Tagged: PanSTARRS Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:33 pm on September 28, 2017 Permalink | Reply
    Tags: , , , , , NASA's Hubble Observes the Farthest Active Inbound Comet Yet Seen, PanSTARRS   

    From Hubble: “NASA’s Hubble Observes the Farthest Active Inbound Comet Yet Seen” 

    NASA Hubble Banner

    NASA/ESA Hubble Telescope

    NASA/ESA Hubble Telescope

    Sep 28, 2017

    Donna Weaver /
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4493 /
    dweaver@stsci.edu /

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland

    David Jewitt
    University of California, Los Angeles, California


    NASA’s Hubble Space Telescope has photographed the farthest active inbound comet ever seen, at a whopping distance of 1.5 billion miles from the Sun (beyond Saturn’s orbit). Slightly warmed by the remote Sun, it has already begun to develop an 80,000-mile-wide fuzzy cloud of dust, called a coma, enveloping a tiny, solid nucleus of frozen gas and dust. These observations represent the earliest signs of activity ever seen from a comet entering the solar system’s planetary zone for the first time.

    The comet, called C/2017 K2 (PANSTARRS) or “K2”, has been travelling for millions of years from its home in the frigid outer reaches of the solar system, where the temperature is about minus 440 degrees Fahrenheit. The comet’s orbit indicates that it came from the Oort Cloud, a spherical region almost a light-year in diameter and thought to contain hundreds of billions of comets.

    Oort Cloud NASA

    Comets are the icy leftovers from the formation of the solar system 4.6 billion years ago and therefore pristine in icy composition.

    “K2 is so far from the Sun and so cold, we know for sure that the activity — all the fuzzy stuff making it look like a comet — is not produced, as in other comets, by the evaporation of water ice,” said lead researcher David Jewitt of the University of California, Los Angeles. “Instead, we think the activity is due to the sublimation [a solid changing directly into a gas] of super-volatiles as K2 makes its maiden entry into the solar system’s planetary zone. That’s why it’s special. This comet is so far away and so incredibly cold that water ice there is frozen like a rock.”

    Based on the Hubble observations of K2’s coma, Jewitt suggests that sunlight is heating frozen volatile gases – such as oxygen, nitrogen, carbon dioxide, and carbon monoxide – that coat the comet’s frigid surface. These icy volatiles lift off from the comet and release dust, forming the coma. Past studies of the composition of comets near the Sun have revealed the same mixture of volatile ices.

    “I think these volatiles are spread all through K2, and in the beginning billions of years ago, they were probably all through every comet presently in the Oort Cloud,” Jewitt said. “But the volatiles on the surface are the ones that absorb the heat from the Sun, so, in a sense, the comet is shedding its outer skin. Most comets are discovered much closer to the Sun, near Jupiter’s orbit, so by the time we see them, these surface volatiles have already been baked off. That’s why I think K2 is the most primitive comet we’ve seen.”

    K2 was discovered in May 2017 by the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) in Hawaii, a survey project of NASA’s Near-Earth Object Observations Program.

    U Hawaii Pann-STARRS1 Telescope, located at Haleakala Observatory, Hawaii

    Jewitt used Hubble’s Wide Field Camera 3 at the end of June to take a closer look at the icy visitor.

    NASA/ESA Hubble WFC3

    Hubble’s sharp “eye” revealed the extent of the coma and also helped Jewitt estimate the size of the nucleus — less than 12 miles across — though the tenuous coma is 10 Earth diameters across.

    This vast coma must have formed when the comet was even farther away from the Sun. Digging through archival images, Jewitt’s team uncovered views of K2 and its fuzzy coma taken in 2013 by the Canada-France-Hawaii Telescope (CFHT) in Hawaii. But the object was then so faint that no one noticed it.

    CFHT Telescope, Maunakea, Hawaii, USA

    “We think the comet has been continuously active for at least four years,” Jewitt said. “In the CFHT data, K2 had a coma already at 2 billion miles from the Sun, when it was between the orbits of Uranus and Neptune. It was already active, and I think it has been continuously active coming in. As it approaches the Sun, it’s getting warmer and warmer, and the activity is ramping up.”

    But, curiously, the Hubble images do not show a tail flowing from K2, which is a signature of comets. The absence of such a feature indicates that particles lifting off the comet are too large for radiation pressure from the Sun to sweep them back into a tail.

    Astronomers will have plenty of time to conduct detailed studies of K2. For the next five years, the comet will continue its journey into the inner solar system before it reaches its closest approach to the Sun in 2022 just beyond Mars’ orbit. “We will be able to monitor for the first time the developing activity of a comet falling in from the Oort Cloud over an extraordinary range of distances,” Jewitt said. “It should become more and more active as it nears the Sun and presumably will form a tail.”

    Jewitt said that NASA’s James Webb Space Telescope, an infrared observatory scheduled to launch in 2018, could measure the heat from the nucleus, which would give astronomers a more accurate estimate of its size.

    The team’s results will appear in the September 28 issue of The Astrophysical Journal Letters.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

    NASA image

  • richardmitnick 3:38 pm on July 11, 2017 Permalink | Reply
    Tags: , , , , , , Extreme variability quasars, PanSTARRS,   

    From astrobites: “Extreme variability quasars” 

    Astrobites bloc


    Jul 11, 2017
    Suk Sien Tie

    Title: Extreme variability quasars from the Sloan Digital Sky Survey and the Dark Energy Survey
    Authors: Nick Rumbaugh, Yue Shen, Eric Morganson et al.
    First Author’s Institution: National Center for Supercomputing Applications, IL.
    Status: Submitted to ApJ, open access

    Active galactic nuclei (AGNs), the central active regions of supermassive black holes, have many masks. They span a large range of luminosities from roughly ten billion to ten thousand Milky Ways (even at their dimmest, they are still one of the brightest objects in the Universe). They have varying radio brightnesses and the presence of radio jets is not a luxury to be had by all. When scrutinized with a spectrograph, they reveal telltale signs of different anatomies. Some exhibit broad emission lines, others narrow, and still others both. Therefore, AGNs carry a myriad of different names, such as Seyferts, blazars, and quasars. However, the multifaceted appearances of AGNs are deceiving — the AGN unification theory postulates that which type of AGN you see depends on your viewing angle and the wavelength of light you’re looking in. Otherwise, you’re simply looking at one and the same object, the central bright region of a supermassive black hole.

    All AGNs have one thing in common: they vary in brightness. In (not quite) the (exact) words of Shakespeare, an AGN by any other name would always vary. In particular, quasars (the highest redshift and most luminous subclass of AGN and the main focus of the paper) are known to vary by 10%-30%, corresponding to ~0.1 mag to ~0.3 mag, over the course of many years. The physical mechanism for their variability is still an open question, with the leading theory being temperature fluctuations in the black hole accretion disk driven by an X-ray source near the central black hole. The authors of this paper are not interested in regular varying quasars, instead they are interested in quasars that vary by 1 magnitude or more — the extreme variability quasars.

    There is a hint of such a population from previous studies, such as a joint PanStarrs-SDSS search that uncovered ~40 quasars that vary by more than 1.5 magnitudes.

    U Hawaii Pann-STARRS1 Telescope, located at Haleakala Observatory, Hawaii

    SDSS Telescope at Apache Point Observatory, NM, USA

    Extreme variability quasars are thought to be the larger class of an intriguing group of quasars that has only recently been discovered (oh no, not another group), known as changing look quasars (see this for an example). Changing look quasars pose a significant challenge to the AGN unification model, because they change from one AGN type to another over the course of several decades. More often than not, these changes are accompanied by a large magnitude variation. Aside from studying the properties of the extreme variability quasars, the authors also hope to build a larger sample of changing look quasars in order to probe their origin(s).

    Using both SDSS and the Dark Energy Survey (DES) to construct a search baseline of ~15 years, the authors found ~1000 spectroscopically confirmed quasars that vary by 1 magnitude or more.

    Dark Energy Survey

    Dark Energy Camera [DECam], built at FNAL

    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam

    They also recovered all previously known changing look quasars that fall within their footprint. Figure 1 shows the light curves and spectrum for one of their objects. In addition to finding that extreme variability quasars have stronger emission line strengths compared to regular quasars with similar redshifts and luminosities, their Eddington ratios are also lower. The Eddington ratio is a ratio of the quasar luminosity, which depends on the accretion rate, to the Eddington luminosity, which is the theoretical maximum luminosity. Figure 2 shows the relation between the maximum variability of the extreme variability quasars and their Eddington ratios. There is a trend of decreasing Eddington ratios with variability, leading to the interpretation that the extreme variabilities are connected to the Eddington ratios. By extension, the authors attribute the reason changing-look quasars change types to their varying accretion rates caused by internal accretion disk processes.

    An example extreme variability quasar discovered in this study. The top and middle panels show its light curves in two different filter bandpasses at different wavelengths, both of which have dimmed by more than 1 magnitude over ~15 years. The bottom panel shows its SDSS spectrum, which contains the usual broad emission lines associated with quasars. [Figure 2 in paper]

    Fig. 2: Eddington ratio as a function of maximum variability for the extreme variability quasars (red) and regular quasars with similar redshifts and luminosities (black). The blue points are the median Eddington ratio in bins of maximum variability. There is a trend of decreasing Eddington ratio with increasing variability. [Figure 11 in paper]

    Using a simple model, the authors estimated the intrinsic fraction of extreme variability quasars to be between ~30-50%, which is much higher than the observed fraction of 10%. With more frequent searches over a wider area and longer period, we should discover more of these exotic objects to help shed light on the physical mechanism of quasar variability and the phenomena of the quasar population as a whole.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    What do we do?

    Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
    Why read Astrobites?

    Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.
    Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

  • richardmitnick 11:32 am on October 31, 2016 Permalink | Reply
    Tags: , , , , PanSTARRS,   

    From CfA: “Hypervariable Galactic Nuclei” 

    Harvard Smithsonian Center for Astrophysics

    Center For Astrophysics

    Extreme variability in the intensity of the optical light of galaxies, by factors of two or more, is of great interest to astronomers. It can flag the presence of rare types of supernovae, for example, or spot sudden accretion activity around quiescent black holes or around the supermassive black hole at the galaxy’s nucleus. In recent years systematic searches for such variability have been made using instruments that can survey wide swaths of the sky. One, the Panoramic Survey Telescope & Rapid Response System (PanSTARRS), is a facility capable very wide-field imaging using a combination of relatively small mirrors coupled with very large digital cameras, and it can observe the entire sky accessible to it several times a month.


    CfA astronomer Martin Elvis was part of a team of scientists that looked for variability in galaxies by comparing PanSTARRS images of the sky with images taken by an earlier survey, the Sloan Digital Sky Survey, about ten years before; the results were followed up with several other telescopes.

    SDSS Telescope at Apache Point, NM, USA
    SDSS Telescope at Apache Point, NM, USA

    Their comparison spanned nearly one-third of the whole sky. After sifting through thousands of apparent transients per month to check, among other things, for accurate spatial coincidences, that the candidates were galaxies, and that multiple observations confirmed the variability, the team reports finding seventy-six reliable objects. Spectroscopic followups and other observations were then able to classify these into nine categories, including supernovae and radio-emitting galaxies. In the end, the team found fifteen hypervariable sources that have brightened by almost a factor of ten in the past decade; light from the most distant one of these has been traveling for about nine billion years. The galaxies’ light is blue in color and has been steadily changing, usually getting weaker.

    The astronomers offer four possible explanations for these strange objects. The first is microlensing: the variability is due to gravitational lensing effects by a star in a foreground galaxy.

    Gravitational microlensing
    Gravitational microlensing

    Since it seems likely that this must happen sometime, this option is slightly preferred by the authors. Variable accretion onto a black hole is another possibility, but there are no convincing physical models to describe the detailed results yet. Two other options, the tidal disruption of a passing star by a dormant black hole or variable extinction by a clumpy medium in the galaxy, seem less likely. The scientists suggest some new observations that could help sort out these different possibilities, not the least of which is a larger systematic monitoring program to increase the statistics of these strange, blue, hypervariable galaxies.


    Slow-blue Nuclear Hypervariables in PanSTARRS-1, Lawrence, A.; Bruce, A. G.; MacLeod, C.; Gezari, S.; Elvis, M.; Ward, M.; Smartt, S. J.; Smith, K. W.; Wright, D.; Fraser, M.; Marshall, P.; Kaiser, N.; Burgett, W.; Magnier, E.; Tonry, J.; Chambers, K.; Wainscoat, R.; Waters, C.; Price, P.; Metcalfe, N.; Valenti, S.; Kotak, R.; Mead, A.; Inserra, C.; Chen, T. W.; and Soderberg, A., MNRAS 463, 296, 2016.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Center for Astrophysics combines the resources and research facilities of the Harvard College Observatory and the Smithsonian Astrophysical Observatory under a single director to pursue studies of those basic physical processes that determine the nature and evolution of the universe. The Smithsonian Astrophysical Observatory (SAO) is a bureau of the Smithsonian Institution, founded in 1890. The Harvard College Observatory (HCO), founded in 1839, is a research institution of the Faculty of Arts and Sciences, Harvard University, and provides facilities and substantial other support for teaching activities of the Department of Astronomy.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: