Tagged: Particle Accelerators Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 7:22 am on December 10, 2016 Permalink | Reply
    Tags: , , , , Particle Accelerators, , SESAME Synchrotron,   

    From Symmetry: “SESAME to open in 2017” 

    Symmetry Mag

    Symmetry

    12/09/16
    Troy Rummler

    The first synchrotron radiation source in the Middle East is running tests before its planned 2017 start.

    1
    SESAME Particle Accelerator Jordan interior. Noemi Caraban, SESAME

    2
    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) campus

    Scientists and engineers at the first synchrotron radiation source in the Middle East have begun commissioning, a major milestone before officially starting operations in 2017.

    When fully operational, the facility in Allan, Jordan, called SESAME, will mark a major victory for science in the region and also for its international backers. Like CERN, SESAME was established under the auspices of UNESCO, but it is now an independent intergovernmental organization and aims to facilitate peace through scientific collaboration that might supersede political divisions. Countries and labs the world over have responded to that vision by contributing to SESAME’s design, instrumentation and construction.

    SESAME, which stands for The Synchrotron-light for Experimental Science and Applications in the Middle East, is a 133-meter circumference storage ring built to produce intense radiation ranging from infrared to X-rays, given off by electrons circling inside it at high energies. At the heart of SESAME are injector components from BESSY I, a Berlin-based synchrotron that was decommissioned in 1999, donated to SESAME and upgraded to support a completely new 2.5-GeV storage ring. With funding provided in part by the European Commission and construction led by CERN in collaboration with SESAME, the new ring is on par with most modern synchrotrons.

    Now that the machine is largely complete, technicians can perform quality testing before researchers gain access and determine whether the light source can accomplish its scientific mission.

    “The first scientific mission of SESAME is to promote excellence in science in the Middle East,” says Zehra Sayers, chair of SESAME’s scientific committee and also a faculty member at Sabanci University in Istanbul, Turkey.

    Over the past decade, SESAME has organized regular users meetings each year to discuss and develop proposed research plans. That community is now over 200 strong. The international facility hosts members from Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, the Palestinian Authority and Turkey.

    4
    14th SESAME users’ meeting. Noemi Caraban, SESAME.

    “It is very important for us to be able to perform high quality science at SESAME,” Sayers says. “Because that is what will make it viable, only then people will want to come here to do experiments, and only then people will think that this is really where they can find answers to their questions.”

    Dozens of synchrotrons in other locations throughout the world have already proven themselves as research hubs. Synchrotrons create ultra-bright light radiation and channel it into instruments used for advanced imaging research, with applications ranging from materials science to drug discovery.

    No synchrotrons existed in the Middle East until now. Political turbulence can make access to other facilities abroad challenging. Sayers says she is confident that SESAME will fill the need for a local laboratory.

    The new facility creates an opportunity for regional scientists to collaborate, for example, to study shared cultural heritage. The SESAME light source will be used to identify materials in ancient, cultural artifacts such as textiles and dyes, parchments and inks, and could reveal new information about how the materials were originally prepared.

    Researchers will initially have access to two beamlines of different wavelengths when operations begin. The facility has capacity for 25 beamlines, and it is expected that within a year two more beamlines will become available. As beamlines are added, the number of applications will grow to encompass diverse fields such as archeology, molecular biology, materials science and environmental science.

    The potential diversity is one of SESAME’s greatest strengths, says Maher Attal, who is coordinating the commissioning process. Twelve straight sections of the machine have the capacity for installing insertion devices, series of small dipole magnets that tune the spectrum of the emitted synchrotron light. This makes SESAME a “third generation” light source. SESAME’s materials science beamline, which will come into operation in 2017 or 2018 will be the first to be supplied with light from such a device.

    SESAME is undergoing a period of testing and quality control that usually takes several months. After technicians install and test the individual components, they will guide the beam through the whole machine at low energy to allow scientists to perfect its alignment, then to make measurements and corrections if its performance deviates too far from predicted values. The machine then must pass the same inspections at its maximum energy before the synchrotron officially opens.

    “We expect to deliver the first photon beam to the users in April 2017,” Attal says.

    Scientists will be watching and waiting.

    “We owe it to the region to make SESAME a success,” Sayers says. “It will be a ray of hope in a time of turmoil.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 9:27 pm on December 9, 2016 Permalink | Reply
    Tags: Cyclotrons, , Janet Conrad, Particle Accelerators, , , ,   

    From Quanta: Women in STEM – “On a Hunt for a Ghost of a Particle” Janet Conrad 

    Quanta Magazine
    Quanta Magazine

    Janet Conrad has a plan to catch the sterile neutrino — an elusive particle, possibly glimpsed by a number of experiments, that would upend what we know about the subatomic world.

    December 8, 2016
    Maggie McKee

    1
    Kayana Szymczak for Quanta Magazine

    Even for a particle physicist, Janet Conrad thinks small. Early in her career, when her peers were fanning out in search of the top quark, now known to be the heaviest elementary particle, she broke ranks to seek out the neutrino, the lightest.

    In part, she did this to avoid working as part of a large collaboration, demonstrating an independent streak shared by the particles she studies. Neutrinos eschew the strong and electromagnetic forces, maintaining only the most tenuous of ties to the rest of the universe through the weak force and gravity. This aloofness makes neutrinos hard to study, but it also allows them to serve as potential indicators of forces or particles entirely new to physics, according to Conrad, a professor at the Massachusetts Institute of Technology. “If there’s a force out there we haven’t seen, it must be because it is very, very weak — very quiet. So looking at a place where things are only whispering is a good idea.”

    In fact, neutrinos have already hinted at the existence of a new type of whispery particle. Neutrinos come in three flavors, morphing from one flavor to another by means of some quantum jujitsu. In 1995, the Liquid Scintillator Neutrino Detector (LSND) at Los Alamos National Laboratory suggested that these oscillations involve more than the three flavors “we knew and loved,” Conrad said. Could there be another, more elusive type of “sterile” neutrino that can’t feel even the weak force? Conrad has been trying to find out ever since, and she expects to get the latest result from a long-running follow-up experiment called MiniBooNE within a year.

    FNAL/MiniBooNE
    FNAL/MiniBooNE

    Still, even MiniBooNE is unlikely to settle the question, especially since a number of other experiments have found no signs of sterile neutrinos. So Conrad is designing what she hopes will be a decisive test using — naturally — a small particle accelerator called a cyclotron rather than a behemoth like the Large Hadron Collider in Europe. “I feel like my field just keeps deciding to get at our problems by growing, and I think that there’s going to be a point at which that’s not sustainable,” Conrad said. “When the great meteor hits, I want to be a small, fuzzy mammal. That’s my plan: small, fuzzy mammal.”

    Quanta Magazine spoke with Conrad about her hunt for sterile neutrinos, her penchant for anthropomorphizing particles, and her work on the latest Ghostbusters reboot. An edited and condensed version of the interview follows.

    QUANTA MAGAZINE: What would it mean for physics if sterile neutrinos exist?

    JANET CONRAD: The Standard Model of particle physics has done very well in predicting what’s going on, but there’s a great deal it can’t explain — for example, dark matter.

    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.
    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    Right now we’re desperately looking for clues as to what the larger theory would be. We have been working on ideas, and in many of these “grand unified theories,” you actually get sterile neutrinos falling out of the theory. If we were to discover that there were these extra neutrinos, it would be huge. It would really be a major clue to what the larger theory would be.

    You’ve been looking for neutrinos your entire career. Was that always the plan?

    I started out thinking I was going to be an astronomer. I went to Swarthmore College and discovered that astronomy is cold and dark. I was lucky enough to get hired to work in a particle physics lab. I worked for the Harvard Cyclotron, which was at that time treating eye cancers. But in the evenings physicists would bring their detectors down and calibrate them using the same accelerator. I was really interested in what they were doing and got a position the next summer at Fermilab [FNAL]. It was such a good fit for me. I just think the idea of creating these tiny little universes is so wondrous. Every collision is a little world. And the detectors are really big and fun to work on — I like to climb around stuff. I liked the juxtaposition of the scales; this incredibly tiny little world you create and this enormous detector you see it in.

    And how did you get into neutrino research in particular?

    When I was in grad school, the big question was: What is the mass of the top quark? Everybody expected me to join one of the collider experiments to find the top quark and measure its mass, and instead I was looking around and was quite interested in what was going on in the neutrino world. I actually had some senior people tell me it would be the end of my career.

    Why did you take that risk?

    I was very interested in the questions that were coming out of the neutrino experiments, and also I didn’t really want to join an enormously large collaboration. I was more interested in the funny little anomalies that were already showing up in the neutrino world than I was in a particle which had to exist — the top quark — and the question of what was its precise mass. I am really, I suppose, an anomaly chaser. I admit it. Some people might call it an epithet. I wear it with pride.

    One of those anomalies was the hint of an extra type of neutrino beyond the three known flavors in the Standard Model. That result from LSND was such an outlier that some physicists suggested dismissing it. Instead, you helped lead an experiment at Fermilab, called MiniBooNE, to follow up on it. Why?

    You’re not allowed to throw out data, I’m sorry. That is exactly how to miss important new physics. We can’t be so in love with our Standard Model that we aren’t willing to question it. Even if the question doesn’t align with our prejudices, we have to ask the question anyway. When I started out, nobody was really interested in sterile neutrinos. It was a lonely land out there.

    MiniBooNE’s results have added to the mystery. In one set of experiments using antineutrinos, it found LSND-like hints of sterile neutrinos, and in another, using neutrinos, it did not.

    The antineutrino result matched up with LSND very well, but the neutrino result, which is the one we produced first, is the one that doesn’t match up. The whole world would be a very different place if we had started with antineutrino running and gotten a result that matched LSND. I think there would have been a lot more interest immediately in the sterile-neutrino question. We would have been where we are now at least 10 years earlier.

    Where are we now?

    There are eight experiments total that have anomalies suggesting the presence of more than the three known flavors of neutrino. There are also seven experiments that don’t. Recently, some of the experiments that have not seen an effect have gotten a lot of press, including IceCube, which is a result that my group worked on. A lot of press came out about how IceCube didn’t see a sterile-neutrino signal. But while the data rules out some of the possible sterile-neutrino masses, it doesn’t rule out all of them, a result we point out in an article that has just been published in Physical Review Letters.

    Why are neutrino studies so hard?

    Most neutrino experiments need very large detectors that need to be underground, almost always under mountains, to be protected from cosmic rays that themselves produce neutrinos. And all of the accelerator systems we build tend to be in plains — like Fermilab is in Illinois. So once you decide you’re going to build a beam and shoot it for such a long distance, the costs are enormous, and the beams are very difficult to design and produce.

    FNAL LBNF/DUNE from FNAL to SURF
    FNAL LBNF/DUNE from FNAL to SURF

    FNAL/NOvA experiment
    FNAL/NOvA

    Is there any way around these problems?

    What I would really like to see is a future series of experiments that are really decisive. One possibility for this is IsoDAR, which is part of a larger experiment called DAEδALUS.

    3
    DAEδALUS

    IsoDAR will take a small cyclotron and use it as a driver to produce lithium-8 that decays, resulting in a very pure source of antielectron neutrinos. If we paired that with the KamLAND detector in Japan, then you would be able to see the whole neutrino oscillation.

    KamLAND at the Kamioka Observatory in Japan
    KamLAND at the Kamioka Observatory in Japan

    You don’t just measure an effect at a few points, you can trace the entire oscillation wave. The National Science Foundation has given us a little over $1 million to demonstrate the system can work. We’re excited about that.

    Why would IsoDAR be a more decisive sterile-neutrino hunter?

    This is a case where you don’t produce a beam in the normal way, by smashing protons into a target and using a series of magnetic fields to herd the resulting charged particles into a wide beam where they decay into several kinds of neutrinos, among other particles. Instead you allow the particle you produce, which has a short lifetime, to decay. And it decays uniformly into one kind of neutrino in all directions. All of the aspects of this neutrino beam — the flavor, the intensity, the energies — are driven by the interaction that’s involved in the decay, not by anything that human beings do. Human beings cannot screw up this beam! It’s really a new way of thinking and a new kind of source for the neutrino community that I think can become very widely used once we prove the first one.

    So the resulting neutrino interactions are easier to interpret?

    We’re talking about a signal-to-background ratio of 10 to one. By contrast, most of the reactor experiments looking for antineutrinos are running with a signal-to-background ratio of one to one if they do well, since the neutrons that come out of the reactor core can actually produce a signal that looks a lot like the antineutrino signal you are looking for.

    Speaking of spectral signals, tell me about your connection with the recent Ghostbusters movie remake.

    It’s the first movie I’ve consulted for. It happened because of Lindley Winslow. She was at the University of California, Los Angeles, before she came to MIT. At UCLA, she had made a certain amount of connection with the film industry, and so they had gotten in touch with her. She showed them my office, and they really liked my books. My books are stars — you do get to see them in the movie and some of the other things from my office here and there. When they brought the books back, they put them all back exactly the way they were. What’s really funny about that was that they were not in any order.

    What did you think of the movie itself? Did you relate to the way Kristen Wiig played a physicist?

    I was really happy to see a whole new rendering of it. To watch the characters interact; I think there was a lot of impromptu work. It really came through that these women resonated with each other. In the movie, Kristen Wiig goes into an empty auditorium and she rehearses for her lecture. I felt for that character. When I started out as a faculty member, I had very little experience as somebody who actually taught — I had done all this research. It’s kind of ridiculous to think about now, but I went through those first lectures and really rehearsed them.

    In a way, your career has come full circle, since you started out working at a cyclotron in college and now you want to use another one to hunt for sterile neutrinos. Can you really do cutting-edge research with cyclotrons that accelerate particles to energies just a thousandth of a percent of those reached at the Large Hadron Collider?

    Cyclotrons were invented back at the beginning of the last century.

    5
    The prototype cyclotrons built by E.O. Lawrence. On display at the Lawrence Hall of Science. Picture by Deb McCaffrey.

    They were limited in energy, and as a result, they went out of fashion as particle physicists decided that they needed larger and larger accelerators going up to higher and higher energies. But in the meantime, the research that was done for the nuclear physics community and also for medical isotopes and for treating people with cancer took cyclotrons in a whole different direction. They’ve turned into these amazing machines, which now we can bring back to particle physics. There are questions that can perhaps be better answered if you are working at lower energies but with much purer beams, with more intense beams, and with much better-understood beams. And they’re really nice because they’re small. You can bring your cyclotron to your ultra-large detector, whereas it’s very hard to move Fermilab to your ultra-large detector.

    A single type of sterile neutrino is hard to reconcile with existing experiments, right?

    I think the little beast looks different from what we thought. The very simplistic model introduces only one sterile neutrino. That would be a little weird if you were guided by patterns. If you look at the patterns of all the other particles, they’re appearing in sets of three. If you introduce three, and you do all the dynamics between them properly, does that fix the problem? People have taken a few steps toward answering that, but we’re still doing approximations.

    You just called the sterile neutrino a “little beast.” Do you anthropomorphize particles?

    There’s no question about that. They all have these great little personalities. The quarks are the mean girls. They’re stuck in their little cliques and they won’t come out. The electron is the girl next door. She’s the one you can always depend on to be your friend — you plug in and there she is, right? And she’s much more interesting than people would think. What I like about the neutrinos is they’re very independent. With that said, with neutrinos as friends, you will never be lonely, because there are a billion neutrinos in every cubic meter of space. I have opinions about all of them.

    When did you start creating these characterizations?

    I’ve always thought about them that way. I have in fact been criticized for thinking about them that way and I don’t care. I don’t know how you think about things that are disconnected from your own experience. You have to be really careful not to go down a route that you shouldn’t go down, but it’s a way of thinking about things that’s completely legitimate and gives you some context. I still remember once describing some of the work I was doing as fun. I had one physicist say to me, “This is not fun; this is serious research.” I was, like, you know, serious research can be a lot of fun. Being fun doesn’t make it less important — those are not mutually exclusive.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Formerly known as Simons Science News, Quanta Magazine is an editorially independent online publication launched by the Simons Foundation to enhance public understanding of science. Why Quanta? Albert Einstein called photons “quanta of light.” Our goal is to “illuminate science.” At Quanta Magazine, scientific accuracy is every bit as important as telling a good story. All of our articles are meticulously researched, reported, edited, copy-edited and fact-checked.

     
  • richardmitnick 7:00 am on December 3, 2016 Permalink | Reply
    Tags: , , , , In Practice: What do data analysts do all day?, Particle Accelerators, , , The appeal of the unknown   

    From CERN: “In Practice: What do data analysts do all day?” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    2 Dec 2016
    Kathryn Coldham
    Kate Kahle
    Harriet Jarlett

    1
    CMS physicist Nadjieh Jafari switched from theoretical to experimental physics early on in her career. “It was an easy decision,” she says. “Once I saw CERN, it became my quest.” (Image: Sophia Bennett/ CERN)

    Another day, another mountain of data to analyse. In 2016, CERN’s Large Hadron Collider produced more collisions than in all previous years of operation put together. Experimental physicists spend much of their professional lives analysing collision data, working towards a potential discovery or to sharpen our picture of nature. But when the day-to-day findings become predictable, do physicists lose motivation?

    What if there’s nothing there?

    CERN has made headlines with its discoveries, but does this mean today’s researchers are just seeking fame and fortune? For most, being front-page news is not what stokes their physics passion, as they stare at their computer screens for hours. Instead, it’s the knowledge and excitement of understanding our universe at the most fundamental level.

    Siegfried Foertsch, run coordinator of the ALICE experiment, is motivated by “the completely new discoveries that lie around the corner. They’ve become ascertainable because of the new energies that the LHC machine is providing.”

    2
    Sitting in the ALICE control room, Siegfried explains: “I think what motivates people in these experiments is that you are entering terra incognita, it’s completely new science. It drives most people in these big experiments, it’s about new discoveries.” (Image: Sophia Bennett/CERN)

    These headline-worthy discoveries are rare. Instead, researchers make small, incremental findings day-by-day. “It doesn’t bother me that it’s not going to make front-page news. I know that within the particle physics community the research is important and that’s enough,” says Sneha Malde of the LHCb experiment.

    For CMS physicist Anne-Marie Magnan, her colleagues provide the much-needed push.

    “We have deadlines, so if you are part of an analysis you have pressure to make progress and you put personal pressure on yourself because you want to see the result. If you’re on a review committee you have deadlines, you need to provide feedback, the same if you’re managing a subgroup, you’re responsible for the group to show results at conferences. So you push people and they push you back to try and make progress,” she explains.

    Magnan analyses data to search for Higgs bosons . She describes her daily work as “programming, mostly. A lot of interaction with people, I have students to Skype with and when they say ‘I’m stuck, I don’t know what to do’ we chat and find solutions. At some points I’ve been a subgroup convener. There you encourage people to make progress and provide feedback on their analyses.”

    “It’s an exercise of patience because, after time, the incremental findings lead to a result. And even if you’re just working towards a result, you still have to solve technical problems each day,” explains Leticia Cunqueiro Mendez, a senior postdoctoral researcher working with the ALICE detector.

    Building bonds: the road to success

    Each one of these incremental, small discoveries are documented by a research paper. At CERN, these papers are often authored by hundreds, even thousands of people, as was the case with the papers announcing the Higgs discovery. And they aren’t just experimental physicists; students, technicians, engineers and computer scientists are all often equally involved.

    Having a high level of motivation can only get a physicist so far, working with others is the route to success.

    “People need each other here,” says Siegfried Foertsch, “the idea of a physicist without an engineer at CERN is unthinkable, and similarly vice versa. It’s symbiotic.”

    “I think the work of the technicians is a major contribution to the applied physics that I’m involved in. They are the unsung heroes in most of what we do to some extent,” says David Francis, Project Leader of the ATLAS Trigger and Data Acquisition System.

    For Cunqueiro Mendez, “the main thing is to know the possibilities of your detector and to have an interesting idea of what physics might be observable. For this you need interaction with the theorists so, in principle, you have to be reading papers and attending conferences. Here at CERN, you can meet your theory colleagues for a coffee and discuss your possibilities.”

    Eeney meeney miney mo

    Working with others can be collaborative, but it can also be competitive. There is a point of pride for one experiment to beat the competition to a discovery.

    3
    Sneha Malde standing in the corridor outside of her office (Image: Maximilien Brice/CERN)

    While the ATLAS and CMS experiments perform similar searches, the LHCb and ALICE experiments have particular fields of study, and the work that the associated physicists do differs as a result.

    Bump searches are what physicists call it when they try to find statistically significant peaks in the data; the presence of a bump could indicate the existence of a new particle. Some of these searches are done at ATLAS and CMS, where new particles are the name of the game. At LHCb and ALICE they try to take precision measurements of phenomenon, more than particles.

    “I don’t think I would be very happy just looking at empty plots with nothing in them, which could happen in bump searches if they don’t find anything new,” muses Malde. “I like the precision measurement aspect of LHCb’s data.”

    Studying and searching for different things means the data plots for different experiments look very different.

    “I like having obvious things in my plots. I like nice bumps, big ones. We have lots of bumps that don’t disappear, and they are really big peaks. We don’t have bumps, we have mountains!” – Sneha Malde, LHCb data analyst

    ATLAS physicist Anatolli Romaniouk, marvels at this range of LHC experiments. They “embrace an incredible field of physics, they search for everything.”

    “This is physics; if we know what we are searching for, then we don’t need experiments. If you know what exactly you want to find, it’s already found, or will be found soon. That’s why our experiments are beautiful because these experiments embrace an incredible field of physics, the LHC, it searches for everything,” explains Romaniouk.

    The beauty of the unknown

    4
    ATLAS physicist Anatolli Romaniouk has worked at CERN since 1990. The students he sees in the collaboration “know a bit of electronics, data acquisition and data analysis, very often they do it from second year of university and this is interesting. I find this brilliant, that they practice real physics at an early stage of their education.” (Image: Sophia Bennett/CERN)

    The appeal of the unknown, the as yet undiscovered, ignites the curiosity in the physicists and fuels them in their analyses.

    “When you have something in theory and think that it could be real – that it could exist – then you start to really think how you can look for it and try to find it,” says CMS physicist Nadjieh Jafari. “You build your experiment based on the theories. The CMS’s muon system was perfectly designed to discover the Higgs boson but at the moment of designing it, it was just an idea that we might find it. For me, that’s the most beautiful part of what we do.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    Quantum Diaries

     
  • richardmitnick 12:54 pm on November 30, 2016 Permalink | Reply
    Tags: , , , MicroBooNE, , Particle Accelerators,   

    From FNAL: “Handy and trendy: MicroBooNE’s new look” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    November 30, 2016
    Ricarda Laasch

    1
    MicroBooNE’s shiny new exterior helps scientists identify cosmic rays masquerading as neutrinos. From left: Elena Gramellini, Thomas Mettler. Martin Auger, Mark Shoun, John Voirin. Photo: Reidar Hahn

    The signals of cosmic rays

    Cosmic rays are a constant rain of particles that are created in our sun or faraway stars and travel through space to our planet.

    They’re subjects of many important physics studies, but for MicroBooNE’s research, they simply get in the way. That’s because MicroBooNE scientists are looking for something else — abundant, subtle particles called neutrinos.

    FNAL/MicrobooNE
    FNAL/MicrobooNE

    Unlocking the secrets neutrinos hold could help us understand the evolution of our universe, but they’re exceedingly difficult to measure. Fleeting neutrinos are rarely captured, even as they sail through detectors built for that purpose.

    Add to that the fact that their interactions are potentially drowned in a sea of cosmic rays rushing through the same detector, and you get a sense of the formidable challenge that neutrinos represent.

    The MicroBooNE experiment starts with Fermilab’s powerful accelerators, which create neutrino beams that are then propelled through the MicroBooNE detector.

    2
    July 8, 2015 Fermilab’s Main Injector accelerator, one of the most powerful particle accelerators in the world, has just achieved a world record for high-energy beams for neutrino experiments. Photo: Fermilab

    3

    4
    Fermilab’s accelerator complex comprises seven particle accelerators and storage rings. It produces the world’s most powerful, high-energy neutrino beam and provides proton beams for a variety of experiments and R&D programs.

    Fermilab is currently upgrading its accelerator complex to deliver high-intensity neutrino beams and to provide beams for a broad range of new and existing experiments, including the Long-Baseline Neutrino Experiment, Muon g-2 and Mu2e.

    “The neutrino beam here at the lab gives us the right conditions to study neutrinos,” said Elena Gramellini, a Yale University graduate student on the MicroBooNE experiment. “Our challenge is to pick out neutrinos from many cosmic rays passing through the detector.”

    Since cosmic rays are made of some of the same particles produced when a neutrino interacts with matter, they leave signals in the MicroBooNE detector that are often similar to the sought-after neutrino signals. Scientists need to be able to sort the cosmic rays in the MicroBooNE data from the neutrino signals.

    Tagging and sorting

    Even several feet of concrete enclosure would not completely block cosmic rays from hitting a detector such as MicroBooNE, not to mention that such a structure would be inconvenient and expensive. Instead, MicroBooNE uses the aforementioned panels, called a cosmic ray tagger, or CRT. While the panels don’t block cosmic rays, they do detect them.

    Each CRT panel has particle-detecting components – strips of scintillator – that lie beneath its shiny aluminum enclosure. Cosmic ray particles can easily pass through aluminum and the scintillator — a clear, plastic-like material — on their way toward the MicroBooNE detector.

    The cosmic ray particles deposit energy in the plastic scintillator, which then emits light. An optical fiber buried inside the scintillator captures the emitted light and transmits it to devices that generate the digital information that tells scientists where and when the cosmic ray struck.

    “With our current layout of scintillator strips in each panel, we are able to tell precisely where the cosmic ray enters the MicroBooNE detector after it left the panel,” said Igor Kreslo, professor at the University of Bern who designed the CRT panels for MicroBooNE. “Our design effort really paid off and now ensures thorough cosmic ray tracking.“

    So why the shiny aluminum shell? It blocks unwanted light from the detector’s immediate surroundings so that only light created by cosmic rays inside a CRT panel reaches the optical fiber and is detected.

    Putting up panels

    The 49 rectangular CRT panels are the contribution of the University of Bern in Switzerland, one of the 28 institutions collaborating on MicroBooNE worldwide. They produced the panels last winter and shipped them to Fermilab during the spring.

    “This was a large project for us, and it took everyone in Bern to finish everything in time,” said Martin Auger, scientist at the University of Bern who planned the arrangement of the CRT panels. “A key moment was the test of the CRT panels after the long journey to Fermilab. All the panels arrived in good shape!”

    The installation team overcame a number of challenges —including the tight space in which MicroBooNE stands — to successfully place the panels around the detector.

    “The installation crew is a crack team of veteran Fermilab employees,” said John Voirin, who leads experiment installations at the laboratory. “In the end we have a very elegant, safe operating product that is a valuable asset to the experiment.”

    Later this year the group will complete the installation by placing the final layer on top of the MicroBooNE detector. Even without it, the CRT already greatly enhances the capabilities of the experiment.

    “We started taking data just in time for the first neutrinos delivered to the experiment,” Gramellini said.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 1:14 pm on November 25, 2016 Permalink | Reply
    Tags: , , , NA64 experiment hunts the mysterious dark photon, Particle Accelerators,   

    From CERN: “NA64 hunts the mysterious dark photon” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    25 Nov 2016
    Stefania Pandolfi
    Posted by Corinne Pralavorio

    1
    An overview of the NA64 experimental set-up at CERN. NA64 hunts down dark photons, hypothetic dark matter particles. (Image: Maximilien Brice/CERN)

    One of the biggest puzzles in physics is that eighty-five percent of the matter in our universe is “dark”: it does not interact with the photons of the conventional electromagnetic force and is therefore invisible to our eyes and telescopes. Although the composition and origin of dark matter are a mystery, we know it exists because astronomers observe its gravitational pull on ordinary visible matter such as stars and galaxies.

    Some theories suggest that, in addition to gravity, dark matter particles could interact with visible matter through a new force, which has so far escaped detection. Just as the electromagnetic force is carried by the photon, this dark force is thought to be transmitted by a particle called “dark” photon which is predicted to act as a mediator between visible and dark matter.

    “To use a metaphor, an otherwise impossible dialogue between two people not speaking the same language (visible and dark matter) can be enabled by a mediator (the dark photon), who understands one language and speaks the other one,” explains Sergei Gninenko, spokesperson for the NA64 collaboration.

    CERN’s NA64 experiment looks for signatures of this visible-dark interaction using a simple but powerful physics concept: the conservation of energy. A beam of electrons, whose initial energy is known very precisely, is aimed at a detector. Interactions between incoming electrons and atomic nuclei in the detector produce visible photons. The energy of these photons is measured and it should be equivalent to that of the electrons. However, if the dark photons exist, they will escape the detector and carry away a large fraction of the initial electron energy.

    Therefore, the signature of the dark photon is an event registered in the detector with a large amount of “missing energy” that cannot be attributed to a process involving only ordinary particles, thus providing a strong hint of the dark photon’s existence.

    If confirmed, the existence of the dark photon would represent a breakthrough in our understanding the longstanding dark matter mystery.


    View of the NA64 experiment set-up. (Video: Christoph Madsen/Noemi Caraban/CERN)

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    Quantum Diaries

     
  • richardmitnick 9:22 am on November 21, 2016 Permalink | Reply
    Tags: , , , , Particle Accelerators, ,   

    From Symmetry- “Q and A: What more can we learn about the Higgs?” 

    Symmetry Mag

    Symmetry

    11/17/16
    Angela Anderson

    1
    Illustration by Sandbox Studio, Chicago with Ana Kova

    Four physicists discuss Higgs boson research since the discovery.

    CERN CMS Higgs Event
    CERN CMS Higgs Event

    CERN ATLAS Higgs Event
    CERN ATLAS Higgs Event

    More than two decades before the discovery of the Higgs boson, four theoretical physicists wrote a comprehensive handbook called The Higgs Hunter’s Guide. The authors—Sally Dawson of the Department of Energy’s Brookhaven National Laboratory; John F. Gunion from the University of California, Davis; Howard E. Haber from the University of California, Santa Cruz; and Gordon Kane from the University of Michigan—were recently recognized for “instrumental contributions to the theory of the properties, reactions and signatures of the Higgs boson” as recipients of the American Physical Society’s 2017 J.J. Sakurai Prize for Theoretical Physics.

    They are still investigating the particle that completed the Standard Model, and some are hunting different Higgs bosons that could take particle physics beyond that model.

    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.
    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    Dawson, Gunion and Haber recently attended the Higgs Couplings 2016 workshop at SLAC National Accelerator Laboratory, where physicists gathered to talk about the present and future of Higgs research. Symmetry interviewed all four to find out what’s on the horizon.

    S: What is meant by “Higgs couplings”?
    JG: The Higgs is an unstable particle that lasts a very short time in the detector before it decays into pairs of things like top quarks, gluons, and photons. The rates and relative importance of these decays is determined by the couplings of the Higgs boson to these different particles. And that’s what the workshop is all about, trying to determine whether or not the couplings predicted in the Standard Model agree with the couplings that are measured experimentally.

    SD: Right, we can absolutely say how much of the time we expect the Higgs to decay to the known particles, so a comparison of our predictions with the experimental measurements tells us whether there’s any possible deviation from our Standard Model.

    JG: For us what would be really exciting is if we did see deviations. However, that probably requires more precision than we currently have experimentally.

    GK: But we don’t all agree on that, in the sense that I would prefer that it almost exactly agree with the Standard Model predictions because of a theory that I like that says it should. But most of the people in the world would prefer what John and Sally said.

    S.How many people are working in Higgs research now worldwide?

    GK: I did a search for “Higgs” in the title of scientific papers after 2011 on arXiv.org and came up with 5211 hits; there are several authors per paper, of course, and some have written multiple papers, so we can only estimate.

    SD: There are roughly 5000 people on each experiment, ATLAS and CMS, and some fraction of those work on Higgs research, but it’s really too hard to calculate. They all contribute in different ways. Let’s just say many thousands of experimentalists and theorists worldwide.
    What are Higgs researchers hoping to accomplish?

    HH: There are basically two different avenues. One is called the precision Higgs program designed to improve precision in the current data. The other direction addresses a really simple question: Is the Higgs boson a solo act or not? If additional Higgs-like particles exist, will they be discovered in future LHC experiments?

    SD: I think everybody would like to see more Higgs bosons. We don’t know if there are more, but everybody is hoping.

    JG: If you were Gordy [Kane] who only believes in one Higgs boson, you would be working to confirm with greater and greater precision that the Higgs boson you see has precisely the properties predicted in the Standard Model. This will take more and more luminosity and maybe some future colliders like a high luminosity LHC or an e+e- collider.

    HH: The precision Higgs program is a long-term effort because the high luminosity LHC is set to come online in the mid 2020s and is imagined to continue for another 10 years. There are a lot of people trying to predict what precision could you ultimately achieve in the various measurements of Higgs boson properties that will be made by the mid 2030s. Right now we have a set of measurements with statistical and systematic errors of about 20 percent. By the end of the high luminosity LHC, we anticipate that the size of the measurement errors can be reduced to around 10 percent and maybe in some cases to 5 percent.

    S. How has research on the topic changed since the Higgs discovery?

    SD: People no longer build theoretical models that don’t have a Higgs in them. You have to make sure that your model is consistent with what we know experimentally. You can’t just build a crazy model; it has to be a model with a Higgs with roughly the properties we’ve observed, and that is actually pretty restrictive.

    JG: Many theoretical models have either been eliminated or considerably constrained. For example, the supersymmetric models that are theoretically attractive kind of expect a Higgs boson of this mass, but only after pushing parameters to a bit of an extreme. There’s also an issue called naturalness: In the Standard Model alone there is no reason why the Higgs boson should have such a light mass as we see, whereas in some of these theories it is natural to see the Higgs boson at this mass. So that’s a very important topic of research—looking for those models that are in a certain sense naturally predicting what we see and finding additional experimental signals associated with such models.

    GK: For example, the supersymmetric theories predict that there will be five Higgs bosons with different masses. The extent to which the electroweak symmetry is broken by each of the five depends on their couplings, but there should be five discovered eventually if the others exist.

    HH: There’s also a slightly different attitude to the research today. Before the Higgs boson was discovered it was known that the Standard Model was theoretically inconsistent without the Higgs boson. It had to be there in some form. It wasn’t going to be that we ran the LHC and saw nothing—no Higgs boson and nothing else. This is called a no-lose theorem. Now, having discovered the Higgs boson, you cannot guarantee that additional new phenomenon exists that must be discovered at the LHC. In other words, the Standard Model itself, with the Higgs boson, is a theoretically consistent theory. Nevertheless, not all fundamental phenomena can be explained by Standard Model physics (such as neutrino masses, dark matter and the gravitational force), so we know that new phenomena beyond the Standard Model must be present at some very high-energy scale. However, there is no longer a no-lose theorem that states that this new phenomena must appear at the energy scale that is probed at the LHC.

    S. How have the new capabilities of the LHC changed the game?

    SD: We have way more Higgs bosons; that’s really how it’s changed. Since the energy is higher we can potentially make heavier new particles.

    GK: There were about a million Higgs bosons produced in the first run of the LHC, and there will be more than twice that in the second run, but they only can find a small fraction of those in the detector because of background noise and some other things. It’s very hard. It takes clever experimenters. To find a couple of hundred Higgs you need to produce a million.

    CERN/LHC Map
    CERN LHC Grand Tunnel
    CERN LHC particles
    LHC at CERN

    SD: Most of the time the Higgs decays into something we can’t see in our detector. But as the measurements get better and better, experimentalists who have been extracting the couplings are quantifying more properties of the Higgs decays. So instead of just counting how many Higgs bosons decay to two Z bosons, they will look at where the two Z bosons are in the detector or the energy of the Z bosons.

    S. Are there milestones you are looking forward to?

    GK: Confirming the Standard Model Higgs with even more precision. The decay the Higgs boson was discovered in—two photons—could happen in any other kind of particle. But the decay to W boson pairs is the one that you need for it to break the electroweak symmetry [a symmetry between the masses of the particles associated with the electromagnetic and weak forces], which is what it should do according to the Standard Model.

    SD: So, one of the things we will see a lot of in the next year or two is better measurements of the Higgs decay into the bottom quarks. Within a few years, we should learn whether or not there are more Higgs bosons. Measuring the couplings to the desired precision will take 20 years or more.

    JG: There’s another thing people are thinking about, which is how the Higgs can be connected to the important topic of dark matter. We are working on models that establish such a connection, but most of these models, of course, have extra Higgs bosons. It’s even possible that one of those extra Higgs bosons might be invisible dark matter. So the question is whether the Higgs we can see tells us something about dark matter Higgs bosons or other dark matter particles, such as the invisible particles that are present in supersymmetry.

    S. Are there other things still to learn?

    JG: There are many possible connections between Higgs bosons, in a generic sense and the history of the universe. For example, it could be that a Higgs-like particle called the inflaton is responsible for the expansion of the universe. As a second example, generalized Higgs boson models could explain the preponderance of matter over antimatter in the current universe.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 5:09 pm on November 14, 2016 Permalink | Reply
    Tags: , , , Particle Accelerators,   

    From Alice at CERN: “Proton-lead collision at 5.02 TeV as seen by ALICE” 

    CERN New Masthead

    CERN ALICE Icon HUGE

    1
    ALICE-EVENTDISPLAY-2016-011-1

    One of the first proton-lead events at 5.02 TeV as seen by ALICE in November 2016. The event comes from fill 5506 with 189 colliding bunches at an interaction rate of 17 kHz.

    Date: 11-11-2016

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS
    ATLAS
    CERN/ATLAS detector

    ALICE
    CERN ALICE New

    CMS
    CERN/CMS Detector

    LHCb

    CERN/LHCb

    LHC

    CERN/LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    Quantum Diaries

     
  • richardmitnick 8:29 am on November 8, 2016 Permalink | Reply
    Tags: , CERN Linac 4, , Particle Accelerators,   

    From CERN: “Linac 4 reached its energy goal” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    1
    Linac 4 during its installation in 2015. This photo was taken as part of the 2015 Photowalk competition (Image: Federica Piccinni/CERN)

    7 Nov 2016
    Corinne Pralavorio

    CERN’s new linear accelerator (Linac 4) has now accelerated a beam up to its design energy, 160 MeV. This important milestone of the accelerator’s commissioning phase took place on 25 October.

    Linac 4 is scheduled to become the source of proton beams for the CERN accelerator complex, including the Large Hadron Collider (LHC) after the long shutdown in 2019-2020. It will replace the existing Linac 2 as the first link in the accelerator chain, which is currently accelerating protons at 50 MeV. The new 30-metre-long accelerator will accelerate hydrogen ions – protons surrounded by two electrons – at 160 MeV, before sending them to the Proton Synchrotron Booster. Here, the ions are stripped of their two electrons to leave only the protons that will be further accelerated before finishing their race in the LHC.

    Linac 4 comprises four types of accelerating structures to bring particles in several stages to higher and higher energies. These accelerating structures have been commissioned one by one: in November 2013, the first hydrogen ion beam was accelerated to the energy of 3 MeV and two years after, the Linac 4 accelerator has reached an energy of 50 MeV – the energy Linac 2 runs at. Then, on the 1 July 2016, it crossed the 100 MeV threshold.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    Quantum Diaries

     
  • richardmitnick 4:34 pm on November 3, 2016 Permalink | Reply
    Tags: , ASAUSA, , , Particle Accelerators,   

    From CERN: “CERN experiment improves precision of antiproton mass measurement with new innovative cooling technique” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    03 Nov 2016
    No writer credit found

    1
    The ASACUSA experiment (Image: CERN)
    Electrostatic protocol treatment lens. The purpose of this device is to transport Antiprotons from the new ELENA storage beam to all AD experiments. The electrostatic device was successfully tested in ASACUSA two weeks ago.

    In a paper published today in the journal Science, the ASACUSA experiment at CERN1 reported new precision measurement of the mass of the antiproton relative to that of the electron. This result is based on spectroscopic measurements with about 2 billion antiprotonic helium atoms cooled to extremely cold temperatures of 1.5 to 1.7 degrees above absolute zero. In antiprotonic helium atoms an antiproton takes the place of one of the electrons that would normally be orbiting the nucleus. Such measurements provide a unique tool for comparing with high precision the mass of an antimatter particle with its matter counterpart. The two should be strictly identical.

    “A pretty large number of atoms containing antiprotons were cooled below minus 271 degrees Celsius. It’s kind of surprising that a ‘half-antimatter’ atom can be made so cold by simply placing it in a refrigerated gas of normal helium,” said Masaki Hori, Group Leader of the ASACUSA collaboration.

    Matter and antimatter particles are always produced as a pair in particle collisions. Particles and antiparticles have the same mass and opposite electric charge. The positively charged positron, for example, is an anti-electron, the antiparticle of the negatively charged electron. Positrons have been observed since the 1930s, both in natural collisions from cosmic rays and in particle accelerators. They are used today in hospital in PET scanners. However, studying antimatter particles with high-precision remains a challenge because when matter and antimatter come into contact, they annihilate – disappearing in a flash of energy.

    CERN’s Antiproton Decelerator is a unique facility delivering low-energy antiproton beams to experiments for antimatter studies. In order to make measurements with these antiprotons, several experiments trap them for long periods using magnetic devices. ASACUSA’s approach is different as the experiment is able to create very special hybrid atoms made of a mix of matter and antimatter: these are the antiprotonic helium atoms composed of an antiproton and an electron orbiting a helium nucleus. They are made by mixing antiprotons with helium gas. In this mixture, about 3% of the antiprotons replace one of the two electrons of the helium atom. In antiprotonic helium, the antiproton is in orbit around the helium nucleus, and protected by the electron cloud that surrounds the whole atom, making antiprotonic helium stable enough for precision measurements.

    The measurement of the antiproton’s mass is done by spectroscopy, by shining a laser beam onto the antiprotonic helium. Tuning the laser to the right frequency causes the antiprotons to make a quantum jump within the atoms. From this frequency the antiproton mass relative to the electron mass can be calculated. This method has been successfully used before by the ASACUSA collaboration to measure with high accuracy the antiproton’s mass. However, the microscopic motion of the antiprotonic helium atoms introduced a significant source of uncertainty in previous measurements.

    The major new achievement of the collaboration, as reported in Science, is that ASACUSA has now managed to cool down the antiprotonic helium atoms to temperatures close to absolute zero by suspending them in a very cold helium buffer-gas. In this way, the microscopic motion of the atoms is reduced, enhancing the precision of the frequency measurement. The measurement of the transition frequency has been improved by a factor of 1.4 to 10 compared with previous experiments. Experiments were conducted from 2010 to 2014, with about 2 billion atoms, corresponding to roughly 17 femtograms of antiprotonic helium.

    According to standard theories, protons and antiprotons are expected to have exactly the same mass. To date, no difference has been found between their masses, but pushing the precision limits of this comparison is a very important test of key theoretical principles such as the CPT symmetry. CPT is a consequence of basic symmetries of space-time, such as its isotropy in all directions. The observation of even a minute breaking of CPT would call for a review of our assumptions about the nature and properties of space-time.

    The ASACUSA collaboration is confident that it will be able to further improve the precision of antiproton’s mass by using two laser beams. In the near future, the start of the ELENA facility at CERN will also allow the precision of such measurements to be improved.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    Quantum Diaries

     
  • richardmitnick 9:59 am on November 1, 2016 Permalink | Reply
    Tags: , , , Particle Accelerators,   

    From FNAL: “What happens at the Test Beam Facility?” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    October 26, 2016
    No writer credit found

    1

    Many staff know the Fermilab Test Beam Facility as that building with the roof made of arched half pipes, but how many of us know what goes on under that roof?

    Physicist Mandy Rominsky has recently been leading tours of the facility, known as FTBF, for Fermilab employees. Fermilab Art Gallery curator Georgia Schwender snapped this photo of Rominsky, the facility’s manager, whose enthusiasm for the work was evident, Schwender said.

    Particle physicists from all over the world come to FTBF to conduct tests on their particle detectors, signing up for one or two weeks to use the facility, just like one might rent a timeshare.

    The users bring or ship their detectors to FTBF prior to or during their time slot. They install their detectors in the path one of the facility’s two beamlines, run beam through it 24/7, and measure the detectors’ responses to the beam. At the end of the test period, scientists are better able to characterize their detectors.

    FTBF can supply all kinds of particle beams, anywhere from 200 million to 120 billion electronvolts of energy. It can provide a proton beam and can produce beams of secondary particles, such as muons, pions, electrons and kaons.

    Four people run the facility: Rominsky, Physicist JJ Schmidt, Instrument Specialist Ewa Skup and Technician Todd Nebel. The quartet gets tremendous help from throughout the lab, and especially the Particle Physics and Accelerator divisions.

    Thanks to the FTBF crew for your excellent work!

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: