Tagged: Particle Physics Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:03 am on July 24, 2021 Permalink | Reply
    Tags: "New clues to why there’s so little antimatter in the universe", , , Particle Physics   

    From Massachusetts Institute of Technology (US) : “New clues to why there’s so little antimatter in the universe” 

    MIT News

    From Massachusetts Institute of Technology (US)

    July 7, 2021 [Science paper just became available
    Jennifer Chu

    1
    MIT physicists find radioactive molecules are sensitive to subtle nuclear effects, and could be ideal probes for explaining why there is more matter than antimatter in the universe. Credit: stock image edited by MIT News.

    2
    Credit: CC0 Public Domain.

    Imagine a dust particle in a storm cloud, and you can get an idea of a neutron’s insignificance compared to the magnitude of the molecule it inhabits.

    But just as a dust mote might affect a cloud’s track, a neutron can influence the energy of its molecule despite being less than one-millionth its size. And now physicists at MIT and elsewhere have successfully measured a neutron’s tiny effect in a radioactive molecule.

    The team has developed a new technique to produce and study short-lived radioactive molecules with neutron numbers they can precisely control. They hand-picked several isotopes of the same molecule, each with one more neutron than the next. When they measured each molecule’s energy, they were able to detect small, nearly imperceptible changes of the nuclear size, due to the effect of a single neutron.

    The fact that they were able to see such small nuclear effects suggests that scientists now have a chance to search such radioactive molecules for even subtler effects, caused by dark matter, for example, or by the effects of new sources of symmetry violations related to some of the current mysteries of the universe.

    “If the laws of physics are symmetrical as we think they are, then the Big Bang should have created matter and antimatter in the same amount. The fact that most of what we see is matter, and there is only about one part per billon of antimatter, means there is a violation of the most fundamental symmetries of physics, in a way that we can’t explain with all that we know,” says Ronald Fernando Garcia Ruiz, assistant professor of physics at MIT.

    “Now we have a chance to measure these symmetry violations, using these heavy radioactive molecules, which have extreme sensitivity to nuclear phenomena that we cannot see in other molecules in nature,” he says. “That could provide answers to one of the main mysteries of how the universe was created.”

    Ruiz and his colleagues have published their results today in Physical Review Letters.

    A special asymmetry

    Most atoms in nature host a symmetrical, spherical nucleus, with neutrons and protons evenly distributed throughout. But in certain radioactive elements like radium, atomic nuclei are weirdly pear-shaped, with an uneven distribution of neutrons and protons within. Physicists hypothesize that this shape distortion can enhance the violation of symmetries that gave origin to the matter in the universe.

    “Radioactive nuclei could allow us to easily see these symmetry-violating effects,” says study lead author Silviu-Marian Udrescu, a graduate student in MIT’s Department of Physics. “The disadvantage is, they’re very unstable and live for a very short amount of time, so we need sensitive methods to produce and detect them, fast.”

    Rather than attempt to pin down radioactive nuclei on their own, the team placed them in a molecule that futher amplifies the sensitivity to symmetry violations. Radioactive molecules consist of at least one radioactive atom, bound to one or more other atoms. Each atom is surrounded by a cloud of electrons that together generate an extremely high electric field in the molecule that physicists believe could amplify subtle nuclear effects, such as effects of symmetry violation.

    However, aside from certain astrophysical processes, such as merging neutron stars, and stellar explosions, the radioactive molecules of interest do not exist in nature and therefore must be created artificially. Garcia Ruiz and his colleagues have been refining techniques to create radioactive molecules in the lab and precisely study their properties. Last year, they reported on a method to produce molecules of radium monofluoride, or RaF, a radioactive molecule that contains one unstable radium atom and a fluoride atom.

    In their new study, the team used similar techniques to produce RaF isotopes, or versions of the radioactive molecule with varying numbers of neutrons. As they did in their previous experiment, the researchers utilized the Isotope mass Separator On-Line, or ISOLDE, facility at CERN, in Geneva, Switzerland, to produce small quantities of RaF isotopes.

    The facility houses a low-energy proton beam, which the team directed toward a target — a half-dollar-sized disc of uranium-carbide, onto which they also injected a carbon fluoride gas. The ensuing chemical reactions produced a zoo of molecules, including RaF, which the team separated using a precise system of lasers, electromagnetic fields, and ion traps.

    The researchers measured each molecule’s mass to estimate of the number of neutrons in a molecule’s radium nucleus. They then sorted the molecules by isotopes, according to their neutron numbers.

    In the end, they sorted out bunches of five different isotopes of RaF, each bearing more neutrons than the next. With a separate system of lasers, the team measured the quantum levels of each molecule.

    “Imagine a molecule vibrating like two balls on a spring, with a certain amount of energy,” explains Udrescu, who is a graduate student of MIT’s Laboratory for Nuclear Science. “If you change the number of neutrons in one of these balls, the amount of energy could change. But one neutron is 10 million times smaller than a molecule, and with our current precision we didn’t expect that changing one would create an energy difference, but it did. And we were able to clearly see this effect.”

    Udrescu compares the sensitivity of the measurements to being able to see how Mount Everest, placed on the surface of the sun, could, however minutely, change the sun’s radius. By comparison, seeing certain effects of symmetry violation would be like seeing how the width of a single human hair would alter the sun’s radius.

    The results demonstrate that radioactive molecules such as RaF are ultrasensitive to nuclear effects and that their sensitivity may likely reveal more subtle, never-before-seen effects, such as tiny symmetry-violating nuclear properties, that could help to explain the universe’s matter-antimmater asymmetry.

    “These very heavy radioactive molecules are special and have sensitivity to nuclear phenomena that we cannot see in other molecules in nature,” Udrescu says. “This shows that, when we start to search for symmetry-violating effects, we have a high chance of seeing them in these molecules.”

    This research was supported, in part, by the Office of Nuclear Physics, U.S. Department of Energy; the MISTI Global Seed Funds; the European Research Council; the Belgian FWO Vlaanderen and BriX IAP Research Program; the German Research Foundation; the UK Science and Technology Facilities Council, and the Ernest Rutherford Fellowship Grant.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    Massachusetts Institute of Technology (US) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory, the Bates Center, and the Haystack Observatory, as well as affiliated laboratories such as the Broad and Whitehead Institutes.

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology (US) adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with Massachusetts Institute of Technology (US) . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology (US) is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia (US), wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after Massachusetts Institute of Technology (US) was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst (US)). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    Massachusetts Institute of Technology (US) was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology (US) faculty and alumni rebuffed Harvard University (US) president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the Massachusetts Institute of Technology (US) administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology (US) catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities (US)in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at Massachusetts Institute of Technology (US) that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    Massachusetts Institute of Technology (US)‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology (US)’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, Massachusetts Institute of Technology (US) became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected Massachusetts Institute of Technology (US) profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of Massachusetts Institute of Technology (US) between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, Massachusetts Institute of Technology (US) no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and Massachusetts Institute of Technology (US)’s defense research. In this period Massachusetts Institute of Technology (US)’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. Massachusetts Institute of Technology (US) ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT (US) Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology (US) students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at Massachusetts Institute of Technology (US) over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, Massachusetts Institute of Technology (US)’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    Massachusetts Institute of Technology (US) has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology (US) classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    Massachusetts Institute of Technology (US) was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, Massachusetts Institute of Technology (US) launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, Massachusetts Institute of Technology (US) announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology (US) faculty adopted an open-access policy to make its scholarship publicly accessible online.

    Massachusetts Institute of Technology (US) has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology (US) community with thousands of police officers from the New England region and Canada. On November 25, 2013, Massachusetts Institute of Technology (US) announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the Massachusetts Institute of Technology (US) community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO (US) was designed and constructed by a team of scientists from California Institute of Technology (US), Massachusetts Institute of Technology (US), and industrial contractors, and funded by the National Science Foundation (US) .

    MIT/Caltech Advanced aLigo .

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology (US) physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an Massachusetts Institute of Technology (US) graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of Massachusetts Institute of Technology (US) is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the Massachusetts Institute of Technology (US) community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 7:45 am on July 20, 2021 Permalink | Reply
    Tags: "Scientists discover how high-energy electrons strengthen magnetic fields", As the current is exposed strong magnetic fields are produced that further push the background plasma away creating bigger holes and leaving more of the current exposed producing even stronger fields., , , , , , , , More than 99% of the visible universe exists in a superheated state known as plasma – an ionized gas of electrons and ions., Particle Physics, , Researchers found that high-energy electrons can actually expel the background plasma to create a hole-making it harder for the plasma to cancel their current., The motion of plasma's charged particles produces magnetic fields that form an interstellar magnetic web.   

    From DOE’s SLAC National Accelerator Laboratory (US) : “Scientists discover how high-energy electrons strengthen magnetic fields” 

    From DOE’s SLAC National Accelerator Laboratory (US)

    July 19, 2021
    Ali Sundermier

    The research could lead to a better understanding of extreme astrophysical environments and the development of compact high-energy radiation sources for science.

    1
    The motion of electrons carries an electrical current, which produces magnetic fields. Usually, charges from background plasma interfere with this current by moving in a way to cancel it, making strong magnetic fields difficult to produce. A team of scientists from the Department of Energy’s SLAC National Accelerator Laboratory found that high-energy electrons can actually expel the background plasma to create a hole, making it harder for the plasma to cancel their current, and greatly intensifying the magnetic fields.

    More than 99% of the visible universe exists in a superheated state known as plasma – an ionized gas of electrons and ions. The motion of these charged particles produces magnetic fields that form an interstellar magnetic web. These magnetic fields are important for a wide range of processes, from the shaping of galaxies and the formation of stars to controlling the motion and acceleration of high-energy particles like cosmic rays – protons and electrons that zoom through the universe at nearly the speed of light.

    In previous research, scientists found that in regions where high-energy electrons are produced, magnetic fields are intensified. But until now, the way energetic particles affect magnetic fields was not well understood. In a paper published on the cover of Physical Review Letters in May, researchers from the Department of Energy’s SLAC National Accelerator Laboratory show how electrons can amplify magnetic fields to much higher intensities than were previously known.

    The motion of electrons carries an electrical current, which produces magnetic fields. Usually, charges from background plasma interfere with this current by moving in a way to cancel it, making strong magnetic fields difficult to produce. Using numerical simulations and theoretical models, the researchers found that high-energy electrons can actually expel the background plasma to create a hole-making it harder for the plasma to cancel their current.

    “As the current is exposed, strong magnetic fields are produced that further push the background plasma away, creating bigger holes, leaving more of the current exposed, and producing even stronger magnetic fields,” says Ryan Peterson, a PhD student at Stanford University (US) and SLAC who is the first author of the publication. “Eventually, these magnetic fields become so strong that they bend the electrons and slow them down.”

    This process could potentially be at play in the brightest and most energetic electromagnetic events in the universe: extreme explosions known as gamma ray bursts.

    Gamma-ray burst. Credit Cruz Dewilde NASA SWIFT

    National Aeronautics and Space Administration(US) Neil Gehrels Swift Observatory.

    Observations suggest that magnetic fields must be significantly amplified by energetic particles to produce the observed radiation but, until now, the way the field is intensified has been a mystery.

    “Every time a new fundamental process is identified, it can have important consequences and applications in different areas of research,” says Frederico Fiuza, a scientist who worked on this research and leads the high energy density science theory group at SLAC. “In this case, the amplification of magnetic field by high-energy electrons is known to be important not only for extreme astrophysical environments, such as the gamma-ray bursts, but also for laboratory applications based on electron beams.”

    The researchers are currently working on new simulations to better understand the role that this process can play in gamma-ray bursts. They also hope to find ways to reproduce it in a laboratory experiment, which would be an important step in developing compact high-energy radiation sources. Those sources would allow scientists to take pictures of matter on the atomic scale with extremely high resolution for applications in medicine, biology and materials research.

    This research was supported by the Department of Energy’s Office of Science.

    For questions or comments, contact the SLAC Office of Communications at communications@slac.stanford.edu.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    SLAC National Accelerator Laboratory (US) originally named Stanford Linear Accelerator Center, is a United States Department of Energy National Laboratory operated by Stanford University under the programmatic direction of the U.S. Department of Energy Office of Science and located in Menlo Park, California. It is the site of the Stanford Linear Accelerator, a 3.2 kilometer (2-mile) linear accelerator constructed in 1966 and shut down in the 2000s, which could accelerate electrons to energies of 50 GeV.

    Today SLAC research centers on a broad program in atomic and solid-state physics, chemistry, biology, and medicine using X-rays from synchrotron radiation and a free-electron laser as well as experimental and theoretical research in elementary particle physics, astroparticle physics, and cosmology.

    Founded in 1962 as the Stanford Linear Accelerator Center, the facility is located on 172 hectares (426 acres) of Stanford University-owned land on Sand Hill Road in Menlo Park, California—just west of the University’s main campus. The main accelerator is 3.2 kilometers (2 mi) long—the longest linear accelerator in the world—and has been operational since 1966.

    Research at SLAC has produced three Nobel Prizes in Physics

    1976: The charm quark—see J/ψ meson
    1990: Quark structure inside protons and neutrons
    1995: The tau lepton

    SLAC’s meeting facilities also provided a venue for the Homebrew Computer Club and other pioneers of the home computer revolution of the late 1970s and early 1980s.

    In 1984 the laboratory was named an ASME National Historic Engineering Landmark and an IEEE Milestone.

    SLAC developed and, in December 1991, began hosting the first World Wide Web server outside of Europe.

    In the early-to-mid 1990s, the Stanford Linear Collider (SLC) investigated the properties of the Z boson using the Stanford Large Detector.

    As of 2005, SLAC employed over 1,000 people, some 150 of whom were physicists with doctorate degrees, and served over 3,000 visiting researchers yearly, operating particle accelerators for high-energy physics and the Stanford Synchrotron Radiation Laboratory (SSRL) for synchrotron light radiation research, which was “indispensable” in the research leading to the 2006 Nobel Prize in Chemistry awarded to Stanford Professor Roger D. Kornberg.

    In October 2008, the Department of Energy announced that the center’s name would be changed to SLAC National Accelerator Laboratory. The reasons given include a better representation of the new direction of the lab and the ability to trademark the laboratory’s name. Stanford University had legally opposed the Department of Energy’s attempt to trademark “Stanford Linear Accelerator Center”.

    In March 2009, it was announced that the SLAC National Accelerator Laboratory was to receive $68.3 million in Recovery Act Funding to be disbursed by Department of Energy’s Office of Science.

    In October 2016, Bits and Watts launched as a collaboration between SLAC and Stanford University to design “better, greener electric grids”. SLAC later pulled out over concerns about an industry partner, the state-owned Chinese electric utility.

    Accelerator

    The main accelerator was an RF linear accelerator that accelerated electrons and positrons up to 50 GeV. At 3.2 km (2.0 mi) long, the accelerator was the longest linear accelerator in the world, and was claimed to be “the world’s most straight object.” until 2017 when the European x-ray free electron laser opened. The main accelerator is buried 9 m (30 ft) below ground and passes underneath Interstate Highway 280. The above-ground klystron gallery atop the beamline, was the longest building in the United States until the LIGO project’s twin interferometers were completed in 1999. It is easily distinguishable from the air and is marked as a visual waypoint on aeronautical charts.

    A portion of the original linear accelerator is now part of the Linac Coherent Light Source [below].

    Stanford Linear Collider

    The Stanford Linear Collider was a linear accelerator that collided electrons and positrons at SLAC. The center of mass energy was about 90 GeV, equal to the mass of the Z boson, which the accelerator was designed to study. Grad student Barrett D. Milliken discovered the first Z event on 12 April 1989 while poring over the previous day’s computer data from the Mark II detector. The bulk of the data was collected by the SLAC Large Detector, which came online in 1991. Although largely overshadowed by the Large Electron–Positron Collider at CERN, which began running in 1989, the highly polarized electron beam at SLC (close to 80%) made certain unique measurements possible, such as parity violation in Z Boson-b quark coupling.
    [caption id="attachment_30728" align="alignnone" width="632"] European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire](CH) LEP Collider

    Presently no beam enters the south and north arcs in the machine, which leads to the Final Focus, therefore this section is mothballed to run beam into the PEP2 section from the beam switchyard.

    The SLAC Large Detector (SLD) was the main detector for the Stanford Linear Collider. It was designed primarily to detect Z bosons produced by the accelerator’s electron-positron collisions. Built in 1991, the SLD operated from 1992 to 1998.

    SLAC National Accelerator Laboratory(US)Large Detector

    PEP

    PEP (Positron-Electron Project) began operation in 1980, with center-of-mass energies up to 29 GeV. At its apex, PEP had five large particle detectors in operation, as well as a sixth smaller detector. About 300 researchers made used of PEP. PEP stopped operating in 1990, and PEP-II began construction in 1994.

    PEP-II

    From 1999 to 2008, the main purpose of the linear accelerator was to inject electrons and positrons into the PEP-II accelerator, an electron-positron collider with a pair of storage rings 2.2 km (1.4 mi) in circumference. PEP-II was host to the BaBar experiment, one of the so-called B-Factory experiments studying charge-parity symmetry.

    SLAC National Accelerator Laboratory(US) BaBar

    Fermi Gamma-ray Space Telescope

    SLAC plays a primary role in the mission and operation of the Fermi Gamma-ray Space Telescope, launched in August 2008. The principal scientific objectives of this mission are:

    To understand the mechanisms of particle acceleration in AGNs, pulsars, and SNRs.
    To resolve the gamma-ray sky: unidentified sources and diffuse emission.
    To determine the high-energy behavior of gamma-ray bursts and transients.
    To probe dark matter and fundamental physics.


    KIPAC

    The Stanford PULSE Institute (PULSE) is a Stanford Independent Laboratory located in the Central Laboratory at SLAC. PULSE was created by Stanford in 2005 to help Stanford faculty and SLAC scientists develop ultrafast x-ray research at LCLS.

    The Linac Coherent Light Source (LCLS)[below] is a free electron laser facility located at SLAC. The LCLS is partially a reconstruction of the last 1/3 of the original linear accelerator at SLAC, and can deliver extremely intense x-ray radiation for research in a number of areas. It achieved first lasing in April 2009.

    The laser produces hard X-rays, 10^9 times the relative brightness of traditional synchrotron sources and is the most powerful x-ray source in the world. LCLS enables a variety of new experiments and provides enhancements for existing experimental methods. Often, x-rays are used to take “snapshots” of objects at the atomic level before obliterating samples. The laser’s wavelength, ranging from 6.2 to 0.13 nm (200 to 9500 electron volts (eV)) is similar to the width of an atom, providing extremely detailed information that was previously unattainable. Additionally, the laser is capable of capturing images with a “shutter speed” measured in femtoseconds, or million-billionths of a second, necessary because the intensity of the beam is often high enough so that the sample explodes on the femtosecond timescale.

    The LCLS-II [below] project is to provide a major upgrade to LCLS by adding two new X-ray laser beams. The new system will utilize the 500 m (1,600 ft) of existing tunnel to add a new superconducting accelerator at 4 GeV and two new sets of undulators that will increase the available energy range of LCLS. The advancement from the discoveries using this new capabilities may include new drugs, next-generation computers, and new materials.

    FACET

    In 2012, the first two-thirds (~2 km) of the original SLAC LINAC were recommissioned for a new user facility, the Facility for Advanced Accelerator Experimental Tests (FACET). This facility was capable of delivering 20 GeV, 3 nC electron (and positron) beams with short bunch lengths and small spot sizes, ideal for beam-driven plasma acceleration studies. The facility ended operations in 2016 for the constructions of LCLS-II which will occupy the first third of the SLAC LINAC. The FACET-II project will re-establish electron and positron beams in the middle third of the LINAC for the continuation of beam-driven plasma acceleration studies in 2019.

    The Next Linear Collider Test Accelerator (NLCTA) is a 60-120 MeV high-brightness electron beam linear accelerator used for experiments on advanced beam manipulation and acceleration techniques. It is located at SLAC’s end station B

    SSRL and LCLS are DOE Office of Science user facilities.

    Stanford University (US)

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members.

    Stanford University, officially Leland Stanford Junior University, is a private research university located in Stanford, California. Stanford was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Stanford is consistently ranked as among the most prestigious and top universities in the world by major education publications. It is also one of the top fundraising institutions in the country, becoming the first school to raise more than a billion dollars in a year.

    Leland Stanford was a U.S. senator and former governor of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891, as a coeducational and non-denominational institution. Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, provost Frederick Terman supported faculty and graduates’ entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley.

    The university is organized around seven schools: three schools consisting of 40 academic departments at the undergraduate level as well as four professional schools that focus on graduate programs in law, medicine, education, and business. All schools are on the same campus. Students compete in 36 varsity sports, and the university is one of two private institutions in the Division I FBS Pac-12 Conference. It has gained 126 NCAA team championships, and Stanford has won the NACDA Directors’ Cup for 24 consecutive years, beginning in 1994–1995. In addition, Stanford students and alumni have won 270 Olympic medals including 139 gold medals.

    As of October 2020, 84 Nobel laureates, 28 Turing Award laureates, and eight Fields Medalists have been affiliated with Stanford as students, alumni, faculty, or staff. In addition, Stanford is particularly noted for its entrepreneurship and is one of the most successful universities in attracting funding for start-ups. Stanford alumni have founded numerous companies, which combined produce more than $2.7 trillion in annual revenue, roughly equivalent to the 7th largest economy in the world (as of 2020). Stanford is the alma mater of one president of the United States (Herbert Hoover), 74 living billionaires, and 17 astronauts. It is also one of the leading producers of Fulbright Scholars, Marshall Scholars, Rhodes Scholars, and members of the United States Congress.

    Stanford University was founded in 1885 by Leland and Jane Stanford, dedicated to Leland Stanford Jr, their only child. The institution opened in 1891 on Stanford’s previous Palo Alto farm.

    Jane and Leland Stanford modeled their university after the great eastern universities, most specifically Cornell University. Stanford opened being called the “Cornell of the West” in 1891 due to faculty being former Cornell affiliates (either professors, alumni, or both) including its first president, David Starr Jordan, and second president, John Casper Branner. Both Cornell and Stanford were among the first to have higher education be accessible, nonsectarian, and open to women as well as to men. Cornell is credited as one of the first American universities to adopt this radical departure from traditional education, and Stanford became an early adopter as well.

    Despite being impacted by earthquakes in both 1906 and 1989, the campus was rebuilt each time. In 1919, The Hoover Institution on War, Revolution and Peace was started by Herbert Hoover to preserve artifacts related to World War I. The Stanford Medical Center, completed in 1959, is a teaching hospital with over 800 beds. The DOE’s SLAC National Accelerator Laboratory(US)(originally named the Stanford Linear Accelerator Center), established in 1962, performs research in particle physics.

    Land

    Most of Stanford is on an 8,180-acre (12.8 sq mi; 33.1 km^2) campus, one of the largest in the United States. It is located on the San Francisco Peninsula, in the northwest part of the Santa Clara Valley (Silicon Valley) approximately 37 miles (60 km) southeast of San Francisco and approximately 20 miles (30 km) northwest of San Jose. In 2008, 60% of this land remained undeveloped.

    Stanford’s main campus includes a census-designated place within unincorporated Santa Clara County, although some of the university land (such as the Stanford Shopping Center and the Stanford Research Park) is within the city limits of Palo Alto. The campus also includes much land in unincorporated San Mateo County (including the SLAC National Accelerator Laboratory and the Jasper Ridge Biological Preserve), as well as in the city limits of Menlo Park (Stanford Hills neighborhood), Woodside, and Portola Valley.

    Non-central campus

    Stanford currently operates in various locations outside of its central campus.

    On the founding grant:

    Jasper Ridge Biological Preserve is a 1,200-acre (490 ha) natural reserve south of the central campus owned by the university and used by wildlife biologists for research.
    SLAC National Accelerator Laboratory is a facility west of the central campus operated by the university for the Department of Energy. It contains the longest linear particle accelerator in the world, 2 miles (3.2 km) on 426 acres (172 ha) of land.
    Golf course and a seasonal lake: The university also has its own golf course and a seasonal lake (Lake Lagunita, actually an irrigation reservoir), both home to the vulnerable California tiger salamander. As of 2012 Lake Lagunita was often dry and the university had no plans to artificially fill it.

    Off the founding grant:

    Hopkins Marine Station, in Pacific Grove, California, is a marine biology research center owned by the university since 1892.
    Study abroad locations: unlike typical study abroad programs, Stanford itself operates in several locations around the world; thus, each location has Stanford faculty-in-residence and staff in addition to students, creating a “mini-Stanford”.

    Redwood City campus for many of the university’s administrative offices located in Redwood City, California, a few miles north of the main campus. In 2005, the university purchased a small, 35-acre (14 ha) campus in Midpoint Technology Park intended for staff offices; development was delayed by The Great Recession. In 2015 the university announced a development plan and the Redwood City campus opened in March 2019.

    The Bass Center in Washington, DC provides a base, including housing, for the Stanford in Washington program for undergraduates. It includes a small art gallery open to the public.

    China: Stanford Center at Peking University, housed in the Lee Jung Sen Building, is a small center for researchers and students in collaboration with Beijing University [北京大学](CN) (Kavli Institute for Astronomy and Astrophysics at Peking University(CN) (KIAA-PKU).

    Administration and organization

    Stanford is a private, non-profit university that is administered as a corporate trust governed by a privately appointed board of trustees with a maximum membership of 38. Trustees serve five-year terms (not more than two consecutive terms) and meet five times annually.[83] A new trustee is chosen by the current trustees by ballot. The Stanford trustees also oversee the Stanford Research Park, the Stanford Shopping Center, the Cantor Center for Visual Arts, Stanford University Medical Center, and many associated medical facilities (including the Lucile Packard Children’s Hospital).

    The board appoints a president to serve as the chief executive officer of the university, to prescribe the duties of professors and course of study, to manage financial and business affairs, and to appoint nine vice presidents. The provost is the chief academic and budget officer, to whom the deans of each of the seven schools report. Persis Drell became the 13th provost in February 2017.

    As of 2018, the university was organized into seven academic schools. The schools of Humanities and Sciences (27 departments), Engineering (nine departments), and Earth, Energy & Environmental Sciences (four departments) have both graduate and undergraduate programs while the Schools of Law, Medicine, Education and Business have graduate programs only. The powers and authority of the faculty are vested in the Academic Council, which is made up of tenure and non-tenure line faculty, research faculty, senior fellows in some policy centers and institutes, the president of the university, and some other academic administrators, but most matters are handled by the Faculty Senate, made up of 55 elected representatives of the faculty.

    The Associated Students of Stanford University (ASSU) is the student government for Stanford and all registered students are members. Its elected leadership consists of the Undergraduate Senate elected by the undergraduate students, the Graduate Student Council elected by the graduate students, and the President and Vice President elected as a ticket by the entire student body.

    Stanford is the beneficiary of a special clause in the California Constitution, which explicitly exempts Stanford property from taxation so long as the property is used for educational purposes.

    Endowment and donations

    The university’s endowment, managed by the Stanford Management Company, was valued at $27.7 billion as of August 31, 2019. Payouts from the Stanford endowment covered approximately 21.8% of university expenses in the 2019 fiscal year. In the 2018 NACUBO-TIAA survey of colleges and universities in the United States and Canada, only Harvard University(US), the University of Texas System(US), and Yale University(US) had larger endowments than Stanford.

    In 2006, President John L. Hennessy launched a five-year campaign called the Stanford Challenge, which reached its $4.3 billion fundraising goal in 2009, two years ahead of time, but continued fundraising for the duration of the campaign. It concluded on December 31, 2011, having raised a total of $6.23 billion and breaking the previous campaign fundraising record of $3.88 billion held by Yale. Specifically, the campaign raised $253.7 million for undergraduate financial aid, as well as $2.33 billion for its initiative in “Seeking Solutions” to global problems, $1.61 billion for “Educating Leaders” by improving K-12 education, and $2.11 billion for “Foundation of Excellence” aimed at providing academic support for Stanford students and faculty. Funds supported 366 new fellowships for graduate students, 139 new endowed chairs for faculty, and 38 new or renovated buildings. The new funding also enabled the construction of a facility for stem cell research; a new campus for the business school; an expansion of the law school; a new Engineering Quad; a new art and art history building; an on-campus concert hall; a new art museum; and a planned expansion of the medical school, among other things. In 2012, the university raised $1.035 billion, becoming the first school to raise more than a billion dollars in a year.

    Research centers and institutes

    DOE’s SLAC National Accelerator Laboratory(US)
    Stanford Research Institute, a center of innovation to support economic development in the region.
    Hoover Institution, a conservative American public policy institution and research institution that promotes personal and economic liberty, free enterprise, and limited government.
    Hasso Plattner Institute of Design, a multidisciplinary design school in cooperation with the Hasso Plattner Institute of University of Potsdam [Universität Potsdam](DE) that integrates product design, engineering, and business management education).
    Martin Luther King Jr. Research and Education Institute, which grew out of and still contains the Martin Luther King Jr. Papers Project.
    John S. Knight Fellowship for Professional Journalists
    Center for Ocean Solutions
    Together with UC Berkeley(US) and UC San Francisco(US), Stanford is part of the Biohub, a new medical science research center founded in 2016 by a $600 million commitment from Facebook CEO and founder Mark Zuckerberg and pediatrician Priscilla Chan.

    Discoveries and innovation

    Natural sciences

    Biological synthesis of deoxyribonucleic acid (DNA) – Arthur Kornberg synthesized DNA material and won the Nobel Prize in Physiology or Medicine 1959 for his work at Stanford.
    First Transgenic organism – Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living organism to another, a fundamental discovery for genetic engineering. Thousands of products have been developed on the basis of their work, including human growth hormone and hepatitis B vaccine.
    Laser – Arthur Leonard Schawlow shared the 1981 Nobel Prize in Physics with Nicolaas Bloembergen and Kai Siegbahn for his work on lasers.
    Nuclear magnetic resonance – Felix Bloch developed new methods for nuclear magnetic precision measurements, which are the underlying principles of the MRI.

    Computer and applied sciences

    ARPANETStanford Research Institute, formerly part of Stanford but on a separate campus, was the site of one of the four original ARPANET nodes.

    Internet—Stanford was the site where the original design of the Internet was undertaken. Vint Cerf led a research group to elaborate the design of the Transmission Control Protocol (TCP/IP) that he originally co-created with Robert E. Kahn (Bob Kahn) in 1973 and which formed the basis for the architecture of the Internet.

    Frequency modulation synthesis – John Chowning of the Music department invented the FM music synthesis algorithm in 1967, and Stanford later licensed it to Yamaha Corporation.

    Google – Google began in January 1996 as a research project by Larry Page and Sergey Brin when they were both PhD students at Stanford. They were working on the Stanford Digital Library Project (SDLP). The SDLP’s goal was “to develop the enabling technologies for a single, integrated and universal digital library” and it was funded through the National Science Foundation, among other federal agencies.

    Klystron tube – invented by the brothers Russell and Sigurd Varian at Stanford. Their prototype was completed and demonstrated successfully on August 30, 1937. Upon publication in 1939, news of the klystron immediately influenced the work of U.S. and UK researchers working on radar equipment.

    RISCARPA funded VLSI project of microprocessor design. Stanford and UC Berkeley are most associated with the popularization of this concept. The Stanford MIPS would go on to be commercialized as the successful MIPS architecture, while Berkeley RISC gave its name to the entire concept, commercialized as the SPARC. Another success from this era were IBM’s efforts that eventually led to the IBM POWER instruction set architecture, PowerPC, and Power ISA. As these projects matured, a wide variety of similar designs flourished in the late 1980s and especially the early 1990s, representing a major force in the Unix workstation market as well as embedded processors in laser printers, routers and similar products.
    SUN workstation – Andy Bechtolsheim designed the SUN workstation for the Stanford University Network communications project as a personal CAD workstation, which led to Sun Microsystems.

    Businesses and entrepreneurship

    Stanford is one of the most successful universities in creating companies and licensing its inventions to existing companies; it is often held up as a model for technology transfer. Stanford’s Office of Technology Licensing is responsible for commercializing university research, intellectual property, and university-developed projects.

    The university is described as having a strong venture culture in which students are encouraged, and often funded, to launch their own companies.

    Companies founded by Stanford alumni generate more than $2.7 trillion in annual revenue, equivalent to the 10th-largest economy in the world.

    Some companies closely associated with Stanford and their connections include:

    Hewlett-Packard, 1939, co-founders William R. Hewlett (B.S, PhD) and David Packard (M.S).
    Silicon Graphics, 1981, co-founders James H. Clark (Associate Professor) and several of his grad students.
    Sun Microsystems, 1982, co-founders Vinod Khosla (M.B.A), Andy Bechtolsheim (PhD) and Scott McNealy (M.B.A).
    Cisco, 1984, founders Leonard Bosack (M.S) and Sandy Lerner (M.S) who were in charge of Stanford Computer Science and Graduate School of Business computer operations groups respectively when the hardware was developed.[163]
    Yahoo!, 1994, co-founders Jerry Yang (B.S, M.S) and David Filo (M.S).
    Google, 1998, co-founders Larry Page (M.S) and Sergey Brin (M.S).
    LinkedIn, 2002, co-founders Reid Hoffman (B.S), Konstantin Guericke (B.S, M.S), Eric Lee (B.S), and Alan Liu (B.S).
    Instagram, 2010, co-founders Kevin Systrom (B.S) and Mike Krieger (B.S).
    Snapchat, 2011, co-founders Evan Spiegel and Bobby Murphy (B.S).
    Coursera, 2012, co-founders Andrew Ng (Associate Professor) and Daphne Koller (Professor, PhD).

    Student body

    Stanford enrolled 6,996 undergraduate and 10,253 graduate students as of the 2019–2020 school year. Women comprised 50.4% of undergraduates and 41.5% of graduate students. In the same academic year, the freshman retention rate was 99%.

    Stanford awarded 1,819 undergraduate degrees, 2,393 master’s degrees, 770 doctoral degrees, and 3270 professional degrees in the 2018–2019 school year. The four-year graduation rate for the class of 2017 cohort was 72.9%, and the six-year rate was 94.4%. The relatively low four-year graduation rate is a function of the university’s coterminal degree (or “coterm”) program, which allows students to earn a master’s degree as a 1-to-2-year extension of their undergraduate program.

    As of 2010, fifteen percent of undergraduates were first-generation students.

    Athletics

    As of 2016 Stanford had 16 male varsity sports and 20 female varsity sports, 19 club sports and about 27 intramural sports. In 1930, following a unanimous vote by the Executive Committee for the Associated Students, the athletic department adopted the mascot “Indian.” The Indian symbol and name were dropped by President Richard Lyman in 1972, after objections from Native American students and a vote by the student senate. The sports teams are now officially referred to as the “Stanford Cardinal,” referring to the deep red color, not the cardinal bird. Stanford is a member of the Pac-12 Conference in most sports, the Mountain Pacific Sports Federation in several other sports, and the America East Conference in field hockey with the participation in the inter-collegiate NCAA’s Division I FBS.

    Its traditional sports rival is the University of California, Berkeley, the neighbor to the north in the East Bay. The winner of the annual “Big Game” between the Cal and Cardinal football teams gains custody of the Stanford Axe.

    Stanford has had at least one NCAA team champion every year since the 1976–77 school year and has earned 126 NCAA national team titles since its establishment, the most among universities, and Stanford has won 522 individual national championships, the most by any university. Stanford has won the award for the top-ranked Division 1 athletic program—the NACDA Directors’ Cup, formerly known as the Sears Cup—annually for the past twenty-four straight years. Stanford athletes have won medals in every Olympic Games since 1912, winning 270 Olympic medals total, 139 of them gold. In the 2008 Summer Olympics, and 2016 Summer Olympics, Stanford won more Olympic medals than any other university in the United States. Stanford athletes won 16 medals at the 2012 Summer Olympics (12 gold, two silver and two bronze), and 27 medals at the 2016 Summer Olympics.

    Traditions

    The unofficial motto of Stanford, selected by President Jordan, is Die Luft der Freiheit weht. Translated from the German language, this quotation from Ulrich von Hutten means, “The wind of freedom blows.” The motto was controversial during World War I, when anything in German was suspect; at that time the university disavowed that this motto was official.
    Hail, Stanford, Hail! is the Stanford Hymn sometimes sung at ceremonies or adapted by the various University singing groups. It was written in 1892 by mechanical engineering professor Albert W. Smith and his wife, Mary Roberts Smith (in 1896 she earned the first Stanford doctorate in Economics and later became associate professor of Sociology), but was not officially adopted until after a performance on campus in March 1902 by the Mormon Tabernacle Choir.
    “Uncommon Man/Uncommon Woman”: Stanford does not award honorary degrees, but in 1953 the degree of “Uncommon Man/Uncommon Woman” was created to recognize individuals who give rare and extraordinary service to the University. Technically, this degree is awarded by the Stanford Associates, a voluntary group that is part of the university’s alumni association. As Stanford’s highest honor, it is not conferred at prescribed intervals, but only when appropriate to recognize extraordinary service. Recipients include Herbert Hoover, Bill Hewlett, Dave Packard, Lucile Packard, and John Gardner.
    Big Game events: The events in the week leading up to the Big Game vs. UC Berkeley, including Gaieties (a musical written, composed, produced, and performed by the students of Ram’s Head Theatrical Society).
    “Viennese Ball”: a formal ball with waltzes that was initially started in the 1970s by students returning from the now-closed Stanford in Vienna overseas program. It is now open to all students.
    “Full Moon on the Quad”: An annual event at Main Quad, where students gather to kiss one another starting at midnight. Typically organized by the Junior class cabinet, the festivities include live entertainment, such as music and dance performances.
    “Band Run”: An annual festivity at the beginning of the school year, where the band picks up freshmen from dorms across campus while stopping to perform at each location, culminating in a finale performance at Main Quad.
    “Mausoleum Party”: An annual Halloween Party at the Stanford Mausoleum, the final resting place of Leland Stanford Jr. and his parents. A 20-year tradition, the “Mausoleum Party” was on hiatus from 2002 to 2005 due to a lack of funding, but was revived in 2006. In 2008, it was hosted in Old Union rather than at the actual Mausoleum, because rain prohibited generators from being rented. In 2009, after fundraising efforts by the Junior Class Presidents and the ASSU Executive, the event was able to return to the Mausoleum despite facing budget cuts earlier in the year.
    Former campus traditions include the “Big Game bonfire” on Lake Lagunita (a seasonal lake usually dry in the fall), which was formally ended in 1997 because of the presence of endangered salamanders in the lake bed.

    Award laureates and scholars

    Stanford’s current community of scholars includes:

    19 Nobel Prize laureates (as of October 2020, 85 affiliates in total)
    171 members of the National Academy of Sciences
    109 members of National Academy of Engineering
    76 members of National Academy of Medicine
    288 members of the American Academy of Arts and Sciences
    19 recipients of the National Medal of Science
    1 recipient of the National Medal of Technology
    4 recipients of the National Humanities Medal
    49 members of American Philosophical Society
    56 fellows of the American Physics Society (since 1995)
    4 Pulitzer Prize winners
    31 MacArthur Fellows
    4 Wolf Foundation Prize winners
    2 ACL Lifetime Achievement Award winners
    14 AAAI fellows
    2 Presidential Medal of Freedom winners

    Stanford University Seal

     
  • richardmitnick 8:25 pm on July 18, 2021 Permalink | Reply
    Tags: "Curiosity and technology drive quest to reveal fundamental secrets of the universe", A very specific particle called a J/psi might provide a clearer picture of what’s going on inside a proton’s gluonic field., , Argonne-driven technology is part of a broad initiative to answer fundamental questions about the birth of matter in the universe and the building blocks that hold it all together., , , , , , Computational Science, , , , , , Developing and fabricating detectors that search for signatures from the early universe or enhance our understanding of the most fundamental of particles., , Electron-Ion Collider (EIC) at DOE's Brookhaven National Laboratory (US) to be built inside the tunnel that currently houses the Relativistic Heavy Ion Collider [RHIC]., Exploring the hearts of protons and neutrons, , , Neutrinoless double beta decay can only happen if the neutrino is its own anti-particle., , , , Particle Physics, , QGP: Quark Guon PLasma, SLAC National Accelerator Laboratory(US), , ,   

    From DOE’s Argonne National Laboratory (US) : “Curiosity and technology drive quest to reveal fundamental secrets of the universe” 

    Argonne Lab

    From DOE’s Argonne National Laboratory (US)

    July 15, 2021
    John Spizzirri

    Argonne-driven technology is part of a broad initiative to answer fundamental questions about the birth of matter in the universe and the building blocks that hold it all together.

    Imagine the first of our species to lie beneath the glow of an evening sky. An enormous sense of awe, perhaps a little fear, fills them as they wonder at those seemingly infinite points of light and what they might mean. As humans, we evolved the capacity to ask big insightful questions about the world around us and worlds beyond us. We dare, even, to question our own origins.

    “The place of humans in the universe is important to understand,” said physicist and computational scientist Salman Habib. ​“Once you realize that there are billions of galaxies we can detect, each with many billions of stars, you understand the insignificance of being human in some sense. But at the same time, you appreciate being human a lot more.”

    The South Pole Telescope is part of a collaboration between Argonne and a number of national labs and universities to measure the CMB, considered the oldest light in the universe.

    The high altitude and extremely dry conditions of the South Pole keep water vapor from absorbing select light wavelengths.

    With no less a sense of wonder than most of us, Habib and colleagues at the U.S. Department of Energy’s (DOE) Argonne National Laboratory are actively researching these questions through an initiative that investigates the fundamental components of both particle physics and astrophysics.

    The breadth of Argonne’s research in these areas is mind-boggling. It takes us back to the very edge of time itself, to some infinitesimally small portion of a second after the Big Bang when random fluctuations in temperature and density arose, eventually forming the breeding grounds of galaxies and planets.

    It explores the heart of protons and neutrons to understand the most fundamental constructs of the visible universe, particles and energy once free in the early post-Big Bang universe, but later confined forever within a basic atomic structure as that universe began to cool.

    And it addresses slightly newer, more controversial questions about the nature of Dark Matter and Dark Energy, both of which play a dominant role in the makeup and dynamics of the universe but are little understood.
    _____________________________________________________________________________________
    Dark Energy Survey

    Dark Energy Camera [DECam] built at DOE’s Fermi National Accelerator Laboratory(US)

    NOIRLab National Optical Astronomy Observatory(US) Cerro Tololo Inter-American Observatory(CL) Victor M Blanco 4m Telescope which houses the Dark-Energy-Camera – DECam at Cerro Tololo, Chile at an altitude of 7200 feet.

    NOIRLab(US)NSF NOIRLab NOAO (US) Cerro Tololo Inter-American Observatory(CL) approximately 80 km to the East of La Serena, Chile, at an altitude of 2200 meters.

    Timeline of the Inflationary Universe WMAP

    The Dark Energy Survey (DES) is an international, collaborative effort to map hundreds of millions of galaxies, detect thousands of supernovae, and find patterns of cosmic structure that will reveal the nature of the mysterious dark energy that is accelerating the expansion of our Universe. DES began searching the Southern skies on August 31, 2013.

    According to Einstein’s theory of General Relativity, gravity should lead to a slowing of the cosmic expansion. Yet, in 1998, two teams of astronomers studying distant supernovae made the remarkable discovery that the expansion of the universe is speeding up. To explain cosmic acceleration, cosmologists are faced with two possibilities: either 70% of the universe exists in an exotic form, now called dark energy, that exhibits a gravitational force opposite to the attractive gravity of ordinary matter, or General Relativity must be replaced by a new theory of gravity on cosmic scales.

    DES is designed to probe the origin of the accelerating universe and help uncover the nature of dark energy by measuring the 14-billion-year history of cosmic expansion with high precision. More than 400 scientists from over 25 institutions in the United States, Spain, the United Kingdom, Brazil, Germany, Switzerland, and Australia are working on the project. The collaboration built and is using an extremely sensitive 570-Megapixel digital camera, DECam, mounted on the Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory, high in the Chilean Andes, to carry out the project.

    Over six years (2013-2019), the DES collaboration used 758 nights of observation to carry out a deep, wide-area survey to record information from 300 million galaxies that are billions of light-years from Earth. The survey imaged 5000 square degrees of the southern sky in five optical filters to obtain detailed information about each galaxy. A fraction of the survey time is used to observe smaller patches of sky roughly once a week to discover and study thousands of supernovae and other astrophysical transients.
    _____________________________________________________________________________________

    “And this world-class research we’re doing could not happen without advances in technology,” said Argonne Associate Laboratory Director Kawtar Hafidi, who helped define and merge the different aspects of the initiative.

    “We are developing and fabricating detectors that search for signatures from the early universe or enhance our understanding of the most fundamental of particles,” she added. ​“And because all of these detectors create big data that have to be analyzed, we are developing, among other things, artificial intelligence techniques to do that as well.”

    Decoding messages from the universe

    Fleshing out a theory of the universe on cosmic or subatomic scales requires a combination of observations, experiments, theories, simulations and analyses, which in turn requires access to the world’s most sophisticated telescopes, particle colliders, detectors and supercomputers.

    Argonne is uniquely suited to this mission, equipped as it is with many of those tools, the ability to manufacture others and collaborative privileges with other federal laboratories and leading research institutions to access other capabilities and expertise.

    As lead of the initiative’s cosmology component, Habib uses many of these tools in his quest to understand the origins of the universe and what makes it tick.

    And what better way to do that than to observe it, he said.

    “If you look at the universe as a laboratory, then obviously we should study it and try to figure out what it is telling us about foundational science,” noted Habib. ​“So, one part of what we are trying to do is build ever more sensitive probes to decipher what the universe is trying to tell us.”

    To date, Argonne is involved in several significant sky surveys, which use an array of observational platforms, like telescopes and satellites, to map different corners of the universe and collect information that furthers or rejects a specific theory.

    For example, the South Pole Telescope survey, a collaboration between Argonne and a number of national labs and universities, is measuring the cosmic microwave background (CMB) [above], considered the oldest light in the universe. Variations in CMB properties, such as temperature, signal the original fluctuations in density that ultimately led to all the visible structure in the universe.

    Additionally, the Dark Energy Spectroscopic Instrument and the forthcoming Vera C. Rubin Observatory are specially outfitted, ground-based telescopes designed to shed light on dark energy and dark matter, as well as the formation of luminous structure in the universe.

    DOE’s Lawrence Berkeley National Laboratory(US) DESI spectroscopic instrument on the Mayall 4-meter telescope at Kitt Peak National Observatory, in the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers 55 mi west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft).

    National Optical Astronomy Observatory (US) Mayall 4 m telescope at NSF NOIRLab NOAO Kitt Peak National Observatory (US) in the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers 55 mi west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft).

    National Science Foundation(US) NSF (US) NOIRLab NOAO Kitt Peak National Observatory on the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft).

    National Science Foundation(US) NOIRLab (US) NOAO Kitt Peak National Observatory (US) on Kitt Peak of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft). annotated.

    NSF (US) NOIRLab (US) NOAO (US) Vera C. Rubin Observatory [LSST] Telescope currently under construction on the El Peñón peak at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing NSF (US) NOIRLab (US) NOAO (US) Gemini South Telescope and NSF (US) NOIRLab (US) NOAO (US) Southern Astrophysical Research Telescope.

    Darker matters

    All the data sets derived from these observations are connected to the second component of Argonne’s cosmology push, which revolves around theory and modeling. Cosmologists combine observations, measurements and the prevailing laws of physics to form theories that resolve some of the mysteries of the universe.

    But the universe is complex, and it has an annoying tendency to throw a curve ball just when we thought we had a theory cinched. Discoveries within the past 100 years have revealed that the universe is both expanding and accelerating its expansion — realizations that came as separate but equal surprises.

    Saul Perlmutter (center) [The Supernova Cosmology Project] shared the 2006 Shaw Prize in Astronomy, the 2011 Nobel Prize in Physics, and the 2015 Breakthrough Prize in Fundamental Physics with Brian P. Schmidt (right) and Adam Riess (left) [The High-z Supernova Search Team] for providing evidence that the expansion of the universe is accelerating.

    “To say that we understand the universe would be incorrect. To say that we sort of understand it is fine,” exclaimed Habib. ​“We have a theory that describes what the universe is doing, but each time the universe surprises us, we have to add a new ingredient to that theory.”

    Modeling helps scientists get a clearer picture of whether and how those new ingredients will fit a theory. They make predictions for observations that have not yet been made, telling observers what new measurements to take.

    Habib’s group is applying this same sort of process to gain an ever-so-tentative grasp on the nature of dark energy and dark matter. While scientists can tell us that both exist, that they comprise about 68 and 26% of the universe, respectively, beyond that not much else is known.

    ______________________________________________________________________________________________________________

    Dark Matter Background
    Fritz Zwicky discovered Dark Matter in the 1930s when observing the movement of the Coma Cluster., Vera Rubin a Woman in STEM denied the Nobel, some 30 years later, did most of the work on Dark Matter.

    Fritz Zwicky from http:// palomarskies.blogspot.com.


    Coma cluster via NASA/ESA Hubble.


    In modern times, it was astronomer Fritz Zwicky, in the 1930s, who made the first observations of what we now call dark matter. His 1933 observations of the Coma Cluster of galaxies seemed to indicated it has a mass 500 times more than that previously calculated by Edwin Hubble. Furthermore, this extra mass seemed to be completely invisible. Although Zwicky’s observations were initially met with much skepticism, they were later confirmed by other groups of astronomers.
    Thirty years later, astronomer Vera Rubin provided a huge piece of evidence for the existence of dark matter. She discovered that the centers of galaxies rotate at the same speed as their extremities, whereas, of course, they should rotate faster. Think of a vinyl LP on a record deck: its center rotates faster than its edge. That’s what logic dictates we should see in galaxies too. But we do not. The only way to explain this is if the whole galaxy is only the center of some much larger structure, as if it is only the label on the LP so to speak, causing the galaxy to have a consistent rotation speed from center to edge.
    Vera Rubin, following Zwicky, postulated that the missing structure in galaxies is dark matter. Her ideas were met with much resistance from the astronomical community, but her observations have been confirmed and are seen today as pivotal proof of the existence of dark matter.

    Astronomer Vera Rubin at the Lowell Observatory in 1965, worked on Dark Matter (The Carnegie Institution for Science).


    Vera Rubin measuring spectra, worked on Dark Matter (Emilio Segre Visual Archives AIP SPL).


    Vera Rubin, with Department of Terrestrial Magnetism (DTM) image tube spectrograph attached to the Kitt Peak 84-inch telescope, 1970

    Dark Matter Research

    Inside the Axion Dark Matter eXperiment U Washington (US) Credit : Mark Stone U. of Washington. Axion Dark Matter Experiment.
    _____________________________________________________________________________________

    Observations of cosmological structure — the distribution of galaxies and even of their shapes — provide clues about the nature of dark matter, which in turn feeds simple dark matter models and subsequent predictions. If observations, models and predictions aren’t in agreement, that tells scientists that there may be some missing ingredient in their description of dark matter.

    But there are also experiments that are looking for direct evidence of dark matter particles, which require highly sensitive detectors [above]. Argonne has initiated development of specialized superconducting detector technology for the detection of low-mass dark matter particles.

    This technology requires the ability to control properties of layered materials and adjust the temperature where the material transitions from finite to zero resistance, when it becomes a superconductor. And unlike other applications where scientists would like this temperature to be as high as possible — room temperature, for example — here, the transition needs to be very close to absolute zero.

    Habib refers to these dark matter detectors as traps, like those used for hunting — which, in essence, is what cosmologists are doing. Because it’s possible that dark matter doesn’t come in just one species, they need different types of traps.

    “It’s almost like you’re in a jungle in search of a certain animal, but you don’t quite know what it is — it could be a bird, a snake, a tiger — so you build different kinds of traps,” he said.

    Lab researchers are working on technologies to capture these elusive species through new classes of dark matter searches. Collaborating with other institutions, they are now designing and building a first set of pilot projects aimed at looking for dark matter candidates with low mass.

    Tuning in to the early universe

    Amy Bender is working on a different kind of detector — well, a lot of detectors — which are at the heart of a survey of the cosmic microwave background (CMB).

    “The CMB is radiation that has been around the universe for 13 billion years, and we’re directly measuring that,” said Bender, an assistant physicist at Argonne.

    The Argonne-developed detectors — all 16,000 of them — capture photons, or light particles, from that primordial sky through the aforementioned South Pole Telescope, to help answer questions about the early universe, fundamental physics and the formation of cosmic structures.

    Now, the CMB experimental effort is moving into a new phase, CMB-Stage 4 (CMB-S4).

    CMB-S4 is the next-generation ground-based cosmic microwave background experiment.With 21 telescopes at the South Pole and in the Chilean Atacama desert surveying the sky with 550,000 cryogenically-cooled superconducting detectors for 7 years, CMB-S4 will deliver transformative discoveries in fundamental physics, cosmology, astrophysics, and astronomy. CMB-S4 is supported by the Department of Energy Office of Science and the National Science Foundation.

    This larger project tackles even more complex topics like Inflationary Theory, which suggests that the universe expanded faster than the speed of light for a fraction of a second, shortly after the Big Bang.
    _____________________________________________________________________________________
    Inflation

    4
    Alan Guth, from Highland Park High School and M.I.T., who first proposed cosmic inflation
    [caption id="attachment_55311" align="alignnone" width="632"] HPHS Owls

    Lamda Cold Dark Matter Accerated Expansion of The universe http scinotions.com the-cosmic-inflation-suggests-the-existence-of-parallel-universes
    Alex Mittelmann, Coldcreation


    Alan Guth’s notes:

    Alan Guth’s original notes on inflation


    _____________________________________________________________________________________

    3
    A section of a detector array with architecture suitable for future CMB experiments, such as the upcoming CMB-S4 project. Fabricated at Argonne’s Center for Nanoscale Materials, 16,000 of these detectors currently drive measurements collected from the South Pole Telescope. (Image by Argonne National Laboratory.)

    While the science is amazing, the technology to get us there is just as fascinating.

    Technically called transition edge sensing (TES) bolometers, the detectors on the telescope are made from superconducting materials fabricated at Argonne’s Center for Nanoscale Materials, a DOE Office of Science User Facility.

    Each of the 16,000 detectors acts as a combination of very sensitive thermometer and camera. As incoming radiation is absorbed on the surface of each detector, measurements are made by supercooling them to a fraction of a degree above absolute zero. (That’s over three times as cold as Antarctica’s lowest recorded temperature.)

    Changes in heat are measured and recorded as changes in electrical resistance and will help inform a map of the CMB’s intensity across the sky.

    CMB-S4 will focus on newer technology that will allow researchers to distinguish very specific patterns in light, or polarized light. In this case, they are looking for what Bender calls the Holy Grail of polarization, a pattern called B-modes.

    Capturing this signal from the early universe — one far fainter than the intensity signal — will help to either confirm or disprove a generic prediction of inflation.

    It will also require the addition of 500,000 detectors distributed among 21 telescopes in two distinct regions of the world, the South Pole and the Chilean desert. There, the high altitude and extremely dry conditions keep water vapor in the atmosphere from absorbing millimeter wavelength light, like that of the CMB.

    While previous experiments have touched on this polarization, the large number of new detectors will improve sensitivity to that polarization and grow our ability to capture it.

    “Literally, we have built these cameras completely from the ground up,” said Bender. ​“Our innovation is in how to make these stacks of superconducting materials work together within this detector, where you have to couple many complex factors and then actually read out the results with the TES. And that is where Argonne has contributed, hugely.”

    Down to the basics

    Argonne’s capabilities in detector technology don’t just stop at the edge of time, nor do the initiative’s investigations just look at the big picture.

    Most of the visible universe, including galaxies, stars, planets and people, are made up of protons and neutrons. Understanding the most fundamental components of those building blocks and how they interact to make atoms and molecules and just about everything else is the realm of physicists like Zein-Eddine Meziani.

    “From the perspective of the future of my field, this initiative is extremely important,” said Meziani, who leads Argonne’s Medium Energy Physics group. ​“It has given us the ability to actually explore new concepts, develop better understanding of the science and a pathway to enter into bigger collaborations and take some leadership.”

    Taking the lead of the initiative’s nuclear physics component, Meziani is steering Argonne toward a significant role in the development of the Electron-Ion Collider, a new U.S. Nuclear Physics Program facility slated for construction at DOE’s Brookhaven National Laboratory (US).

    Argonne’s primary interest in the collider is to elucidate the role that quarks, anti-quarks and gluons play in giving mass and a quantum angular momentum, called spin, to protons and neutrons — nucleons — the particles that comprise the nucleus of an atom.


    EIC Electron Animation, Inner Proton Motion.
    Electrons colliding with ions will exchange virtual photons with the nuclear particles to help scientists ​“see” inside the nuclear particles; the collisions will produce precision 3D snapshots of the internal arrangement of quarks and gluons within ordinary nuclear matter; like a combination CT/MRI scanner for atoms. (Image by Brookhaven National Laboratory.)

    While we once thought nucleons were the finite fundamental particles of an atom, the emergence of powerful particle colliders, like the Stanford Linear Accelerator Center at Stanford University and the former Tevatron at DOE’s Fermilab, proved otherwise.

    It turns out that quarks and gluons were independent of nucleons in the extreme energy densities of the early universe; as the universe expanded and cooled, they transformed into ordinary matter.

    “There was a time when quarks and gluons were free in a big soup, if you will, but we have never seen them free,” explained Meziani. ​“So, we are trying to understand how the universe captured all of this energy that was there and put it into confined systems, like these droplets we call protons and neutrons.”

    Some of that energy is tied up in gluons, which, despite the fact that they have no mass, confer the majority of mass to a proton. So, Meziani is hoping that the Electron-Ion Collider will allow science to explore — among other properties — the origins of mass in the universe through a detailed exploration of gluons.

    And just as Amy Bender is looking for the B-modes polarization in the CMB, Meziani and other researchers are hoping to use a very specific particle called a J/psi to provide a clearer picture of what’s going on inside a proton’s gluonic field.

    But producing and detecting the J/psi particle within the collider — while ensuring that the proton target doesn’t break apart — is a tricky enterprise, which requires new technologies. Again, Argonne is positioning itself at the forefront of this endeavor.

    “We are working on the conceptual designs of technologies that will be extremely important for the detection of these types of particles, as well as for testing concepts for other science that will be conducted at the Electron-Ion Collider,” said Meziani.

    Argonne also is producing detector and related technologies in its quest for a phenomenon called neutrinoless double beta decay. A neutrino is one of the particles emitted during the process of neutron radioactive beta decay and serves as a small but mighty connection between particle physics and astrophysics.

    “Neutrinoless double beta decay can only happen if the neutrino is its own anti-particle,” said Hafidi. ​“If the existence of these very rare decays is confirmed, it would have important consequences in understanding why there is more matter than antimatter in the universe.”

    Argonne scientists from different areas of the lab are working on the Neutrino Experiment with Xenon Time Projection Chamber (NEXT) collaboration to design and prototype key systems for the collaborative’s next big experiment. This includes developing a one-of-a-kind test facility and an R&D program for new, specialized detector systems.

    “We are really working on dramatic new ideas,” said Meziani. ​“We are investing in certain technologies to produce some proof of principle that they will be the ones to pursue later, that the technology breakthroughs that will take us to the highest sensitivity detection of this process will be driven by Argonne.”

    The tools of detection

    Ultimately, fundamental science is science derived from human curiosity. And while we may not always see the reason for pursuing it, more often than not, fundamental science produces results that benefit all of us. Sometimes it’s a gratifying answer to an age-old question, other times it’s a technological breakthrough intended for one science that proves useful in a host of other applications.

    Through their various efforts, Argonne scientists are aiming for both outcomes. But it will take more than curiosity and brain power to solve the questions they are asking. It will take our skills at toolmaking, like the telescopes that peer deep into the heavens and the detectors that capture hints of the earliest light or the most elusive of particles.

    We will need to employ the ultrafast computing power of new supercomputers. Argonne’s forthcoming Aurora exascale machine will analyze mountains of data for help in creating massive models that simulate the dynamics of the universe or subatomic world, which, in turn, might guide new experiments — or introduce new questions.

    Depiction of ANL ALCF Cray Intel SC18 Shasta Aurora exascale supercomputer, to be built at DOE’s Argonne National Laboratory.

    And we will apply artificial intelligence to recognize patterns in complex observations — on the subatomic and cosmic scales — far more quickly than the human eye can, or use it to optimize machinery and experiments for greater efficiency and faster results.

    “I think we have been given the flexibility to explore new technologies that will allow us to answer the big questions,” said Bender. ​“What we’re developing is so cutting edge, you never know where it will show up in everyday life.”

    Funding for research mentioned in this article was provided by Argonne Laboratory Directed Research and Development; Argonne program development; DOE Office of High Energy Physics: Cosmic Frontier, South Pole Telescope-3G project, Detector R&D; and DOE Office of Nuclear Physics.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    DOE’s Argonne National Laboratory (US) seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their is a science and engineering research national laboratory operated by UChicago Argonne LLC for the United States Department of Energy. The facility is located in Lemont, Illinois, outside of Chicago, and is the largest national laboratory by size and scope in the Midwest.

    Argonne had its beginnings in the Metallurgical Laboratory of the University of Chicago, formed in part to carry out Enrico Fermi’s work on nuclear reactors for the Manhattan Project during World War II. After the war, it was designated as the first national laboratory in the United States on July 1, 1946. In the post-war era the lab focused primarily on non-weapon related nuclear physics, designing and building the first power-producing nuclear reactors, helping design the reactors used by the United States’ nuclear navy, and a wide variety of similar projects. In 1994, the lab’s nuclear mission ended, and today it maintains a broad portfolio in basic science research, energy storage and renewable energy, environmental sustainability, supercomputing, and national security.

    UChicago Argonne, LLC, the operator of the laboratory, “brings together the expertise of the University of Chicago (the sole member of the LLC) with Jacobs Engineering Group Inc.” Argonne is a part of the expanding Illinois Technology and Research Corridor. Argonne formerly ran a smaller facility called Argonne National Laboratory-West (or simply Argonne-West) in Idaho next to the Idaho National Engineering and Environmental Laboratory. In 2005, the two Idaho-based laboratories merged to become the DOE’s Idaho National Laboratory.
    What would become Argonne began in 1942 as the Metallurgical Laboratory at the University of Chicago, which had become part of the Manhattan Project. The Met Lab built Chicago Pile-1, the world’s first nuclear reactor, under the stands of the University of Chicago sports stadium. Considered unsafe, in 1943, CP-1 was reconstructed as CP-2, in what is today known as Red Gate Woods but was then the Argonne Forest of the Cook County Forest Preserve District near Palos Hills. The lab was named after the surrounding forest, which in turn was named after the Forest of Argonne in France where U.S. troops fought in World War I. Fermi’s pile was originally going to be constructed in the Argonne forest, and construction plans were set in motion, but a labor dispute brought the project to a halt. Since speed was paramount, the project was moved to the squash court under Stagg Field, the football stadium on the campus of the University of Chicago. Fermi told them that he was sure of his calculations, which said that it would not lead to a runaway reaction, which would have contaminated the city.

    Other activities were added to Argonne over the next five years. On July 1, 1946, the “Metallurgical Laboratory” was formally re-chartered as Argonne National Laboratory for “cooperative research in nucleonics.” At the request of the U.S. Atomic Energy Commission, it began developing nuclear reactors for the nation’s peaceful nuclear energy program. In the late 1940s and early 1950s, the laboratory moved to a larger location in unincorporated DuPage County, Illinois and established a remote location in Idaho, called “Argonne-West,” to conduct further nuclear research.

    In quick succession, the laboratory designed and built Chicago Pile 3 (1944), the world’s first heavy-water moderated reactor, and the Experimental Breeder Reactor I (Chicago Pile 4), built-in Idaho, which lit a string of four light bulbs with the world’s first nuclear-generated electricity in 1951. A complete list of the reactors designed and, in most cases, built and operated by Argonne can be viewed in the, Reactors Designed by Argonne page. The knowledge gained from the Argonne experiments conducted with these reactors 1) formed the foundation for the designs of most of the commercial reactors currently used throughout the world for electric power generation and 2) inform the current evolving designs of liquid-metal reactors for future commercial power stations.

    Conducting classified research, the laboratory was heavily secured; all employees and visitors needed badges to pass a checkpoint, many of the buildings were classified, and the laboratory itself was fenced and guarded. Such alluring secrecy drew visitors both authorized—including King Leopold III of Belgium and Queen Frederica of Greece—and unauthorized. Shortly past 1 a.m. on February 6, 1951, Argonne guards discovered reporter Paul Harvey near the 10-foot (3.0 m) perimeter fence, his coat tangled in the barbed wire. Searching his car, guards found a previously prepared four-page broadcast detailing the saga of his unauthorized entrance into a classified “hot zone”. He was brought before a federal grand jury on charges of conspiracy to obtain information on national security and transmit it to the public, but was not indicted.

    Not all nuclear technology went into developing reactors, however. While designing a scanner for reactor fuel elements in 1957, Argonne physicist William Nelson Beck put his own arm inside the scanner and obtained one of the first ultrasound images of the human body. Remote manipulators designed to handle radioactive materials laid the groundwork for more complex machines used to clean up contaminated areas, sealed laboratories or caves. In 1964, the “Janus” reactor opened to study the effects of neutron radiation on biological life, providing research for guidelines on safe exposure levels for workers at power plants, laboratories and hospitals. Scientists at Argonne pioneered a technique to analyze the moon’s surface using alpha radiation, which launched aboard the Surveyor 5 in 1967 and later analyzed lunar samples from the Apollo 11 mission.

    In addition to nuclear work, the laboratory maintained a strong presence in the basic research of physics and chemistry. In 1955, Argonne chemists co-discovered the elements einsteinium and fermium, elements 99 and 100 in the periodic table. In 1962, laboratory chemists produced the first compound of the inert noble gas xenon, opening up a new field of chemical bonding research. In 1963, they discovered the hydrated electron.

    High-energy physics made a leap forward when Argonne was chosen as the site of the 12.5 GeV Zero Gradient Synchrotron, a proton accelerator that opened in 1963. A bubble chamber allowed scientists to track the motions of subatomic particles as they zipped through the chamber; in 1970, they observed the neutrino in a hydrogen bubble chamber for the first time.

    Meanwhile, the laboratory was also helping to design the reactor for the world’s first nuclear-powered submarine, the U.S.S. Nautilus, which steamed for more than 513,550 nautical miles (951,090 km). The next nuclear reactor model was Experimental Boiling Water Reactor, the forerunner of many modern nuclear plants, and Experimental Breeder Reactor II (EBR-II), which was sodium-cooled, and included a fuel recycling facility. EBR-II was later modified to test other reactor designs, including a fast-neutron reactor and, in 1982, the Integral Fast Reactor concept—a revolutionary design that reprocessed its own fuel, reduced its atomic waste and withstood safety tests of the same failures that triggered the Chernobyl and Three Mile Island disasters. In 1994, however, the U.S. Congress terminated funding for the bulk of Argonne’s nuclear programs.

    Argonne moved to specialize in other areas, while capitalizing on its experience in physics, chemical sciences and metallurgy. In 1987, the laboratory was the first to successfully demonstrate a pioneering technique called plasma wakefield acceleration, which accelerates particles in much shorter distances than conventional accelerators. It also cultivated a strong battery research program.

    Following a major push by then-director Alan Schriesheim, the laboratory was chosen as the site of the Advanced Photon Source, a major X-ray facility which was completed in 1995 and produced the brightest X-rays in the world at the time of its construction.

    On 19 March 2019, it was reported in the Chicago Tribune that the laboratory was constructing the world’s most powerful supercomputer. Costing $500 million it will have the processing power of 1 quintillion flops. Applications will include the analysis of stars and improvements in the power grid.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    About the Advanced Photon Source

    The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    About the Advanced Photon Source

    The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

    Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science

    Argonne Lab Campus

     
  • richardmitnick 2:39 pm on July 18, 2021 Permalink | Reply
    Tags: "Fermilab and INFN sign 3 arrangements", , , , FNAL Short Baseline Neutrino Program, , , Particle Physics, ,   

    From DOE’s Fermi National Accelerator Laboratory (US) : “Fermilab and INFN sign 3 arrangements” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From DOE’s Fermi National Accelerator Laboratory (US) , an enduring source of strength for the US contribution to scientific research worldwide.

    July 16, 2021
    Hema Ramamoorthi

    [I do not usually cover these sort of contractual news articles; but this is a big deal for both parties. This actually strengthens the U.S. position in Particle Physics and High Energy Physics which we ceded to Europe when our idiots cancelled the Superconducting Super Collider and allowed the finding of the Higgs Boson at the Large Hdron Collider, which was at 14TeV about one third the power the SSC would have achieved. Our overall position in HEP is still strong but under the radar: many of the superconducting magnets for the LHC are built at DOE’s Brookhaven, Lawrence Berkeley, and Fermi National Laboratories. Also, there are 600 scentists on the Atlas(CH) project at Brookhaven and 1,000 scientists on CMS[CH] at Fermilab, and there are other noted scientists in our universities who do work at and for the LHC. Sorry, for the editorial, but as a science commmunicator, keeping the record straight is my job. I do not write any science as I am not any kind of scientist, but I take science news to over 1,000 readers all over the world and I want to do a good and complete job. Keeping the U.S. position in the Basic and Applied Sciences portrayed accurately is my chosen field.

    This is a great contractual agreement for both parties, on a par with all of the contractual agreements surrounding the development of SKA and SARAO. ]

    1
    Fermilab Director Nigel Lockyer (left) and INFN President Antonio Zoccoli sign the three arrangements. Credit: Fermilab and INFN.

    The U.S. Department of Energy’s Fermi National Accelerator Laboratory signed three international arrangements in June with the National Institute for Nuclear Physics, known as INFN, the Italian research agency dedicated to the study of the fundamental constituents of matter and the laws that govern them. Under the supervision of the MIUR – Italian Ministry of Education, University and Research (IT), the INFN conducts theoretical and experimental research in the fields of subnuclear, nuclear, particle and astroparticle physics.

    The three arrangements include:

    a Multi-Institutional Memorandum of Understanding for the FNAL Short Baseline Neutrino Program hosted at Fermilab;
    a Project Planning Document for the PIP-II particle accelerator project at Fermilab; and
    a legally binding agreement with INFN -National Laboratory of Frascati [Laboratori Nazionali di Frascati] (IT) to develop a superconducting undulator for the EuPRAXIA advanced accelerator project.

    “Our INFN partners are internationally recognized leaders in advanced particle accelerator technologies in general and superconducting radio-frequency technology in particular,” said PIP-II Project Director Lia Merminga. “Fermilab and the PIP-II project are grateful to INFN for their expertise and contributions in building a state-of-the-art particle accelerator powering the world’s most intense neutrino beam. These contributions will help drive groundbreaking discoveries in particle physics for the next 50 years.”

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Fermi National Accelerator Laboratory (US), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been operated by the Fermi Research Alliance, a joint venture of the University of Chicago, and the Universities Research Association (URA). Fermilab is a part of the Illinois Technology and Research Corridor.

    Fermilab’s Tevatron was a landmark particle accelerator; until the startup in 2008 of the Large Hadron Collider(CH) near Geneva, Switzerland, it was the most powerful particle accelerator in the world, accelerating antiprotons to energies of 500 GeV, and producing proton-proton collisions with energies of up to 1.6 TeV, the first accelerator to reach one “tera-electron-volt” energy. At 3.9 miles (6.3 km), it was the world’s fourth-largest particle accelerator in circumference. One of its most important achievements was the 1995 discovery of the top quark, announced by research teams using the Tevatron’s CDF and DØ detectors. It was shut down in 2011.

    In addition to high-energy collider physics, Fermilab hosts fixed-target and neutrino experiments, such as MicroBooNE (Micro Booster Neutrino Experiment), NOνA (NuMI Off-Axis νe Appearance) and SeaQuest. Completed neutrino experiments include MINOS (Main Injector Neutrino Oscillation Search), MINOS+, MiniBooNE and SciBooNE (SciBar Booster Neutrino Experiment). The MiniBooNE detector was a 40-foot (12 m) diameter sphere containing 800 tons of mineral oil lined with 1,520 phototube detectors. An estimated 1 million neutrino events were recorded each year. SciBooNE sat in the same neutrino beam as MiniBooNE but had fine-grained tracking capabilities. The NOνA experiment uses, and the MINOS experiment used, Fermilab’s NuMI (Neutrinos at the Main Injector) beam, which is an intense beam of neutrinos that travels 455 miles (732 km) through the Earth to the Soudan Mine in Minnesota and the Ash River, Minnesota, site of the NOνA far detector. In 2017, the ICARUS neutrino experiment was moved from CERN to Fermilab.
    In the public realm, Fermilab is home to a native prairie ecosystem restoration project and hosts many cultural events: public science lectures and symposia, classical and contemporary music concerts, folk dancing and arts galleries. The site is open from dawn to dusk to visitors who present valid photo identification.
    Asteroid 11998 Fermilab is named in honor of the laboratory.
    Weston, Illinois, was a community next to Batavia voted out of existence by its village board in 1966 to provide a site for Fermilab.

    The laboratory was founded in 1969 as the National Accelerator Laboratory; it was renamed in honor of Enrico Fermi in 1974. The laboratory’s first director was Robert Rathbun Wilson, under whom the laboratory opened ahead of time and under budget. Many of the sculptures on the site are of his creation. He is the namesake of the site’s high-rise laboratory building, whose unique shape has become the symbol for Fermilab and which is the center of activity on the campus.
    After Wilson stepped down in 1978 to protest the lack of funding for the lab, Leon M. Lederman took on the job. It was under his guidance that the original accelerator was replaced with the Tevatron, an accelerator capable of colliding protons and antiprotons at a combined energy of 1.96 TeV. Lederman stepped down in 1989. The science education center at the site was named in his honor.
    The later directors include:

    John Peoples, 1989 to 1996
    Michael S. Witherell, July 1999 to June 2005
    Piermaria Oddone, July 2005 to July 2013
    Nigel Lockyer, September 2013 to the present

    Fermilab continues to participate in the work at the Large Hadron Collider (LHC); it serves as a Tier 1 site in the Worldwide LHC Computing Grid.

    DOE’s Fermi National Accelerator Laboratory(US)/MINERvA Reidar Hahn.

    FNAL Don Lincoln.

    FNAL Icon

     
  • richardmitnick 8:38 am on July 18, 2021 Permalink | Reply
    Tags: "Astronomers Find Secret Planet-Making Ingredient- Magnetic Fields", , , , , , Particle Physics, ,   

    From Nautilus (US) : “Astronomers Find Secret Planet-Making Ingredient- Magnetic Fields” 

    From Nautilus (US)

    7.17.18
    Robin George Andrews

    1
    Supercomputer simulations that include magnetic fields can readily form midsize planets, seen here as red dots. Credit: Hongping Deng et al.

    Scientists have long struggled to understand how common planets form. A new supercomputer simulation shows that the missing ingredient may be magnetism.

    We like to think of ourselves as unique. That conceit may even be true when it comes to our cosmic neighborhood: Despite the fact that planets between the sizes of Earth and Neptune appear to be the most common in the cosmos, no such intermediate-mass planets can be found in the solar system.

    The problem is, our best theories of planet formation—cast as they are from the molds of what we observe in our own backyard—haven’t been sufficient to truly explain how planets form. One study, however, published in Nature Astronomy in February 2021, demonstrates that by taking magnetism into account, astronomers may be able to explain the striking diversity of planets orbiting alien stars.

    It’s too early to tell if magnetism is the key missing ingredient in our planet-formation models, but the new work is nevertheless “a very cool new result,” said Anders Johansen, a planetary scientist at the University of Copenhagen [Københavns Universitet](DK) who was not involved with the work.

    Until recently, gravity has been the star of the show. In the most commonly cited theory for how planets form, known as core accretion, hefty rocks orbiting a young sun violently collide over and over again, attaching to one another and growing larger over time. They eventually create objects with enough gravity to scoop up ever more material—first becoming a small planetesimal, then a larger protoplanet, then perhaps a full-blown planet.

    Yet gravity does not act alone. The star constantly blows out radiation and winds that push material out into space. Rocky materials are harder to expel, so they coalesce nearer the sun into rocky planets. But the radiation blasts more easily vaporized elements and compounds—various ices, hydrogen, helium and other light elements—out into the distant frontiers of the star system, where they form gas giants such as Jupiter and Saturn and ice giants like Uranus and Neptune.

    But a key problem with this idea is that for most would-be planetary systems, the winds spoil the party. The dust and gas needed to make a gas giant get blown out faster than a hefty, gassy world can form. Within just a few million years, this matter either tumbles into the host star or gets pushed out by those stellar winds into deep, inaccessible space.

    For some time now, scientists have suspected that magnetism may also play a role. What, specifically, magnetic fields do has remained unclear, partly because of the difficulty in including magnetic fields alongside gravity in the computer models used to investigate planet formation. In astronomy, said Meredith MacGregor, an astronomer at the University of Colorado-Boulder (US), there’s a common refrain: “We don’t bring up magnetic fields, because they’re difficult.”

    And yet magnetic fields are commonplace around planetesimals and protoplanets, coming either from the star itself or from the movement of starlight-washed gas and dust. In general terms, astronomers know that magnetic fields may be able to protect nascent planets from a star’s wind, or perhaps stir up the disk and move planet-making material about. “We’ve known for a long time that magnetic fields can be used as a shield and be used to disrupt things,” said Zoë Leinhardt, a planetary scientist at the University of Bristol (UK) who was not involved with the work. But details have been lacking, and the physics of magnetic fields at this scale are poorly understood.

    “It’s hard enough to model the gravity of these disks in high enough resolution and to understand what’s going on,” said Ravit Helled, a planetary scientist at the University of Zürich[Universität Zürich](CH). Adding magnetic fields is a significantly larger challenge.

    In the new work, Helled, along with her Zurich colleague Lucio Mayer and Hongping Deng of the University of Cambridge (UK), used the PizDaint supercomputer, the fastest in Europe, to run extremely high-resolution simulations that incorporated magnetic fields alongside gravity.

    Magnetism seems to have three key effects. First, magnetic fields shield certain clumps of gas—those that may grow up to be smaller planets—from the destructive influence of stellar radiation. In addition, those magnetic cocoons also slow down the growth of what would have become supermassive planets. The magnetic pressure pushing out into space “stops the infalling of new matter,” said Mayer, “maybe not completely, but it reduces it a lot.”

    The third apparent effect is both destructive and creative. Magnetic fields can stir gas up. In some cases, this influence disintegrates protoplanetary clumps. In others, it pushes gas closer together, which encourages clumping.

    Taken together, these influences seem to result in a larger number of smaller worlds, and fewer giants. And while these simulations only examined the formation of gassy worlds, in reality those prototypical realms can accrete solid material too, perhaps becoming rocky realms instead.

    Altogether, these simulations hint that magnetism may be partly responsible for the abundance of intermediate-mass exoplanets out there, whether they are smaller Neptunes or larger Earths.

    “I like their results; I think it shows promise,” said Leinhardt. But even though the researchers had a supercomputer on their side, the resolution of individual worlds remains fuzzy. At this stage, we can’t be totally sure what is happening with magnetic fields on a protoplanetary scale. “This is more a proof of concept, that they can do this, they can marry the gravity and the magnetic fields to do something very interesting that I haven’t seen before.”

    The researchers don’t claim that magnetism is the arbiter of the fate of all worlds. Instead, magnetism is just another ingredient in the planet-forming potpourri. In some cases, it may be important; in others, not so much. Which fits, once you consider the billions upon billions of individual planets out there in our own galaxy alone. “That’s what makes the field so exciting and lively,” said Helled: There is never, nor will there ever be, a lack of astronomical curiosities to explore and understand.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Welcome to Nautilus (US). We are delighted you joined us. We are here to tell you about science and its endless connections to our lives. Each month we choose a single topic. And each Thursday we publish a new chapter on that topic online. Each issue combines the sciences, culture and philosophy into a single story told by the world’s leading thinkers and writers. We follow the story wherever it leads us. Read our essays, investigative reports, and blogs. Fiction, too. Take in our games, videos, and graphic stories. Stop in for a minute, or an hour. Nautilus lets science spill over its usual borders. We are science, connected.

     
  • richardmitnick 9:20 am on July 17, 2021 Permalink | Reply
    Tags: "Physics PhD student receives Graduate Instrumentation Research Award", Particle Physics, , Yuzhan Zhao   

    From University of California-Santa Cruz (US) : “Physics PhD student receives Graduate Instrumentation Research Award” 

    From University of California-Santa Cruz (US)

    July 14, 2021
    Tim Stephens
    stephens@ucsc.edu

    1
    Yuzhan Zhao.

    Yuzhan Zhao, a third-year Ph.D. student in physics at UC Santa Cruz, has received a Graduate Instrumentation Research Award (GIRA) from the American Physical Society (US).

    The award supports Zhao’s research with physics professor Bruce Schumm at the Santa Cruz Institute for Particle Physics (SCIPP). Zhao is working on the development of low-gain avalanche diode silicon detectors, which feature excellent timing resolution for measuring particle interactions. Specifically, the award is for the further development of the “deep junction” low-gain avalanche detector, for which Zhao holds intellectual property rights, along with Schumm, postdoctoral fellow Simone Mazza, and fellow graduate student Carolyn Gee.

    These detectors have applications in particle physics experiments and accelerator beam monitoring. SCIPP is an international leader in the development of silicon detectors for high-energy physics experiments and other applications.

    “This award is a wonderful acknowledgement of Yuzhan’s accomplishments in instrumentation,” Schumm said.

    The GIRA program aims to encourage and facilitate greater involvement of physics graduate students in significant instrumentation development, to boost recognition of instrumentation work as a vital part of PhD training, to foster the growth of future high-energy physics instrumentation experts in the United States, and to strengthen university-lab ties on instrumentation development. GIRA was established by the Coordination Panel for Advanced Detectors, a standing committee of the Division of Particles and Fields of the American Physical Society.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC Santa Cruz (US) Lick Observatory Since 1888 Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    UC Observatories Lick Automated Planet Finder fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA.

    The UCO Lick C. Donald Shane telescope is a 120-inch (3.0-meter) reflecting telescope located at the Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft).
    UC Santa Cruz (US) campus.

    The University of California-Santa Cruz (US) , opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    UCO Lick Observatory’s 36-inch Great Refractor telescope housed in the South (large) Dome of main building.

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow


    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego (US) who led the development of the new instrument while at the U Toronto Dunlap Institute for Astronomy and Astrophysics (CA).

    Shelley Wright of UC San Diego with (US) NIROSETI, developed at U Toronto Dunlap Institute for Astronomy and Astrophysics (CA) at the 1-meter Nickel Telescope at Lick Observatory at UC Santa Cruz

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by University of California-Berkeley (US) researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    Frank Drake with his Drake Equation. Credit Frank Drake.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

     
  • richardmitnick 12:54 pm on July 13, 2021 Permalink | Reply
    Tags: "Plasma Particle Accelerators Could Find New Physics", , Accelerators come in two shapes: circular (synchrotron) or linear (linac)., At the start of the 20th century scientists had little knowledge of the building blocks that form our physical world., , By the end of the century they had discovered not just all the elements that are the basis of all observed matter but a slew of even more fundamental particles that make up our cosmos., CERN CLIC collider, CERN is proposing a 100-kilometer-circumference electron-positron and proton-proton collider called the Future Circular Collider., , , , , International Linear Collider (ILC), , Particle Physics, , Plasma is often called the fourth state of matter., , ,   

    From Scientific American (US) : “Plasma Particle Accelerators Could Find New Physics” 

    From Scientific American (US)

    July 2021
    Chandrashekhar Joshi

    1
    Credit: Peter and Maria Hoey.

    At the start of the 20th century scientists had little knowledge of the building blocks that form our physical world. By the end of the century they had discovered not just all the elements that are the basis of all observed matter but a slew of even more fundamental particles that make up our cosmos, our planet and ourselves. The tool responsible for this revolution was the particle accelerator.

    The pinnacle achievement of particle accelerators came in 2012, when the Large Hadron Collider (LHC) uncovered the long-sought Higgs boson particle.

    The LHC is a 27-kilometer accelerating ring that collides two beams of protons with seven trillion electron volts (TeV) of energy each at CERN near Geneva.

    It is the biggest, most complex and arguably the most expensive scientific device ever built. The Higgs boson was the latest piece in the reigning theory of particle physics called the Standard Model. Yet in the almost 10 years since that discovery, no additional particles have emerged from this machine or any other accelerator.

    Have we found all the particles there are to find? Doubtful. The Standard Model of particle physics does not account for dark matter—particles that are plentiful yet invisible in the universe. A popular extension of the Standard Model called supersymmetry predicts many more particles out there than the ones we know about.

    And physicists have other profound unanswered questions such as: Are there extra dimensions of space? And why is there a great matter-antimatter imbalance in the observable universe? To solve these riddles, we will likely need a particle collider more powerful than those we have today.

    Many scientists support a plan to build the International Linear Collider (ILC), a straight-line-shaped accelerator that will produce collision energies of 250 billion (giga) electron volts (GeV).

    Though not as powerful as the LHC, the ILC would collide electrons with their antimatter counterparts, positrons—both fundamental particles that are expected to produce much cleaner data than the proton-proton collisions in the LHC. Unfortunately, the design of the ILC calls for a facility about 20 kilometers long and is expected to cost more than $10 billion—a price so high that no country has so far committed to host it.

    In the meantime, there are plans to upgrade the energy of the LHC to 27 TeV in the existing tunnel by increasing the strength of the superconducting magnets used to bend the protons. Beyond that, CERN is proposing a 100-kilometer-circumference electron-positron and proton-proton collider called the Future Circular Collider.

    Such a machine could reach the unprecedented energy of 100 TeV in proton-proton collisions. Yet the cost of this project will likely match or surpass the ILC. Even if it is built, work on it cannot begin until the LHC stops operation after 2035.

    But these gargantuan and costly machines are not the only options. Since the 1980s physicists have been developing alternative concepts for colliders. Among them is one known as a plasma-based accelerator, which shows great promise for delivering a TeV-scale collider that may be more compact and much cheaper than machines based on the present technology.

    The Particle Zoo

    The story of particle accelerators began in 1897 at the Cavendish physics laboratory at the University of Cambridge (UK).

    There J. J. Thomson created the earliest version of a particle accelerator using a tabletop cathode-ray tube like the ones used in most television sets before flat screens. He discovered a negatively charged particle—the electron.

    Soon physicists identified the other two atomic ingredients—protons and neutrons—using radioactive particles as projectiles to bombard atoms. And in the 1930s came the first circular particle accelerator—a palm-size device invented by Ernest Lawrence called the cyclotron, which could accelerate protons to about 80 kilovolts.

    2
    Ernest Lawrence’s First Cyclotron, 1930 Stock Photo – Alamy.

    Thereafter accelerator technology evolved rapidly, and scientists were able to increase the energy of accelerated charged particles to probe the atomic nucleus. These advances led to the discovery of a zoo of hundreds of subnuclear particles, launching the era of accelerator-based high-energy physics. As the energy of accelerator beams rapidly increased in the final quarter of the past century, the zoo particles were shown to be built from just 17 fundamental particles predicted by the Standard Model [above]. All of these, except the Higgs boson, had been discovered in accelerator experiments by the late 1990s. The Higgs’s eventual appearance [above] at the LHC made the Standard Model the crowning achievement of modern particle physics.

    Aside from being some of the most successful instruments of scientific discovery in history, accelerators have found a multitude of applications in medicine and in our daily lives. They are used in CT scanners, for x-rays of bones and for radiotherapy of malignant tumors. They are vital in food sterilization and for generating radioactive isotopes for myriad medical tests and treatments. They are the basis of x-ray free-electron lasers, which are being used by thousands of scientists and engineers to do cutting-edge research in physical, life and biological sciences.

    3
    Scientist tests a prototype plasma accelerator at the Facility for Advanced Accelerator Experimental Tests (FACET) at the DOE’s SLAC National Accelerator Laboratory (US) in California. Credit: Brad Plummer and SLAC National Accelerator Laboratory.

    Accelerator Basics

    Accelerators come in two shapes: circular (synchrotron) or linear (linac). All are powered by radio waves or microwaves that can accelerate particles to near light speed. At the LHC, for instance, two proton beams running in opposite directions repeatedly pass through sections of so-called radio-frequency cavities spaced along the ring.

    Radio waves inside these cavities create electric fields that oscillate between positive and negative to ensure that the positively charged protons always feel a pull forward. This pull speeds up the protons and transfers energy to them. Once the particles have gained enough energy, magnetic lenses focus the proton beams to several very precise collision points along the ring. When they crash, they produce extremely high energy densities, leading to the birth of new, higher-mass particles.

    When charged particles are bent in a circle, however, they emit “synchrotron radiation.” For any given radius of the ring, this energy loss is far less for heavier particles such as protons, which is why the LHC is a proton collider. But for electrons the loss is too great, particularly as their energy increases, so future accelerators that aim to collide electrons and positrons must either be linear colliders or have very large radii that minimize the curvature and thus the radiation the electrons emit.

    The size of an accelerator complex for a given beam energy ultimately depends on how much radio-frequency power can be pumped into the accelerating structure before the structure suffers electrical breakdown. Traditional accelerators have used copper to build this accelerating structure, and the breakdown threshold has meant that the maximum energy that can be added per meter is between 20 million and 50 million electron volts (MeV). Accelerator scientists have experimented with new types of accelerating structures that work at higher frequencies, thereby increasing the electrical breakdown threshold. They have also been working on improving the strength of the accelerating fields within superconducting cavities that are now routinely used in both synchrotrons and linacs. These advances are important and will almost certainly be implemented before any paradigm-changing concepts disrupt the highly successful conventional accelerator technologies.

    Eventually other strategies may be necessary. In 1982 the U.S. Department of Energy’s program on high-energy physics started a modest initiative to investigate entirely new ways to accelerate charged particles. This program generated many ideas; three among them look particularly promising.

    The first is called two-beam acceleration. This scheme uses a relatively cheap but very high-charge electron pulse to create high-frequency radiation in a cavity and then transfers this radiation to a second cavity to accelerate a secondary electron pulse. This concept is being tested at CERN on a machine called the Compact Linear Collider (CLIC).

    Another idea is to collide muons, which are much heavier cousins to electrons. Their larger mass means they can be accelerated in a circle without losing as much energy to synchrotron radiation as electrons do. The downside is that muons are unstable particles, with a lifetime of two millionths of a second. They are produced during the decay of particles called pions, which themselves must be produced by colliding an intense proton beam with a special target. No one has ever built a muon accelerator, but there are die-hard proponents of the idea among accelerator scientists.

    Finally, there is plasma-based acceleration. The notion originated in the 1970s with John M. Dawson of the University of California-Los Angeles (US), who proposed using a plasma wake produced by an intense laser pulse or a bunch of electrons to accelerate a second bunch of particles 1,000 or even 10,000 times faster than conventional accelerators can. This concept came to be known as the plasma wakefield accelerator.

    4

    It generated a lot of excitement by raising the prospect of miniaturizing these gigantic machines, much like the integrated circuit miniaturized electronics starting in the 1960s.

    The Fourth State of Matter

    Most people are familiar with three states of matter: solid, liquid and gas. Plasma is often called the fourth state of matter. Though relatively uncommon in our everyday experience, it is the most common state of matter in our universe. By some estimates more than 99 percent of all visible matter in the cosmos is in the plasma state—stars, for instance, are made of plasma. A plasma is basically an ionized gas with equal densities of electrons and ions. Scientists can easily form plasma in laboratories by passing electricity through a gas as in a common fluorescent tube.

    A plasma wakefield accelerator takes advantage of the kind of wake you can find trailing a motorboat or a jet plane. As a boat moves forward, it displaces water, which moves out behind the boat to form a wake. Similarly, a tightly focused but ultraintense laser pulse moving through a plasma at the speed of light can generate a relativistic wake (that is, a wake also propagating nearly at light speed) by exerting radiation pressure and displacing the plasma electrons out of its way. If, instead of a laser pulse, a high-energy, high-current electron bunch is sent through the plasma, the negative charge of these electrons can expel all the plasma electrons, which feel a repulsive force. The heavier plasma ions, which are positively charged, remain stationary. After the pulse passes by, the expelled electrons are attracted back toward the ions by the force between their negative and positive charges. The electrons move so quickly they overshoot the ions and then again feel a backward pull, setting up an oscillating wake. Because of the separation of the plasma electrons from the plasma ions, there is an electric field inside this wake.

    If a second “trailing” electron bunch follows the first “drive” pulse, the electrons in this trailing bunch can gain energy from the wake much in the same way an electron bunch is accelerated by the radio-frequency wave in a conventional accelerator. If there are enough electrons in the trailing bunch, they can absorb sufficient energy from the wake so as to dampen the electric field. Now all the electrons in the trailing bunch see a constant accelerating field and gain energy at the same rate, thereby reducing the energy spread of the beam.

    The main advantage of a plasma accelerator over other schemes is that electric fields in a plasma wake can easily be 1,000 times stronger than those in traditional radio-frequency cavities. Plus, a very significant fraction of the energy that the driver beam transfers to the wake can be extracted by the trailing bunch. These effects make a plasma wakefield-based collider potentially both more compact and cheaper than conventional colliders.

    The Future of Plasma

    Both laser- and electron-driven plasma wakefield accelerators have made tremendous progress in the past two decades. My own team at U.C.L.A. has carried out prototype experiments with SLAC National Accelerator Laboratory physicists at their Facility for Advanced Accelerator Experimental Tests (FACET) in Menlo Park, Calif.

    We injected both drive and trailing electron bunches with an initial energy of 20 GeV and found that the trailing electrons gained up to 9 GeV after traveling through a 1.3-meter-long plasma. We also achieved a gain of 4 GeV in a positron bunch using just a one-meter-long plasma in a proof-of-concept experiment. Several other labs around the world have used laser-driven wakes to produce multi-GeV energy gains in electron bunches.

    Plasma accelerator scientists’ ultimate goal is to realize a linear accelerator that collides tightly focused electron and positron, or electron and electron, beams with a total energy exceeding 1 TeV. To accomplish this feat, we would likely need to connect around 50 individual plasma accelerator stages in series, with each stage adding an energy of 10 GeV.

    Yet aligning and synchronizing the drive and the trailing beams through so many plasma accelerator stages to collide with the desired accuracy presents a huge challenge. The typical radius of the wake is less than one millimeter, and scientists must inject the trailing electron bunch with submicron accuracy. They must synchronize timing between the drive pulse and the trailing beam to less than a hundredth of a trillionth of one second. Any misalignment would lead to a degradation of the beam quality and a loss of energy as well as charge caused by oscillation of the electrons about the plasma wake axis. This loss shows up in the form of hard x-ray emission, known as betatron emission, and places a finite limit on how much energy we can obtain from a plasma accelerator.

    Other technical hurdles also stand in the way of immediately turning this idea into a collider. For instance, the primary figure of merit for a particle collider is the luminosity—basically a measure of how many particles you can squeeze through a given space in a given time. The luminosity multiplied by the cross section—or the chances that two particles will collide— tells you how many collisions of a particular kind per second you are likely to observe at a given energy. The desired luminosity for a 1-TeV electron-positron linear collider is 10^34 cm^–2s^–1. Achieving this luminosity would require the colliding beams to have an average power of 20 megawatts each—10^10 particles per bunch at a repetition rate of 10 kilohertz and a beam size at the collision point of tens of a billionth of a meter. To illustrate how difficult this is, let us focus on the average power requirement. Even if you could transfer energy from the drive beam to the accelerating beam with 50 percent efficiency, 20 megawatts of power will be left behind in the two thin plasma columns. Ideally we could partially recover this power, but it is far from a straightforward task.

    And although scientists have made substantial progress on the technology needed for the electron arm of a plasma-based linear collider, positron acceleration is still in its infancy. A decade of concerted basic science research will most likely be needed to bring positrons to the same point we have reached with electrons. Alternatively, we could collide electrons with electrons or even with protons, where one or both electron arms are based on a plasma wakefield accelerator. Another concept that scientists are exploring at CERN is modulating a many-centimeters-long proton bunch by sending it through a plasma column and using the accompanying plasma wake to accelerate an electron bunch.

    The future for plasma-based accelerators is uncertain but exciting. It seems possible that within a decade we could build 10-GeV plasma accelerators on a large tabletop for various scientific and commercial applications using existing laser and electron beam facilities. But this achievement would still put us a long way from realizing a plasma-based linear collider for new physics discoveries. Even though we have made spectacular experimental progress in plasma accelerator research, the beam parameters achieved to date are not yet what we would need for just the electron arm of a future electron-positron collider that operates at the energy frontier. Yet with the prospects for the International Linear Collider and the Future Circular Collider uncertain, our best bet may be to persist with perfecting an exotic technology that offers size and cost savings. Developing plasma technology is a scientific and engineering grand challenge for this century, and it offers researchers wonderful opportunities for taking risks, being creative, solving fascinating problems—and the tantalizing possibility of discovering new fundamental pieces of nature.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    Scientific American (US) , the oldest continuously published magazine in the U.S., has been bringing its readers unique insights about developments in science and technology for more than 160 years.

     
  • richardmitnick 7:27 pm on July 10, 2021 Permalink | Reply
    Tags: , , , Dark Matter is one of the most vexing known unknowns in nature., Dark Matter makes up about 85% of the mass in the universe., In addition to dark matter hidden dark forces may govern dark matter’s interactions., Particle Physics, , University of California-Riverside (US)   

    From University of California-Riverside (US) : “A new dimension in the quest to understand dark matter” 

    UC Riverside bloc

    From University of California-Riverside (US)

    June 2, 2021 [Just now in social media.]
    Iqbal Pittalwala

    As its name suggests, Dark Matter — material which makes up about 85% of the mass in the universe — emits no light, eluding easy detection. Its properties, too, remain fairly obscure.

    Now, a theoretical particle physicist at the University of California, Riverside, and colleagues have published a research paper in the Journal of High Energy Physics that shows how theories positing the existence a new type of force could help explain dark matter’s properties.

    1
    Flip Tanedo

    “We live in an ocean of Dark Matter, yet we know very little about what it could be,” said Flip Tanedo, an assistant professor of physics and astronomy and the paper’s senior author. “It is one of the most vexing known unknowns in nature. We know it exists, but we do not know how to look for it or why it hasn’t shown up where we expected it.”

    2
    Photo shows Flip Tanedo (left), Sylvain Fichet (center), and Hai-Bo Yu. Credit: Flip Tanedo/UCR.

    Physicists have used telescopes, gigantic underground experiments, and colliders to learn more about dark matter for the last 30 years, though no positive evidence has materialized. The negative evidence, however, has forced theoretical physicists like Tanedo to think more creatively about what dark matter could be.

    The new research, which proposes the existence of an extra dimension in space-time to search for dark matter, is part of an ongoing research program at UC Riverside led by Tanedo. According to this theory, some of the dark matter particles don’t behave like particles. In effect, invisible particles interact with even more invisible particles in such a way that the latter cease to behave like particles.

    “The goal of my research program for the past two years is to extend the idea of dark matter ‘talking’ to dark forces,” Tanedo said. “Over the past decade, physicists have come to appreciate that, in addition to dark matter hidden dark forces may govern dark matter’s interactions. These could completely rewrite the rules for how one ought to look for dark matter.”

    If two particles of dark matter are attracted to, or repelled by, each other, then dark forces are operating. Tanedo explained that dark forces are described mathematically by a theory with extra dimensions and appear as a continuum of particles that could address puzzles seen in small galaxies.

    “Our ongoing research program at UCR is a further generalization of the dark force proposal,” he said. “Our observed universe has three dimensions of space. We propose that there may be a fourth dimension that only the dark forces know about. The extra dimension can explain why dark matter has hidden so well from our attempts to study it in a lab.”

    Tanedo explained that although extra dimensions may sound like an exotic idea, they are actually a mathematical trick to describe “conformal field theories” — ordinary three-dimensional theories that are highly quantum mechanical. These types of theories are mathematically rich, but do not contain conventional particles and so are typically not considered to be relevant for describing nature. The mathematical equivalence between these challenging three-dimensional theories and a more tractable extra dimensional theory is known as the holographic principle.

    “Since these conformal field theories were both intractable and unusual, they hadn’t really been systematically applied to dark matter,” Tanedo added. “Instead of using that language, we work with the holographic extra-dimensional theory.”

    The key feature of the extra-dimensional theory is that the force between dark matter particles is described by an infinite number of different particles with different masses called a continuum. In contrast, ordinary forces are described by a single type of particle with a fixed mass. This class of continuum-dark sectors is exciting to Tanedo because it does something “fresh and different.”

    According to Tanedo, past work on dark sectors focuses primarily on theories that mimic the behavior of visible particles. His research program is exploring the more extreme types of theories that most particle physicists found less interesting, perhaps because no analogs exist in the real world.

    In Tanedo’s theory, the force between dark matter particles is surprisingly different from the forces felt by ordinary matter.

    “For the gravitational force or electric force that I teach in my introductory physics course, when you double the distance between two particles you reduce the force by a factor of four. A continuum force, on the other hand, is reduced by a factor of up to eight.”

    What implications does this extra dimensional dark force have? Since ordinary matter may not interact with this dark force, Tanedo turned to the idea of self-interacting dark matter [Physical Review Letters], an idea pioneered by Hai-Bo Yu, an associate professor of physics and astronomy at UCR who is not a coauthor on the paper. Yu showed that even in the absence of any interactions with normal matter, the effects of these dark forces could be observed indirectly in dwarf spheroidal galaxies. Tanedo’s team found the continuum force can reproduce the observed stellar motions.

    “Our model goes further and makes it easier than the self-interacting dark matter model to explain the cosmic origin of dark matter,” Tanedo said.

    Next, Tanedo’s team will explore a continuum version of the “dark photon” model.

    “It’s a more realistic picture for a dark force,” Tanedo said. “Dark photons have been studied in great detail, but our extra-dimensional framework has a few surprises. We will also look into the cosmology of dark forces and the physics of black holes.”

    Tanedo has been working diligently on identifying “blind spots” in his team’s search for dark matter.

    “My research program targets one of the assumptions we make about particle physics: that the interaction of particles is well-described by the exchange of more particles,” he said. “While that is true for ordinary matter, there’s no reason to assume that for dark matter. Their interactions could be described by a continuum of exchanged particles rather than just exchanging a single type of force particle.”

    Tanedo was joined in the research by Ian Chaffey, a postdoctoral researcher working with Tanedo; and Sylvain Fichet, a postdoctoral researcher at the International Center for Theoretical Physics – South American Institute for Fundamental Research [Instituto sul-Americano de Pesquisa Fundamental](BR).

    The research was funded by the U.S. Department of Energy.

    ______________________________________________________________________________________________________________

    Dark Matter Background
    Fritz Zwicky discovered Dark Matter in the 1930s when observing the movement of the Coma Cluster., Vera Rubin a Woman in STEM denied the Nobel, some 30 years later, did most of the work on Dark Matter.

    Fritz Zwicky from http:// palomarskies.blogspot.com.


    Coma cluster via NASA/ESA Hubble.


    In modern times, it was astronomer Fritz Zwicky, in the 1930s, who made the first observations of what we now call dark matter. His 1933 observations of the Coma Cluster of galaxies seemed to indicated it has a mass 500 times more than that previously calculated by Edwin Hubble. Furthermore, this extra mass seemed to be completely invisible. Although Zwicky’s observations were initially met with much skepticism, they were later confirmed by other groups of astronomers.
    Thirty years later, astronomer Vera Rubin provided a huge piece of evidence for the existence of dark matter. She discovered that the centers of galaxies rotate at the same speed as their extremities, whereas, of course, they should rotate faster. Think of a vinyl LP on a record deck: its center rotates faster than its edge. That’s what logic dictates we should see in galaxies too. But we do not. The only way to explain this is if the whole galaxy is only the center of some much larger structure, as if it is only the label on the LP so to speak, causing the galaxy to have a consistent rotation speed from center to edge.
    Vera Rubin, following Zwicky, postulated that the missing structure in galaxies is dark matter. Her ideas were met with much resistance from the astronomical community, but her observations have been confirmed and are seen today as pivotal proof of the existence of dark matter.

    Astronomer Vera Rubin at the Lowell Observatory in 1965, worked on Dark Matter (The Carnegie Institution for Science).


    Vera Rubin measuring spectra, worked on Dark Matter (Emilio Segre Visual Archives AIP SPL).


    Vera Rubin, with Department of Terrestrial Magnetism (DTM) image tube spectrograph attached to the Kitt Peak 84-inch telescope, 1970

    Dark Matter Research

    Inside the Axion Dark Matter eXperiment U Washington (US) Credit : Mark Stone U. of Washington. Axion Dark Matter Experiment.
    _____________________________________________________________________________________

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    [caption id="attachment_33275" align="alignnone" width="632"] UC Riverside Campus

    The University of California-Riverside (US) is a public land-grant research university in Riverside, California. It is one of the 10 campuses of the University of California (US) system. The main campus sits on 1,900 acres (769 ha) in a suburban district of Riverside with a branch campus of 20 acres (8 ha) in Palm Desert. In 1907, the predecessor to UC-Riverside was founded as the UC Citrus Experiment Station, Riverside which pioneered research in biological pest control and the use of growth regulators responsible for extending the citrus growing season in California from four to nine months. Some of the world’s most important research collections on citrus diversity and entomology, as well as science fiction and photography, are located at Riverside.

    UC-Riverside’s undergraduate College of Letters and Science opened in 1954. The Regents of the University of California declared UC-Riverside a general campus of the system in 1959, and graduate students were admitted in 1961. To accommodate an enrollment of 21,000 students by 2015, more than $730 million has been invested in new construction projects since 1999. Preliminary accreditation of the UC-Riverside School of Medicine was granted in October 2012 and the first class of 50 students was enrolled in August 2013. It is the first new research-based public medical school in 40 years.

    UC-Riverside is classified among “R1: Doctoral Universities – Very high research activity.” The 2019 U.S. News & World Report Best Colleges rankings places UC-Riverside tied for 35th among top public universities and ranks 85th nationwide. Over 27 of UC- Riverside’s academic programs, including the Graduate School of Education and the Bourns College of Engineering, are highly ranked nationally based on peer assessment, student selectivity, financial resources, and other factors. Washington Monthly ranked UC Riverside 2nd in the United States in terms of social mobility, research and community service, while U.S. News ranks UC-Riverside as the fifth most ethnically diverse and, by the number of undergraduates receiving Pell Grants (42 percent), the 15th most economically diverse student body in the nation. Over 70% of all UC-Riverside students graduate within six years without regard to economic disparity. UC-Riverside’s extensive outreach and retention programs have contributed to its reputation as a “university of choice” for minority students. In 2005, UCR became the first public university campus in the nation to offer a gender-neutral housing option. UC-Riverside’s sports teams are known as the Highlanders and play in the Big West Conference of the National Collegiate Athletic Association (NCAA) Division I. Their nickname was inspired by the high altitude of the campus, which lies on the foothills of Box Springs Mountain. The UC-Riverside women’s basketball team won back-to-back Big West championships in 2006 and 2007. In 2007, the men’s baseball team won its first conference championship and advanced to the regionals for the second time since the university moved to Division I in 2001.

    History

    At the turn of the 20th century, Southern California was a major producer of citrus, the region’s primary agricultural export. The industry developed from the country’s first navel orange trees, planted in Riverside in 1873. Lobbied by the citrus industry, the UC Regents established the UC Citrus Experiment Station (CES) on February 14, 1907, on 23 acres (9 ha) of land on the east slope of Mount Rubidoux in Riverside. The station conducted experiments in fertilization, irrigation and crop improvement. In 1917, the station was moved to a larger site, 475 acres (192 ha) near Box Springs Mountain.

    The 1944 passage of the GI Bill during World War II set in motion a rise in college enrollments that necessitated an expansion of the state university system in California. A local group of citrus growers and civic leaders, including many University of California-Berkeley(US) alumni, lobbied aggressively for a UC-administered liberal arts college next to the CES. State Senator Nelson S. Dilworth authored Senate Bill 512 (1949) which former Assemblyman Philip L. Boyd and Assemblyman John Babbage (both of Riverside) were instrumental in shepherding through the State Legislature. Governor Earl Warren signed the bill in 1949, allocating $2 million for initial campus construction.

    Gordon S. Watkins, dean of the College of Letters and Science at University of California-Los Angeles, became the first provost of the new college at Riverside. Initially conceived of as a small college devoted to the liberal arts, he ordered the campus built for a maximum of 1,500 students and recruited many young junior faculty to fill teaching positions. He presided at its opening with 65 faculty and 127 students on February 14, 1954, remarking, “Never have so few been taught by so many.”

    UC-Riverside’s enrollment exceeded 1,000 students by the time Clark Kerr became president of the University of California system in 1958. Anticipating a “tidal wave” in enrollment growth required by the baby boom generation, Kerr developed the California Master Plan for Higher Education and the Regents designated Riverside a general university campus in 1959. UC-Riverside’s first chancellor, Herman Theodore Spieth, oversaw the beginnings of the school’s transition to a full university and its expansion to a capacity of 5,000 students. UC-Riverside’s second chancellor, Ivan Hinderaker led the campus through the era of the free speech movement and kept student protests peaceful in Riverside. According to a 1998 interview with Hinderaker, the city of Riverside received negative press coverage for smog after the mayor asked Governor Ronald Reagan to declare the South Coast Air Basin a disaster area in 1971; subsequent student enrollment declined by up to 25% through 1979. Hinderaker’s development of innovative programs in business administration and biomedical sciences created incentive for enough students to enroll at UC-Riverside to keep the campus open.

    In the 1990s, the UC-Riverside experienced a new surge of enrollment applications, now known as “Tidal Wave II”. The Regents targeted UC-Riverside for an annual growth rate of 6.3%, the fastest in the UC system, and anticipated 19,900 students at UC-Riverside by 2010. By 1995, African American, American Indian, and Latino student enrollments accounted for 30% of the UC-Riverside student body, the highest proportion of any UC campus at the time. The 1997 implementation of Proposition 209—which banned the use of affirmative action by state agencies—reduced the ethnic diversity at the more selective UC campuses but further increased it at UC-Riverside.

    With UC-Riverside scheduled for dramatic population growth, efforts have been made to increase its popular and academic recognition. The students voted for a fee increase to move UC-Riverside athletics into NCAA Division I standing in 1998. In the 1990s, proposals were made to establish a law school, a medical school, and a school of public policy at UC-Riverside, with the UC-Riverside School of Medicine and the School of Public Policy becoming reality in 2012. In June 2006, UC-Riverside received its largest gift, 15.5 million from two local couples, in trust towards building its medical school. The Regents formally approved UC-Riverside’s medical school proposal in 2006. Upon its completion in 2013, it was the first new medical school built in California in 40 years.

    Academics

    As a campus of the University of California(US) system, UC-Riverside is governed by a Board of Regents and administered by a president. UC-Riverside’s academic policies are set by its Academic Senate, a legislative body composed of all UC-Riverside faculty members.

    UC-Riverside is organized into three academic colleges, two professional schools, and two graduate schools. UC-Riverside’s liberal arts college, the College of Humanities, Arts and Social Sciences, was founded in 1954, and began accepting graduate students in 1960. The College of Natural and Agricultural Sciences, founded in 1960, incorporated the CES as part of the first research-oriented institution at UC-Riverside; it eventually also incorporated the natural science departments formerly associated with the liberal arts college to form its present structure in 1974. UC-Riverside’s newest academic unit, the Bourns College of Engineering, was founded in 1989. Comprising the professional schools are the Graduate School of Education, founded in 1968, and the UC-Riverside School of Business, founded in 1970. These units collectively provide 81 majors and 52 minors, 48 master’s degree programs, and 42 Doctor of Philosophy (PhD) programs. UC-Riverside is the only UC campus to offer undergraduate degrees in creative writing and public policy and one of three UCs (along with University of California-Berkeley (US) and University of California-Irvine (US)) to offer an undergraduate degree in business administration. Through its Division of Biomedical Sciences, founded in 1974, UC-Riverside offers the Thomas Haider medical degree program in collaboration with University of California-Los Angeles(US). UC-Riverside’s doctoral program in the emerging field of dance theory, founded in 1992, was the first program of its kind in the United States, and UC-Riverside’s minor in lesbian, gay and bisexual studies, established in 1996, was the first undergraduate program of its kind in the University of California system. A new BA program in bagpipes was inaugurated in 2007.

    Research and economic impact

    UC-Riverside operated under a $727 million budget in fiscal year 2014–15. The state government provided $214 million, student fees accounted for $224 million and $100 million came from contracts and grants. Private support and other sources accounted for the remaining $189 million. Overall, monies spent at UC-Riverside have an economic impact of nearly $1 billion in California. UC-Riverside research expenditure in FY 2018 totaled $167.8 million. Total research expenditures at UC-Riverside are significantly concentrated in agricultural science, accounting for 53% of total research expenditures spent by the university in 2002. Top research centers by expenditure, as measured in 2002, include the Agricultural Experiment Station; the Center for Environmental Research and Technology; the Center for Bibliographical Studies; the Air Pollution Research Center; and the Institute of Geophysics and Planetary Physics.

    Throughout UC-Riverside’s history, researchers have developed more than 40 new citrus varieties and invented new techniques to help the $960 million-a-year California citrus industry fight pests and diseases. In 1927, entomologists at the CES introduced two wasps from Australia as natural enemies of a major citrus pest, the citrophilus mealybug, saving growers in Orange County $1 million in annual losses. This event was pivotal in establishing biological control as a practical means of reducing pest populations. In 1963, plant physiologist Charles Coggins proved that application of gibberellic acid allows fruit to remain on citrus trees for extended periods. The ultimate result of his work, which continued through the 1980s, was the extension of the citrus-growing season in California from four to nine months. In 1980, UC-Riverside released the Oroblanco grapefruit, its first patented citrus variety. Since then, the citrus breeding program has released other varieties such as the Melogold grapefruit, the Gold Nugget mandarin (or tangerine), and others that have yet to be given trademark names.

    To assist entrepreneurs in developing new products, UC-Riverside is a primary partner in the Riverside Regional Technology Park, which includes the City of Riverside and the County of Riverside. It also administers six reserves of the University of California Natural Reserve System. UC-Riverside recently announced a partnership with China Agricultural University[中国农业大学](CN) to launch a new center in Beijing, which will study ways to respond to the country’s growing environmental issues. UC-Riverside can also boast the birthplace of two name reactions in organic chemistry, the Castro-Stephens coupling and the Midland Alpine Borane Reduction.

     
  • richardmitnick 1:18 pm on July 10, 2021 Permalink | Reply
    Tags: "Connecting the Pieces of a Black Hole Temper Tantrum", , , , BHXB system MAXI J1820+070 during a 2018 outburst, Black hole X-ray binaries, , Particle Physics,   

    From AAS NOVA : “Connecting the Pieces of a Black Hole Temper Tantrum” 

    AASNOVA

    From AAS NOVA

    7 July 2021
    Susanna Kohler

    1
    Artist’s illustration of a black hole X-ray binary, in which a black hole accretes matter from a companion star. Credit: Gabriel Pérez, Solar Maximum Mission (SMM) | High Altitude Observatory (Center for Astrophysics in La Palma | Instituto de Astrofísica de Canarias • IAC (ES)]

    Accreting, stellar-mass black holes are anything but predictable. A new study explores what’s happening as these feeding monsters erupt in violent outbursts and then settle down again.

    2
    This illustration shows some of the possible transient behavior of the gas flowing onto and away from a black hole in an X-ray binary. [NASA/JPL-Caltech (US)]

    An Unsteady Existence

    Black hole X-ray binaries (BHXBs) consist of a stellar-mass black hole that siphons material from an ordinary companion star. As this material flows between the objects, it forms an accretion disk around the black hole. BHXBs shine in X-rays from the hot material of this disk, and from a mysterious corona — ultra-hot gas that exists in some unknown form above the disk.

    BHXBs may accrete quietly and steadily much of the time, but on occasion, they undergo sudden outbursts, substantially brightening in X-rays. Unlike supermassive black holes, which evolve on extremely long timescales, stellar-mass black holes can change over just days or weeks — short enough for us to watch!

    In a new study led by Jingyi Wang (MIT Kavli Institute for Astrophysics and Space Research (US)), a team of scientists presents observations by NICER — an X-ray telescope installed on the International Space Station — of a BHXB throwing such a temper tantrum.

    Reflections of a Transition

    During an outburst, a BHXB undergoes state transitions, displaying changes in the X-ray luminosities and energies as either the corona or the disk takes over to dominate the emission. In addition to the X-ray changes, persistent radio emission from a slow and steady jet can be suddenly replaced by a short-lived radio flare that then subsides.

    Despite many observations, we lack the details of what’s happening on small scales, close around the black hole. What form does the corona take? Does its size or extent change over time? What drives the state transitions? And how are the different components of this system — disk, corona, and jet — related, if at all?

    3
    The top plot (a) shows the inferred corona height (black line) over the span of the outburst. The radio emission, including the flare, can be seen in red. The bottom two diagrams show the authors’ picture of the geometry of the black hole, disk, and corona at two points during the state changes: during the rise from quiescence (b), and at the end of the outburst when the jet base is ejected (c). [Adapted from Wang et al. 2021.]

    Wang and collaborators used NICER data of the BHXB system MAXI J1820+070 during a 2018 outburst to track the lag caused by light travel time between X-rays that arrived directly from the corona and light from the corona that was reflected by the disk before reaching us. By modeling the changes in this reverberation lag as the system underwent state transitions, the team could infer the geometry on the small scales we can’t observe, helping us to understand the tantrum.

    A Connected Picture

    Wang and collaborators show that the best explanation of NICER’s observations is that the height of the X-ray corona changes during the BHXB’s state transitions. They argue that the corona first contracts, and then rapidly expands during the outburst, preceding a radio flare by ~5 days.

    Under the authors’ interpretation, these signs point to a neat picture of BHXB outbursts: a quietly accreting black hole has a disk and a steady jet, and the corona makes up the base of that jet. When the BHXB goes into outburst, it ejects that jet base as a bright knot in its final moments of outburst, before fading back to quiescence.

    While this model isn’t yet definitive, this latest evidence points to a clear connection between the disk, jet, and corona of a BHXB. We’re sure to gain more insight ahead!

    Citation

    “Disk, Corona, Jet Connection in the Intermediate State of MAXI J1820+070 Revealed by NICER Spectral-timing Analysis,” Jingyi Wang et al 2021 ApJL 910 L3.
    https://iopscience.iop.org/article/10.3847/2041-8213/abec79

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    1

    AAS Mission and Vision Statement

    The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

    The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
    The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
    The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
    The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
    The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

    Adopted June 7, 2009

    The society was founded in 1899 through the efforts of George Ellery Hale. The constitution of the group was written by Hale, George Comstock, Edward Morley, Simon Newcomb and Edward Charles Pickering. These men, plus four others, were the first Executive Council of the society; Newcomb was the first president. The initial membership was 114. The AAS name of the society was not finally decided until 1915, previously it was the “Astronomical and Astrophysical Society of America”. One proposed name that preceded this interim name was “American Astrophysical Society”.

    The AAS today has over 7,000 members and six divisions – the Division for Planetary Sciences (1968); the Division on Dynamical Astronomy (1969); the High Energy Astrophysics Division (1969); the Solar Physics Division (1969); the Historical Astronomy Division (1980); and the Laboratory Astrophysics Division (2012). The membership includes physicists, mathematicians, geologists, engineers and others whose research interests lie within the broad spectrum of subjects now comprising contemporary astronomy.

    In 2019 three AAS members were selected into the tenth anniversary class of TED Fellows.

    The AAS established the AAS Fellows program in 2019 to “confer recognition upon AAS members for achievement and extraordinary service to the field of astronomy and the American Astronomical Society.” The inaugural class was designated by the AAS Board of Trustees and includes an initial group of 232 Legacy Fellows.

     
  • richardmitnick 9:51 pm on July 9, 2021 Permalink | Reply
    Tags: "ATLAS measurement supports lepton universality", , , , , Particle Physics, ,   

    From Physics Today : “ATLAS measurement supports lepton universality” 

    Physics Today bloc

    From Physics Today

    9 Jul 2021
    Christine Middleton

    The collaboration’s result is consistent with the standard-model prediction that W bosons are equally likely to decay into muons and tauons.

    Particle-physics collaborations are always on the lookout for discrepancies between their measurements and the standard model’s predictions.

    Deviations can help point the researchers in the right direction (see, for example, Physics Today, June 2021, page 14). Researchers were therefore excited when a working group combed through data from four earlier experiments performed at European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN]’s now-dismantled Large Electron–Positron Collider (LEP) and found that the results were inconsistent with the standard model’s assertion of lepton universality, albeit with a probability of less than 1%.

    All three leptonic generations—electronic, muonic, and tauonic—supposedly have the same coupling to weak force–mediating W bosons. So when a W boson decays, it should be equally likely to produce any one of the leptons, along with its associated antineutrino. Several experiments at DOE’s Fermi National Accelerator Laboratory (US) and CERN have confirmed that W bosons generate electrons and muons at the same rate. But the LEP data showed that tauons were produced slightly more often than muons; the ratio of their production rates was R(τ/μ) = 1.070 ± 0.026. Other experiments studying particles that contain bottom quarks have seen hints of the same problem.

    Now the ATLAS collaboration has collected and analyzed data at the Large Hadron Collider (LHC) that resolves the apparent disagreement. The precision of the collaboration’s measurement is twice that of the LEP result, and the value, R(τ/μ) = 0.992 ± 0.013, agrees with the standard-model prediction of unity.

    The experiment exploited the fact that the LHC’s proton–proton collisions produce a large number of top–antitop quark pairs. A top quark nearly always decays into a W boson and a bottom quark, so the researchers had easy access to many W bosons whose decays they could observe. Some of the W bosons directly produced muons, whereas others produced intermediate tauons that later decayed into muons. Because of their different origins, the muons formed two populations whose signals in the detector could be differentiated by the particles’ impact parameters and transverse momenta. The ATLAS researchers analyzed tens of thousands of W-boson decays for each type of lepton, compared with only a couple thousand each in the LEP data, and counted how many took each path.

    On the whole, data now support the standard model’s prediction of lepton universality in W-boson decays. But the search continues: Hints of lepton universality violations have also been seen in beauty-meson decays at significance levels that are starting to draw attention from high-energy physicists.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    “Our mission

    The mission of Physics Today is to be a unifying influence for the diverse areas of physics and the physics-related sciences.

    It does that in three ways:

    • by providing authoritative, engaging coverage of physical science research and its applications without regard to disciplinary boundaries;
    • by providing authoritative, engaging coverage of the often complex interactions of the physical sciences with each other and with other spheres of human endeavor; and
    • by providing a forum for the exchange of ideas within the scientific community.”

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: