Tagged: Paleoglaciology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:02 am on July 2, 2021 Permalink | Reply
    Tags: "Cores 3.0- Future-Proofing Earth Sciences’ Historical Records", , , , , , Paleoglaciology   

    From Eos: “Cores 3.0- Future-Proofing Earth Sciences’ Historical Records” 

    From AGU
    Eos news bloc

    From Eos

    24 June 2021
    Jane Palmer

    Core libraries store a treasure trove of data about the planet’s past. What will it take to sustain their future?

    1
    The main storage room at the National Science Foundation Ice Core Facility currently holds approximately 22,000 meters of ice cores. The room temperature is kept at about –36°C. Credit: National Science Foundation (US) Ice Core Facility.

    In September 2013, a major storm dumped a year’s worth of rain on the city of Boulder, Colo., in just 2 days. Walls of water rushed down the mountainsides into Boulder Creek, causing it to burst its banks and flood nearby streets and buildings.

    Instead of trying to escape the flood, Tyler Jones, a biogeochemist at the Institute of Arctic and Alpine Research at CU-Boulder(US), drove directly toward it. His motive? Mere meters from the overflowing creek, a large freezer housed the lab’s collection of precious ice cores.

    “We didn’t know if the energy was going to fail in the basement,” Jones said. “So I am scrambling around with a headlamp on, less than a hundred yards from a major flood event, trying to figure out what is going on.”

    The INSTAAR scientists were lucky that year, as their collection survived unscathed. But devastating core culls have happened in the past decade. In a 2017 freezer malfunction at the University of Alberta (CA) in Edmonton, Canada, part of the world’s largest collection of ice cores from the Canadian Arctic was reduced to puddles. “Thinking of those kinds of instances makes me lose sleep at night,” said Lindsay Powers, technical director of the National Science Foundation Ice Core Facility in Denver.

    Collections of cores—including ice cores, tree ring cores, lake sediment cores, and permafrost cores—represent the work of generations of scientists and sometimes investments of millions of dollars in infrastructure and field research. They hold vast quantities of data about the planet’s history ranging from changes in climate and air quality to the incidence of fires and solar flares. “These materials cover anywhere from decades to centuries and even up to millions of years,” said Anders Noren, director of the NSF Facilities for Continental Scientific Drilling & Coring-U Minnesota (US) in Minneapolis, which includes a library of core samples. “It’s a natural archive and legacy that we all share and can tap into—it’s a big deal.”

    Historically, some individual scientists or groups have amassed core collections, and on occasion, centralized libraries of cores have emerged to house samples. But irrespective of the types of cores stored or their size, these collections have faced a series of growing pains. Consequently, facilities have had to adapt and evolve to keep pace and ensure that their collections are available for equitable scientific research.

    “We spend a lot of time in science thinking about open access when it comes to data,” said Merritt Turetsky, director of INSTAAR. Scientists should be having similar conversations about open access to valuable core samples, she said. “It is important to make science fair.”

    Cores and Cookies

    After 30 years of collecting wood samples for his research, astronomer Andrew Ellicott Douglass founded the Laboratory of Tree-Ring Research-UArizona (US) in 1937. With its creation at the University of Arizona in Tucson, Douglass formalized the world’s first tree ring library. Its development in the years since is a paradigm for the way core libraries are subject to both luck and strategy.

    Dendrochronologists use tools to extract cores from trees to date structures and reconstruct past events such as fire regimes, volcanic activity, and hydrologic cycles. In addition to these narrow cores, they can also saw across tree stumps to get a full cross section of the trunk, called a cookie.

    2
    At the Laboratory of Tree-Ring Research in Tuscon, Ariz, curators are cataloging a more than a century’s worth of wood samples. Credit: Peter Brewer.

    Douglass originally collected cores and cookies to study the cycle of sunspots, as astronomers had observed that the number of these patches on the Sun increased and decreased periodically. The number of sunspots directly affects the brightness of the Sun and, in turn, how much plants and trees grow. By looking at the thickness of the tree rings, Douglass hoped to deduce the number of sunspots in a given year and how that number changed over the years. Douglass also went on to date archaeological samples from the U.S. Southwest using his tree ring techniques. On the way, he amassed an impressive volume of wood.

    Douglass’s successors at LTRR were equally fervent in their collection. Thomas Swetnam, the director of LTRR between 2000 and 2014, estimated that his collection of cores and cookies gathered in a single decade occupied about 100 cubic meters.

    During the turn of the 20th century, loggers felled a third of the giant sequoias in what is now Sequoia National Park in California. The only upside to the environmental tragedy was that it afforded researchers like Swetnam, who studies past fire regimes, the opportunity to collect cookies. “We were able to go with very large chainsaws and cut slabs of wood out of these sequoia stumps, some of them 30 feet [9 meters] in diameter,” Swetnam said. “Then we would rent a 30-foot U-Haul truck, fill it up, and bring it back to the lab.”

    3
    Tree trunks, cores, and cookies are stored in a humidity-controlled environment at the Laboratory of Tree-Ring Research in Tuscon, Ariz. Credit: Peter Brewer.

    The laboratory’s collection catalogs about 10,000 years of history, Swetnam said. It also amounts to a big space issue. “We’re talking about probably on the order of a million samples, maybe more,” Swetnam said. “We’re not even sure exactly what the total count is.”

    The tree ring samples had been temporarily stored under the bleachers of Arizona Stadium in Tucson for nearly 70 years, but with generous funding from a private donor, a new structure was built to house the laboratory and its collection in 2013. The building, shaped like a giant tree house, solved the space issue, and in 2017 the lab received further funding to hire its first curator, who was charged with the gigantean task of organizing more than a hundred years of samples.

    “It is a very long term endeavor,” said Peter Brewer, the LTRR curator who now works with a 20-person team on the collection. Brewer set to standardizing the labeling for the samples and is the co-lead on an international effort to produce a universal data standard for dendrochronological data. With this in place, LTRR will soon be launching a public portal for its collections, where scientists can log on and request a sample loan. This portal will make the collection more accessible to researchers around the world.

    Ice Issues

    In the early 1900s, around the same time that Douglass was collecting his first wood samples, James E. Church devised a tool to sample ice cores 9 meters below the ground. By the 1950s, scientists were able to extract cores from depths of more than 400 meters in the Greenland Ice Sheet. In the following years, scientists have drilled deeper and deeper to extract and collect ice cores from glaciers around the world.

    Ice cores can reveal a slew of information, including data about past climate change and global atmospheric chemistry. “We’ve learned so much already about environmental challenges from ice cores, and we think that there is so much more to learn,” said Patrick Ginot of the Institute of Research for Development at the Institute of Environmental Geosciences in Grenoble, France.

    Some labs, such as INSTAAR, maintain their own collections, but space can quickly become an issue, and there’s constant concern about keeping the samples frozen and safe. Taking into consideration the massive effort involved in securing a single ice core, each sample is akin to an irreplaceable work of art. “Recovering ice from 2 miles [3.2 kilometers] beneath an ice sheet in extreme cold environments is a massive challenge,” Jones said. “You can’t just go back and repeat that…. It’s a one-time deal.”

    The National Ice Core Lab (US) in Denver houses many ice cores collected by scientists on National Science Foundation–funded projects. The goal is to provide a fail-safe storage environment and open access to researchers wishing to use the samples. Denver’s altitude and low humidity make running the freezers more efficient, and a rolling rack system in a new freezer will increase storage capacity by nearly a third. The facility also has backups galore: “We have redundancy on everything, and everything is alarmed,” Powers said.

    The carbon footprint of running giant freezers at −36°C is high, but the lab is in the process of installing a new freezer that uses carbon dioxide refrigeration, the most environmentally friendly refrigeration system on the market. “We are at work here promoting climate research, so we want to be using the best technology possible to have the lowest impact on our environment,” Powers said.

    Science Without Borders

    The ice core community has adapted to various challenges that come with sustaining their libraries and working toward making the samples available on an open-access basis. But other parts of the cryosphere community are still catching up, Turetsky said.

    Turetsky collects hundreds of northern soil and permafrost cores each year with her INSTARR team, and scores of other permafrost researchers are amassing equal numbers of cores from across the United States and Canada on a yearly basis. The U.S. permafrost community has more samples than the U.S. ice core community—but still doesn’t have a centralized library.

    Turetsky said she is looking to learn from the ice core community while recognizing that the challenges are different for permafrost researchers. Because it is easier and less expensive to collect samples, the community hasn’t needed to join forces and pool resources in the same way the ice core community has, leading to a more distributed endeavor.

    Turetsky’s vision is to establish a resource for storing permafrost samples that anyone can tap into, as well as for the U.S. permafrost community to come together to develop guiding principles for the data collected. The University of Alberta’s Permafrost Archives Science Laboratory, headed by Duane Froese, is a great example of a multiuser permafrost archive, Turetsky said. Ultimately, the community may need to think about a regional hub with international connections to propel scientific inquiry.

    “We can’t do our best science siloed by national borders,” Turetsky said. “I would love to see sharing of permafrost samples or information be a type of international science diplomacy.”

    A Race Against Time

    The need for the cryosphere community (encompassing both ice core and permafrost researchers) to come together and collect data in such a way that they can be shared and used in the future has never been greater, Turetsky said. The Arctic is warming faster than anywhere else on the planet, and simultaneously warming sea ice, ice sheets, and permafrost have great potential to influence Earth’s future climate. “So not only are [ice and permafrost environments] the most vulnerable to change, they also will change and dictate our climate future,” Turetsky said.

    In the worst-case scenario, the Arctic may lose all sea ice or permafrost, and scientists will lose the ability to collect core samples. “So it is a race against time to get cores, to learn, and to communicate to the public how dire the situation is,” Turetsky said.

    Tree ring researchers are facing their own race against time, Swetnam said. As wildfires rage across the United States, scientists are trying to collect as much as possible from older trees before they are claimed by flames. “The history that’s contained in the rings is not renewable,” Swetnam said. “It’s there, and if it’s lost, it’s lost.”

    That scientists may lose the ability to collect some samples makes maintaining core libraries and sharing their resources all the more important, Brewer said. “A good chunk of what we have no longer exists in the forests. All that is left are the representative pieces of wood that are in our archives.”

    A Futuristic Vision

    Recognizing threats posed by climate change, one group of cryosphere scientists has set out to create a visionary ice core library for future generations. Instead of housing core samples from around the world in one country, the group plans to store them in Antarctica, a continent dedicated to science and peace; the 1959 Antarctic Treaty specifies that “scientific observations and results from Antarctica shall be exchanged and made freely available.”

    5
    Ice cores stored in the temporary core storage in the underground ice cave constructed by the EastGRIP – The East Greenland Ice-core Project – University of Copenhagen [Københavns Universitet](DK). Credit: Tyler R. Jones/INSTAAR.

    And the ice cores won’t be stored in a building. They’ll be buried deep in the largest natural freezer of them all: the Antarctic Ice Sheet. This core library will act as a heritage data set, a legacy for future generations of scientists from all over the world. Researchers can access the cores in the interim, especially those taken from glaciers that no longer exist, and the Ice Memory project’s organizers are currently addressing how to grant access to the cores in a way that is equitable, as travel to Antarctica is cost prohibitive for many researchers.

    The first stage of the project has focused on how to store the cores in the ice sheet. The plan is to store them about 10 meters deep, where the temperature is a stable −50°C throughout the year. “Even if there are a few degrees of warming in the next decades or centuries, it will still be kept at minus 50° or 45°,” said Ginot, one of the coordinators of the Ice Memory project.

    Researchers from the French and Italian polar institutes have already trialed the best storage techniques on Dome Concordia in Antarctica. They dug 8-meter-deep, 100-meter-long trenches and inserted giant sausage-shaped balloons on the ice floors. Then they used the dug-out snow to cover the balloons and allowed the snow to harden. “When they disassembled the sausage, they had a cave under the snow,” Ginot said.

    6
    Constructing giant trenches at Dome Concordia in Antarctica. Digging these trenches was the first step in trialing how to store ice cores in underground caves. Credit: Armand Patoir, French Polar Institute Paul-Émile Victor [Institut polaire français Paul-Émile Victor] (FR).

    The project’s models forecast that the cavities will last for 20–30 years, at which time the scientists will create more caves at a minimal cost, Ginot said. The current focus of the team is to collect samples from glaciers that are quickly disappearing, such as the northern ice field near the summit of Mount Kilimanjaro in Tanzania.

    Recognizing the Value

    Core libraries provide a vital window into events that happened before human records began, a repository for data to better understand Earth systems, and resources to help forecast future scenarios. Researchers believe that as science and technology evolve, they’ll be able to extract even more information from core collections. “We recognize that this is a library of information, and we’ve just read some of the pages of some of the books,” Swetnam said. “But as long as the books are still there, we can go back and interrogate them.”

    While the libraries for ice, tree ring, and sediment cores are maintained, scientists are able to access the “books” for further analysis whenever they want.

    “We see all kinds of cases where a new analytical technique becomes available, and people can ask new questions of these materials without having to go and collect them in the field,” Noren said. New analytical techniques have led to more accurate reconstruction of past temperatures from lake core sediments, for example, and by integrating several core data sets, scientists have revealed that humans began accelerating soil erosion 4,000 years ago.

    The multifaceted value of the core collections has become even more pronounced during the COVID-19 pandemic, Noren said. Core libraries have allowed scientists to continue moving forward with their research even when they can’t do fieldwork. As recently as March 2021, for example, scientists published research on the multimillion-year-old record of Greenland vegetation and glacial history that was based on existing cores, not those collected by the scientists’ field research.

    Although some libraries struggle with space constraints, maintaining suitable environmental conditions, cataloging samples, or ensuring open access, every scientist or curator of a core collection shares one concern: sustaining funding.

    It costs money to run a core library: money to house samples, money to employ curators, and money to build systems that allow equal and fair access to data. Securing that financial support is a challenge. “Funding priority is about exciting research or a new instrument,” Brewer said. “Updating or maintaining a collection of scientific samples is not such an easy sell.”

    Core libraries represent millions of years of history and hold keys to understanding and protecting Earth’s future. They are natural archives of ice-covered continents, forested lands, and ancient cultures. As such, they are a legacy to be preserved and protected for future generations, Noren said. “But if you view it from another lens, they are just storage,” he explained. “So we need to elevate that conversation and make it clear that these materials are essential for science.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

     
  • richardmitnick 10:24 am on June 20, 2021 Permalink | Reply
    Tags: "Icebergs drifting from Canada to Southern Florida", , , Paleoglaciology, ,   

    From Woods Hole Oceanographic Institution (US) : Women in STEM- Dr. Jenna Hill “Icebergs drifting from Canada to Southern Florida” 

    From Woods Hole Oceanographic Institution (US)

    June 16, 2021
    Media Relations Office
    media@whoi.edu
    (508) 289-3340

    Woods Hole Oceanographic Institution & United States Geological Survey data shows how icebergs drifted more than 5,000km during the last glaciation.

    1
    These 3D perspective views of the seafloor bathymetry from multibeam sonar offshore of South Carolina show numerous grooves carved by drifting icebergs. As iceberg keels plow into the seafloor, they dig deep grooves that push aside boulders and piles of sand and mud along their tracks. Sediment cores from nearby buried iceberg scours were used to determine when these icebergs travelled south along the coast. Credit: Jenna Hill, U.S. Geological Survey, Pacific Coastal & Marine Science Center (US).

    Woods Hole Oceanographic Institution (WHOI) climate modeler Dr. Alan Condron and United States Geological Survey (USGS) research geologist Dr. Jenna Hill have found evidence that massive icebergs from roughly 31,000 years ago drifted more than 5000km (> 3,000 miles) along the eastern United States coast from Northeast Canada all the way to southern Florida. These findings were published today in Nature Communications.

    Using high resolution seafloor mapping, radiocarbon dating and a new iceberg model, the team analyzed about 700 iceberg scours (“plow marks” on the seafloor left behind by the bottom parts of icebergs dragging through marine sediment ) from Cape Hatteras, North Carolina to the Florida Keys. The discovery of icebergs in this area opens a door to understanding the interactions between icebergs/glaciers and climate.

    “The idea that icebergs can make it to Florida is amazing,” said Condron. “The appearance of scours at such low latitudes is highly unexpected not only because of the exceptionally high melt rates in this region, but also because the scours lie beneath the northward flowing Gulf Stream.”

    “We recovered the marine sediment cores from several of these scours, and their ages align with a known period of massive iceberg discharge known as Heinrich Event 3. We also expect that there are younger and older scours features that stem from other discharge events, given that there are hundreds of scours yet to be sampled,” added Hill.

    To study how icebergs reached the scour sites, Condron developed a numerical iceberg model that simulates how icebergs drift and melt in the ocean. The model shows that icebergs can only reach the scour sites when massive amounts of glacial meltwater (or glacial outburst floods) are released from Hudson Bay. “These floods create a cold, fast flowing, southward coastal current that carries the icebergs all the way to Florida” says Condron. “The model also produces ‘scouring’ on the seafloor in the same places as the actual scours”

    The ocean water temperatures south of Cape Hatteras are about 20-25°C (68-77°F). According to Condron and Hill, for icebergs to reach the subtropical scour locations in this region, they must have drifted against the normal northward direction of flow — the opposite direction to the Gulf Stream. This indicates that the transport of icebergs to the south occurs during large-scale, but brief periods of meltwater discharge.

    “What our model suggests is that these icebergs get caught up in the currents created by glacial meltwater, and basically surf their way along the coast. When a large glacial lake dam breaks, and releases huge amounts of fresh water into the ocean, there’s enough water to create these strong coastal currents that basically move the icebergs in the opposite direction to the Gulf Stream, which is no easy task” Condron said.

    While this freshwater is eventually transferred northward by the Gulf Stream, mixing with the surrounding ocean would have caused the meltwater to be considerably saltier by the time it reached the most northern parts of the North Atlantic. Those areas are considered critical for controlling how much heat the ocean transports northward to Europe. If these regions become abundant with freshwater, then the amount of heat transported north by the ocean could significantly weaken, increasing the chance that Europe could get much colder.

    The routing of meltwater into the subtropics – a location very far south of these regions – implies that the influence of meltwater on global climate is more complex than previously thought, according to Condron and Hill. Understanding the timing and circulation of meltwater and icebergs through the global oceans during glacial periods is crucial for deciphering how past changes in high-latitude freshwater forcing influenced shifts in climate.

    “As we are able to make more detailed computer models, we can actually get more accurate features of how the ocean actually circulates, how the currents move, how they peel off and how they spin around. That actually makes a big difference in terms of how that freshwater is circulated and how it can actually impact climate,” Hill added.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Woods Hole Oceanographic Institute

    Mission Statement

    The Woods Hole Oceanographic Institution (US) is dedicated to advancing knowledge of the ocean and its connection with the Earth system through a sustained commitment to excellence in science, engineering, and education, and to the application of this knowledge to problems facing society.

    Vision & Mission

    The ocean is a defining feature of our planet and crucial to life on Earth, yet it remains one of the planet’s last unexplored frontiers. For this reason, WHOI scientists and engineers are committed to understanding all facets of the ocean as well as its complex connections with Earth’s atmosphere, land, ice, seafloor, and life—including humanity. This is essential not only to advance knowledge about our planet, but also to ensure society’s long-term welfare and to help guide human stewardship of the environment. WHOI researchers are also dedicated to training future generations of ocean science leaders, to providing unbiased information that informs public policy and decision-making, and to expanding public awareness about the importance of the global ocean and its resources.

    The Institution is organized into six departments, the Cooperative Institute for Climate and Ocean Research, and a marine policy center. Its shore-based facilities are located in the village of Woods Hole, Massachusetts and a mile and a half away on the Quissett Campus. The bulk of the Institution’s funding comes from grants and contracts from the National Science Foundation(US) and other government agencies, augmented by foundations and private donations.

    WHOI scientists, engineers, and students collaborate to develop theories, test ideas, build seagoing instruments, and collect data in diverse marine environments. Ships operated by WHOI carry research scientists throughout the world’s oceans. The WHOI fleet includes two large research vessels (R/V Atlantis and R/V Neil Armstrong); the coastal craft Tioga; small research craft such as the dive-operation work boat Echo; the deep-diving human-occupied submersible Alvin; the tethered, remotely operated vehicle Jason/Medea; and autonomous underwater vehicles such as the REMUS and SeaBED.

    WHOI offers graduate and post-doctoral studies in marine science. There are several fellowship and training programs, and graduate degrees are awarded through a joint program with the Massachusetts Institute of Technology(US). WHOI is accredited by the New England Association of Schools and Colleges (US). WHOI also offers public outreach programs and informal education through its Exhibit Center and summer tours. The Institution has a volunteer program and a membership program, WHOI Associate.

    On October 1, 2020, Peter B. de Menocal became the institution’s eleventh president and director.

    History

    In 1927, a National Academy of Sciences(US) committee concluded that it was time to “consider the share of the United States of America in a worldwide program of oceanographic research.” The committee’s recommendation for establishing a permanent independent research laboratory on the East Coast to “prosecute oceanography in all its branches” led to the founding in 1930 of the Woods Hole Oceanographic Institution(US).

    A $2.5 million grant from the Rockefeller Foundation supported the summer work of a dozen scientists, construction of a laboratory building and commissioning of a research vessel, the 142-foot (43 m) ketch R/V Atlantis, whose profile still forms the Institution’s logo.

    WHOI grew substantially to support significant defense-related research during World War II, and later began a steady growth in staff, research fleet, and scientific stature. From 1950 to 1956, the director was Dr. Edward “Iceberg” Smith, an Arctic explorer, oceanographer and retired Coast Guard rear admiral.

    In 1977 the institution appointed the influential oceanographer John Steele as director, and he served until his retirement in 1989.

    On 1 September 1985, a joint French-American expedition led by Jean-Louis Michel of IFREMER and Robert Ballard of the Woods Hole Oceanographic Institution identified the location of the wreck of the RMS Titanic which sank off the coast of Newfoundland 15 April 1912.

    On 3 April 2011, within a week of resuming of the search operation for Air France Flight 447, a team led by WHOI, operating full ocean depth autonomous underwater vehicles (AUVs) owned by the Waitt Institute discovered, by means of sidescan sonar, a large portion of debris field from flight AF447.

    In March 2017 the institution effected an open-access policy to make its research publicly accessible online.

    The Institution has maintained a long and controversial business collaboration with the treasure hunter company Odyssey Marine. Likewise, WHOI has participated in the location of the San José galleon in Colombia for the commercial exploitation of the shipwreck by the Government of President Santos and a private company.

    In 2019, iDefense reported that China’s hackers had launched cyberattacks on dozens of academic institutions in an attempt to gain information on technology being developed for the United States Navy. Some of the targets included the Woods Hole Oceanographic Institution. The attacks have been underway since at least April 2017.

     
  • richardmitnick 10:02 pm on June 7, 2021 Permalink | Reply
    Tags: , Antarctica’s McMurdo Station (US), , , , , , , , , , Paleoglaciology, , The volcanic rock and fluids that well up from below the ocean floor in some regions offer scientists a clear look at geologic processes that have shaped life on our planet., WHOI "ALVIN"submersible, WHOI R/V "Atlantis",   

    From Woods Hole Oceanographic Institution (US) : Women in STEM Sarah Das; Kristin Poinar; Rebecca Carey; Julie Huber “Going the Distance” 

    From Woods Hole Oceanographic Institution (US)

    June 7, 2021
    David Levin

    Ocean science at the extremes

    1
    Through the lens of remotely operated vehicle Jason, anemones and shrimp cluster around a hydrothermal vent along a site called the Piccard Field, 5,000 meters (16,404 feet) deep on the Caribbean seafloor during a 2012 expedition. Photo courtesy of Chris German, National Aeronautics Space Agency (US)/ROV Jason Team, © Woods Hole Oceanographic Institution.

    Aboard the R/V Atlantis, the human-occupied vehicle Alvin perches neatly inside a small two-story hangar, where it’s draped with ventilation tubes and electrical cables.

    The streamlined white hull of the sub, which has lately been going through a major overhaul to extend its reach to greater depths, reflects the lights of the deck beyond. Its two robotic arms fold neatly at its sides, framing portholes carved into a gleaming new titanium crew sphere. It looks like science fiction come to life: a small but formidable spacecraft poised to travel to another world.

    IN REALITY, THAT’S NOT FAR FROM THE TRUTH. SEAWATER COVER MORE THAN 71% OF EARTH’S SURFACE, leaving much of the globe unknown and mysterious to humans. Exploring its secrets is a bit like studying the workings of a distant planet.

    “The ocean is so enormous, so vast, that it’s nearly impossible to have a thorough understanding of any one part of it unless you’re actually there,” says Adam Soule, a submarine vulcanologist and former chief scientist for deep submergence at WHOI. “There’s an aspect of exploration and discovery that is inherent in marine research.”

    In their constant search for understanding, oceanographers from WHOI and elsewhere must go to extremes. Some of those scientists board Alvin multiple times every year, diving to some of the deepest and most mysterious areas of the seafloor. Some peer through the eyes of complex robotic vehicles that can travel where humans can’t go. Others travel to the distant edges of the ocean’s reach, trekking across frozen polar landscapes to collect ice cores that reveal what the sea looked like thousands of years ago.

    No matter what aspect of the oceans these scientists study, their work can be a massive undertaking. From the deepest marine trench to the tallest landlocked mountain, the sea’s influence touches nearly every corner of the globe: It provides food for billions of humans, supplies life-giving oxygen to the atmosphere, and directly affects climate from the deserts of Arizona to the icy coasts and frozen interior of Antarctica. Unraveling the mysteries of a realm this large means entering some of the most remote and dangerous places on the planet. But by going to these great lengths, oceanographers are gaining insights that may answer fundamental questions about life on Earth—and possibly even life beyond.

    2
    Submersible Alvin is prepped in the high bay on R/V Atlantis before dive operations along a segment of a deep-sea mountain range known as the East Pacific Rise, off the coast of Costa Rica. Photo by Ken Kostel, © Woods Hole Oceanographic Institution.

    The poles

    The first thing that hits you when you sail into Antarctica’s Palmer Station is the smell. After five days at sea in some of the roughest waters on Earth, new arrivals are greeted by a whiff of guano—excrement from the massive penguin colonies that inhabit the peninsula. But the view makes up for it, says WHOI marine geochemist Dan Lowenstein.

    “You sail between these sheer walls of rock and snow in the Neumayer Channel, which is the navigational passage along the peninsula, and when you come around one last island, you see this incredibly remote station,” he says. “It’s just a handful of buildings perched on a tiny bit of rock at the bottom of a huge glacier, next to a harbor bordered by 300-foot cliffs of ice.”

    Lowenstein arrived at Palmer in December, 2020 and plans to remain there for at least six months. It’s a position that requires a certain level of comfort in extreme isolation. Although the population of McMurdo Station, the major U.S. logistics hub on the continent, peaks at 1,300 during the Antarctic summer, the peak at Palmer is only about 45 people. During the Covid-19 pandemic, it’s running with an even smaller crew: Lowenstein is one of just 24 scientists and staff currently on hand.

    The global public health crisis not only reduced the number of people allowed at Palmer this year. It also hampered travel to the station. Under normal circumstances, the trip takes about a week. This year, Lowenstein spent more than a month in transit, thanks to multiday quarantine stops in Massachusetts, San Francisco, and Chile.

    It may be tiny and hard to reach, but Palmer enjoys an outsized importance in the world of oceanography and climate. It’s home to a Long Term Ecological Research (LTER) network of more than 30 sites across the globe that have been recording continuous environmental data and samples over the past few decades. At Palmer, the LTER focuses on life that exists in and around nearby sea ice.

    3
    A waddle of Gentoo penguins hop around the rocks of the West Antarctic peninsula, where WHOI marine geochemist Dan Lowenstein is currently stationed to study the changing metabolism of the region’s microbial communities Credit: Dan Lowenstein, © Woods Hole Oceanographic Institution.

    “There’s no place like it,” says WHOI geochemist Ben Van Mooy. “Since going online in 1990, Palmer has provided detailed information about a vast suite of chemical, biological, and physical ocean parameters in the waters that surround it. It’s an incredibly valuable record that doesn’t exist anywhere else.”

    Van Mooy has been to Palmer twice to gather samples of the sea ice that surrounds the station. This year, he sent Lowenstein in his place. Every chunk he collected can reveal volumes of information. Since it lies at the interface of the atmosphere and the ocean, Van Mooy says, sea ice is deeply affected by changes in both environments.

    “As the atmospheric climate changes, ocean circulation and other marine elements change, and those things are all reflected via changes in the sea ice. It’s a really sensitive indicator of both atmospheric and oceanographic processes,” Van Mooy adds.

    Van Mooy is also interested in how these same processes affect tiny plantlike microbes called phytoplankton. These minuscule organisms form the base of the Antarctic marine food web: They’re eaten by animals like krill and shrimp, which in turn provide food for whales, fish, penguins, and other large organisms. Like plants on land, they also produce huge amounts of oxygen for the planet. Yet precisely how they’re affected by changing climate is unclear.

    Whatever happens to phytoplankton has a ripple effect across the entire ecosystem of the Antarctic peninsula, Van Mooy says. That means the fate of sea ice at the extreme ends of the world is inextricably connected with the fate of animals like krill, penguins, seabirds, whales, and fish—but to understand this complex ecosystem, Van Mooy first has to venture out into the coastal ice pack to collect samples and data. It’s a dangerous undertaking.

    “The thing people forget about Antarctica is that it’s essentially abandoned,” he says. “You can be a quarter mile away from Palmer Station, but once it’s out of sight, there’s zero indication of humans: No people, no ships, no jets in the sky. Nothing. It’s just you and one or two other people working on a small boat in frigid and tumultuous Antarctic water. We take a lot of precautions, but the consequences of something going wrong are pretty severe—so it forces you to look inside yourself and see how much you truly love what you’re doing.”

    4
    Glaciologists Sarah Das and Kristin Poinar carrying a crate off the helicopter. (Photo by Chris Linder, © Woods Hole Oceanographic Institution)

    5
    A research team led by Das hikes alongside an icy crevasse in Greenland to study changes in meltwater distribution across the glacier as the climate warms Credit:Sarah Das, © Woods Hole Oceanographic Institution.

    LEARNING FROM ANCIENT ICE

    Studying the ocean’s impact on global climate doesn’t stop at the coast. Deep in the interiors of Antarctica and Greenland, a record of how the oceans behaved thousands of years in the past is preserved deep within layers of buried ice.

    Sarah Das, a WHOI glaciologist who studies climate history, spends her days traveling to some of the most lonely spots on the globe. She and her team have helicoptered into remote mountain glaciers in Greenland, and have flown on small aircraft into isolated corners of Antarctica to gather ice core samples.

    “I’m by definition interested in studying places that humans haven’t been to before. You can only find good climate archives in totally pristine, untouched ice, so wherever I go in the field, I’m usually the first person ever to set foot there,” she says.

    In isolated regions, polar ice sheets can stay untouched for hundreds of thousands of years, providing an incredibly long record of past climate, she notes. Unlike sea ice, which forms annually from seawater itself, glacial ice sheets are created by progressive layers of snow. As each storm blows through, new snowfall buries prior years’ snow layers deeper and deeper, preserving dust and tiny air bubbles in the process. “You essentially get all these bits of the past atmosphere trapped within ice layers. As climate scientists, we collect these clues and can unravel mysteries such as how much snow fell in the past, how many warm events there were, and what atmospheric greenhouse gas levels were during specific times in history. It feels sort of like having access to a time machine,” says Das.

    It turns out the ice layers also trap compounds that can help tease out natural processes happening in the oceans during the same era, she adds. “For example, in Greenland we recently showed how we can use organic compounds in ice to reconstruct the productivity of marine phytoplankton in the past. That extends our knowledge of how climate change impacts the base of the marine food web.”

    Collecting those samples is no small feat. Working in Greenland, Das spends days hauling gear on and off craggy coastal mountaintops to get to undisturbed patches of ice. In those cases, she says, there’s at least a few small communities along the coast that she can use as a base of operation—but when she’s working in Antarctica, her team has had to set up camp on the ice sheet for weeks at a time.

    “You get on a military transport plane in New Zealand where it’s summer, and several hours later, you set down in Antarctica and walk out into blinding snow. It’s like flying to another planet,” she says. “It doesn’t even feel connected to Earth.”

    6
    ROV Jason slowly touches down to take pictures with the “MISO” camera along Havre volcano, northeast of New Zealand. Photo courtesy of Dan Fornari, Chief scientists Adam Soule and Rebecca Carey, © Woods Hole Oceanographic Institution.

    The deep

    When it comes to extreme distances, traveling to the Antarctic ice sheet ranks high on the list. Traveling to the deep ocean, however, is an entirely different—and arguably more dangerous—challenge. It’s an otherworldly place, with crushing pressures, bizarre life, and a trove of hidden scientific secrets waiting to be revealed. To study its inner workings, ocean scientists must descend to its furthest reaches, either via robotic vehicles or by braving its depths in person within the cramped quarters of a research submarine. Once there, it becomes possible to find clues to how the very early Earth may have behaved.

    The volcanic rock and fluids that well up from below the ocean floor in some regions offer scientists a clear look at geologic processes that have shaped life on our planet. In areas called “spreading centers”—mountainous chains that extend for thousands of miles across the ocean floor—magma from the Earth’s mantle rises up from below the seafloor, pushes entire continental plates apart, and introduces key nutrients that enable life to thrive. Studying midocean spreading centers offers a window into that deep world, provided scientists can get there in the first place.

    “We’ve studied so little of the midocean ridge and other spreading centers—but as we keep returning to them we keep finding new things,” says Jeff Seewald, a marine geochemist at WHOI and interim Chief Scientist of the National Deep Submergence Facility.

    In his current post, Seewald spends his days not only studying fluids that well up from the seafloor but also working to make it possible for other scientists to reach those extreme depths.

    Since the HOV Alvin, WHOI’s famed research submersible, was overhauled in 2013, it has completed more than 400 dives, bringing at least 350 researchers on their first trip to the ocean floor. “That’s about the same as the number of U.S. astronauts that have left low Earth orbit since the space program started 60 years ago. In bringing humans to extreme places, the Alvin program punches well above its weight,” adds Adam Soule.

    At the moment, those scientists are able to go as deep as 4,500 meters (14,800 feet), but the sub’s latest overhaul will let it travel even farther—to 6,500 meters (21,325 feet). Th is new range will bring scientists to areas of the seafloor that were previously unreachable, enabling exiting new discoveries in the process.

    “Beyond 6,500 meters, there’s a whole region of the ocean that’s been understudied. We just don’t know what’s down there,” says Seewald.

    DEEP LIFE

    Many of the latest Alvin dives have been to hydrothermal vent sites—hot geysers found mainly in midocean spreading zones. Nearly 2,500 meters (8,200 feet) below the ocean’s surface, in an otherwise barren landscape, the chemicals released by each vent support a strange array of life. Giant tube worms, blind shrimp, huge clams, and other species thrive around the vent’s flanks, fed by microbes that create chemical energy from the venting fluids themselves.

    For many WHOI scientists, however, the extraordinary animals at vent sites aren’t the main attraction. Rather, it’s what exists below them. Vent sites provide a unique portal to the interior of the planet, as the ultrahot fluids that emerge from them contain minerals that are shaped by intense heat and pressure beneath the crust. They also provide clues to even more unusual life-forms—researchers are beginning to fi nd evidence of a hugely diverse array of microbial life both on and underneath the seafloor, where those liquids react with rock.

    To WHOI marine microbiologist Julie Huber, the idea that life exists deep within the crust make perfect sense. Most life-forms on Earth have been here for only a short chunk of the planet’s 4.5 billion-year history. For much of that time, microbes ran the show. “Microbes have likely existed for billions of years in these crustal environments of the deep ocean—so studying them can improve our understanding of the tree of life on our planet,” she says.

    To probe those mysteries, Huber not only samples fluid directly from vent sites but also has supervised even more dramatic eff orts: drilling operations that dig into the seafloor from aboard a specialized ship, tapping hundreds of feet straight down from the deepocean floor to reach fluids percolating through the mud and rock beneath.

    “Studying the sub-seafloor isn’t glamorous, and it’s really hard to reach,” she says. But it can be well worth the intense eff orts. Once a drill hole has been dug, scientists can cap it and sample fluids from below the seafloor on a regular basis, revealing a world that’s largely inaccessible through other methods.

    Ocean worlds

    Whether it’s traveling to the distant poles, the deepest vent sites, or below the ocean floor itself, the lengths to which oceanographers go to study Earth’s processes are helping answer questions not only about our own planet, but about other watery worlds as well.

    Enceladus, a tiny moon of Saturn, is only about 300 miles (500 kilometers) wide yet shares an eerie similarity to some of the regions on Earth that WHOI oceanographers are currently examining. Planetary scientists have recently shown that its surface is made up of slabs of solid water ice sitting atop a liquid saltwater ocean, similar to what you’d fi nd at our own planet’s poles.

    Mysterious geysers on its surface regularly eject material from Enceladus into space—and after NASA’s Cassini spacecraft maneuvered through those plumes in 2015, the data it sent back to Earth raised more than a few eyebrows. Not only did the plumes contain ice, water, and salt, but they also contained chemicals like silica, methane, carbon dioxide, and hydrogen, a suite of compounds that is all too familiar to oceanographers like Chris German.

    “The only place we know where little silica nanoparticles like these form on Earth today is in midtemperature hydrothermal vents” where the escaping fluid is roughly 100 degrees Celsius (212 degrees Fahrenheit), says German, a marine geochemist at WHOI. “It seems like compelling evidence that there could be submarine vents active today on the seafloor of Enceladus.”

    In other words, by studying the ocean’s extremes on Earth, WHOI researchers are setting the stage to examine a world disconnected from ours by more than 746 million miles (1.2 billion kilometers), German adds.

    The vent sites on Enceladus could share an exciting similarity with newly studied sites on our own planet.

    An unusual cluster of deep vents called the Von Damm field, which German helped identify in the Caribbean Sea less than a decade ago, turns out to have a unique chemistry: It emerges from rare ultramafic rock, which is found in the Earth’s mantle today. In the presence of heat and crushing pressures below the ocean floor, those rocks react with seawater to create something truly mind-boggling: organic compounds, the building blocks of life.

    “Based on our measurements, we could make the case definitively that organic compounds are getting synthesized spontaneously, without any input from an existing life-form. Just rocks and water, as a geologic process, are generating the chemical building blocks that are essential to creating life,” German says.

    The same may be happening on Enceladus.

    German and his colleagues are hoping to be among the first oceanographers to peer inside the mysteries of another planet. Th rough WHOI’s Exploring Ocean Worlds program, they’re currently using oceanographic techniques to study water-rich moons like Enceladus in our solar system. (Another 20 ocean worlds in our solar system are under consideration by NASA, five of which are already confirmed: Europa, Ganymede, and Callisto, which are moons of Jupiter; Titan, another moon of Saturn, and Triton, a moon of Neptune.) It’s about as distant as any oceanographer could dream of going, even with robotic means.

    Julie Huber works closely with German. “The space and ocean science communities have really been coming together to study this over the last few years,” she says. “One of NASA’s key missions is exploring the origins of life: Where did we come from? Where are we going? How does life adapt to extreme environments? Lots of scientists are trying to answer those questions here on Earth, but now is the first time we’re poised to go to another place in our solar system and ask those questions.”

    Eventually, researchers like Huber and German want to expand on the undersea robotics knowledge that WHOI has already invested decades in developing. Instead of designing autonomous vehicles for the open ocean on Earth, however, they’re hopeful they can develop a probe that will operate on its own while submerged beneath the ice of Enceladus.

    Creating a robot like this would need to take into account all the insights scientists have gained from studying polar ice and deep vent sites on our own planet. It will need to survive as many as seven years in the vacuum of space, which can reach temperatures that dip near absolute zero (-273 degrees Celsius; -459 degrees Fahrenheit). After that, it’ll need to land successfully on Enceladus, dig through several miles of surface ice, deploy itself into the moon’s ocean, and find vents autonomously. It’s a tall order. But it’s something that German, Huber, and other researchers are confident they can handle within the next decade.

    German points to WHOI’s Nereid Under Ice—or NUI—a new remotely operated vehicle built in 2014.

    It was designed with a similar mission in mind. Although it can be steered by humans directly over a thin fiber-optic cable, NUI is smart enough to operate autonomously on its missions and return safely to the ship from which it was deployed. Forays like this, German says, are dress rehearsals for such projects farther afield on ocean worlds like Enceladus. He believes those future explorations will help answer one of humankind’s most profound questions.

    “I don’t think civilization could ask a bigger question than ‘Are we alone?’” he says. “It’s amazing to know that oceanographers have the skill set to potentially answer that question within the coming decades without even leaving our own solar system.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Woods Hole Oceanographic Institute

    Mission Statement

    The Woods Hole Oceanographic Institution (US) is dedicated to advancing knowledge of the ocean and its connection with the Earth system through a sustained commitment to excellence in science, engineering, and education, and to the application of this knowledge to problems facing society.

    Vision & Mission

    The ocean is a defining feature of our planet and crucial to life on Earth, yet it remains one of the planet’s last unexplored frontiers. For this reason, WHOI scientists and engineers are committed to understanding all facets of the ocean as well as its complex connections with Earth’s atmosphere, land, ice, seafloor, and life—including humanity. This is essential not only to advance knowledge about our planet, but also to ensure society’s long-term welfare and to help guide human stewardship of the environment. WHOI researchers are also dedicated to training future generations of ocean science leaders, to providing unbiased information that informs public policy and decision-making, and to expanding public awareness about the importance of the global ocean and its resources.

    The Institution is organized into six departments, the Cooperative Institute for Climate and Ocean Research, and a marine policy center. Its shore-based facilities are located in the village of Woods Hole, Massachusetts(US) and a mile and a half away on the Quissett Campus. The bulk of the Institution’s funding comes from grants and contracts from the National Science Foundation(US) and other government agencies, augmented by foundations and private donations.

    WHOI scientists, engineers, and students collaborate to develop theories, test ideas, build seagoing instruments, and collect data in diverse marine environments. Ships operated by WHOI carry research scientists throughout the world’s oceans. The WHOI fleet includes two large research vessels (R/V Atlantis and R/V Neil Armstrong); the coastal craft Tioga; small research craft such as the dive-operation work boat Echo; the deep-diving human-occupied submersible Alvin; the tethered, remotely operated vehicle Jason/Medea; and autonomous underwater vehicles such as the REMUS and SeaBED.

    WHOI offers graduate and post-doctoral studies in marine science. There are several fellowship and training programs, and graduate degrees are awarded through a joint program with the Massachusetts Institute of Technology(US). WHOI is accredited by the New England Association of Schools and Colleges. WHOI also offers public outreach programs and informal education through its Exhibit Center and summer tours. The Institution has a volunteer program and a membership program, WHOI Associate.

    On October 1, 2020, Peter B. de Menocal became the institution’s eleventh president and director.

    History

    In 1927, a National Academy of Sciences(US) committee concluded that it was time to “consider the share of the United States of America in a worldwide program of oceanographic research.” The committee’s recommendation for establishing a permanent independent research laboratory on the East Coast to “prosecute oceanography in all its branches” led to the founding in 1930 of the Woods Hole Oceanographic Institution(US).

    A $2.5 million grant from the Rockefeller Foundation supported the summer work of a dozen scientists, construction of a laboratory building and commissioning of a research vessel, the 142-foot (43 m) ketch R/V Atlantis, whose profile still forms the Institution’s logo.

    WHOI grew substantially to support significant defense-related research during World War II, and later began a steady growth in staff, research fleet, and scientific stature. From 1950 to 1956, the director was Dr. Edward “Iceberg” Smith, an Arctic explorer, oceanographer and retired Coast Guard rear admiral.

    In 1977 the institution appointed the influential oceanographer John Steele as director, and he served until his retirement in 1989.

    On 1 September 1985, a joint French-American expedition led by Jean-Louis Michel of IFREMER and Robert Ballard of the Woods Hole Oceanographic Institution identified the location of the wreck of the RMS Titanic which sank off the coast of Newfoundland 15 April 1912.

    On 3 April 2011, within a week of resuming of the search operation for Air France Flight 447, a team led by WHOI, operating full ocean depth autonomous underwater vehicles (AUVs) owned by the Waitt Institute discovered, by means of sidescan sonar, a large portion of debris field from flight AF447.

    In March 2017 the institution effected an open-access policy to make its research publicly accessible online.

    The Institution has maintained a long and controversial business collaboration with the treasure hunter company Odyssey Marine. Likewise, WHOI has participated in the location of the San José galleon in Colombia for the commercial exploitation of the shipwreck by the Government of President Santos and a private company.

    In 2019, iDefense reported that China’s hackers had launched cyberattacks on dozens of academic institutions in an attempt to gain information on technology being developed for the United States Navy. Some of the targets included the Woods Hole Oceanographic Institution. The attacks have been underway since at least April 2017.

     
  • richardmitnick 12:24 pm on June 4, 2021 Permalink | Reply
    Tags: "South Pole and East Antarctica warmer than previously thought during last ice age two studies show", Borehole thermometry, , Paleoglaciology, The South Pole and the rest of East Antarctica is cold now and was even more frigid during the most recent ice age around 20000 years ago — but not quite as cold as previously believed.,   

    From University of Washington (US) :Women in STEM-Emma Kahle “South Pole and East Antarctica warmer than previously thought during last ice age two studies show” 

    From University of Washington (US)

    June 3, 2021
    Hannah Hickey

    1
    Emma Kahle holds ice from 1,500 meters (0.93 miles) depth, the original goal of the South Pole drilling project, in January 2016. New research uses this ice core to calculate temperature history back 54,000 years. Credit: Eric Steig/University of Washington.

    The South Pole and the rest of East Antarctica is cold now and was even more frigid during the most recent ice age around 20,000 years ago — but not quite as cold as previously believed.

    University of Washington glaciologists are co-authors on two papers that analyzed Antarctic ice cores to understand the continent’s air temperatures during the most recent glacial period. The results help understand how the region behaves during a major climate transition.

    In one paper [Science], an international team of researchers, including three at the UW, analyzed seven ice cores from across West and East Antarctica. The results published June 3 in Science show warmer ice age temperatures in the eastern part of the continent.

    The team included authors from the U.S., Japan, the U.K., France, Switzerland, Denmark, Italy, South Korea and Russia.

    “The international collaboration was critical to answering this question because it involved so many different measurements and methods from ice cores all across Antarctica,” said second author T.J. Fudge, a UW assistant research professor of Earth and space sciences.

    Antarctica, the coldest place on Earth today, was even colder during the last ice age. For decades, the leading science suggested ice age temperatures in Antarctica were on average as much as 9 degrees Celsius cooler than the modern era. By comparison, temperatures globally at that time averaged 5 to 6 degrees cooler than today.

    Previous work showed that West Antarctica was as cold as 11 degrees C below current temperatures. The new paper in Science shows that temperatures at some locations in East Antarctica were only 4 to 5 degrees cooler, about half previous estimates.

    “This is the first conclusive and consistent answer we have for all of Antarctica,” said lead author Christo Buizert, an assistant professor at Oregon State University. “The surprising finding is that the amount of cooling is very different depending on where you are in Antarctica. This pattern of cooling is likely due to changes in the ice sheet elevation that happened between the ice age and today.”

    The findings are important because they better match results of global climate models, supporting the models’ ability to reproduce major shifts in the Earth’s climate.

    2
    This section of ice core was drilled in 2016 at the South Pole. Drilling more than 1 mile deep accessed older ice containing clues to past climates, providing a clearer picture of Antarctica’s transition from the last ice age. Credit: T.J. Fudge/University of Washington.

    Another paper, accepted in June in the Journal of Geophysical Research: Atmospheres and led by the UW, focuses on data from the recently completed South Pole ice core, which finished drilling in 2016. The Science paper also incorporates these results.

    “With its distinct high and dry climate, East Antarctica was certainty colder than West Antarctica, but the key question was: How much did the temperature change in each region as the climate warmed?” said lead author Emma Kahle, who recently completed a UW doctorate in Earth and space sciences.

    That paper, focusing on the South Pole ice core, found that ice age temperatures at the southern pole, near the Antarctic continental divide, were about 6.7 degree Celsius colder than today. The Science paper finds that across East Antarctica, ice age temperatures were on average 6.1 degrees Celsius colder than today, showing that the South Pole is representative of the region.

    “Both studies show much warmer temperatures for East Antarctica during the last ice age than previous work — the most recent ‘textbook’ number was 9 degrees Celsius colder than present,” said Eric Steig, a UW professor of Earth and space sciences who is a co-author on both papers. “This is important because climate models tend to get warmer temperatures, so the data and models are now in better agreement.”

    “The findings agree well with climate model results for that time period, and thus strengthen our confidence in the ability of models to simulate Earth’s climate,” Kahle said.

    Previous studies used water molecules contained in the layers of ice, which essentially act like a thermometer, to reconstruct past temperatures. But this method needs independent calibration against other techniques.

    The new papers employ two techniques that provide the necessary calibration. The first method, borehole thermometry, takes temperatures at various depths inside the hole left by the ice drill, measuring changes through the thickness of the ice sheet. The Antarctic ice sheet is so thick that it keeps a memory of earlier, colder ice age temperatures that can be measured and reconstructed, Fudge said.

    The second method examines the properties of the snowpack as it builds up and slowly transforms into ice. In East Antarctica, the snowpack can range from 50 to 120 meters (165 to 400 feet) thick, including snow from thousands of years which gradually compacts in a process that is very sensitive to the temperature.

    “As we drill more Antarctic ice cores and do more research, the picture of past environmental change comes into sharper focus, which helps us better understand the whole of Earth’s climate system,” Fudge said.

    Fudge, Steig and Kahle are among 40 authors on the Science paper. Other co-authors on the JGR: Atmospheres paper are Michelle Koutnik, Andrew Schauer, C. Max Stevens, Howard Conway and Edwin Waddington at the UW; Tyler Jones, Valerie Morris, Bruce Vaughn and James White at the University of Colorado, Boulder (US); and Buizert and Jenna Epifanio at Oregon State University (US).

    Both papers were supported by the National Science Foundation (US). Both papers made use of the South Pole ice core, a project that in 2016 completed a 1.75 kilometer (1.09 mile) deep ice core at the South Pole. That project was funded by the NSF and co-led by Steig and Fudge with colleagues at the University of California-Irvine (US), and the University of New Hampshire (US).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    u-washington-campus

    The University of Washington (US) is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.

    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

    The University of Washington (US) is a public research university in Seattle, Washington, United States. Founded in 1861, University of Washington is one of the oldest universities on the West Coast; it was established in downtown Seattle approximately a decade after the city’s founding to aid its economic development. Today, the university’s 703-acre main Seattle campus is in the University District above the Montlake Cut, within the urban Puget Sound region of the Pacific Northwest. The university has additional campuses in Tacoma and Bothell. Overall, University of Washington encompasses over 500 buildings and over 20 million gross square footage of space, including one of the largest library systems in the world with more than 26 university libraries, as well as the UW Tower, lecture halls, art centers, museums, laboratories, stadiums, and conference centers. The university offers bachelor’s, master’s, and doctoral degrees through 140 departments in various colleges and schools, sees a total student enrollment of roughly 46,000 annually, and functions on a quarter system.

    University of Washington is a member of the Association of American Universities(US) and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation(US), UW spent $1.41 billion on research and development in 2018, ranking it 5th in the nation. As the flagship institution of the six public universities in Washington state, it is known for its medical, engineering and scientific research as well as its highly competitive computer science and engineering programs. Additionally, University of Washington continues to benefit from its deep historic ties and major collaborations with numerous technology giants in the region, such as Amazon, Boeing, Nintendo, and particularly Microsoft. Paul G. Allen, Bill Gates and others spent significant time at Washington computer labs for a startup venture before founding Microsoft and other ventures. The University of Washington’s 22 varsity sports teams are also highly competitive, competing as the Huskies in the Pac-12 Conference of the NCAA Division I, representing the United States at the Olympic Games, and other major competitions.

    The university has been affiliated with many notable alumni and faculty, including 21 Nobel Prize laureates and numerous Pulitzer Prize winners, Fulbright Scholars, Rhodes Scholars and Marshall Scholars.

    In 1854, territorial governor Isaac Stevens recommended the establishment of a university in the Washington Territory. Prominent Seattle-area residents, including Methodist preacher Daniel Bagley, saw this as a chance to add to the city’s potential and prestige. Bagley learned of a law that allowed United States territories to sell land to raise money in support of public schools. At the time, Arthur A. Denny, one of the founders of Seattle and a member of the territorial legislature, aimed to increase the city’s importance by moving the territory’s capital from Olympia to Seattle. However, Bagley eventually convinced Denny that the establishment of a university would assist more in the development of Seattle’s economy. Two universities were initially chartered, but later the decision was repealed in favor of a single university in Lewis County provided that locally donated land was available. When no site emerged, Denny successfully petitioned the legislature to reconsider Seattle as a location in 1858.

    In 1861, scouting began for an appropriate 10 acres (4 ha) site in Seattle to serve as a new university campus. Arthur and Mary Denny donated eight acres, while fellow pioneers Edward Lander, and Charlie and Mary Terry, donated two acres on Denny’s Knoll in downtown Seattle. More specifically, this tract was bounded by 4th Avenue to the west, 6th Avenue to the east, Union Street to the north, and Seneca Streets to the south.

    John Pike, for whom Pike Street is named, was the university’s architect and builder. It was opened on November 4, 1861, as the Territorial University of Washington. The legislature passed articles incorporating the University, and establishing its Board of Regents in 1862. The school initially struggled, closing three times: in 1863 for low enrollment, and again in 1867 and 1876 due to funds shortage. University of Washington awarded its first graduate Clara Antoinette McCarty Wilt in 1876, with a bachelor’s degree in science.

    19th century relocation

    By the time Washington state entered the Union in 1889, both Seattle and the University had grown substantially. University of Washington’s total undergraduate enrollment increased from 30 to nearly 300 students, and the campus’s relative isolation in downtown Seattle faced encroaching development. A special legislative committee, headed by University of Washington graduate Edmond Meany, was created to find a new campus to better serve the growing student population and faculty. The committee eventually selected a site on the northeast of downtown Seattle called Union Bay, which was the land of the Duwamish, and the legislature appropriated funds for its purchase and construction. In 1895, the University relocated to the new campus by moving into the newly built Denny Hall. The University Regents tried and failed to sell the old campus, eventually settling with leasing the area. This would later become one of the University’s most valuable pieces of real estate in modern-day Seattle, generating millions in annual revenue with what is now called the Metropolitan Tract. The original Territorial University building was torn down in 1908, and its former site now houses the Fairmont Olympic Hotel.

    The sole-surviving remnants of Washington’s first building are four 24-foot (7.3 m), white, hand-fluted cedar, Ionic columns. They were salvaged by Edmond S. Meany, one of the University’s first graduates and former head of its history department. Meany and his colleague, Dean Herbert T. Condon, dubbed the columns as “Loyalty,” “Industry,” “Faith”, and “Efficiency”, or “LIFE.” The columns now stand in the Sylvan Grove Theater.

    20th century expansion

    Organizers of the 1909 Alaska-Yukon-Pacific Exposition eyed the still largely undeveloped campus as a prime setting for their world’s fair. They came to an agreement with Washington’s Board of Regents that allowed them to use the campus grounds for the exposition, surrounding today’s Drumheller Fountain facing towards Mount Rainier. In exchange, organizers agreed Washington would take over the campus and its development after the fair’s conclusion. This arrangement led to a detailed site plan and several new buildings, prepared in part by John Charles Olmsted. The plan was later incorporated into the overall University of Washington campus master plan, permanently affecting the campus layout.

    Both World Wars brought the military to campus, with certain facilities temporarily lent to the federal government. In spite of this, subsequent post-war periods were times of dramatic growth for the University. The period between the wars saw a significant expansion of the upper campus. Construction of the Liberal Arts Quadrangle, known to students as “The Quad,” began in 1916 and continued to 1939. The University’s architectural centerpiece, Suzzallo Library, was built in 1926 and expanded in 1935.

    After World War II, further growth came with the G.I. Bill. Among the most important developments of this period was the opening of the School of Medicine in 1946, which is now consistently ranked as the top medical school in the United States. It would eventually lead to the University of Washington Medical Center, ranked by U.S. News and World Report as one of the top ten hospitals in the nation.

    In 1942, all persons of Japanese ancestry in the Seattle area were forced into inland internment camps as part of Executive Order 9066 following the attack on Pearl Harbor. During this difficult time, university president Lee Paul Sieg took an active and sympathetic leadership role in advocating for and facilitating the transfer of Japanese American students to universities and colleges away from the Pacific Coast to help them avoid the mass incarceration. Nevertheless many Japanese American students and “soon-to-be” graduates were unable to transfer successfully in the short time window or receive diplomas before being incarcerated. It was only many years later that they would be recognized for their accomplishments during the University of Washington’s Long Journey Home ceremonial event that was held in May 2008.

    From 1958 to 1973, the University of Washington saw a tremendous growth in student enrollment, its faculties and operating budget, and also its prestige under the leadership of Charles Odegaard. University of Washington student enrollment had more than doubled to 34,000 as the baby boom generation came of age. However, this era was also marked by high levels of student activism, as was the case at many American universities. Much of the unrest focused around civil rights and opposition to the Vietnam War. In response to anti-Vietnam War protests by the late 1960s, the University Safety and Security Division became the University of Washington Police Department.

    Odegaard instituted a vision of building a “community of scholars”, convincing the Washington State legislatures to increase investment in the University. Washington senators, such as Henry M. Jackson and Warren G. Magnuson, also used their political clout to gather research funds for the University of Washington. The results included an increase in the operating budget from $37 million in 1958 to over $400 million in 1973, solidifying University of Washington as a top recipient of federal research funds in the United States. The establishment of technology giants such as Microsoft, Boeing and Amazon in the local area also proved to be highly influential in the University of Washington’s fortunes, not only improving graduate prospects but also helping to attract millions of dollars in university and research funding through its distinguished faculty and extensive alumni network.

    21st century

    In 1990, the University of Washington opened its additional campuses in Bothell and Tacoma. Although originally intended for students who have already completed two years of higher education, both schools have since become four-year universities with the authority to grant degrees. The first freshman classes at these campuses started in fall 2006. Today both Bothell and Tacoma also offer a selection of master’s degree programs.

    In 2012, the University began exploring plans and governmental approval to expand the main Seattle campus, including significant increases in student housing, teaching facilities for the growing student body and faculty, as well as expanded public transit options. The University of Washington light rail station was completed in March 2015, connecting Seattle’s Capitol Hill neighborhood to the University of Washington Husky Stadium within five minutes of rail travel time. It offers a previously unavailable option of transportation into and out of the campus, designed specifically to reduce dependence on private vehicles, bicycles and local King County buses.

    University of Washington has been listed as a “Public Ivy” in Greene’s Guides since 2001, and is an elected member of the American Association of Universities. Among the faculty by 2012, there have been 151 members of American Association for the Advancement of Science, 68 members of the National Academy of Sciences(US), 67 members of the American Academy of Arts and Sciences, 53 members of the National Academy of Medicine(US), 29 winners of the Presidential Early Career Award for Scientists and Engineers, 21 members of the National Academy of Engineering(US), 15 Howard Hughes Medical Institute Investigators, 15 MacArthur Fellows, 9 winners of the Gairdner Foundation International Award, 5 winners of the National Medal of Science, 7 Nobel Prize laureates, 5 winners of Albert Lasker Award for Clinical Medical Research, 4 members of the American Philosophical Society, 2 winners of the National Book Award, 2 winners of the National Medal of Arts, 2 Pulitzer Prize winners, 1 winner of the Fields Medal, and 1 member of the National Academy of Public Administration. Among UW students by 2012, there were 136 Fulbright Scholars, 35 Rhodes Scholars, 7 Marshall Scholars and 4 Gates Cambridge Scholars. UW is recognized as a top producer of Fulbright Scholars, ranking 2nd in the US in 2017.

    The Academic Ranking of World Universities (ARWU) has consistently ranked University of Washington as one of the top 20 universities worldwide every year since its first release. In 2019, University of Washington ranked 14th worldwide out of 500 by the ARWU, 26th worldwide out of 981 in the Times Higher Education World University Rankings, and 28th worldwide out of 101 in the Times World Reputation Rankings. Meanwhile, QS World University Rankings ranked it 68th worldwide, out of over 900.

    U.S. News & World Report ranked University of Washington 8th out of nearly 1,500 universities worldwide for 2021, with University of Washington’s undergraduate program tied for 58th among 389 national universities in the U.S. and tied for 19th among 209 public universities.

    In 2019, it ranked 10th among the universities around the world by SCImago Institutions Rankings. In 2017, the Leiden Ranking, which focuses on science and the impact of scientific publications among the world’s 500 major universities, ranked University of Washington 12th globally and 5th in the U.S.

    In 2019, Kiplinger Magazine’s review of “top college values” named University of Washington 5th for in-state students and 10th for out-of-state students among U.S. public colleges, and 84th overall out of 500 schools. In the Washington Monthly National University Rankings University of Washington was ranked 15th domestically in 2018, based on its contribution to the public good as measured by social mobility, research, and promoting public service.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: