We are carrying out experiments with diffraction, in which we can measure the distances between individual atoms in crystal structures, and with absorption, where we vary the wavelength of the X-ray light and look at how much energy is absorbed in the material depending on the wavelength. This is important if we want to carry out more ambitious spectroscopic experiments later. Then, over the next six to eight months, we will start up the system and familiarise ourselves with focusing and detecting the X-ray beam. Then in 2022 we will start the first scientific experiments with external users.

    What experiments are you planning?

    The research area on the Athos beamline is experiments with soft X-rays. Our colleagues at the Maloja experiment station, which is already in operation, are mainly looking at liquid and gaseous substances. At Furka, we specialise in solids, which we study at very low temperatures. We can cool them down to -263 ° Celsius, around ten Kelvin above absolute zero. We use spectroscopy to observe the electrons in the atoms that are responsible for the physical properties of substances, such as superconductivity for example.

    Why can that only be done at SwissFEL?

    The X-ray free-electron laser SwissFEL is unique in the world. It delivers pulsed X-ray light and the pulses are unimaginably short-in the range of femtoseconds or even less. That is a millionth billionth of a second. With that we can, for example, look at chemical reactions as if in a movie filmed with an extremely fast high-speed camera. For Athos, we have developed special systems called CHIC and APPLE-X that allow us to manipulate the electron beam of SwissFEL and generate X-ray light with unique properties more or less à la carte.

    Will practical applications also result from this research?

    The results of experiments our colleagues conducted 50 years ago can be found today in every smartphone, for instance in the semiconductor materials of the microchips. Naturally, we hope that our experiments too will one day enable advances in electronics, or in quantum computing technology. We are interested, for example, in materials whose magnetic states can be switched lightning-fast. That is of interest for coming generations of computer hard drives with extremely high storage density. But first and foremost, we are researchers who want to make new discoveries. Maybe we will even find novel quantum states, such as light-induced topological phases, that could be of fundamental importance in the search for so-called Majorana-like particles. These particles are exotic quantum states that could revolutionise our approach to quantum computing.

    Were there delays in setting up Furka due to the coronavirus restrictions?

    We observe the hygiene requirements, for example that there should not be too many people in the same room. Normally four to six researchers work together at an experiment station, and from time to time there are still more researchers from external partners. That was not going to work, but we organised ourselves so that there were hardly any delays. Besides, experiment stations like Furka are so automated that you can carry out a lot of tests virtually from the kitchen table.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Paul Scherrer Institute [Paul Scherrer Institut] (CH) is the largest research institute for natural and engineering sciences within Switzerland. We perform world-class research in three main subject areas: Matter and Material; Energy and the Environment; and Human Health. By conducting fundamental and applied research, we work on long-term solutions for major challenges facing society, industry and science.

    The Paul Scherrer Institute (PSI) is a multi-disciplinary research institute for natural and engineering sciences in Switzerland. It is located in the Canton of Aargau in the municipalities Villigen and Würenlingen on either side of the River Aare, and covers an area over 35 hectares in size. Like Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH) and EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), PSI belongs to the Swiss Federal Institutes of Technology Domain of the Swiss Confederation. The PSI employs around 2100 people. It conducts basic and applied research in the fields of matter and materials, human health, and energy and the environment. About 37% of PSI’s research activities focus on material sciences, 24% on life sciences, 19% on general energy, 11% on nuclear energy and safety, and 9% on particle physics.

    PSI develops, builds and operates large and complex research facilities and makes them available to the national and international scientific communities. In 2017, for example, more than 2500 researchers from 60 different countries came to PSI to take advantage of the concentration of large-scale research facilities in the same location, which is unique worldwide. About 1900 experiments are conducted each year at the approximately 40 measuring stations in these facilities.

    In recent years, the institute has been one of the largest recipients of money from the Swiss lottery fund.

    Research and specialist areas

    PSI develops, builds and operates several accelerator facilities, e. g. a 590 MeV high-current cyclotron, which in normal operation supplies a beam current of about 2.2 mA. PSI also operates four large-scale research facilities: a synchrotron light source (SLS), which is particularly brilliant and stable, a spallation neutron source (SINQ), a muon source (SμS) and an X-ray free-electron laser (SwissFEL). This makes PSI currently (2020) the only institute in the world to provide the four most important probes for researching the structure and dynamics of condensed matter (neutrons, muons and synchrotron radiation) on a campus for the international user community. In addition, HIPA’s target facilities also produce pions that feed the muon source and the Ultracold Neutron source UCN produces very slow, ultracold neutrons. All these particle types are used for research in particle physics.

     
  • richardmitnick 9:58 am on July 23, 2021 Permalink | Reply
    Tags: "Understanding the Physics in New Metals", , , Correlated metals, , Paul Scherrer Institute [Paul Scherrer Institut] (CH), , , Strongly correlated materials are candidates for novel high-temperature superconductors., These materials could prove useful for practical applications in areas such as superconductivity; data processing; and quantum computers., Using inelastic resonant x-ray scattering to study quantum materials such as correlated metals.,   

    From DOE’s Brookhaven National Laboratory (US) and Paul Scherrer Institute [Paul Scherrer Institut] (CH) : “Understanding the Physics in New Metals” 

    From DOE’s Brookhaven National Laboratory (US)

    and

    Paul Scherrer Institute [Paul Scherrer Institut] (CH)

    July 19, 2021

    Barbara Vonarburg, Paul Scherrer Institute

    1
    Brookhaven Lab Scientist Jonathan Pelliciari now works as a beamline scientist at the National Synchrotron Light Source II (NSLS-II)[below], where he continues to use inelastic resonant x-ray scattering to study quantum materials such as correlated metals.

    Researchers from the Paul Scherrer Institute PSI and the Brookhaven National Laboratory (BNL), working in an international team, have developed a new method for complex X-ray studies that will aid in better understanding so-called correlated metals. These materials could prove useful for practical applications in areas such as superconductivity; data processing; and quantum computers. Today the researchers present their work in the journal Physical Review X.

    In substances such as silicon or aluminium, the mutual repulsion of electrons hardly affects the material properties. Not so with so-called correlated materials, in which the electrons interact strongly with one another. The movement of one electron in a correlated material leads to a complex and coordinated reaction of the other electrons. It is precisely such coupled processes that make these correlated materials so promising for practical applications, and at the same time so complicated to understand.

    Strongly correlated materials are candidates for novel high-temperature superconductors, which can conduct electricity without loss and which are used in medicine, for example, in magnetic resonance imaging. They also could be used to build electronic components, or even quantum computers, with which data can be more efficiently processed and stored.

    “Strongly correlated materials exhibit a wealth of fascinating phenomena,” says Thorsten Schmitt, head of the Spectroscopy of Novel Materials Group at PSI: “However, it remains a major challenge to understand and exploit the complex behaviour that lies behind these phenomena.” Schmitt and his research group tackle this task with the help of a method for which they use the intense and extremely precise X-ray radiation from the Swiss Light Source SLS at PSI.

    4
    Swiss Light Source SLS Paul Scherrer Institut (PSI)

    This modern technique, which has been further developed at PSI in recent years, is called resonant inelastic X-ray scattering, or RIXS for short.

    2
    Thorsten Schmitt at the experiment station of the Swiss Light Source SLS, which provided the X-ray light used for the experiments. Credit: Mahir Dzambegovic/Paul Scherrer Institute.

    X-rays excite electrons

    With RIXS, soft X-rays are scattered off a sample. The incident X-ray beam is tuned in such a way that it elevates electrons from a lower electron orbital to a higher orbital, which means that special resonances are excited. This throws the system out of balance. Various electrodynamic processes lead it back to the ground state. Some of the excess energy is emitted again as X-ray light. The spectrum of this inelastically scattered radiation provides information about the underlying processes and thus on the electronic structure of the material.

    “In recent years, RIXS has developed into a powerful experimental tool for deciphering the complexity of correlated materials,” Schmitt explains. When used to investigate correlated insulators in particular, it works very well. Up to now, however, the method has been unsuccessful in probing correlated metals. Its failure was due to the difficulty of interpreting the extremely complicated spectra caused by many different electrodynamic processes during the scattering. “In this connection collaboration with theorists is essential,” explains Schmitt, “because they can simulate the processes observed in the experiment.”

    Calculations of correlated metals

    This is a specialty of theoretical physicist Keith Gilmore, formerly of the Brookhaven National Laboratory (BNL) in the USA and now at the Humboldt University of Berlin [Humboldt-Universität zu Berlin] (DE). “Calculating the RIXS results for correlated metals is difficult because you have to handle several electron orbitals, large bandwidths, and a large number of electronic interactions at the same time,” says Gilmore. Correlated insulators are easier to handle because fewer orbitals are involved; this allows model calculations that explicitly include all electrons. To be precise, Gilmore explains: “In our new method of describing the RIXS processes, we are now combining the contributions that come from the excitation of one electron with the coordinated reaction of all other electrons.”

    To test the calculation, the PSI researchers experimented with a substance that BNL scientist Jonathan Pelliciari had investigated in detail as part of his doctoral thesis at PSI: barium-iron-arsenide. If you add a specific amount of potassium atoms to the material, it becomes superconducting. It belongs to a class of unconventional high-temperature iron-based superconductors that are expected to provide a better understanding of the phenomenon. “Until now, the interpretation of RIXS measurements on such complex materials has been guided mainly by intuition. Now these RIXS calculations give us experimenters a framework that enables a more practical interpretation of the results. Our RIXS measurements at PSI on barium-iron-arsenide are in excellent agreement with the calculated profiles,” Pelliciari says.

    Combination of experiment and theory

    In their experiments, the researchers investigated the physics around the iron atom. “One advantage of RIXS is that you can concentrate on a specific component and examine it in detail for materials that consist of several elements,” Schmitt says. The well-tuned X-ray beam causes an inner electron in the iron atom to be elevated from the ground state in the core level to the higher energy valence band, which is only partially occupied. This initial excitation of the core electron can cause further secondary excitations and trigger many complicated decay processes that ultimately manifest themselves in spectral satellite structures. (See graphic.)

    3
    The graphic shows how an electron (blue dot) can be elevated to different energy levels (dotted arrows) or falls back to lower energy levels. Between the highest energy level and somewhat lower level, secondary processes take place. The curve in the background represents the iron electronic levels.
    Credit: Keith Gilmore/Paul Scherrer Institute.

    Since the contributions of the many reactions are sometimes small and close to one another, it is difficult to find out which processes actually took place in the experiment. Here the combination of experiment and theory helps. “If you have no theoretical support for difficult experiments, you cannot understand the processes, that is, the physics, in detail,” Schmitt says. The same also applies to theory: “You often don’t know which theories are realistic until you can compare them with an experiment. Progress in understanding comes when experiment and theory are brought together. This descriptive method thus has the potential to become a reference for the interpretation of spectroscopic experiments on correlated metals.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Paul Scherrer Institute [Paul Scherrer Institut] (CH) is the largest research institute for natural and engineering sciences within Switzerland. We perform world-class research in three main subject areas: Matter and Material; Energy and the Environment; and Human Health. By conducting fundamental and applied research, we work on long-term solutions for major challenges facing society, industry and science.

    The Paul Scherrer Institute (PSI) is a multi-disciplinary research institute for natural and engineering sciences in Switzerland. It is located in the Canton of Aargau in the municipalities Villigen and Würenlingen on either side of the River Aare, and covers an area over 35 hectares in size. Like Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH) and EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), PSI belongs to the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales](CH). The PSI employs around 2100 people. It conducts basic and applied research in the fields of matter and materials, human health, and energy and the environment. About 37% of PSI’s research activities focus on material sciences, 24% on life sciences, 19% on general energy, 11% on nuclear energy and safety, and 9% on particle physics.

    PSI develops, builds and operates large and complex research facilities and makes them available to the national and international scientific communities. In 2017, for example, more than 2500 researchers from 60 different countries came to PSI to take advantage of the concentration of large-scale research facilities in the same location, which is unique worldwide. About 1900 experiments are conducted each year at the approximately 40 measuring stations in these facilities.

    In recent years, the institute has been one of the largest recipients of money from the Swiss lottery fund.

    Research and specialist areas

    PSI develops, builds and operates several accelerator facilities, e. g. a 590 MeV high-current cyclotron, which in normal operation supplies a beam current of about 2.2 mA. PSI also operates four large-scale research facilities: a synchrotron light source (SLS), which is particularly brilliant and stable, a spallation neutron source (SINQ), a muon source (SμS) and an X-ray free-electron laser (SwissFEL). This makes PSI currently (2020) the only institute in the world to provide the four most important probes for researching the structure and dynamics of condensed matter (neutrons, muons and synchrotron radiation) on a campus for the international user community. In addition, HIPA’s target facilities also produce pions that feed the muon source and the Ultracold Neutron source UCN produces very slow, ultracold neutrons. All these particle types are used for research in particle physics.

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.


    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 (mission need) from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.
    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.
    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years.[19] NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.
    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.
    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University.
    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).


    It is currently operating at CERN near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.


     
  • richardmitnick 2:59 pm on May 3, 2021 Permalink | Reply
    Tags: "The goal is an experimental quantum computer in the canton of Aargau", Paul Scherrer Institute [Paul Scherrer Institut] (CH)   

    From Paul Scherrer Institute [Paul Scherrer Institut] (CH) : “The goal is an experimental quantum computer in the canton of Aargau” 

    From Paul Scherrer Institute [Paul Scherrer Institut] (CH)

    3 May 2021
    Laura Hennemann

    Contact

    Prof. Dr. Gabriel Aeppli
    Head of the Photon Science Division
    Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
    and Department of Physics, ETH Zürich
    and Topological Matter Laboratory, EPF Lausanne
    Telephone: +41 56 310 42 32, e-mail: gabriel.aeppli@psi.ch [German, English, French]

    Prof. Dr. Christian Rüegg
    Director of the Paul Scherrer Institute
    Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
    and Department of Physics, ETH Zürich
    and Institute of Physics, EPF Lausanne
    and Department of Condensed Matter Physics, University of Geneva
    Telephone : +41 56 310 47 78, e-mail: christian.rueegg@psi.ch [German, English]

    1
    Christian Rüegg (left), director of the Paul Scherrer Institute, and Gabriel Aeppli, head of the Photon Science Division at PSI, were instrumental in the creation of the just opened ETH Zürich – PSI Quantum Computing Hub.(Photo: Paul Scherrer Institute/Markus Fischer)

    It’s official: Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH) and the Paul Scherrer Institute PSI are opening a joint research centre, the ETH Zürich – PSI Quantum Computing Hub. The goal is the investigation and realisation of quantum computers. In an interview, Gabriel Aeppli, head of PSI’s Photon Science Division, and Christian Rüegg, director of PSI, talk about this special collaboration and highlight what quantum computers are expected to bring us.

    Mr. Aeppli, Mr. Rüegg, the decisive contract for the ETH Zürich- PSI Quantum Computing Hub was signed these days by both sides. How did this collaboration come about?

    Aeppli: At ETH Zürich, excellent academic research is carried out. Two research groups there have already created individual quantum bits and interconnected them as well. Now we want to build on this success and scale it up. Scaling up is a classic task in engineering. And that is something we can offer – along with our own academic experience – here at PSI.

    Rüegg: This collaboration has long been a wish of ours. And fortunately, ETH Zürich was just as interested in it as we were. Specifically Detlef Günther, vice president for research, and Joël Mesot, who a good two years ago moved on from the directorship of PSI to the post of president at ETH Zurich.

    Aeppli: Ultimately it became clear to everyone involved: We, as Switzerland, don’t want to miss the boat. The architecture of scalable quantum computers has not yet been found. We want to contribute to solving this crucial question and build up leading expertise, from the very start, here in Switzerland.

    Will quantum computers eventually replace all previous types of computers?

    Rüegg: Not likely. Quantum computers are not superior to classical computers in everything. But with classical computers, it’s a very laborious job to calculate the behaviour of the smallest building blocks of matter – in other words, the quantum world. This applies, for example, to solid-state physics, biology, and chemistry – all of which are central research topics at PSI.

    Aeppli: At present we take the complex formulas of quantum mechanics and feed them into classical computers. They can calculate some of it, but for other problems they would simply need so much time that it becomes impossible. In contrast, a quantum computer is itself an implementation of quantum mechanics and thus can directly simulate the processes we want to find out about. That will speed things up incredibly.

    Rüegg: Already now we choose the means with which we tackle which calculation problem. If I want to calculate two plus three, I don’t use a computer at all, since it’s quick to do it in my head. For many other computations and applications, we use PCs, laptops, or smartphones. Today simulations of the weather are carried out on classical supercomputers. But in our laboratories, we are investigating quantum mechanical processes – and it is precisely here that a quantum computer will really bring about a revolution.

    So you want to build quantum computers here and also use them at the same time?

    Rüegg: That’s right. A quantum computer such as what we will realise with ETH Zürich at PSI is not simply going to be finished one day. It will be more of a research platform, which itself will be subject to ongoing development. It will be tested and used, continuously improved and upgraded. Just like we do with our large-scale research facilities in order to always be able to conduct research at the foremost frontier of science.

    And will there be mass-produced quantum computers someday?

    Aeppli: Maybe not complete quantum computers, not so soon. But I’d estimate that in around a decade there will be mass-produced commercial quantum processors.

    Back to the Quantum Computing Hub: What are the concrete steps coming up now?

    Aeppli: Now the research groups that will work on-site at PSI are being formed. We are planning three groups: The first will use quantum bits or “qubits” based on ion traps to develop a quantum computer. The second is pursuing the same goal, but on the basis of superconducting qubits. These two groups are tied in with thematically corresponding research groups at ETH Zürich, from where Professors Jonathan Holme and Andreas Wallraff are taking the scientific lead respectively. These are the two groups I mentioned at the beginning. For the third group, the position of group leader and professor at ETH Zürich has been advertised, and the person selected will be responsible for determining the research topic.

    Three research groups – how many staff members does that translate to?

    Aeppli: At PSI, around thirty leading specialists will soon be on staff to carry out this research.

    So, quantum computers are based on quantum bits, which have to be interconnected. How many qubits are we talking about and has the Quantum Computing Hub set specific targets?

    Rüegg: The first milestone we’ve set, applying both methods – ion traps and superconducting qubits – is to interconnect around one hundred qubits each. We want to use them in a complementary manner, compare them, and study them.

    Aeppli: A real quantum processor would require around ten million raw qubits. So this is a different story. To achieve that would require more like 100 to 200 employees as well as external investors and industry partners. Park Innovaare, which at this moment is being built right next to PSI, could offer very interesting possibilities for collaboration with the high-tech industry.

    Rüegg: And that is definitely our long-term goal. In a few years we want to be able to say: In the canton of Aargau, there is an experimental quantum computer. It will offer the scientific community in Switzerland unique opportunities to conduct joint research in the field of quantum computing as well as in its applications.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Paul Scherrer Institute [Paul Scherrer Institut] (CH) is the largest research institute for natural and engineering sciences within Switzerland. We perform world-class research in three main subject areas: Matter and Material; Energy and the Environment; and Human Health. By conducting fundamental and applied research, we work on long-term solutions for major challenges facing society, industry and science.

    The Paul Scherrer Institute (PSI) is a multi-disciplinary research institute for natural and engineering sciences in Switzerland. It is located in the Canton of Aargau in the municipalities Villigen and Würenlingen on either side of the River Aare, and covers an area over 35 hectares in size. Like ETH Zurich and EPFL, PSI belongs to the Swiss Federal Institutes of Technology Domain of the Swiss Confederation. The PSI employs around 2100 people. It conducts basic and applied research in the fields of matter and materials, human health, and energy and the environment. About 37% of PSI’s research activities focus on material sciences, 24% on life sciences, 19% on general energy, 11% on nuclear energy and safety, and 9% on particle physics.

    PSI develops, builds and operates large and complex research facilities and makes them available to the national and international scientific communities. In 2017, for example, more than 2500 researchers from 60 different countries came to PSI to take advantage of the concentration of large-scale research facilities in the same location, which is unique worldwide. About 1900 experiments are conducted each year at the approximately 40 measuring stations in these facilities.

    In recent years, the institute has been one of the largest recipients of money from the Swiss lottery fund.

     
  • richardmitnick 8:51 pm on May 2, 2021 Permalink | Reply
    Tags: "Growth in the data sciences", Paul Scherrer Institute [Paul Scherrer Institut] (CH), Swiss Data Science Center [Schweizerisches Data Science Center][Centre suisse de la science des données] (CH)   

    From Paul Scherrer Institute [Paul Scherrer Institut] (CH) : “Growth in the data sciences” 

    From Paul Scherrer Institute [Paul Scherrer Institut] (CH)

    28 April 2021

    Brigitte Osterath

    Contact

    Dr. Gerd Mann
    Head of IT
    Paul Scherrer Institute,
    Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
    +41 56 310 36 92;
    gerd.mann@psi.ch [German, English]

    Another location for the Swiss Data Science Center will be established at the Paul Scherrer Institute PSI (CH). To this end, the ETH Board has approved an increase of five million Swiss francs in the budget of the strategic focus area Data Science. The main aim of this expansion is to help improve the evaluation and handling of the growing amounts of data from large and complex research infrastructures, sensor networks, and databases at PSI and the other three federal research institutes, Empa – Swiss Federal Laboratories for Materials Science and Technology [Eidgenössische Materialprüfungs- und Forschungsanstalt] (CH), WSL Swiss Federal Institute for Forest Snow and Landscape Research [Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft] [Institut fédéral de recherches sur la forêt, la neige et le paysage] (CH) , and Eawag – Swiss Federal Institute of Aquatic Science and Technology [Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz]- Eawag (CH) . The resources and expertise will be available to all institutes in the ETH Domain.

    1
    Another site for the Swiss Data Science Center at PSI will give a further boost to the data sciences in Switzerland.Credit: Shutterstock.com.

    2
    Credit: SDSC/PSI.

    More precise and modern measurement methods mean more detailed insights into the world that surrounds us. But they also mean that a lot more data is generated. “Processing and evaluating the data is becoming an ever greater challenge,” says Gerd Mann, head of IT at PSI.

    The SDSC – Swiss Data Science Center [Schweizerisches Data Science Center][Centre suisse de la science des données] (CH) supports the ETH Domain with expertise and new methods such as machine learning and artificial intelligence to face the challenges encountered in research projects requiring complex data processing. The SDSC was created in 2017 as part of the strategic focus area Data Science and up to now has been located at Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH) and the EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH). A third site will now be set up at PSI in Villigen in the coming years. “This new unit will help further bridge the gap between data scientists and domain scientists while addressing the exploding growth of scientific data collected by the large-scale research infrastructures in Switzerland,” says Olivier Verscheure, SDSC Director.

    Another aim is to expand the existing cooperation between PSI and the Swiss National Supercomputing Centre [Centro Svizzero di Calcolo Scientifico](CH) CSCS.

    Data explosion – an opportunity for science

    Estimates indicate that over the next four years the amount of data generated annually at PSI alone will increase from the current level of around 3.6 petabytes (= 3.6 quadrillion bytes) to more than 50 petabytes. One reason for this is the planned upgrade of the Swiss Lightsource SLS Paul Scherrer Institut (PSI) [Schweizer Lichtquelle][Source de lumière suisse] (CH) under the project name SLS 2.0. During the same period, the X-ray free-electron laser SwissFEL | Paul Scherrer Institut (PSI) [freies Elektron ][électron libre] (CH) will be going into regular operation with additional beamlines, and thus new, even more complex detectors will be contributing to the flood of data.

    “It is not only PSI that is facing the challenge and the opportunities of the growing amount of data, but also other research areas within and outside the ETH Domain,” Gerd Mann stresses. Today, wherever researchers are investigating complex systems, measurements are generating more – and more complex – data. This also applies to the life sciences and environmental sciences, where much of the work involves analysing images and videos. For example, high-resolution video recordings can produce more than seven terabytes of raw data per hour.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Paul Scherrer Institute [Paul Scherrer Institut] (CH) is the largest research institute for natural and engineering sciences within Switzerland. We perform world-class research in three main subject areas: Matter and Material; Energy and the Environment; and Human Health. By conducting fundamental and applied research, we work on long-term solutions for major challenges facing society, industry and science.

    The Paul Scherrer Institute (PSI) is a multi-disciplinary research institute for natural and engineering sciences in Switzerland. It is located in the Canton of Aargau in the municipalities Villigen and Würenlingen on either side of the River Aare, and covers an area over 35 hectares in size. Like ETH Zurich and EPFL, PSI belongs to the Swiss Federal Institutes of Technology Domain of the Swiss Confederation. The PSI employs around 2100 people. It conducts basic and applied research in the fields of matter and materials, human health, and energy and the environment. About 37% of PSI’s research activities focus on material sciences, 24% on life sciences, 19% on general energy, 11% on nuclear energy and safety, and 9% on particle physics.

    PSI develops, builds and operates large and complex research facilities and makes them available to the national and international scientific communities. In 2017, for example, more than 2500 researchers from 60 different countries came to PSI to take advantage of the concentration of large-scale research facilities in the same location, which is unique worldwide. About 1900 experiments are conducted each year at the approximately 40 measuring stations in these facilities.

    In recent years, the institute has been one of the largest recipients of money from the Swiss lottery fund.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: