Tagged: Paleoceanography Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:31 am on March 6, 2020 Permalink | Reply
    Tags: , , , Laura Haynes a paleoceanographer, , Paleoceanography, , The month–long International Ocean Discovery Program Expedition 378,   

    From Rutgers University: “Postdoc Laura Haynes Searching for Climate Change Clues Under the Ocean Floor” 

    Rutgers smaller
    Our Great Seal.

    From Rutgers University

    February 24, 2020 [Just now in social media.]
    Craig Winston

    Laura Haynes cruises the world searching for core samples.

    It’s hard to pinpoint where you might find Laura Haynes, an EOAS post-doctoral fellow, for an interview. During a telephone chat she sounded far away. She explained why in a subsequent email.

    “I was actually in Fiji, eating breakfast before we headed out to board the ship,” she wrote. “We are now transiting nine days to our first coring site and will be drilling to about 670 meters below the sea floor in the hopes of recovering the K/Pg boundary.”

    Translation: The Cretaceous-Paleogene boundary marks the mass extinction of the Earth’s dinosaurs more than 60 million years ago. It’s represented by a thin band of rock [Actually, it is marked all around the world by a layer of Iridium, found by Luis and Walter Alvarez].

    Haynes, a paleoceanographer, is sailing on the month–long International Ocean Discovery Program Expedition 378 with a collective of scientists from countries including Australia, China, Japan, Korea, and Brazil. They staff a floating lab, covering it 24/7 on rotating 12-hour shifts. (The ship travels the world, drilling at five to eight locations on a cruise; this time there is only one stop for a long core drill.) The crew hopes that drilling into this new, unbroken core will enable them to reconstruct climate change in one location millions of years ago, revealing the answers to questions about the Earth’s climate history.

    International Ocean Discovery Program Expedition 378 South Pacific Paleogene Climate.

    “It was records from ocean drilling that first showed that the ocean floor is spreading apart and causing the movement of tectonic plates, and that rapid climate change has happened in Earth’s past,” said Haynes. “While there are records of Earth history from many crucial time periods that exist on land, they are patchy and not always continuous. By contrast, sea floor muds can build up continuously and slowly over time and give us continuous records of Earth’s climate history.”

    Laura Haynes in the lab.

    Back in the lab, the scientists examine core samples from the drilling and meet twice a day to discuss their findings. Haynes’ role on the ship is as a sedimentologist; she describes the core samples that come up from the sea floor and determines their composition: fossil, clay, sand, or volcanic ash. The expedition continues long after each member returns home with samples they take back for further study. Their scientific community will stay intact as they synthesize their findings over the next few years.

    Her itinerary during the last year is an enviable one. Haynes earlier sailed on the Chilean drilling ship on a cruise to the Chile margin led by the Rutgers postdoc researcher Samantha Bova and EOAS faculty member Yair Rosenthal, both of the Department of Marine and Coast Sciences. They sought to understand how Patagonian glaciers and the South Pacific Ocean responded to climate change. “It was a huge success and a wonderful first experience on a drillship,” she said. “I am coming to understand that I was spoiled by the incredible wildlife we saw on the ship; we were encircled by albatrosses and seals for most of our expedition.”

    Her primary field of study involves using fossilized shells of plankton, “foraminifera,” to reconstruct the history of climate change. The shells are preserved in deep sea muds, and their chemical composition can indicate past climate such as ocean temperature, acidity, and circulation. “These are all things we’d like to understand so that we can better predict how modern climate change will affect the Earth system in the future.”

    Haynes was inspired to pursue a career in the sciences when she had an awakening in high school after watching “An Inconvenient Truth,” former Vice President Al Gore’s 2006 documentary intended to educate the public about global warming. After that, she intuitively understood that she wanted to dedicate her career to studying the environment.

    Haynes said: “When I got to undergrad, I was incredibly lucky in that my freshman adviser suggested I take a geology class. After going on my first few field trips, I knew that this was the field I wanted to be in, but I also knew that I wanted to apply it to understanding modern environmental change. With the study of past climate histories, I found this perfect balance.”

    Her educational background prepared her well for her research career. Haynes earned her undergraduate degree in geology from Pomona College (Claremont, Calif.), and a master’s degree and Ph.D. in Earth and Environmental Sciences from Columbia University. For her doctoral dissertation, she analyzed living foraminifera, spending two months in coastal field stations at Catalina Island, Calif., and Isla Magueyes, Puerto Rico.

    Perhaps a telltale sign of Haynes’ future came from her first job at age 14— as a counselor at a science camp for elementary students.

    “I didn’t have any idea then that I would be a scientist, but it does make a lot of sense in retrospect. “

    During her latest cruise, Haynes answered several questions about her work and life. A condensed version of her comments appears below:

    What was your best day on the job?

    In the lab, I always love a day when I get new data off the machine, knowing that I am the only person in the world that has this tiny new piece of knowledge.

    What are your career goals?

    I am incredibly excited that I will start an assistant professor position at Vassar College this fall. In my new position, I am thrilled to usher undergraduates through the research process, to conduct research on our new sediment cores, and to teach interdisciplinary classes related to oceanography, biogeochemistry, mass extinctions, and science communication.

    What’s your secret skill?

    I am very good at manipulating dust-sized microfossils with the smallest possible paintbrush. Working in paleoceanography has certainly honed my fine motor skills.
    Which professional accomplishment has given you the most pride?

    I got to mentor an undergraduate student, Ingrid Izaguirre, through a summer Research Experiences for Undergraduates project in 2018 at Columbia. She did a fantastic job and presented her findings at the American Geophysical Union conference that winter, explaining complicated ocean chemistry to interested listeners for four hours straight. I was incredibly proud of her work and presentation, and still get to see her progress as she is now a graduate student in paleoceanography.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition


    Rutgers, The State University of New Jersey, is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    As a ’67 graduate of University college, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society of non-tradional students.

  • richardmitnick 11:27 am on February 15, 2020 Permalink | Reply
    Tags: (DIC)-Dissolved Inorganic Carbon, (TA)-Total Alkalinity, , , , , , Paleoceanography, , The wet lab then becomes a bedlam of buckets containing rocks; corals; sponges; and shell fragments; occasional deep sea litter; and an assortment of marine creatures that I have never seen before., You need to know how to tie knots.   

    From Schmidt Ocean Institute: “Darling it’s better, Down in a Wet(ter) Lab at Sea” 

    From Schmidt Ocean Institute

    Jill Brouwer

    Cruise Log: The Great Australian Deep-Sea Coral and Canyon Adventure

    Trying to understand a constantly moving ocean system is a huge challenge. Accurately measuring the chemistry of the ocean is important for understanding many processes, including nutrient and carbon cycling; ocean circulation and movement of water masses; as well as ocean acidification and climate change. On this expedition, the water chemistry team has the important job of analyzing the seawater in three canyon systems. We are measuring Dissolved Inorganic Carbon (DIC) and Total Alkalinity (TA) on board, while also saving samples for later analysis of stable isotopes, trace elements, and nutrients.

    Jill and Carlin using the CTD rosette to collect water samples from the depths of the Bremer Canyon.

    Knotty and Nice

    There are some quirks of successfully doing chemistry at sea that I definitely did not consider before this voyage. Firstly, you need to know how to tie knots. Making sure all the instruments, reagent bottles, and yourselves are secured is just as important as doing the actual chemistry. The precious sample counts for nothing if it flies across the room because you forgot to put it on a non-slip mat. The movement of the boat transforms normal lab activities into fun mini challenges – opening oven or fridge doors as the ship moves with the weather, pipetting as you hit a large wave, storing sample vials in a giant freezer. It is weird (but comforting) to see our analytical instruments strapped to the bench, and doing most of my work out of a sink – the safest place to keep samples. I particularly enjoy the arts and crafts component that comes with bubble wrapping and storing samples to prevent them from being damaged by sudden movements.

    After the chemistry work is done for the day, ROV SuBastian [below] comes aboard with all kinds of creepy-crawlies from the deep sea. All the biology and geology samples that have been collected from the dive are carried into the wet lab to be sorted, processed, and archived. The lab then becomes a bedlam of buckets containing rocks, corals, sponges, shell fragments, occasional deep sea litter, and an assortment of marine creatures that I have never seen before. Surrounding these specimens is an eclectic mix of scientists who all bring their own unique interests and passions to the group.


    To name a few; Julie, Paolo, and their team are interested in finding calcifying corals for their paleoceanography studies. They study the chemistry of the ocean thousands of years ago, recorded by coral skeletons when they were formed. We also have Andrew from the Western Australian Museum, who is doing his PhD on specialized barnacles that live in sponges, but is interested in pretty much everything. It is not just the big things we are looking for either. Aleksey and Netra are on the lookout for tiny single-cell organisms called Foraminifera that we have found in the water column, sediments, and attached to things like corals and whale bones.

    Netra, Jill, and Angela investigating the latest samples to arrive in the wet lab of R/V Falkor.

    This Stephanocyanthus is a soft cup coral.

    This Caryophylliidae is from a family of stony corals.

    Working in a wet lab at sea has its share of challenges, but considering the important scientific discoveries that are facilitated by us being out here, the cool (and in some cases totally new) marine life we are encountering, as well as the incredible views of sun glint and waves through the lab window, I would not choose to be anywhere else. To all the undergraduate students reading this, I encourage you to seek out as much volunteer/work experience as you can. Getting involved in science firsthand is an invaluable experience: you get to work with incredible people, gain useful skills, and learn so much more about yourself and your areas of interest than you can from the classroom. Perhaps most importantly, you get to share all the exciting things you learn with others!


    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Our Vision
    The world’s oceans understood through technological advancement, intelligent observation, and open sharing of information.

    Schmidt Ocean Institute RV Falkor

    Schmidt Ocean Institute ROV Subastian

    Schmidt Ocean Institute is a 501(c)(3) private non-profit operating foundation established in March 2009 to advance oceanographic research, discovery, and knowledge, and catalyze sharing of information about the oceans.

    Since the Earth’s oceans are a critically endangered and least understood part of the environment, the Institute dedicates its efforts to their comprehensive understanding across intentionally broad scope of research objectives.

    Eric and Wendy Schmidt established Schmidt Ocean Institute in 2009 as a seagoing research facility operator, to support oceanographic research and technology development focusing on accelerating the pace in ocean sciences with operational, technological, and informational innovations. The Institute is devoted to the inspirational vision of our Founders that the advancement of technology and open sharing of information will remain crucial to expanding the understanding of the world’s oceans.

  • richardmitnick 9:24 am on December 27, 2019 Permalink | Reply
    Tags: , , , , Paleoceanography,   

    From Eos: “Reconstructing 150 Million Years of Arctic Ocean Climate” 

    From AGU
    Eos news bloc

    From Eos

    18 December 2019
    David Shultz

    The drillship Vidar Viking, operated by the European Consortium for Ocean Research Drilling, sits amid Arctic sea ice during the International Ocean Discovery Program’s Arctic Coring Expedition in 2004. Sediment cores collected during the expedition were used in a recent study to shed light on Arctic climate over the past 150 million years. Credit: Martin Jakobsson ECORD/IODP

    The high northern latitudes of the Arctic—seen as the canary in the coal mine for modern climate change—are warming at an outsized rate compared with elsewhere on the planet. Already, experts predict that the Arctic Ocean might be ice free during summer months in as little as 40–50 years. The trend has researchers concerned that resulting feedbacks, especially reductions in Earth’s albedo as ice increasingly melts, may lead to rapid changes in the global climate.

    To understand how the future could play out, scientists look back to other warm periods in Earth’s history. Despite the Arctic’s critical role in Earth’s climate, however, data about the sea ice and climate history of the region are limited. Here Stein compiles a review of the existing literature on Arctic climate from the late Mesozoic era (about 150 million to 66 million years ago) through the ongoing Cenozoic era [Paleoceanography and Paleoclimatology].

    In the late Mesozoic, Earth’s atmosphere was characterized by much higher atmospheric greenhouse gas concentrations and much higher average temperatures than today. Then, during the past 50 million years or so, the planet experienced a dramatic long-term cooling trend, culminating in the glacial and interglacial cycles of the past 2.5 million years and the most recent ongoing interglacial period, in which rapid anthropogenic warming is occurring.

    Much of the data presented in the review are from the International Ocean Discovery Program’s Expedition 302, called the Arctic Coring Expedition (ACEX), which was the first scientific drilling effort in the permanently ice covered Arctic Ocean. Examining geological records from sediment cores offers insights into previous climates on Earth and helps scientists disentangle natural and human-caused effects in the modern climate. The author combines and compares grain size, marine microfossil, and biomarker data from the ACEX sediment cores with information from terrestrial climate data, other Arctic and global marine climate records, and plate tectonic reconstructions to create a history of Arctic conditions reaching back into the Cretaceous period.

    The results reveal numerous periods of warming and cooling, but overall, the planet’s temperature has mirrored trends in atmospheric carbon dioxide, with the transition from the warm Eocene to the cooler Miocene coinciding with a drop in carbon dioxide concentrations from above 1,500 to below 500 parts per million over a period of roughly 25 million years.

    Although late Miocene climate and sea ice conditions might have been similar to those proposed to be in our near future, the rate of change in the late Miocene was very different from today. Whereas the ongoing change from permanent to seasonal sea ice cover in the central Arctic Ocean, strongly driven by anthropogenic forcing, is occurring over a timescale of decades, the corresponding change in the late Miocene probably occurred over thousands of years.

    The author also highlights that as much as the sediment data reveal, there are also gaps in the understanding of the record. A long interval in which sedimentation rates slowed to a crawl during the early Cenozoic era, for example, presents challenges to scientists analyzing the Arctic climate history during the Miocene, Oligocene, Eocene, and Paleocene epochs. The cause of this slowdown remains a mystery to researchers, which, the author notes, emphasizes the importance of securing additional sediment cores from the Arctic on future scientific drilling expeditions to help fill the holes in the timeline.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

  • richardmitnick 4:40 pm on November 26, 2019 Permalink | Reply
    Tags: , , , Paleoceanography,   

    From Eos: “Sea Caves Hold Clues to Ancient Storms” 

    From AGU
    Eos news bloc

    From Eos

    22 November 2019
    Lakshmi Supriya

    To collect sediment cores, the team’s rig anchored on the Thatch Point blue hole in the Bahamas. Credit: Jeffrey Donnelly

    Sediments deposited in ocean caves are not all the same. Sediments deposited when a storm passes are different from those deposited in normal weather.

    This difference is helping scientists unravel when hurricanes blew by various points in the Atlantic Ocean, going back about 1,500 years. Figuring out the timelines of old cyclones may help validate computer models and provide insights into future hurricanes.

    Records of old hurricanes go back only about 150 years, and such intense storms are relatively rare, making it difficult to obtain statistically significant data. “The real value of using geological records to go back further in time [is that it] allows us to look at a lot more storms,” said Amy Frappier, a paleoclimatologist at Skidmore College in Saratoga Springs, N.Y., who was not involved in the study.

    Sediments deposited in lakes or seas make up one such record. During normal weather, the sediments deposited are soft, with almost cold cream–like consistency. But when a big storm passes by, it rakes up and deposits coarse sediments that normal tides can’t move. Thus, if one digs up sediments without disturbing the layers, by looking where the coarse material was dumped, one can figure out when large storms passed by.

    Go Blue

    In a new study published in Paleoceanography and Paleoclimatology, Jeffrey Donnelly of the Woods Hole Oceanographic Institution in Massachusetts targeted blue holes. Blue holes are ocean caves that formed when sea levels were much lower. The roofs of the caves collapsed, and when the sea level rose much higher, they formed big holes at the bottom of the ocean.

    “It’s sort of the perfect sediment trap for the sorts of records we are after,” said Donnelly. “Hurricane sediments can get in but can’t get out.”

    Sediment cores from blue holes were analyzed for coarse grains, which indicate hurricane activity. Credit: Lakshmi Supriya

    So Donnelly and his team dug about 20 meters into blue holes off South Andros Island, Bahamas, to bring up sediment cores comprising a record going back to about 1,500 years. (Radiocarbon dating of organic matter like leaves trapped in the sediments indicated the age of the sediments.) The team also collected shorter sediment cores from two other blue holes to corroborate the results. The cores were analyzed in the lab for coarse grains, indicating hurricane activity.

    The analysis revealed that the frequency of hurricane landfall on South Andros in the past 1,500 years varied between quiet periods and periods of intense storms. Periods of powerful storms occurred when the Intertropical Convergence Zone, a low-pressure belt near the equator, was far north, suggesting it influenced tropical storms. Researchers also noted the early part of the 13th century was uncharacteristically quiet. They think the reason may be unusually high volcanic activity.

    The team also compared the data to similar data from the Gulf of Mexico and the East Coast of the United States. Increased storm activity in South Andros corresponded to increased landfalls in the Gulf of Mexico. But surprisingly, the East Coast saw more hurricanes when South Andros was relatively quiet. It’s likely that storm tracks have been moving northward in the past millennium, the authors suggest.

    “If we can determine there are natural cycles in hurricane occurrences and strength, this gives researchers some skill in predicting future storms,” said Kristine DeLong, a paleoclimatologist at Louisiana State University in Baton Rouge who was not involved in the study. Computer models can then be refined using all these past data to make better predictions.

    When such reconstructions from different parts of the world are put together, they may help create a map of ancient tropical storms and help us be better prepared for future storms.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

  • richardmitnick 2:48 pm on May 26, 2017 Permalink | Reply
    Tags: , , , Paleoceanography, Paleoceanography and Paleoclimatology   

    From Eos: “A Sea Change in Paleoceanography’ 

    AGU bloc

    Eos news bloc


    22 May 2017
    Ellen Thomas

    After 32 years of existence, the journal Paleoceanography is changing its name. On January 1, 2018, it will become Paleoceanography and Paleoclimatology. This reflects the growth, expansion and evolution of a field of research over the years, and is not a major change of course, nor a break with the journal’s history.


    In 1986, Jim Kennett, Paleoceanography’s founding editor, asked for contributions dealing with all aspects of understanding and reconstructing Earth’s past climate, biota and environments, while emphasizing global and regional understanding. At the time, such research papers were based dominantly on the marine sedimentary record, with study materials commonly supplied by scientific ocean drilling.

    Since then, the technologies of sampling, sample analysis, data analysis and model development have evolved greatly and rapidly. Articles in Paleoceanography today routinely compare and combine proxy records from ice cores, speleothems, terrestrial sediments and/or lake deposits with multiple stacked proxy records from marine sediment cores, while data are integrated into a broad spectrum of geochemical, earth system, ecosystem and climate models.

    The process of recognition of this de-facto expansion in scope of Paleoceanography has taken a few years. It was started in 2014 by then Editor-in-Chief, Chris Charles, who announced in Eos that the journal was expanding to ‘embrace all aspects of global paleoclimatology’. The journal’s name was amended (informally) to “Paleoceanography: An AGU Journal exploring Earth’s Paleoclimate.” New Associate Editors with a broad variety of expertise joined the editorial board.

    Finally, after discussions at the 2016 AGU Fall Meeting, the leadership of the AGU Focus Group Paleoceanography & Paleoclimatology, together with the journal editors, organized a survey to gauge the community’s opinion. A large majority (~65%) of the 751 respondents was in favor of a change in the name of the journal.

    Inserting the word ‘climate’ into the name allows us to celebrate the growth and evolution of our scientific undertaking. Understanding climates of the past has been an integral part of earth sciences since their early days. Lyell (1830–1833) devoted three chapters in ‘Principles of Geology’ to cyclically changing climates (as shown by fossil distributions), influenced by the position of the continents: the present as key to the past. Chamberlin (1906) wondered how Earth’s climate could have remained sufficiently stable to allow life to persist, ‘without break of continuity’, writing that ‘On the further maintenance of this continuity hang future interests of transcendent moment’. With foresight, he argued that for such continuity to persist ‘a narrow range of atmospheric constitution, notably in the critical element carbon dioxide, has been equally indispensable’.

    In the near future, we may move outside the range of concentrations of atmospheric CO2 as they have been for tens of millions of years, as documented in a number of papers using various proxies, with quite a few of these published in Paleoceanography. We now use, in addition to fossils, a broad and growing range of stable isotope compositions, trace element concentrations and organic biomarkers in fossils and sediments as quantitative proxies for a growing number of environmental properties (e.g., temperature, oxygenation, pH, pCO2).

    In our present time of environmental change, it is, more than ever, important to use proxy data on Earth’s past in order to evaluate Earth’s future, thus making our past a key guide to our future.

    Paleoceanography has always aimed to publish thorough, innovative studies which add to our understanding of the planet on which we live, and the past variability in its environments over the full range of Earth history. It will continue to do so under its new name. Any paper submitted after July 1, 2017 will be considered under the new title, and all papers accepted after December 1, 2017 will be published under the new title.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

  • richardmitnick 1:15 pm on October 10, 2016 Permalink | Reply
    Tags: , , , Intertropical Convergence Zone, Paleoceanography, Paleography   

    From Eos: “Simulating the Climate 145 Million Years Ago” 

    Eos news bloc


    Shannon Hall

    A new model shows that the Intertropical Convergence Zone wasn’t always a single band around the equator, which had drastic effects on climate.

    Upper Jurassic (145- to 160-million-year-old) finely laminated organic carbon-rich shale interspersed with homogeneous, low-carbon mudrock of the Kimmeridge Clay Formation in Kimmeridge Bay, England. Variation in rock type reflects the ocean response to a monsoon-like climate 30°N during the Late Jurassic. Credit: Howard Armstrong

    The United Kingdom was once a lush oasis. That can be read from sediments within the Kimmeridge Clay Formation, which were deposited around 160 to 145 million years ago on Dorset’s “Jurassic Coast.” A favorite stomping ground for fossil hunters and the source rock for North Sea oil, the formation is rich in organic matter, which suggests that it likely formed when global greenhouse conditions were at least 4 times higher than present levels.

    Normally, organic matter disappears rapidly after an organism dies, as the nutrients are consumed by other life forms and the carbon decays. However, when the seas are starved of oxygen, which occurs when plankton numbers swell owing to increasing levels of carbon dioxide, then organic matter is preserved. An abundance of so-called black shales, or organic-rich muds, within the Kimmeridge Clay Formation points to this past.

    Here Armstrong et al. used those black shales to build new climate simulations that better approximate the climate toward the end of the Jurassic period. The model simulated 1422 years of time that suggested a radically different Intertropical Convergence Zone—the region where the Northern and Southern Hemisphere trade winds meet—than the one today. The convergence of these trade winds produces a global belt of clouds near the equator and is responsible for most of the precipitation on Earth.

    This figure shows the path (in red) of the Intertropical Convergence Zone as it forks, where the Pacific Ocean met the western coast of the American continents. Credit: Armstrong et al. [2016]

    Today the Intertropical Convergence Zone in the Atlantic strays, at most, 12° away from the equator. However, 145 million years ago, when the continents were still much closer together, the model showed that the zone split, like a fork in the road, where the Pacific Ocean met the western coast of the American continents. The zone was driven apart by the proto-Appalachian mountain range to the north and the North African mountains to the south. The northern fork, which was much stronger than the southern one, extended as far as about 30° north, passing over the United Kingdom and the location of the Kimmeridge Clay Formation.

    Not only were the researchers able to verify that the United Kingdom was once a tropical oasis, but they were also able to simulate and map the climate 145 million years ago—research that will help scientists better understand how Earth will react to anthropogenic warming today and in the future. (Paleoceanography, doi:10.1002/2015PA002911, 2016)

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: