Tagged: Particle Physics Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:19 am on February 4, 2023 Permalink | Reply
    Tags: "HGC": High-Granularity Calorimeter, "Prototype Particle Detector Project Smashes Milestone", , , , , Carnegie Mellon University physicists are one step closer to a major upgrade for the Large Hadron Collider's Compact Muon Solenoid experiment., , , , Particle Physics,   

    From Carnegie Mellon University: “Prototype Particle Detector Project Smashes Milestone” 

    From Carnegie Mellon University

    1.31.23
    Jocelyn Duffy
    Mellon College of Science
    jhduffy@andrew.cmu.edu
    412-268-9982

    Carnegie Mellon University physicists are one step closer to a major upgrade for the Large Hadron Collider’s Compact Muon Solenoid experiment.

    1
    A team based in the Department of Physics has built and tested prototypes for the High-Granularity Calorimeter (HGC), an upgrade to the current Compact Muon Solenoid detector at CERN’s Large Hadron Collider. The team includes, from left, first row: Amy Germer, a senior in physics and mathematical sciences; Valentina Dutta, an assistant professor; second row: John Alison, an assistant professor; Sindhu Murthy, a doctoral student; Manfred Paulini, a professor of physics; third row: Eric Day, a technician; Jessica Parshook, an engineer on the project; Patrick Bryant, a research associate; and Andrew Roberts, a doctoral student. Credit: CMU.

    A team led by John Alison, an assistant professor in physics, and Manfred Paulini, a professor of physics and the Mellon College of Science associate dean for faculty and graduate affairs, has successfully built and tested prototypes for the High-Granularity Calorimeter (HGC), an upgrade to the current CMS detector. On the one hand, building functional prototypes is a major milestone several years in the making. On the other hand, the milestone is the first step in a manufacturing project that will take place over the next three years.

    “CMS can be thought of as a large 3D camera that records the products of the proton-proton collisions provided by the LHC,” Alison said. “For example, images collected from the detector were used to discover the Higgs boson in 2012.”

    Since the discovery of the Higgs boson, a major focus of the particle physics has been in studying the properties of the Higgs boson in detail and searching for new particles not predicted by the standard model of particle physics.

    Comparing measurements to predictions will allow new theories to be tested but more data is needed.

    The LHC has a 15-year program to increase the total number of proton collisions by a factor of 20. This program requires collecting more data faster and comes at a significant cost: increased radiation. In addition to producing new exotic states of matter — like the Higgs boson — LHC proton collisions produce large amounts of ionizing radiation. This radiation is similar to that produced by a nuclear reactor and is damaging to people and the instrumentation that makes up the detector.

    Built almost 20 years ago, the current CMS detector was not designed to handle the amount of radiation damage anticipated during future LHC runs. New, upgraded detectors are needed both to improve the quality of the recorded images and cope with the more challenging radiation environment. This is where the High-Granularity Calorimeter upgrade comes in.

    2
    High-Granularity Calorimeter. Credit: CERN.

    Big Data Gets Bigger

    The HGC will replace current CMS detectors in regions that face the most radiation. A next-generation imaging calorimeter, the HGC will significantly increase the precision with which the LHC collisions are imaged. The number of individual measurements per picture will increase from about 20,000 in current detectors to about 6 million in the HGC. The measurements of individual particles will go from the handful of numbers that the current detector provides to a high-resolution 3D movie of how the particles interact when traversing the detector.

    The HGC will be built in the next five years, and Carnegie Mellon is playing a leading role in its construction. The HGC will be composed of 30,000 20-centimeter hexagonal modules. The modules — essentially radiation tolerant digital cameras — will be tiled to form wheels several meters in diameter. The wheels will then be stacked to form the full 3D detector. In total, the HGC will require 600 square meters of active silicon sensors.

    Alison, Paulini and Valentina Dutta, a new assistant professor in physics, will build and test 5,000 of these modules in Wean Hall laboratory with the help of engineers, technicians and students. The remaining modules will be produced by CMS collaborators at The University of California-Santa Barbara and Texas Tech University in the U.S., and by groups in China, India and Taiwan. Each module consists of a silicon sensor attached to a printed circuit board housing readout electronics and to a base plate, which provides overall stability.

    3

    Module construction will be performed with a series of automated robots that use pattern-recognition algorithms for assembly and then the required approximately 500 electrical connections per module are established. After a series of testing at CMU the modules are tiled onto wheels at Fermilab — a particle physics lab outside of Chicago — and then sent to CERN in Switzerland for installation in the CMS detector.

    The production of the first working modules this fall was part of a qualifying exercise in which the various assembly centers demonstrated that they are ready and able to build the high-quality modules needed by HGC.

    The CMU group established a class 1,000 clean room on the eighth floor of Wean Hall, expanding an existing space used by the medium-energy physics group. They have installed and commissioned an 8,000-pound gantry robot to attach the different module layers and an automated wire bonder to make the electrical connections within the modules. The prototype modules allowed the group to test its automated assembly procedures and exercise the full production chain.

    “It is great to see our group achieving this qualification milestone,” Paulini said. “I had been working diligently for some years to bring this project to CMU since it also offers opportunities for graduate and especially undergraduate students to obtain hands-on instrumentation experience working in our lab during the semester or for summer research.”

    Producing a handful of modules to specification is just the beginning. During full-scale module production — starting in 2024 — CMU will produce 12 modules per day until early 2026. A major challenge in ramping throughput will be recruiting and onboarding local talent.

    “To meet production needs we have to grow the group with hiring four more full-time technicians and engineers who will work on the daily production line,” said Jessica Parshook, the lead engineer for Carnegie Mellon’s project team.

    Developing and implementing reliable test procedures for quality control is another major challenge going forward. The production pipeline requires several days to build each module. Catching and fixing any flaws in production quickly will be critical. Postdoctoral fellows and graduate students will create most of the assembly and quality control procedures that will provide opportunities for a significant number of CMU undergraduates to get hands-on experience testing modern particle physics detectors.

    “Our efforts here could lead to the next big discovery in physics and that excites me,” said Sindhu Murthy, a doctoral student in physics. “In these early stages of setting up production, I get to see the different aspects of an engineering project of this scale. It’s a great experience and a privilege to contribute to this upgrade. I’m always thinking about how we can optimize module assembly so that everything goes as planned.”

    Alison, Dutta and Paulini said that recent advances in image processing from machine learning will be crucial in assuring quality control during production.

    “This work, a mix of computer science, machine learning and robotics, is a perfect fit for CMU and we plan to tap into resources throughout the university,” Alison said.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Carnegie Mellon University is a global research university with more than 12,000 students, 95,000 alumni, and 5,000 faculty and staff.

    Carnegie Mellon University has been a birthplace of innovation since its founding in 1900.

    Today, we are a global leader bringing groundbreaking ideas to market and creating successful startup businesses.

    Our award-winning faculty members are renowned for working closely with students to solve major scientific, technological and societal challenges. We put a strong emphasis on creating things—from art to robots. Our students are recruited by some of the world’s most innovative companies.

    We have campuses in Pittsburgh, Qatar and Silicon Valley, and degree-granting programs around the world, including Africa, Asia, Australia, Europe and Latin America.

    The Carnegie Mellon University was established by Andrew Carnegie as the Carnegie Technical Schools, the university became the Carnegie Institute of Technology in 1912 and began granting four-year degrees. In 1967, the Carnegie Institute of Technology merged with the Mellon Institute of Industrial Research, formerly a part of the The University of Pittsburgh. Since then, the university has operated as a single institution.

    The Carnegie Mellon University has seven colleges and independent schools, including the College of Engineering, College of Fine Arts, Dietrich College of Humanities and Social Sciences, Mellon College of Science, Tepper School of Business, Heinz College of Information Systems and Public Policy, and the School of Computer Science. The Carnegie Mellon University has its main campus located 3 miles (5 km) from Downtown Pittsburgh, and the university also has over a dozen degree-granting locations in six continents, including degree-granting campuses in Qatar and Silicon Valley.

    Past and present faculty and alumni include 20 Nobel Prize laureates, 13 Turing Award winners, 23 Members of the American Academy of Arts and Sciences, 22 Fellows of the American Association for the Advancement of Science , 79 Members of the National Academies, 124 Emmy Award winners, 47 Tony Award laureates, and 10 Academy Award winners. Carnegie Mellon enrolls 14,799 students from 117 countries and employs 1,400 faculty members.

    Research

    Carnegie Mellon University is classified among “R1: Doctoral Universities – Very High Research Activity”. For the 2006 fiscal year, the Carnegie Mellon University spent $315 million on research. The primary recipients of this funding were the School of Computer Science ($100.3 million), the Software Engineering Institute ($71.7 million), the College of Engineering ($48.5 million), and the Mellon College of Science ($47.7 million). The research money comes largely from federal sources, with a federal investment of $277.6 million. The federal agencies that invest the most money are the National Science Foundation and the Department of Defense, which contribute 26% and 23.4% of the total Carnegie Mellon University research budget respectively.

    The recognition of Carnegie Mellon University as one of the best research facilities in the nation has a long history—as early as the 1987 Federal budget Carnegie Mellon University was ranked as third in the amount of research dollars with $41.5 million, with only Massachusetts Institute of Technology and Johns Hopkins University receiving more research funds from the Department of Defense.

    The Pittsburgh Supercomputing Center is a joint effort between Carnegie Mellon University, University of Pittsburgh, and Westinghouse Electric Company. Pittsburgh Supercomputing Center was founded in 1986 by its two scientific directors, Dr. Ralph Roskies of the University of Pittsburgh and Dr. Michael Levine of Carnegie Mellon. Pittsburgh Supercomputing Center is a leading partner in the TeraGrid, The National Science Foundation’s cyberinfrastructure program.

    Scarab lunar rover is being developed by the RI.

    The Robotics Institute (RI) is a division of the School of Computer Science and considered to be one of the leading centers of robotics research in the world. The Field Robotics Center (FRC) has developed a number of significant robots, including Sandstorm and H1ghlander, which finished second and third in the DARPA Grand Challenge, and Boss, which won the DARPA Urban Challenge. The Robotics Institute has partnered with a spinoff company, Astrobotic Technology Inc., to land a CMU robot on the moon by 2016 in pursuit of the Google Lunar XPrize. The robot, known as Andy, is designed to explore lunar pits, which might include entrances to caves. The RI is primarily sited at Carnegie Mellon University ‘s main campus in Newell-Simon hall.

    The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University, with offices in Pittsburgh, Pennsylvania, USA; Arlington, Virginia, and Frankfurt, Germany. The SEI publishes books on software engineering for industry, government and military applications and practices. The organization is known for its Capability Maturity Model (CMM) and Capability Maturity Model Integration (CMMI), which identify essential elements of effective system and software engineering processes and can be used to rate the level of an organization’s capability for producing quality systems. The SEI is also the home of CERT/CC, the federally funded computer security organization. The CERT Program’s primary goals are to ensure that appropriate technology and systems management practices are used to resist attacks on networked systems and to limit damage and ensure continuity of critical services subsequent to attacks, accidents, or failures.

    The Human–Computer Interaction Institute (HCII) is a division of the School of Computer Science and is considered one of the leading centers of human–computer interaction research, integrating computer science, design, social science, and learning science. Such interdisciplinary collaboration is the hallmark of research done throughout the university.

    The Language Technologies Institute (LTI) is another unit of the School of Computer Science and is famous for being one of the leading research centers in the area of language technologies. The primary research focus of the institute is on machine translation, speech recognition, speech synthesis, information retrieval, parsing and information extraction. Until 1996, the institute existed as the Center for Machine Translation that was established in 1986. From 1996 onwards, it started awarding graduate degrees and the name was changed to Language Technologies Institute.

    Carnegie Mellon is also home to the Carnegie School of management and economics. This intellectual school grew out of the Tepper School of Business in the 1950s and 1960s and focused on the intersection of behavioralism and management. Several management theories, most notably bounded rationality and the behavioral theory of the firm, were established by Carnegie School management scientists and economists.

    Carnegie Mellon also develops cross-disciplinary and university-wide institutes and initiatives to take advantage of strengths in various colleges and departments and develop solutions in critical social and technical problems. To date, these have included the Cylab Security and Privacy Institute, the Wilton E. Scott Institute for Energy Innovation, the Neuroscience Institute (formerly known as BrainHub), the Simon Initiative, and the Disruptive Healthcare Technology Institute.

    Carnegie Mellon has made a concerted effort to attract corporate research labs, offices, and partnerships to the Pittsburgh campus. Apple Inc., Intel, Google, Microsoft, Disney, Facebook, IBM, General Motors, Bombardier Inc., Yahoo!, Uber, Tata Consultancy Services, Ansys, Boeing, Robert Bosch GmbH, and the Rand Corporation have established a presence on or near campus. In collaboration with Intel, Carnegie Mellon has pioneered research into claytronics.

     
  • richardmitnick 12:06 pm on February 3, 2023 Permalink | Reply
    Tags: "QGP": a primordial soup made up of matter’s fundamental building blocks-quarks and gluons., "Time Projection Chamber Installed at sPHENIX", "TPC": Time Projection Chamber, , , , , , , Particle Physics, , QGP existed at the dawn of the universe some 14 billion years ago about a millionth of a second after the Big Bang, , The TPC is among several tracking components layered inside a 20-ton cylindrical superconducting magnet at the heart of the sPHENIX experiment.   

    From The DOE’s Brookhaven National Laboratory: “Time Projection Chamber Installed at sPHENIX” 

    From The DOE’s Brookhaven National Laboratory

    2.2.23
    Kelly Zegers
    kzegers@bnl.gov


    The Time Projection Chamber is one of several detector components that are carefully installed inside of the massive cylindrical superconducting magnet at sPHENIX.

    Experts assembling sPHENIX, a state-of-the-art particle detector at the U.S. Department of Energy’s Brookhaven National Laboratory, successfully installed a major tracking component on Jan. 19. The Time Projection Chamber, or TPC, is one of the final pieces to move into place before sPHENIX begins tracking particle smash-ups at the Relativistic Heavy Ion Collider (RHIC) this spring.

    The TPC is a gas-filled detector that, combined with the detector’s strong magnetic field, allows nuclear physicists to measure the momentum of charged particles streaming from RHIC collisions. It is one of many detector components that nuclear physicists will use to glean more information about the quark-gluon plasma “QGP”: a primordial soup made up of matter’s fundamental building blocks-quarks and gluons.

    “QGP existed at the dawn of the universe some 14 billion years ago about a millionth of a second after the Big Bang,” said Thomas Hemmick, a physicist at Stony Brook University (SBU) and a collaborator on RHIC research “RHIC’s collisions and sPHENIX’s ability to capture snapshots of particles traversing the QGP will help scientists understand how quarks and gluons cooled and coalesced to form the protons and neutrons that make up the atomic nuclei of all visible matter in the universe today.”

    The TPC is among several tracking components layered inside a 20-ton cylindrical superconducting magnet at the heart of the sPHENIX experiment. Its outstanding momentum resolution is key to capturing small differences among three states of particles called upsilons (made of heavy quark-antiquark pairs) as they interact with the QGP. sPHENIX’s ability to distinguish the mass of each upsilon variety will help physicists map the transition from the trillion-degree primordial QGP to ordinary nuclear matter.

    To detect upsilons, sPHENIX will measure the tracks of charged particles into which each upsilon has decayed. As each charged particle passes through the TPC’s volume of gas, it will leave a trail of ionization by knocking electrons off the gaseous atoms—about 100 freed electrons per centimeter.

    While it’s tricky to detect just 100 electrons, the TPC consists of several layers of gas electron multiplier (GEM) foils, Hemmick said.

    “Each GEM foil funnels electrons through a small hole—smaller than the diameter of a human hair—wherein an electron ‘avalanche’ creates a large, detectable signal,” Hemmick explained.

    The resulting readout will show physicists, over time, where particles were within the TPC’s entire volume—a hollow cylinder about two meters long—like frames of a movie produced every 50 nanoseconds. The paths of these particles will curve in the magnetic field created by the sPHENIX magnet, revealing clues about their “parent” upsilon. These precision upsilon measurements will be one of many ways sPHENIX will study the properties of the QGP.

    Teams at SBU, the Weizmann Institute of Science, Wayne State University, Vanderbilt University, and Temple University built and tested different parts of the TPC before it was fully assembled at SBU, then shipped to Brookhaven Lab for further testing and installation. At SBU, students from high schoolers to Ph.D. candidates had a hand in the device’s construction, Hemmick said.

    “It’s truly the product of generations of young students,” Hemmick said. “It was an honor to guide them.”

    RHIC is a DOE Office of Science User Facility.

    sPHENIX and operations at RHIC are funded by the DOE Office of Science.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the The DOE Office of Science, The DOE’s Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University and Battelle Memorial Institute. From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology to have a facility near Boston, Massachusetts. Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University, Cornell University, Harvard University, Johns Hopkins University, Massachusetts Institute of Technology, Princeton University, University of Pennsylvania, University of Rochester, and Yale University.

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    BNL Cosmotron 1952-1966.

    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    BNL Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II. [below].

    BNL National Synchrotron Light Source.

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider (CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, it was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.

    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.

    BNL National Synchrotron Light Source II, Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years. NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.

    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.

    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University-SUNY.

    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to the ATLAS experiment, one of the four detectors located at the The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] Large Hadron Collider(LHC). Credit: CERN.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] map. Credit: CERN.

    It is currently operating at The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH) [CERN] near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the Spallation Neutron Source at DOE’s Oak Ridge National Laboratory, Tennessee.

    DOE’s Oak Ridge National Laboratory Spallation Neutron Source annotated.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China .

     
  • richardmitnick 11:45 pm on February 1, 2023 Permalink | Reply
    Tags: , "The bubbling universe - A previously unknown phase transition in the early universe", , , , , Particle Physics, The University of Southern Denmark[Syddansk Universitet](DK)   

    From The University of Southern Denmark[Syddansk Universitet](DK) [[lit. ”South Danish University”] Via “phys.org” : “The bubbling universe – A previously unknown phase transition in the early universe” 

    From The University of Southern Denmark[Syddansk Universitet](DK) [[lit. ”South Danish University”]

    Via

    “phys.org”

    2.1.23

    1
    AI generated illustration of colliding bubbles in early universe. Credit: Birgitte Svennevig, University of Southern Denmark.

    Think of bringing a pot of water to the boil: As the temperature reaches the boiling point, bubbles form in the water, burst and evaporate as the water boils. This continues until there is no more water changing phase from liquid to steam.

    This is roughly the idea of what happened in the very early universe, right after the Big Bang, 13.7 billion years ago.

    The idea comes from particle physicists Martin S. Sloth from the Center for Cosmology and Particle Physics Phenomenology at University of Southern Denmark and Florian Niedermann from the Nordic Institute for Theoretical Physics (NORDITA) in Stockholm. Niedermann is a previous postdoc in Sloth’s research group. In this new scientific article, they present an even stronger basis for their idea.

    Many bubbles crashing into each other

    “One must imagine that bubbles arose in various places in the early universe. They got bigger and they started crashing into each other. In the end, there was a complicated state of colliding bubbles, which released energy and eventually evaporated,” said Martin S. Sloth.

    The background for their theory of phase changes in a bubbling universe is a highly interesting problem with calculating the so-called Hubble constant; a value for how fast the universe is expanding. Sloth and Niedermann believe that the bubbling universe plays a role here.

    The Hubble constant can be calculated very reliably by, for example, analyzing cosmic background radiation or by measuring how fast a galaxy or an exploding star is moving away from us. According to Sloth and Niedermann, both methods are not only reliable, but also scientifically recognized. The problem is that the two methods do not lead to the same Hubble constant. Physicists call this problem “the Hubble tension.”

    Is there something wrong with our picture of the early universe?

    “In science, you have to be able to reach the same result by using different methods, so here we have a problem. Why don’t we get the same result when we are so confident about both methods?” said Florian Niedermann.

    Sloth and Niedermann believe they have found a way to get the same Hubble constant, regardless of which method is used. The path starts with a phase transition and a bubbling universe—and thus an early, bubbling universe is connected to “the Hubble tension.” “If we assume that these methods are reliable—and we think they are—then maybe the methods are not the problem. Maybe we need to look at the starting point, the basis, that we apply the methods to. Maybe this basis is wrong.”

    2
    AI generated illustration of colliding bubbles in the universe. Credit: Birgitte Svennevig, University of Southern Denmark.

    An unknown dark energy

    The basis for the methods is the so-called Standard Model, which assumes that there was a lot of radiation and matter, both normal and dark, in the early universe, and that these were the dominant forms of energy. The radiation and the normal matter were compressed in a dark, hot and dense plasma; the state of the universe in the first 380.000 years after Big Bang.

    The Universe according to the Standard Model © lower left edge.

    When you base your calculations on the Standard Model, you arrive at different results for how fast the universe is expanding—and thus different Hubble constants.

    But maybe a new form of dark energy was at play in the early universe? Sloth and Niedermann think so.

    If you introduce the idea that a new form of dark energy in the early universe suddenly began to bubble and undergo a phase transition, the calculations agree. In their model, Sloth and Niedermann arrive at the same Hubble constant when using both measurement methods. They call this idea New Early Dark Energy—NEDE.

    Change from one phase to another—like water to steam

    Sloth and Niedermann believe that this new, dark energy underwent a phase transition when the universe expanded, shortly before it changed from the dense and hot plasma state to the universe we know today.

    “This means that the dark energy in the early universe underwent a phase transition, just as water can change phase between frozen, liquid and steam. In the process, the energy bubbles eventually collided with other bubbles and along the way released energy,” said Niedermann.

    “It could have lasted anything from an insanely short time—perhaps just the time it takes two particles to collide—to 300,000 years. We don’t know, but that is something we are working to find out,” added Sloth.

    Do we need new physics?

    So, the phase transition model is based on the fact that the universe does not behave as the Standard Model tells us. It may sound a little scientifically crazy to suggest that something is wrong with our fundamental understanding of the universe; that you can just propose the existence of hitherto unknown forces or particles to solve the Hubble tension.

    “But if we trust the observations and calculations, we must accept that our current model of the universe cannot explain the data, and then we must improve the model. Not by discarding it and its success so far, but by elaborating on it and making it more detailed so that it can explain the new and better data,” said Martin S. Sloth, adding, “It appears that a phase transition in the dark energy is the missing element in the current Standard Model to explain the differing measurements of the universe’s expansion rate.”

    The findings are published in the journal Physics Letters B.
    https://www.sciencedirect.com/science/article/pii/S037026932200689X

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Southern Denmark [Syddansk Universitet](DK) [lit. ”South Danish University”[Syddansk Universitet], abbr. SDU] is a university in Denmark that has campuses located in Southern Denmark and on Zealand.

    The university offers a number of joint programmes in co-operation with The University of Flensburg [Europa-Universität Flensburg] (DE) and the Christian-Albrecht University of Kiel [Christian-Albrechts-Universität zu Kiel](DE). Contacts with regional industries and the international scientific community are strong.

    With its 29,674 enrolled students (as of 2016), the university is both the third-largest and, given its roots in Odense University, the third-oldest Danish university (fourth if one includes The Technical University of Denmark [Danmarks Tekniske Universitet](DK)). Since the introduction of the ranking systems in 2012, the University of Southern Denmark has consistently been ranked as one of the top 50 young universities in the world by both the Times Higher Education World University Rankings of the Top 100 Universities Under 50 and the QS World University Rankings of the Top 50 Universities Under 50.

    The University of Southern Denmark was established in 1998 when Odense University, the Southern Denmark School of Business and Engineering and the South Jutland University Centre were merged. The University Library of Southern Denmark was also merged with the university in 1998. As the original Odense University was established in 1966, the University of Southern Denmark celebrated their 50-year anniversary on September 15, 2016.

    In 2006, the Odense University College of Engineering was merged into the university and renamed as the Faculty of Engineering. After being located in different parts of Odense for several years, a brand new Faculty of Engineering building physically connected to the main Odense Campus was established and opened in 2015. In 2007, the Business School Centre in Slagelse (Handelshøjskolecentret Slagelse) and the National Institute of Public Health (Statens Institut for Folkesundhed) were also merged into the University of Southern Denmark.

    Princess Marie took over the role of the patron of the university in 2009.
    ===
    As a national institution the University of Southern Denmark (SDU) comprises five faculties – Humanities, Science, Engineering, Social Sciences and Health Sciences totaling 32 departments, 11 research centers and a university library. University Library of Southern Denmark is also a part of the university.

    Research activities and student education make up the core activities of the university. The University of Southern Denmark also has widespread cooperation with business and industry in the region and considerable activities within continuing education. The university offers a number of degrees taught in English; examples include European Studies and American Studies.

    The faculty of all six campuses comprises approximately 1,200 researchers in Odense, Kolding, Esbjerg, Sønderborg, Slagelse and Copenhagen; approximately 18,000 students are enrolled. The University of Southern Denmark offers programmes in five different faculties – Humanities, Science, Engineering, Social Sciences, and Health Sciences. It incorporates approximately 35 institutes, 30 research centres, and a well-equipped university library.

    The university offers a wide range of traditional disciplines as well as a broad selection of business and engineering studies. In recent years the number of options available has been considerably expanded. Examples include the introduction of a very successful Journalism programme in Odense, Information Science in Kolding, and a Mechatronics Engineering programme in Sønderborg. The educational environments on the Jutland campuses have also been strengthened through the creation of new programmes such as a bachelor’s degree in Sociology and Cultural Analysis, a bachelor’s degree in Business Administration with Sports Management, a bachelor’s in Public Health Science in Esbjerg, Danish and English Language Studies in Kolding, and a variety of engineering programmes and European Studies in Sønderborg. Moreover, the University of Southern Denmark is the only university in Scandinavia that offers a degree programme in chiropractic studies (Clinical Biomechanics).

    The university focuses on areas such as communication, information technology, and biotechnology. Other areas of research are pursued through a number of national research centres at the university. Examples include The Hans Christian Andersen Center, the Centre for Sound Communication, and the Danish Biotechnology Instrument Centre. Odense in particular focuses on research within the field of geriatrics.

    Co-operation with the business community has resulted in three substantial donations from some of the giants in Danish industry: Odense is the home of the Maersk Mc-Kinney Moller Institute for Production Technology, where robot technology is one of the many research areas. The Mads Clausen Institute in Sønderborg is engaged in the design and development of software for integration in the intelligent products of the future. Thanks to funding from Kompan and Lego, a research environment for the investigation of child behaviour and development has also been established.

    The university is also hosting the Danish Institute for Advanced Study (DIAS), which brings outstanding researchers together in an interdisciplinary centre for fundamental research and intellectual inquiry. The Danish IAS exists to encourage and support curiosity-driven research in the sciences and humanities, and thereby unlock new revolutionary ideas.

     
  • richardmitnick 9:26 pm on February 1, 2023 Permalink | Reply
    Tags: "A new way to explore proton’s structure with neutrinos yields first results", , , Particle Physics,   

    From “Symmetry”: “A new way to explore proton’s structure with neutrinos yields first results” 

    Symmetry Mag

    From “Symmetry”

    2.1.23
    Madeleine O’Keefe

    Physicists used MINERvA, a Fermilab neutrino experiment, to measure the proton’s size and structure using a neutrino-scattering technique.

    For the first time, particle physicists have been able to precisely measure the proton’s size and structure using neutrinos.

    With data gathered from thousands of neutrino-hydrogen scattering events collected by MINERvA, a particle physics experiment at the US Department of Energy’s Fermi National Accelerator Laboratory, physicists have found a new lens for exploring protons. The results were published today in the scientific journal Nature[below].

    This measurement is also important for analyzing data from experiments that aim to measure the properties of neutrinos with great precision, including the future Deep Underground Neutrino Experiment, hosted by Fermilab.

    _____________________________________________________________________________________________





    _____________________________________________________________________________________________

    “The MINERvA experiment has found a novel way for us to see and understand proton structure, critical both for our understanding of the building blocks of matter and for our ability to interpret results from the flagship DUNE experiment on the horizon,” says Bonnie Fleming, Fermilab deputy director for science and technology.

    Protons and neutrons are the particles that make up the nucleus, or core, of an atom.

    Understanding their size and structure is essential to understand particle interactions. But it is very difficult to measure things at subatomic scales. Protons—about a femtometer, or 10^−15 meters, in diameter—are too small to examine with visible light. Instead, scientists use particles accelerated to high energies. Their wavelengths are capable of probing miniscule scales.

    Starting in the 1950s, particle physicists used electrons to measure the size and structure of the proton. Electrons are electrically charged, which means they interact with the electromagnetic force distribution in the proton. By shooting a beam of accelerated electrons at a target containing lots of atoms, physicists can observe how the electrons interact with the protons and thus how the electromagnetic force is distributed in a proton. Performing increasingly more precise experiments, physicists now have measured the proton’s electric charge radius to be 0.877 femtometers.

    The MINERvA collaboration achieved its groundbreaking result by using particles called neutrinos in lieu of electrons. Specifically, they used antineutrinos, the antimatter partners of neutrinos. Unlike electrons, neutrinos and antineutrinos have no electric charge; they only interact with other particles via the weak nuclear force. This makes them sensitive to the “weak charge” distribution inside a proton.

    However, neutrinos and antineutrinos rarely interact with protons—hence the name weak force. To collect enough scattering events to make a statistically meaningful measurement, MINERvA scientists needed to smash a lot of antineutrinos into a lot of protons.

    Fortunately, Fermilab is home to the world’s most powerful high-energy neutrino and antineutrino beams. And MINERvA contains a lot of protons. Located 100 meters underground at Fermilab’s campus in Batavia, Illinois, MINERvA was designed to perform high-precision measurements of neutrino interactions on a wide variety of materials, including carbon, lead and plastic.

    To measure the proton structure with high precision, scientists ideally would send neutrinos or antineutrinos into a very dense target made only of hydrogen, which contains protons but no neutrons. That is experimentally challenging, if not impossible to achieve. Instead, the MINERvA detector contains hydrogen that is closely bonded to carbon in the form of a plastic called polystyrene. But no one had ever tried to separate hydrogen data from carbon data.

    “If we were not optimists, we would say it’s impossible,” says Tejin Cai, a postdoctoral researcher at York University and lead author on the Nature paper. Cai performed this research for his doctorate at the University of Rochester.

    “The hydrogen and carbon are chemically bonded together, so the detector sees interactions on both at once. But then, I realized that the very nuclear effects that made scattering on carbon complicated also allowed us to select hydrogen and would allow us to subtract off the carbon interactions.”

    Cai and Arie Bodek, a professor at the University of Rochester, proposed using MINERvA’s polystyrene target to measure antineutrinos scattering off protons in hydrogen and carbon nuclei to Cai’s PhD advisor, Kevin McFarland. Together, they developed algorithms to subtract the large carbon background by identifying neutrons produced from antineutrinos scattering off carbon atoms.

    “When Tejin and Arie first suggested trying this analysis, I thought it would be too difficult, and I wasn’t encouraging. Tejin persevered and proved it could be done,” says McFarland, a professor at the University of Rochester. “One of the best parts of being a teacher is having a student who learns enough to prove you wrong.”

    Cai and his collaborators used MINERvA to record more than a million antineutrino interactions over the course of three years. They determined that about 5,000 of these were neutrino-hydrogen scattering events.

    With these data, they inferred the size of the proton’s weak charge radius to be 0.73 ± 0.17 femtometers. It is the first statistically significant measurement of the proton’s radius using neutrinos. Within its uncertainties, the result aligns with the electric charge radius measured with electron scattering.

    The result shows that physicists can use this neutrino-scattering technique to see the proton through a new lens. The result also provides a better understanding of the proton’s structure. This can be used to predict the behavior of groups of protons in an atom’s nucleus. If physicists start with a better measurement of neutrino-proton interactions, they can make better models of neutrino-nucleus interactions. This will improve the performance of other neutrino experiments, such as NOvA at Fermilab and T2K in Japan.

    Nature
    See the science paper for instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 9:38 pm on January 30, 2023 Permalink | Reply
    Tags: , "Study inspects gamma-ray emission from HESS J1809−193", , , , , , Particle Physics   

    From MPG Institute for Nuclear Physics [MPG Institut für Kernphysik] (DE) Via “phys.org” : “Study inspects gamma-ray emission from HESS J1809−193” 

    From MPG Institute for Nuclear Physics [MPG Institut für Kernphysik] (DE)

    Via

    “phys.org”

    1.30.23

    1
    Map showing the 𝛾-ray flux above 0.27 TeV from HESS J1809−193.(a) full region. (b) zoom-in on core region. Credit: Mohrmann et al, 2023. Figure 1: Map showing the 𝛾-ray flux above 0•27 TeV from HESS J1809-193. (a) full region. (b) zoom-in on core region. The position of PSR J1809-1917 is marked with a black triangle, cyan circles denote the positions of SNRs. The green/purple dot and lines display the position and extent of the two components (A/B) of HESS J1809-193 (cf. also Fig. 2 in the science paper). The grey dashed line marks the Galactic plane.

    Using the High Energy Stereoscopic System (H.E.S.S.), German astronomers have investigated a very-high-energy (VHE) gamma-ray source known as HESS J1809−193. Results of the study, published January 18 for Proceedings of Science [below], deliver important insights into the properties of gamma-ray emission from this source.

    Sources emitting gamma radiation with photon energies between 100 GeV and 100 TeV are called very-high energy (VHE) gamma-ray sources, while those with photon energies above 0.1 PeV are known as ultra-high energy (UHE) gamma-ray sources. The nature of these sources is still not well understood; therefore, astronomers are constantly searching for new objects of this type to characterize them, which could shed more light on their properties in general.

    Discovered in 2007 as part of the H.E.S.S. Galactic Plane Survey (HGPS), HESS J1809−193 is an unassociated VHE (over 100 GeV) gamma-ray source. Previous observations of HESS J1809−193 have found that the source is located in a rich environment, with an energetic pulsar (designated PSR J1809−1917) at a distance of some 10,750 light years, X-ray pulsar wind nebula (PWN), several supernova remnants (SNRs), and molecular clouds.

    Recently, gamma-ray emission up to energies of about 100 TeV has been detected from HESS J1809−193 with the High Altitude Water Čerenkov (HAWC) observatory. The finding means that this source may be capable of accelerating cosmic rays up to PeV energies.

    In order to verify this assumption, a team of astronomers led by Lars Mohrmann of the Max Planck Institute for Nuclear Physics in Heidelberg, Germany, has conducted follow-up observations of HESS J1809−193 using the H.E.S.S. array of Čerenkov telescopes. Their study was complemented by data from NASA’s Fermi spacecraft.


    “We present a new analysis of the TeV gamma-ray emission of HESS J1809−193 with H.E.S.S., based on improved analysis techniques…. We used 93.2 h of data taken on HESS J1809−193 with the four 12 m diameter telescopes. For the high-level analysis, we have employed the Gammapy package and carried out a spectro-morphological likelihood analysis that uses as input a background model constructed from archival H.E.S.S. observations,” the researchers explained.

    The team managed to resolve the emission from HESS J1809−193 into two components (A and B) that exhibit distinct spectra and morphologies. The spectral indices of components A and B were measured to be at a level of 2.24 and 1.98, respectively. However, the astronomers noted that the upper limits at high energies for component A indicate that the spectrum may cut off before reaching 100 TeV.

    According to the authors of the paper, the results suggest that the extended component A of HESS J1809−193 is compatible with a halo of old electrons surrounding a compact PWN. When it comes to the component B, they suppose that it could plausibly be of either leptonic or hadronic origin.

    The researchers added that the presence of supernova remnants and molecular clouds in the HESS J1809−193 region indicates that a hadronic scenario should be considered, in which part of the emission may be due to cosmic-ray nuclei accelerated by the SNRs and interacting with gas in the clouds.

    Proceedings of Science

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The MPG Institute for Nuclear Physics [MPG Institut für Kernphysik](DE) is a research institute in Heidelberg, Germany.

    The institute is one of the 80 institutes of the Max-Planck-Gesellschaft (Max Planck Society), an independent, non-profit research organization. The MPG Institute for Nuclear Physics was founded in 1958 under the leadership of Wolfgang Gentner. Its precursor was the Institute for Physics at the MPI for Medical Research.

    Today, the institute’s research areas are: crossroads of particle physics and astrophysics (astroparticle physics) and many-body dynamics of atoms and molecules (quantum dynamics).

    The research field of Astroparticle Physics combines questions related to macrocosm and microcosm. Unconventional methods of observation for gamma rays and neutrinos open new windows to the universe. What lies behind “dark matter” and “dark energy” is theoretically investigated.

    The research field of Quantum Dynamics is represented by the divisions of Klaus Blaum, Christoph Keitel and Thomas Pfeifer. Using reaction microscopes, simple chemical reactions can be “filmed”. Storage rings and traps allow precision experiments almost under space conditions. The interaction of intense laser light with matter is investigated using quantum-theoretical methods.

    Further research fields are cosmic dust, atmospheric physics as well as fullerenes and other carbon molecules.

    Scientists at the MPIK collaborate with other research groups in Europe and all over the world and are involved in numerous international collaborations, partly in a leading role. Particularly close connections to some large-scale facilities like GSI Helmholtz Centre for Heavy Ion Research [GSI Helmholtzzentrum für Schwerionenforschung] (DE), DESY Electron Synchrotron[ Deütsches Elektronen-Synchrotron](DE), European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN], TRIUMF-Canadian national particle accelerator center (CA), and INFN-LNGS – Gran Sasso National Laboratory (IT) exist. The institute has about 390 employees, as well as many diploma students and scientific guests.

    In the local region, the Institute cooperates closely with The Ruprecht Karl University of Heidelberg, [Ruprecht-Karls-Universität Heidelberg] (DE), where the directors and further members of the Institute are teaching. Three International Max Planck Research Schools (IMPRS) and a graduate school serve to foster young scientists.

    The institute operates a cryogenic ion storage ring (CSR) dedicated to the study of molecular ions under interstellar space conditions. Several Penning ion traps are used to measure fundamental constants of nature, such as the atomic mass of the electron and of nuclei. A facility containing several electron beam ion traps (EBIT) that produce and store highly charged ions is dedicated to fundamental atomic structure as well as astrophysical investigations. Large cameras for gamma-ray telescopes (H.E.S.S. – The High Energy Stereoscopic System (NM), CTA Consortium – Čerenkov Telescope Array), Dark Matter (Gran Sasso XENON1T Dark Matter Search (IT), DARWIN – Dark Matter WIMP Search With Liquid Xenon The University of Zürich [Universität Zürich ](CH)), and neutrino detectors are developed and tested on-site.

    MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the Max Planck Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

    According to its primary goal, the MPG Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) MPG Institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.

    The MPG Institutes focus on excellence in research. The MPG Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the MPG institutes fifth worldwide in terms of research published in Nature journals (after Harvard University, The Massachusetts Institute of Technology, Stanford University and The National Institutes of Health). In terms of total research volume (unweighted by citations or impact), the Max Planck Society is only outranked by The Chinese Academy of Sciences [中国科学院](CN), The Russian Academy of Sciences [Росси́йская акаде́мия нау́к](RU) and Harvard University. The Thomson Reuters-Science Watch website placed the MPG Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.

    The MPG Society and its predecessor Kaiser Wilhelm Society hosted several renowned scientists in their fields, including Otto Hahn, Werner Heisenberg, and Albert Einstein.

    History

    The organization was established in 1911 as the Kaiser Wilhelm Society, or Kaiser-Wilhelm-Gesellschaft (KWG), a non-governmental research organization named for the then German emperor. The KWG was one of the world’s leading research organizations; its board of directors included scientists like Walther Bothe, Peter Debye, Albert Einstein, and Fritz Haber. In 1946, Otto Hahn assumed the position of President of KWG, and in 1948, the society was renamed the Max Planck Society (MPG) after its former President (1930–37) Max Planck, who died in 1947.

    The MPG Society has a world-leading reputation as a science and technology research organization. In 2006, the Times Higher Education Supplement rankings of non-university research institutions (based on international peer review by academics) placed the MPG Society as No.1 in the world for science research, and No.3 in technology research (behind AT&T Corporation and The DOE’s Argonne National Laboratory.

    The domain mpg.de attracted at least 1.7 million visitors annually by 2008 according to a Compete.com study.

    MPG Institutes and research groups

    The MPG Society consists of over 80 research institutes. In addition, the society funds a number of Max Planck Research Groups (MPRG) and International Max Planck Research Schools (IMPRS). The purpose of establishing independent research groups at various universities is to strengthen the required networking between universities and institutes of the Max Planck Society.
    The research units are primarily located across Europe with a few in South Korea and the U.S. In 2007, the Society established its first non-European centre, with an institute on the Jupiter campus of Florida Atlantic University (US) focusing on neuroscience.
    The MPG Institutes operate independently from, though in close cooperation with, the universities, and focus on innovative research which does not fit into the university structure due to their interdisciplinary or transdisciplinary nature or which require resources that cannot be met by the state universities.

    Internally, MPG Institutes are organized into research departments headed by directors such that each MPI has several directors, a position roughly comparable to anything from full professor to department head at a university. Other core members include Junior and Senior Research Fellows.

    In addition, there are several associated institutes:

    International Max Planck Research Schools

    International Max Planck Research Schools

    Together with the Association of Universities and other Education Institutions in Germany, the Max Planck Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:

    • Cologne Graduate School of Ageing Research, Cologne
    • International Max Planck Research School for Intelligent Systems, at the Max Planck Institute for Intelligent Systems located in Tübingen and Stuttgart
    • International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
    • International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
    • International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPI for Astronomy
    • International Max Planck Research School for Astrophysics, Garching at the MPI for Astrophysics
    • International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
    • International Max Planck Research School for Computer Science, Saarbrücken
    • International Max Planck Research School for Earth System Modeling, Hamburg
    • International Max Planck Research School for Elementary Particle Physics, Munich, at the MPI for Physics
    • International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the Max Planck Institute for Terrestrial Microbiology
    • International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
    • International Max Planck Research School “From Molecules to Organisms”, Tübingen at the Max Planck Institute for Developmental Biology
    • International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
    • International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPI for Gravitational Physics
    • International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the Max Planck Institute for Heart and Lung Research
    • International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
    • International Max Planck Research School for Language Sciences, Nijmegen
    • International Max Planck Research School for Neurosciences, Göttingen
    • International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
    • International Max Planck Research School for Marine Microbiology (MarMic), joint program of the Max Planck Institute for Marine Microbiology in Bremen, the University of Bremen, the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen
    • International Max Planck Research School for Maritime Affairs, Hamburg
    • International Max Planck Research School for Molecular and Cellular Biology, Freiburg
    • International Max Planck Research School for Molecular and Cellular Life Sciences, Munich
    • International Max Planck Research School for Molecular Biology, Göttingen
    • International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
    • International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster and the Max Planck Institute for Molecular Biomedicine
    • International Max Planck Research School on Multiscale Bio-Systems, Potsdam
    • International Max Planck Research School for Organismal Biology, at the University of Konstanz and the Max Planck Institute for Ornithology
    • International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion
    • International Max Planck Research School for Science and Technology of Nano-Systems, Halle at Max Planck Institute of Microstructure Physics
    • International Max Planck Research School for Solar System Science at the University of Göttingen hosted by MPI for Solar System Research
    • International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPI for Radio Astronomy (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
    • International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
    • International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at Max Planck Institute for Iron Research GmbH
    • International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg

    Max Planck Schools

    • Max Planck School of Cognition
    • Max Planck School Matter to Life
    • Max Planck School of Photonics

    Max Planck Center

    • The Max Planck Centre for Attosecond Science (MPC-AS), POSTECH Pohang
    • The Max Planck POSTECH Center for Complex Phase Materials, POSTECH Pohang

    Max Planck Institutes

    Among others:
    • Max Planck Institute for Neurobiology of Behavior – caesar, Bonn
    • Max Planck Institute for Aeronomics in Katlenburg-Lindau was renamed to Max Planck Institute for Solar System Research in 2004;
    • Max Planck Institute for Biology in Tübingen was closed in 2005;
    • Max Planck Institute for Cell Biology in Ladenburg b. Heidelberg was closed in 2003;
    • Max Planck Institute for Economics in Jena was renamed to the Max Planck Institute for the Science of Human History in 2014;
    • Max Planck Institute for Ionospheric Research in Katlenburg-Lindau was renamed to Max Planck Institute for Aeronomics in 1958;
    • Max Planck Institute for Metals Research, Stuttgart
    • Max Planck Institute of Oceanic Biology in Wilhelmshaven was renamed to Max Planck Institute of Cell Biology in 1968 and moved to Ladenburg 1977;
    • Max Planck Institute for Psychological Research in Munich merged into the Max Planck Institute for Human Cognitive and Brain Sciences in 2004;
    • Max Planck Institute for Protein and Leather Research in Regensburg moved to Munich 1957 and was united with the Max Planck Institute for Biochemistry in 1977;
    • Max Planck Institute for Virus Research in Tübingen was renamed as Max Planck Institute for Developmental Biology in 1985;
    • Max Planck Institute for the Study of the Scientific-Technical World in Starnberg (from 1970 until 1981 (closed)) directed by Carl Friedrich von Weizsäcker and Jürgen Habermas.
    • Max Planck Institute for Behavioral Physiology
    • Max Planck Institute of Experimental Endocrinology
    • Max Planck Institute for Foreign and International Social Law
    • Max Planck Institute for Physics and Astrophysics
    • Max Planck Research Unit for Enzymology of Protein Folding
    • Max Planck Institute for Biology of Ageing

     
  • richardmitnick 8:43 pm on January 30, 2023 Permalink | Reply
    Tags: "Probing Majorana Neutrinos", , , , , Particle Physics,   

    From “Physics” : “Probing Majorana Neutrinos” 

    About Physics

    From “Physics”

    1.30.23
    Laura Baudis | University of Zürich

    Detecting neutrinoless double-beta decay would confirm that the neutrino is its own antiparticle. Data from the KamLAND-Zen experiment contain no strong evidence of such events, constraining neutrino properties.

    1
    Figure 1: The 136Xe isotope is known to decay via double-beta decay (left), in which two protons transform into two neutrons, emitting two electrons and two antineutrinos. If neutrinos are their own antiparticles, 136Xe can undergo neutrinoless double-beta decay (right), in which no neutrinos are emitted.

    Despite being among the most abundant particles in the Universe, neutrinos are extremely difficult to detect. Almost 100 years after they were predicted, and almost 70 years after their detection, several of the particles’ properties remain unknown, most notably their mass and their “nature”—whether they are their own antiparticles. An exceedingly rare nuclear decay without the emission of neutrinos, called neutrinoless double-beta ( 0νββ) decay, could shed light on these questions (see Viewpoint: The Hunt for No Neutrinos), but so far this hypothetical process has not been observed. Now, the KamLAND-Zen Collaboration has reported an improved search for 0νββ decay in a xenon-loaded liquid scintillator detector, with an exposure that reaches 1 tonne-year for the first time [1]. The resulting lower limit for the decay half-life translates into an upper limit on the effective neutrino mass of around 100 meV, which approaches lower-limit estimates that come from other neutrino observations. The implication is that physicists may be closing in on this neutrino mystery.

    While the Standard Model predicts that neutrinos are massless, we know from neutrino-oscillation experiments that they must be massive: specifically, for neutrinos to oscillate between their three “flavours,” the differences of their squared masses must be nonzero.

    The oscillation data imply that at least one neutrino state must have a mass larger than about 50 meV, but the observations do not tell us about the absolute mass scale, or which of the three states is the heaviest (the data allow two possible mass orderings termed “normal” and “inverted”). They also do not answer the fundamental question of why neutrinos are so much lighter than other elementary particles.

    One method to constrain neutrino masses is to study nuclei that decay by double-beta decay ( 2νββ), in which two neutrons transform into two protons, emitting two electrons and two antineutrinos. If, however, neutrinos are Majorana particles—that is, if they are their own antiparticle—then a 2νββ-decaying nucleus will sometimes decay without emitting any neutrinos—a process known as 0νββ decay (Fig. 1). Most attempts to observe this decay involve measuring the total energy of the two electrons and looking for a peak at the Q value of the reaction, which is the difference between the rest-mass energy of the initial and final products. Such a peak would imply a surplus of events in which no energy is carried away by neutrinos. Detecting this signature presents a formidable challenge, as the 0νββ decay is expected to be rare. Experiments must meet a number of requirements: a very large number of double-beta-decaying nuclei, an extremely low level of background, an excellent energy resolution to filter out a potential signal, and a high efficiency to detect the two final-state electrons. Seeking to optimize these characteristics, physicists have employed a variety of isotopes and detector concepts, including crystals cooled to cryogenic temperatures, high-pressure gas detectors, and large liquid scintillators [2].

    The KamLAND-Zen experiment at the Kamioka Observatory in Japan searches for 0νββ decay using a large liquid scintillator loaded with the 136Xe isotope, which is known to undergo double-beta decay. To ensure that the level of background events is as low as possible, the detector has an onion-like structure (Fig. 2). A spherical inner balloon holds 13 tons of liquid scintillator in which 745 kg of Xe (comprising about 91% 136Xe) are dissolved. Surrounding this inner core are three concentric shells: the first contains a liquid scintillator, the second holds 1879 large photomultiplier tubes (PMTs), and the third is a water Čerenkov detector. Particles interacting in the liquid scintillator—including particles created by rare decays of 136Xe nuclei—generate light that is detected by the PMTs. From these signals, each event’s energy and position are reconstructed with a relative energy resolution of 4.2% around the Q value (2.48 MeV) and a spatial uncertainty of 8.7 cm.

    In their recent study, the KamLAND-Zen team analyzed data collected between February 2019 and May 2021 and found a total of 24 candidate events. With no excess over the expected background, this detection count corresponds to fewer than 6.2 events (at the 90% confidence level) that can be attributed to 0νββ decays. Combined with the collaboration’s previous result [3] using half the target mass (381 kg of enriched Xe), the new result implies a lower limit on the half-life of 2.3 × 1026 years. If one assumes that the decay occurs predominantly through the exchange of light Majorana neutrinos, then the half-life limit translates into an upper limit on the effective Majorana neutrino mass in the range 36–156 meV. This minimum half-life is just within the 1026–1028-year range associated with the inverted neutrino mass ordering, meaning KamLAND-Zen starts, for the first time, to probe this scenario, and partially excludes theoretical models that predict a Majorana neutrino mass in this region.

    The experiment’s exposure of almost one tonne-year is a first in the field of 0νββ-decay searches. While its energy resolution is 10 times less precise than those of crystal-type detectors (which achieve relative resolutions at the per-mille level), the obtained sensitivity demonstrates the power of a large quantity of the decaying isotope combined with a low, albeit nonzero, background. Given the moderate depth of the Kamioka Observatory below ground, this background stems partly from long-lived spallation products—with half-lives lasting from several hours to days—generated in Xe by cosmic-ray-induced muons.

    This background can be excluded with new event-classification methods, which rely on time and distance estimators and on the detection of multiple neutrons emitted in the spallation process. Researchers are working on improving these methods by the use of faster electronics.

    The other limiting background comes from the tail of 136Xe’s 2νββ
    -decay spectrum, the effect of which can only be reduced by improving the energy resolution. Boosting the resolution by a factor of 2 is a major goal of the future KamLAND2-Zen detector, which will use a liquid scintillator with a higher light yield and high-quantum-efficiency PMTs. With its one tonne of 136Xe, KamLAND2-Zen should reach a sensitivity of 20 meV after five years of data gathering. Thus, while KamLAND-Zen has only started to probe the inverted neutrino mass ordering region, the upgrade could cover the full inverted-ordering scenario, for which the smallest allowed effective mass value is (18.4 ± 1.3) meV [4]. This goal aligns with those of other planned projects, such as CUPID [5], LEGEND-1000 [6], nEXO [7], PandaX-III [8], DARWIN [9], NEXT-HD [10], and SNO+[11]. With half-life sensitivities around 1028 years, these future experiments will have a significant chance of discovering 0νββ decays and could thus resolve some of the mysteries surrounding neutrinos. Even more importantly than pinning down the particle’s mass and Majorana nature, such a discovery would establish that a fundamental symmetry of nature—the conservation of lepton number—is violated. Such a violation is considered an important ingredient in models that try to explain our Universe’s matter–antimatter asymmetry.

    References

    1. S. Abe et al. (KamLAND-Zen Collaboration), “Search for the Majorana nature of neutrinos in the inverted mass ordering region with KamLAND-Zen,” Phys. Rev. Lett. 130, 051801 (2023).
    2. M. Agostini et al., “Toward the discovery of matter creation with neutrinoless double-beta decay,” arXiv:2202.01787 [hep-ex].
    3. A. Gando et al., “Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen,” Phys. Rev. Lett. 117, 082503 (2016).
    4. M. Agostini et al., “Testing the inverted neutrino mass ordering with neutrinoless double-β decay,” Phys. Rev. C 104, L042501 (2021).
    5. W. R. Armstrong et al. (CUPID Interest Group), “CUPID pre-CDR,” arXiv: 1907.09376.
    6. N. Abgrall et al. (LEGEND Collaboration), “LEGEND-1000 preconceptual design report,” arXiv:2107.11462.
    7. G Adhikari et al. (nEXO Collaboration), “nEXO: neutrinoless double beta decay search beyond 10^28 year half-life sensitivity,” J. Phys. G: Nucl. Part. Phys. 49, 015104 (2021).
    8. X. Chen et al., “PandaX-III: Searching for neutrinoless double beta decay with high pressure 136Xe gas time projection chambers,” Sci. China: Phys., Mech. Astron. 60, 061011 (2017).
    9. F. Agostini et al. (DARWIN Collaboration), “Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of 136Xe,” Eur. Phys. J. C 80, 808 (2020).
    10. C. Adams et al. (NEXT Collaboration), “Sensitivity of a tonne-scale NEXT detector for neutrinoless double-beta decay searches,” J. High Energ. Phys. 2021, 164 (2021).
    11. V. Albanese et al. (SNO+ Collaboration), “The SNO+ experiment,” J. Instrum. 16, P08059 (2021).

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Physicists are drowning in a flood of research papers in their own fields and coping with an even larger deluge in other areas of physics. How can an active researcher stay informed about the most important developments in physics? Physics highlights a selection of papers from the Physical Review journals. In consultation with expert scientists, the editors choose these papers for their importance and/or intrinsic interest. To highlight these papers, Physics features three kinds of articles: Viewpoints are commentaries written by active researchers, who are asked to explain the results to physicists in other subfields. Focus stories are written by professional science writers in a journalistic style and are intended to be accessible to students and non-experts. Synopses are brief editor-written summaries. Physics provides a much-needed guide to the best in physics, and we welcome your comments.

     
  • richardmitnick 2:20 pm on January 27, 2023 Permalink | Reply
    Tags: "Celebrating the Upcoming sPHENIX Detector", "QGP": an ultra-hot and ultra-dense soup of subatomic particles that are the building blocks of nearly all visible matter., "Time Projection Chamber", , Particle Physics, , RHIC collisions briefly recreate the conditions of the universe a fraction of a second after the Big Bang., Ribbon-cutting held at Brookhaven Lab in anticipation of particle detector's first collision captures this spring., sPHENIX will capture snapshots of 15000 particle collisions per second to provide scientists with data to better understand the properties of quark-gluon plasma (QGP).,   

    From The DOE’s Brookhaven National Laboratory: “Celebrating the Upcoming sPHENIX Detector” 

    From The DOE’s Brookhaven National Laboratory

    1.27.23
    Karen McNulty Walsh
    kmcnulty@bnl.gov
    (631) 344-8350

    Peter Genzer
    genzer@bnl.gov
    (631) 344-3174

    Ribbon-cutting held at Brookhaven Lab in anticipation of particle detector’s first collision captures this spring.

    1
    An international team of physicists, engineers, and technicians has been working to assemble sPHENIX. From left to right: a segment of the detector’s electromagnetic calorimeter, the experiment’s superconducting magnet as crews carefully moved it into place, and a tracking component called the “Time Projection Chamber” being prepared for installation.

    Asmeret Asefaw Berhe, Director of the U.S. Department of Energy’s (DOE) Office of Science, visited DOE’s Brookhaven National Laboratory on Jan. 27 to celebrate the fast-approaching debut of a state-of-the-art particle detector known as sPHENIX [below]. The house-sized, 1000-ton detector is slated to begin collecting data at Brookhaven Lab’s Relativistic Heavy Ion Collider (RHIC) [below], a DOE Office of Science User Facility for nuclear physics research, this spring.

    Like a massive, 3D digital camera, sPHENIX will capture snapshots of 15,000 particle collisions per second to provide scientists with data to better understand the properties of quark-gluon plasma (QGP)—an ultra-hot and ultra-dense soup of subatomic particles that are the building blocks of nearly all visible matter. RHIC collisions briefly recreate the conditions of the universe a fraction of a second after the Big Bang, some 14 billion years ago. Studying QGP can help physicists learn about the origins of matter as we know it and how nature’s strongest force binds quarks and gluons into protons and neutrons, the particles that make up ordinary atomic nuclei.

    2
    Asmeret Asefaw Berhe, Director, DOE Office of Science.

    “Brookhaven National Laboratory continues to be a central hub of nuclear physics expertise, making it the world’s premier facility for studying the quark gluon plasma,” said Asmeret Asefaw Berhe, DOE’s Director of the Office of Science. “The sPHENIX detector, and the talented collaboration that will operate it, will strive to give us that answer and the final piece of the quark-gluon puzzle.”

    Brookhaven Lab Director Doon Gibbs said, “sPHENIX marks a key milestone in the RHIC science program. It will allow us to explore many questions raised by incredible discoveries already made at RHIC, especially the surprising liquid nature of the quark-gluon plasma, and lay the foundation for future discoveries at the Electron-Ion Collider. I congratulate and thank all the scientists, engineers, technicians, and support staff at Brookhaven—and sPHENIX collaborators around the world—who have worked together to make this detector possible.”

    At the core of sPHENIX is a 20-ton cylindrical superconducting magnet that will bend the trajectories of charged particles produced in RHIC collisions. The magnet is surrounded and filled with subsystems that include complex silicon detectors, a Time Projection Chamber, and calorimeters that will capture details of particle jets, heavy quarks, and rare, high-momentum particles fast and accurately. These advanced particle tracking systems will allow nuclear physicists to probe properties of the quark-gluon plasma with higher precision than ever before to understand how the interactions between quarks and gluons give rise to the unique, liquid-like behavior of QGP.

    “Our detector employs 100,000 silicon photomultipliers, calorimeter elements built using 3-D printing techniques and a 300 million channel radiation-hard silicon detector that has its sensor and electronics integrated into a monolithic device,” said sPHENIX project director Ed O’Brien.

    Many sPHENIX detector components build on experience gained throughout RHIC operations and draw on expertise throughout the nuclear and particle physics communities, including running experiments at Europe’s Large Hadron Collider.

    3
    From left: Richard Reeder, Associate Vice President for Brookhaven Affairs, Stony Brook University; Doon Gibbs, Director, Brookhaven National Laboratory; Asmeret Asefaw Berhe, Director, DOE Office of Science; Vanessa Chan, Chief Commercialization Officer and Director, DOE Office of Technology Transitions; Robert Gordon, Site Manager, DOE-Brookhaven Site Office; Haiyan Gao, Associate Laboratory Director for Nuclear & Particle Physics, Brookhaven National Laboratory; and Jack Anderson, Deputy Director for Operations, Brookhaven National Laboratory.

    “These technologies were barely on the drawing board when RHIC began operations over 20 years ago,” O’Brien said. “Now they are a reality in sPHENIX.”

    “We’ve pulled together the field’s most sophisticated technologies and pushed them to new limits to design a detector unlike any that have come before,” said Brookhaven Lab physicist and sPHENIX co-spokesperson David Morrison. “It’s really a technological marvel.”

    sPHENIX will generate an enormous amount of data to realize its science goals. Developing the capabilities to collect, store, share, and analyze that data will help push the limits of data handling in ways that could benefit other fields including climate modeling, public health, and any fields that require the analysis of huge datasets.


    sPHENIX Assembly Nears Completion.
    Learn more about sPHENIX and watch as some of its components came together.

    sPHENIX was built by an international collaboration of physicists, engineers, and technicians from 80 universities and labs from 14 countries—close to 400 collaborators overall, including students. Students, for example, joined efforts to assemble and test complex detector subsystems, studied cost-effective materials for high-speed electronics, and contributed to accelerator improvements that will increase collision rates at RHIC.

    “These hands-on educational experiences are providing valuable training for our nation’s future scientists, technicians, and engineers,” said sPHENIX co-spokesperson Gunther Roland, a physicist at the Massachusetts Institute of Technology. “Their expertise and future work may impact fields well beyond fundamental physics that rely on similar sophisticated electronics and cutting-edge technologies—including medical imaging and national security.”

    sPHENIX and operations at RHIC are funded by the DOE Office of Science (NP).

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the The DOE Office of Science, The DOE’s Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University and Battelle Memorial Institute. From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology to have a facility near Boston, Massachusetts. Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University, Cornell University, Harvard University, Johns Hopkins University, Massachusetts Institute of Technology, Princeton University, University of Pennsylvania, University of Rochester, and Yale University.

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    BNL Cosmotron 1952-1966.

    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    BNL Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II. [below].

    BNL National Synchrotron Light Source.

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider (CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, it was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.

    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.

    BNL National Synchrotron Light Source II, Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years. NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.

    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.

    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University-SUNY.

    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to the ATLAS experiment, one of the four detectors located at the The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] Large Hadron Collider(LHC). Credit: CERN.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] map. Credit: CERN.

    It is currently operating at The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH) [CERN] near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the Spallation Neutron Source at DOE’s Oak Ridge National Laboratory, Tennessee.

    DOE’s Oak Ridge National Laboratory Spallation Neutron Source annotated.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China .

     
  • richardmitnick 9:34 pm on January 25, 2023 Permalink | Reply
    Tags: "7.2-m-long niobium–tin quadrupole magnet manufactured at CERN reaches nominal current for the first time", , , , , , , Particle Physics, , The 7.2-metre-long version of this vital HL-LHC component reached nominal current plus an operational margin corresponding to a coil peak field of 11.5 T at 1.9 K during a test in SM18.   

    From CERN [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH): “7.2-m-long niobium–tin quadrupole magnet manufactured at CERN reaches nominal current for the first time” 


    Cern New Particle Event

    From CERN [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)

    1.25.23

    The 7.2-metre-long version of this vital HL-LHC component reached nominal current plus an operational margin corresponding to a coil peak field of 11.5 T at 1.9 K during a test in SM18.

    1
    The MQXFBP3 magnet after the test, during assembly with the nested dipole orbit corrector. (Image: CERN)

    Another success for the HL-LHC magnet programme: after the successful endurance test of a 4.2-metre-long niobium–tin quadrupole magnet in the United States in spring 2022, the HL-LHC quadrupole’s longer version proved its worth later in the year.

    2
    The MQXFA05 magnet enters the vertical cryostat at the Brookhaven National Laboratory for its endurance test (Image: BNL)

    “MQXFBP3”, the third full-length quadrupole prototype to be tested at SM18, reached nominal current plus an operational margin in September–October 2022, confirming the success of the niobium–tin technology for superconducting magnets.

    MQXFBP3 is the third in the series of HL-LHC triplet quadrupoles that have been produced and tested at CERN in recent years. These 7.2-metre-long superconducting magnets, along with their shorter counterparts currently being produced in the United States, will focus proton beams more tightly around the ATLAS and CMS collision points to allow the tenfold increase in integrated luminosity (the number of collisions) targeted by the HL-LHC.

    The first two magnets tested at CERN fell short of reaching nominal current, which prompted the Accelerator Technology department’s magnet group to improve the design and the assembly processes of its prototypes as part of the so-called “three-leg strategy”. The magnet cold mass was reworked to reduce the coupling between the welded outer stainless-steel shell and the aluminium structure of the magnet.

    3
    The MQXFBP3 magnet on its way to reaching nominal current in SM18. (Image: CERN)

    This updated version – the third prototype – was able to reach nominal current (corresponding to 7 TeV in operation) plus 300 A of operational margin with only one training quench at 1.9 K. This is the first MQXF cold mass assembly, tested horizontally with a welded outer shell (as in the final configuration), to achieve this performance, which corresponds to a peak field in the coil of 11.5 T. The magnet has been subjected to two warm-up–cooldown cycles, showing no performance degradation. Even though the magnet satisfies the acceptance criteria for operation in HL-LHC, the magnet was limited 3% below nominal current at 4.5 K. The localisation and phenomenology of these quenches is very similar to those of the limiting quenches of the first and second MQXFB prototypes.

    After the test, the magnet was removed from its stainless steel shell and is now being assembled with the nested dipole orbit corrector, which was provided by the Spanish institution CIEMAT. A new test in this configuration will be carried out in mid-2023. Should the test confirm its performance, MQXFBP3 will be the second Q2 cryomagnet to be installed in the IT (inner triplet) STRING.

    The positive outcome of the recent test is cause for satisfaction and relief, especially as niobium–tin technologies, known to be more brittle than niobium–copper components, have come under particular scrutiny. Even so, engineers in the magnet group have more tricks up their sleeves to bring the performance of the 7.2-m-long MQXFB to the same levels obtained in the short models and in the 4.2-m-long magnets manufactured in the US: MQXFB02, the stage-two magnet of the three-leg strategy, will include further technical improvements in the magnet assembly to eliminate the coil overstress during keying and bladdering operations that was observed on the first three prototypes. The magnet community is eagerly awaiting the outcome of the magnet’s powering tests, which will continue throughout the first months of 2023 at SM18 – stay tuned!


    High-Luminosity Third Nb3Sn quadrupole prototype timelapse insertion.

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier


    THE FOUR MAJOR PROJECT COLLABORATIONS

    LHC

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] map.

    3D cut of the LHC dipole CERN LHC underground tunnel and tube.

    CERN SixTrack LHC particles.

    OTHER PROJECTS AT CERN

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] AEGIS.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] ALPHA Antimatter Factory.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] ALPHA-g Detector.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] AMS.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] ASACUSA.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear] [ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] ATRAP.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] Antiproton Decelerator.


    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] BASE: Baryon Antibaryon Symmetry Experiment.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] BASE instrument.

    The European Organization for Nuclear Research [Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH) [CERN] [CERN] BASE: Baryon Antibaryon Symmetry Experiment.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] CAST Axion Solar Telescope.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] CLOUD.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] COMPASS.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] CRIS experiment.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] DIRAC.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] FASER experiment schematic.

    CERN FASER is designed to study the interactions of high-energy neutrinos and search for new as-yet-undiscovered light and weakly interacting particles. Such particles are dominantly produced along the beam collision axis and may be long-lived particles, travelling hundreds of metres before decaying. The existence of such new particles is predicted by many models beyond the Standard Model that attempt to solve some of the biggest puzzles in physics, such as the nature of dark matter and the origin of neutrino masses.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] GBAR.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] ISOLDE Looking down into the ISOLDE experimental hall.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] LHCf.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] The MoEDAL experiment- a new light on the high-energy frontier.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] NA62.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] NA64.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] n_TOF.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] TOTEM.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] UA9.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] The SPS’s new RF system.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] Proto Dune.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][ Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] HiRadMat-High Radiation to Materials.

    1
    The SND@LHC experiment consists of an emulsion/tungsten target for neutrinos (yellow) interleaved with electronic tracking devices (grey), followed downstream by a detector (brown) to identify muons and measure the energy of the neutrinos. (Image: Antonio Crupano/SND@LHC)

     
  • richardmitnick 10:36 am on January 25, 2023 Permalink | Reply
    Tags: "Where is Physics Headed (and How Soon Do We Get There)?", , , , Particle Physics, ,   

    From “The New York Times” : “Where is Physics Headed (and How Soon Do We Get There)?” 

    From “The New York Times”

    1.24.23
    Dennis Overbye

    1
    Credit: Ariel Davis.

    The future belongs to those who prepare for it, as scientists who petition federal agencies like NASA and the Department of Energy for research funds know all too well. The price of big-ticket instruments like a space telescope or particle accelerator can be as high as $10 billion.

    And so this past June, the physics community began to consider what they want to do next, and why.

    That is the mandate of a committee appointed by the National Academy of Sciences, called Elementary Particle Physics: Progress and Promise. Sharing the chairmanship are two prominent scientists: Maria Spiropulu, Shang-Yi Ch’en Professor of Physics at the California Institute of Technology, and the cosmologist Michael Turner, an emeritus professor at the University of Chicago, the former assistant director of the National Science Foundation and former president of the American Physical Society.

    2
    Credit: Ariel Davis.

    In the 1980s, Dr. Turner was among the scientists who began using the tools of particle physics to study the Big Bang and the evolution of the universe, and the universe to learn about particle physics. Dr. Spiropulu, born in Greece, was on the team in 2012 that discovered the long-sought Higgs boson at the European Organization for Nuclear Research, known as CERN; she now uses quantum computers to investigate the properties of wormholes. The committee’s report is scheduled for release in June 2024.

    Recently The Times met with the two scientists to discuss the group’s progress, the disappointments of the last 20 years and the challenges ahead. The conversation has been edited for clarity and brevity.

    Why convene this committee now?

    Turner: I feel like things have never been more exciting in particle physics, in terms of the opportunities to understand space and time, matter and energy, and the fundamental particles — if they are even particles. If you asked a particle physicist where the field is going, you’d get a lot of different answers.

    But what’s the grand vision? What is so exciting about this field? I was so excited in 1980 about the idea of grand unification, and that now looks small compared to the possibilities ahead.

    3
    Credit: Ariel Davis.

    You’re referring to Grand Unified Theories, or GUTs, which were considered a way to achieve Einstein’s dream of a single equation that encompassed all the forces of nature. Where are we on unification?

    Turner: As far as we know, the basic building blocks of matter are quarks and leptons; the rules that govern them are described by the quantum field theory called the Standard Model. In addition to the building blocks, there are force carriers — the photon, of the electromagnetic force; eight gluons, of the strong color force; the W and Z bosons, of the weak nuclear force, and the Higgs boson, which explains why some particles have mass. The discovery of the Higgs boson completed the Standard Model.

    But the quest for the fundamental rules is not over. Why two different kinds of building blocks? Why so many “elementary” particles? Why four forces? How do dark matter, dark energy, gravity and space-time fit in? Answering these questions is the work of elementary particle physics.

    3
    Credit: Ariel Davis.

    Spiropulu: The curveball is that we don’t understand the mass of the Higgs, which is about 125 times the mass of a hydrogen atom.

    When we discovered the Higgs, the first thing we expected was to find these other new supersymmetric particles, because the mass we measured was unstable without their presence, but we haven’t found them yet. (If the Higgs field collapsed, we could bubble out into a different universe — and of course that hasn’t happened yet.)

    That has been a little bit crushing; for 20 years I’ve been chasing the supersymmetrical particles. So we’re like deer in the headlights: We didn’t find supersymmetry, we didn’t find dark matter as a particle.

    Turner: The unification of the forces is just part of what’s going on. But it is boring in comparison to the larger questions about space and time. Discussing what space and time are and where they came from is now within the realm of particle physics.

    From the perspective of cosmology, the Big Bang is the origin of space and time, at least from the point of view of Einstein’s general relativity. So the origin of the universe, space and time are all connected. And does the universe have an end? Is there a multiverse? How many spaces and times are there? Does that question even make sense?

    4
    Credit: Ariel Davis.

    Spiropulu: To me, by the way, unification is not boring. Just saying.

    Turner: I meant boring relatively speaking. It’s still very interesting!

    Spiropulu: The strongest hint we have of the unity of nature comes from particle physics. At high enough energies, the fundamental forces — gravity, electromagnetism and the strong and weak nuclear forces — seem to become equal.

    But we have not reached the God scale in our particle accelerators. So possibly we have to reframe the question. In my view the ultimate law remains a persistent puzzle, and the way we solve it is going to be through new thinking.

    Turner: I like what Maria is saying. It feels like we have all the pieces of the puzzle on the table; it looks like the four different forces we see are just different facets of a unified force. But that may not be the right way to phrase the question.

    That is the hallmark of great science: You ask a question, and often it turns out to be the wrong question, but you have to ask a question just to find out it’s the wrong one. If it is, you ask a new one.

    5
    Maria Spiropulu of the California Institute of Technology, left, Michael Turner, of the University of Chicago, center, with reporter Dennis Overbye and breakfast. Credit: Stephen Ross Goldstein for The New York Times.

    String theory — the vaunted “theory of everything” — describes the basic particles and forces in nature as vibrating strings of energy. Is there hope on our horizon for better understanding it? This alleged stringiness only shows up at energies millions of times higher than what could be achieved by any particle accelerator ever imagined. Some scientists criticize string theory as being outside science.

    Spiropulu: It’s not testable.

    Turner: But it is a powerful mathematical tool. And if you look at the progress of science over the past 2,500 years, from the Milesians, who began without mathematics, to the present, mathematics has been the pacing item. Geometry, algebra, Newton and calculus, and Einstein and non-Riemannian geometry.

    Spiropulu: I would be more daring and say that string theory is a framework, like other frameworks we have discovered, within which we try to explain the physical world. The Standard Model is a framework — and in the ranges of energies that we can test it, the framework has proved to be useful.

    Turner: Another way to say it is that we have new words and language to describe nature. Mathematics is the language of science, and the more our language is enriched, the more fully we can describe nature. We will have to wait and see what comes from string theory, but I think it will be big.

    7
    Credit: Ariel Davis.

    Among the many features of string theory is that the equations seem to have 10⁵⁰⁰ solutions — describing 10⁵⁰⁰ different possible universes or even more. Do we live in a multiverse?

    Turner: I think we have to deal with it, even though it sounds crazy. And the multiverse gives me a headache; not being testable, at least not yet, it isn’t science. But it may be the most important idea of our time. It’s one of the things on the table. Headache or not, we have to deal with it. It needs to go up or out; either it’s part of science or it isn’t part of science.

    Why is it considered a triumph that the standard model of cosmology doesn’t say what 95 percent of the universe is? Only 5 percent of it is atomic material like stars and people; 25 percent is some other “dark matter,” and about 70 percent is something even weirder — Mike has named it “dark energy” — that is causing the universe to expand at an accelerating rate.

    Turner: That’s a big success, yeah. We’ve named all the major components.

    But you don’t know what most of them are.

    Spiropulu: We get stalled when we reach very deep. And at some point we need to change gear — change the question or the methodology. At the end of the day, understanding the physics of the universe is not a walk in the park. More questions go unanswered than are answered.

    8
    Credit: Ariel Davis.

    If unification is the wrong question, what is the right one?

    Turner: I don’t think you can talk about space, time, matter, energy and elementary particles without talking about the history of the universe.

    The Big Bang looks like the origin of space and time, and so we can ask, What are space and time really? Einstein showed us that they’re not just the place where things happen, as Newton said. They’re dynamical: space can bend and time can warp. But now we’re ready to answer the question: Where did they come from?

    We are creatures of time, so we think the universe is all about time. And that may be the wrong way to look at the universe.

    We have to keep in mind what you said earlier. Many of the tools in particle physics take a very long time to develop and are very expensive. These investments always pay off, often with big surprises that change the course of science.

    And that makes progress challenging. But I am bullish on particle physics because the opportunities have never been bigger and the field has been at the bleeding edge of science for years. Particle physics invented big, global science, and national and now global facilities. If history is any guide, nothing will prevent them from answering the big questions!

    It took three decades to build the James Webb Space Telescope.

    Spiropulu: Space — bingo!

    Turner: I mean, science is all about big dreams. Sometimes the dreams are beyond your immediate reach. But science has allowed humankind to do big things — Covid vaccines, the Large Hadron Collider, the Laser Interferometer Gravitational-Wave Observatory, the Webb telescope — that extend our vision and our power to shape our future. When we do these big things nowadays, we do them together. If we continue to dream big and work together, even more amazing things lie ahead.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: