Tagged: Paleoanthropology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:03 pm on December 13, 2022 Permalink | Reply
    Tags: "Precise solar observations fed millions in ancient Mexico", , , , , , Global climate change, Paleoanthropology, , Solar Calendar, Solar declination, The ancient texts referred to Mount Tlaloc., The failure of any calendar to adjust for leap-year fluctuations could also have led to crop failure., The researchers studied Mexica manuscripts.,   

    From The University of California-Riverside: “Precise solar observations fed millions in ancient Mexico” 

    UC Riverside bloc

    From The University of California-Riverside

    12.12.22
    Jules L Bernstein
    Senior Public Information Officer
    (951) 827-4580
    jules.bernstein@ucr.edu

    1
    Aztec farming calendar accurately tracked seasons, leap years.

    Without clocks or modern tools, ancient Mexicans watched the sun to maintain a farming calendar that precisely tracked seasons and even adjusted for leap years.

    2
    Rising sun seen from the stone causeway on Mount Tlaloc in Mexico. (Ben Meissner)

    Before the Spanish arrival in 1519, the Basin of Mexico’s agricultural system fed a population that was extraordinarily large for the time. Whereas Seville, the largest urban center in Spain, had a population of fewer than 50,000, the Basin, now known as Mexico City, was home to as many as 3 million people.

    To feed so many people in a region with a dry spring and summer monsoons required advanced understanding of when seasonal variations in weather would arrive. Planting too early, or too late, could have proved disastrous. The failure of any calendar to adjust for leap-year fluctuations could also have led to crop failure.

    Though colonial chroniclers documented the use of a calendar, it was not previously understood how the Mexica, or Aztecs, were able to achieve such accuracy. New University of California-Riverside research, published in the PNAS [below], demonstrates how they did it. They used the mountains of the Basin as a solar observatory, keeping track of the sunrise against the peaks of the Sierra Nevada mountains. 

    “We concluded they must have stood at a single spot, looking eastwards from one day to another, to tell the time of year by watching the rising sun,” said Exequiel Ezcurra, distinguished University of California-Riverside professor of ecology who led the research.

    2
    Stone causeway atop Mount Tlaloc, Mexico. (Ben Messiner)

    To find that spot, the researchers studied Mexica manuscripts. These ancient texts referred to Mount Tlaloc, which lies east of the Basin. The research team explored the high mountains around the Basin and a temple at the mountain’s summit. Using astronomical computer models, they confirmed that a long causeway structure at the temple aligns with the rising sun on Feb. 24, the first day of the Aztec new year.

    “Our hypothesis is that they used the whole Valley of Mexico. Their working instrument was the Basin itself. When the sun rose at a landmark point behind the Sierras, they knew it was time to start planting,” Ezcurra said.

    The sun, as viewed from a fixed point on Earth, does not follow the same trajectory every day. In winter, it runs south of the celestial equator and rises toward the southeast. As summer approaches, because of the Earth’s tilt, sunrise moves northeast, a phenomenon called solar declination. 

    This study may be the first to demonstrate how the Mexica were able to keep time using this principle, the sun, and the mountains as guiding landmarks. Though some may be familiar with the “Aztec calendar,” that is an incorrect name given to the Sun Stone, arguably the most famous work of Aztec sculpture used solely for ritual and ceremonial purposes. 

    “It did not have any practical use as a celestial observatory. Think of it as a monument, like Nelson’s Column in Trafalgar Square or Lincoln’s Memorial in Washington, D.C.,” Ezcurra said. 

    Learning about Aztec tools that did have practical use offers a lesson about the importance of using a variety of methods to solve questions about the natural world. 

    “The same goals can be achieved in different ways. It can be difficult to see that sometimes. We don’t always need to rely solely on modern technology,” Ezcurra said. “The Aztecs were just as good or better as the Europeans at keeping time, using their own methods.”

    The Aztec observatory could also have a more modern function, according to Ezcurra. Comparing old images of the Basin of Mexico to current ones shows how the forest is slowly climbing up Mount Tlaloc, likely as a result of an increase in average temperatures at lower elevation. 

    “In the 1940s the tree line was way below the summit. Now there are trees growing in the summit itself,” Ezcurra said. “What was an observatory for the ancients could also be an observatory for the 21st century, to understand global climate changes.”

    Science paper:
    PNAS
    See the science paper for instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    University of California-Riverside Campus

    The University of California-Riverside is a public land-grant research university in Riverside, California. It is one of the 10 campuses of The University of California system. The main campus sits on 1,900 acres (769 ha) in a suburban district of Riverside with a branch campus of 20 acres (8 ha) in Palm Desert. In 1907, the predecessor to The University of California-Riverside was founded as the UC Citrus Experiment Station, Riverside which pioneered research in biological pest control and the use of growth regulators responsible for extending the citrus growing season in California from four to nine months. Some of the world’s most important research collections on citrus diversity and entomology, as well as science fiction and photography, are located at Riverside.

    The University of California-Riverside ‘s undergraduate College of Letters and Science opened in 1954. The Regents of the University of California declared The University of California-Riverside a general campus of the system in 1959, and graduate students were admitted in 1961. To accommodate an enrollment of 21,000 students by 2015, more than $730 million has been invested in new construction projects since 1999. Preliminary accreditation of the The University of California-Riverside School of Medicine was granted in October 2012 and the first class of 50 students was enrolled in August 2013. It is the first new research-based public medical school in 40 years.

    The University of California-Riverside is classified among “R1: Doctoral Universities – Very high research activity.” The 2019 U.S. News & World Report Best Colleges rankings places UC-Riverside tied for 35th among top public universities and ranks 85th nationwide. Over 27 of The University of California-Riverside ‘s academic programs, including the Graduate School of Education and the Bourns College of Engineering, are highly ranked nationally based on peer assessment, student selectivity, financial resources, and other factors. Washington Monthly ranked The University of California-Riverside 2nd in the United States in terms of social mobility, research and community service, while U.S. News ranks The University of California-Riverside as the fifth most ethnically diverse and, by the number of undergraduates receiving Pell Grants (42 percent), the 15th most economically diverse student body in the nation. Over 70% of all The University of California-Riverside students graduate within six years without regard to economic disparity. The University of California-Riverside ‘s extensive outreach and retention programs have contributed to its reputation as a “university of choice” for minority students. In 2005, The University of California-Riverside became the first public university campus in the nation to offer a gender-neutral housing option. The University of California-Riverside’s sports teams are known as the Highlanders and play in the Big West Conference of the National Collegiate Athletic Association (NCAA) Division I. Their nickname was inspired by the high altitude of the campus, which lies on the foothills of Box Springs Mountain. The University of California-Riverside women’s basketball team won back-to-back Big West championships in 2006 and 2007. In 2007, the men’s baseball team won its first conference championship and advanced to the regionals for the second time since the university moved to Division I in 2001.

    History

    At the turn of the 20th century, Southern California was a major producer of citrus, the region’s primary agricultural export. The industry developed from the country’s first navel orange trees, planted in Riverside in 1873. Lobbied by the citrus industry, the University of California Regents established the UC Citrus Experiment Station (CES) on February 14, 1907, on 23 acres (9 ha) of land on the east slope of Mount Rubidoux in Riverside. The station conducted experiments in fertilization, irrigation and crop improvement. In 1917, the station was moved to a larger site, 475 acres (192 ha) near Box Springs Mountain.

    The 1944 passage of the GI Bill during World War II set in motion a rise in college enrollments that necessitated an expansion of the state university system in California. A local group of citrus growers and civic leaders, including many University of California-Berkeley alumni, lobbied aggressively for a University of California -administered liberal arts college next to the CES. State Senator Nelson S. Dilworth authored Senate Bill 512 (1949) which former Assemblyman Philip L. Boyd and Assemblyman John Babbage (both of Riverside) were instrumental in shepherding through the State Legislature. Governor Earl Warren signed the bill in 1949, allocating $2 million for initial campus construction.

    Gordon S. Watkins, dean of the College of Letters and Science at The University of California-Los Angeles, became the first provost of the new college at Riverside. Initially conceived of as a small college devoted to the liberal arts, he ordered the campus built for a maximum of 1,500 students and recruited many young junior faculty to fill teaching positions. He presided at its opening with 65 faculty and 127 students on February 14, 1954, remarking, “Never have so few been taught by so many.”

    The University of California-Riverside’s enrollment exceeded 1,000 students by the time Clark Kerr became president of the University of California system in 1958. Anticipating a “tidal wave” in enrollment growth required by the baby boom generation, Kerr developed the California Master Plan for Higher Education and the Regents designated Riverside a general university campus in 1959. The University of California-Riverside’s first chancellor, Herman Theodore Spieth, oversaw the beginnings of the school’s transition to a full university and its expansion to a capacity of 5,000 students. The University of California-Riverside’s second chancellor, Ivan Hinderaker led the campus through the era of the free speech movement and kept student protests peaceful in Riverside. According to a 1998 interview with Hinderaker, the city of Riverside received negative press coverage for smog after the mayor asked Governor Ronald Reagan to declare the South Coast Air Basin a disaster area in 1971; subsequent student enrollment declined by up to 25% through 1979. Hinderaker’s development of innovative programs in business administration and biomedical sciences created incentive for enough students to enroll at University of California-Riverside to keep the campus open.

    In the 1990s, The University of California-Riverside experienced a new surge of enrollment applications, now known as “Tidal Wave II”. The Regents targeted The University of California-Riverside for an annual growth rate of 6.3%, the fastest in The University of California system, and anticipated 19,900 students at The University of California-Riverside by 2010. By 1995, African American, American Indian, and Latino student enrollments accounted for 30% of The University of California-Riverside student body, the highest proportion of any University of California campus at the time. The 1997 implementation of Proposition 209—which banned the use of affirmative action by state agencies—reduced the ethnic diversity at the more selective UC campuses but further increased it at The University of California-Riverside.

    With The University of California-Riverside scheduled for dramatic population growth, efforts have been made to increase its popular and academic recognition. The students voted for a fee increase to move The University of California-Riverside athletics into NCAA Division I standing in 1998. In the 1990s, proposals were made to establish a law school, a medical school, and a school of public policy at The University of California-Riverside, with The University of California-Riverside School of Medicine and the School of Public Policy becoming reality in 2012. In June 2006, The University of California-Riverside received its largest gift, 15.5 million from two local couples, in trust towards building its medical school. The Regents formally approved The University of California-Riverside’s medical school proposal in 2006. Upon its completion in 2013, it was the first new medical school built in California in 40 years.

    Academics

    As a campus of The University of California system, The University of California-Riverside is governed by a Board of Regents and administered by a president University of California-Riverside ‘s academic policies are set by its Academic Senate, a legislative body composed of all UC-Riverside faculty members.

    The University of California-Riverside is organized into three academic colleges, two professional schools, and two graduate schools. The University of California-Riverside’s liberal arts college, the College of Humanities, Arts and Social Sciences, was founded in 1954, and began accepting graduate students in 1960. The College of Natural and Agricultural Sciences, founded in 1960, incorporated the CES as part of the first research-oriented institution at The University of California-Riverside; it eventually also incorporated the natural science departments formerly associated with the liberal arts college to form its present structure in 1974. The University of California-Riverside ‘s newest academic unit, the Bourns College of Engineering, was founded in 1989. Comprising the professional schools are the Graduate School of Education, founded in 1968, and The University of California-Riverside School of Business, founded in 1970. These units collectively provide 81 majors and 52 minors, 48 master’s degree programs, and 42 Doctor of Philosophy (PhD) programs. The University of California-Riverside is the only UC campus to offer undergraduate degrees in creative writing and public policy and one of three UCs (along with The University of California-Berkeley and The University of California-Irvine) to offer an undergraduate degree in business administration. Through its Division of Biomedical Sciences, founded in 1974, The University of California-Riverside offers the Thomas Haider medical degree program in collaboration with The University of California-Los Angeles. The University of California-Riverside ‘s doctoral program in the emerging field of dance theory, founded in 1992, was the first program of its kind in the United States, and The University of California-Riverside ‘s minor in lesbian, gay and bisexual studies, established in 1996, was the first undergraduate program of its kind in the University of California system. A new BA program in bagpipes was inaugurated in 2007.

    Research and economic impact

    The University of California-Riverside operated under a $727 million budget in fiscal year 2014–15. The state government provided $214 million, student fees accounted for $224 million and $100 million came from contracts and grants. Private support and other sources accounted for the remaining $189 million. Overall, monies spent at The University of California-Riverside have an economic impact of nearly $1 billion in California. The University of California-Riverside research expenditure in FY 2018 totaled $167.8 million. Total research expenditures at The University of California-Riverside are significantly concentrated in agricultural science, accounting for 53% of total research expenditures spent by the university in 2002. Top research centers by expenditure, as measured in 2002, include the Agricultural Experiment Station; the Center for Environmental Research and Technology; the Center for Bibliographical Studies; the Air Pollution Research Center; and the Institute of Geophysics and Planetary Physics.

    Throughout The University of California-Riverside ‘s history, researchers have developed more than 40 new citrus varieties and invented new techniques to help the $960 million-a-year California citrus industry fight pests and diseases. In 1927, entomologists at the CES introduced two wasps from Australia as natural enemies of a major citrus pest, the citrophilus mealybug, saving growers in Orange County $1 million in annual losses. This event was pivotal in establishing biological control as a practical means of reducing pest populations. In 1963, plant physiologist Charles Coggins proved that application of gibberellic acid allows fruit to remain on citrus trees for extended periods. The ultimate result of his work, which continued through the 1980s, was the extension of the citrus-growing season in California from four to nine months. In 1980, The University of California-Riverside released the Oroblanco grapefruit, its first patented citrus variety. Since then, the citrus breeding program has released other varieties such as the Melogold grapefruit, the Gold Nugget mandarin (or tangerine), and others that have yet to be given trademark names.

    To assist entrepreneurs in developing new products, The University of California-Riverside is a primary partner in the Riverside Regional Technology Park, which includes the City of Riverside and the County of Riverside. It also administers six reserves of the University of California Natural Reserve System. UC-Riverside recently announced a partnership with China Agricultural University[中国农业大学](CN) to launch a new center in Beijing, which will study ways to respond to the country’s growing environmental issues. University of California-Riverside can also boast the birthplace of two-name reactions in organic chemistry, the Castro-Stephens coupling and the Midland Alpine Borane Reduction.

     
  • richardmitnick 7:38 pm on November 1, 2022 Permalink | Reply
    Tags: "Ancient genomes reveal hidden history of human adaptation", , , , Evidence for this type of adaptive genetic change has been inconsistent in humans. This discovery consequently challenges the prevailing view of human adaptation., , Paleoanthropology, Paleogenomics, , The use of ancient DNA including samples of human remains around 45000 years old has shed light on a previously unknown aspect of human evolution., The use of ancient genomes was crucial because they preceded major historical mixing events that have radically reshaped modern European genetic ancestry., This gives us a new and exciting insight into how humans have adapted to the novel environmental pressures they encountered as we spread across the planet.   

    From The University of Adelaide (AU) : “Ancient genomes reveal hidden history of human adaptation” 

    u-adelaide-bloc

    From The University of Adelaide (AU)

    11.1.22
    Media contacts

    Dr Yassine Souilmi, Ph.D.
    Group Leader, Australian Centre for Ancient DNA
    The University of Adelaide
    +61 (0)466 632 395
    Yassine.souilmi@adelaide.edu.au

    Dr Ray Tobler
    Adjunct Fellow
    The University of Adelaide
    +61 (0)424 533 046
    ray.tobler@adelaide.edu.au

    Professor Christian Huber
    Assistant Professor
    The Pennsylvania State University
    +1 814 863 6634.
    cdh5313@psu.edu

    Lee Gaskin,
    Media Coordinator
    The University of Adelaide
    +61 (0)415 747 075
    lee.gaskin@adelaide.edu.au

    The use of ancient DNA, including samples of human remains around 45,000 years old, has shed light on a previously unknown aspect of human evolution.

    1
    A new study co-led by a University of Adelaide researcher has used ancient DNA to challenge the prevailing view of human adaptation. Credit: iStock.

    Dr Yassine Souilmi, Group Leader at the University of Adelaide’s Australian Centre for Ancient DNA, co-led the new study published in Nature Ecology and Evolution [below] .

    “It was widely believed the genetics of our human ancestors didn’t change due to environmental pressures as much as other animals, due to our enhanced communication skills and ability to make and use tools,” Dr Souilmi said.

    “However, by comparing modern genomes with ancient DNA, we discovered more than 50 cases of an initially rare beneficial genetic variant becoming prevalent across all members of ancient human groups.

    “In contrast to many other species, evidence for this type of adaptive genetic change has been inconsistent in humans. This discovery consequently challenges the prevailing view of human adaptation, and gives us a new and exciting insight into how humans have adapted to the novel environmental pressures they encountered as we spread across the planet.”

    Co-lead author Dr Ray Tobler – an Adjunct Fellow at the University of Adelaide and a DECRA fellow at the Australian National University – said examining ancient DNA has been critical in unlocking the secrets of human evolution.

    “We believed historical mixing events between human groups might have hidden signs of genetic changes in modern human genomes,” Dr Tobler said.

    “We examined DNA from more than 1,000 ancient genomes, the oldest which was around 45,000 years old, to see if certain types of genetic adaptation had been more common in our history than studies of modern genomes had suggested.”

    Professor Christian Huber, a senior author of the research paper, is an Adjunct Fellow at the University of Adelaide and an Assistant Professor at Penn State University.

    “The use of ancient genomes was crucial because they preceded major historical mixing events that have radically reshaped modern European genetic ancestry,” Professor Huber said.

    “This allowed the recovery of historical signs of adaptation that are invisible to standard analysis of modern genomes.”

    Established in 2005, the Australian Centre for Ancient DNA is a world leader in the research and development of advanced ancient DNA approaches for evolutionary, environmental and conservation applications.

    Researchers based at the Mayo Clinic, the Garvan Institute of Medical Research, the Max Planck Institute for the Science of Human History in Germany, the University of New South Wales, and Massey University in New Zealand also contributed to the research paper.

    Science paper:
    Nature Ecology and Evolution
    See the science paper for detailed material with images.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    u-adelaide-campus

    The University of Adelaide is a public research university located in Adelaide, South Australia. Established in 1874, it is the third-oldest university in Australia. The university’s main campus is located on North Terrace in the Adelaide city centre, adjacent to the Art Gallery of South Australia, the South Australian Museum and the State Library of South Australia.

    The university has four campuses, three in South Australia: North Terrace campus in the city, Roseworthy campus at Roseworthy and Waite campus at Urrbrae, and one in Melbourne, Victoria. The university also operates out of other areas such as Thebarton, the National Wine Centre in the Adelaide Park Lands, and in Singapore through the Ngee Ann-Adelaide Education Centre.

    The University of Adelaide is composed of five faculties, with each containing constituent schools. These include the Faculty of Engineering, Computer, and Mathematical Sciences (ECMS), the Faculty of Health and Medical Sciences, the Faculty of Arts, the Faculty of the Professions, and the Faculty of Sciences. It is a member of The Group of Eight and The Association of Commonwealth Universities. The university is also a member of the Sandstone universities, which mostly consist of colonial-era universities within Australia.

    The university is associated with five Nobel laureates, constituting one-third of Australia’s total Nobel Laureates, and 110 Rhodes scholars. The university has had a considerable impact on the public life of South Australia, having educated many of the state’s leading business people, lawyers, medical professionals and politicians. The university has been associated with many notable achievements and discoveries, such as the discovery and development of penicillin, the development of space exploration, sunscreen, the military tank, Wi-Fi, polymer banknotes and X-ray crystallography, and the study of viticulture and oenology.

    Research

    The University of Adelaide is one of the most research-intensive universities in Australia, securing over $180 million in research funding annually. Its researchers are active in both basic and commercially oriented research across a broad range of fields including agriculture, psychology, health sciences, and engineering.

    Research strengths include engineering, mathematics, science, medical and health sciences, agricultural sciences, artificial intelligence, and the arts.

    The university is a member of Academic Consortium 21, an association of 20 research intensive universities, mainly in Oceania, though with members from the US and Europe. The university held the Presidency of AC 21 for the period 2011–2013 as host the biennial AC21 International Forum in June 2012.

    The Centre for Automotive Safety Research (CASR), based at the University of Adelaide, was founded in 1973 as the Road Accident Research Unit and focuses on road safety and injury control.

     
  • richardmitnick 1:40 pm on October 15, 2022 Permalink | Reply
    Tags: "Dynamic oxygen levels may have accelerated animal evolution ", , , , , Fossilized traces of early animals -  Ediacaran biota - multi-celled organisms that required oxygen - have been found in sedimentary rocks that are 541 to 635 million years old., It has been proposed in ecological theory that when you have a habitable space that is expanding and contracting this can support rapid changes to the diversity of biological life., Paleoanthropology, Periodic changes in environmental conditions would have produced evolutionary pressures where some life forms may have become extinct and new ones could emerge., Researchers say oxygen levels in the Earth’s atmosphere are likely to have “fluctuated wildly” one billion years ago., Scientists believe atmospheric oxygen developed in three stages starting with what is known as the “Great Oxidation Event” around two billion years ago., , What is uncertain is what happened during the second stage in a time known as the Neoproterozoic Era.   

    From The University of Leeds (UK): “Dynamic oxygen levels may have accelerated animal evolution ” 

    U Leeds bloc

    From The University of Leeds (UK)

    10.14.22
    David Lewis
    pressoffice@leeds.ac.uk

    Images from Dr Emily G. Mitchell, University of Cambridge.

    1
    Image credit: Dr Emily. G. Mitchell – University of Cambridge.

    Researchers say oxygen levels in the Earth’s atmosphere are likely to have “fluctuated wildly” one billion years ago, creating conditions that could have accelerated the development of early animals.

    Scientists believe atmospheric oxygen developed in three stages, starting with what is known as the Great Oxidation Event around two billion years ago, when oxygen first appeared in the atmosphere. The third stage, around 400 million years ago, saw atmospheric oxygen rise to levels that exist today. 

    What is uncertain is what happened during the second stage in a time known as the Neoproterozoic Era, which started about one billion years ago and lasted for around 500 million years, during which time early forms of animal life emerged.  

    The question scientists have tried to answer is - was there anything extraordinary about the changes to oxygen levels in the Neoproterozoic Era that may have played a pivotal role in the early evolution of animals – did oxygen levels suddenly rise or was there a gradual increase? 

    Fossilized traces of early animals - known as Ediacaran biota, multi-celled organisms that required oxygen - have been found in sedimentary rocks that are 541 to 635 million years old.

    To try to answer the question, a research team at the University of Leeds supported by the Universities of Lyon, Exeter and UCL, used measurements of the different forms of carbon, or carbon isotopes, found in limestone rocks taken from shallow seas. Based on the isotope ratios of the different types of carbon found, the researchers were able to calculate photosynthesis levels that existed millions of years ago and infer atmospheric oxygen levels. 

    As a result of the calculations, they have been able to produce a record of oxygen levels in the atmosphere over the last 1.5 billion years, which tells us how much oxygen would have been diffusing into the ocean to support early marine life.

    Dr Alex Krause, a biogeochemical modeller who completed his PhD in the School of Earth and Environment at Leeds and was the lead scientist on the project, said the findings give a new perspective on the way oxygen levels were changing on Earth. 

    He added: “The early Earth, for the first two billion years of its existence, was anoxic, devoid of atmospheric oxygen. Then oxygen levels started to rise, which is known as the Great Oxidation Event.  

    “Up until now, scientists had thought that after the Great Oxidation Event, oxygen levels were either low and then shot up just before we see the first animals evolve, or that oxygen levels were high for many millions of years before the animals came along.

    “But our study shows oxygen levels were far more dynamic. There was an oscillation between high and low levels of oxygen for a long time before early forms of animal life emerged. We are seeing periods where the ocean environment, where early animals lived, would have had abundant oxygen – and then periods where it does not.”

    2
    Fossil record of early animals from Mistaken Point Ecological Reserve in Canada. Image credit: Dr Emily. G. Mitchell – University of Cambridge.

    Dr Benjamin Mills, who leads the Earth Evolution Modelling Group at Leeds and supervised the project, said: “This periodic change in environmental conditions would have produced evolutionary pressures where some life forms may have become extinct and new ones could emerge.” 

    Dr Mills said the oxygenated periods expanded what are known as “habitable spaces” – parts of the ocean where oxygen levels would have been high enough to support early animal life forms. 

    He said: “It has been proposed in ecological theory that when you have a habitable space that is expanding and contracting, this can support rapid changes to the diversity of biological life. 

    “When oxygen levels decline, there is severe environmental pressure on some organisms which could drive extinctions. And when the oxygen-rich waters expand, the new space allows the survivors to rise to ecological dominance. 

    “These expanded habitable spaces would have lasted for millions of years, giving plenty of time for ecosystems to develop.”

    The findings are published in the journal Science Advances.
    See the science paper for detailed material with images.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Leeds Campus

    The University of Leeds is a public research university in Leeds, West Yorkshire, England. It was established in 1874 as the Yorkshire College of Science. In 1884 it merged with the Leeds School of Medicine (established 1831) and was renamed Yorkshire College. It became part of the federal Victoria University in 1887, joining Owens College (which became The University of Manchester (UK)) and University College Liverpool (which became The University of Liverpool (UK)). In 1904 a royal charter was granted to the University of Leeds by King Edward VII.

    The university has 36,330 students, the 5th largest university in the UK (out of 169). From 2006 to present, the university has consistently been ranked within the top 5 (alongside the University of Manchester, The Manchester Metropolitan University (UK), The University of Nottingham (UK) and The University of Edinburgh (SCT)) in the United Kingdom for the number of applications received. Leeds had an income of £751.7 million in 2020/21, of which £130.1 million was from research grants and contracts. The university has financial endowments of £90.5 million (2020–21), ranking outside the top ten British universities by financial endowment.

    Notable alumni include current Leader of the Labour Party Keir Starmer, former Secretary of State Jack Straw, former co-chairman of the Conservative Party Sayeeda Warsi, Piers Sellers (NASA astronaut) and six Nobel laureates.

    The university’s history is linked to the development of Leeds as an international centre for the textile industry and clothing manufacture in the United Kingdom during the Victorian era. The university’s roots can be traced back to the formation of schools of medicine in English cities to serve the general public.

    Before 1900, only six universities had been established in England and Wales: The University of Oxford (UK) (founded c. 1096–1201), The University of Cambridge (UK) (c. 1201), The University of London (UK) (1836), The University of Durham (UK) (1837), Victoria University (UK) (1880), and The University of Wales Trinity Saint David[ Prifysgol Cymru Y Drindod Dewi Sant](WLS) (1893).

    The Victoria University was established in Manchester in 1880 as a federal university in the North of England, instead of the government elevating Owens College to a university and grant it a royal charter. Owens College was the sole college of Victoria University from 1880 to 1884; in 1887 Yorkshire College was the third to join the university.

    Leeds was given its first university in 1887 when the Yorkshire College joined the federal Victoria University on 3 November. The Victoria University had been established by royal charter in 1880; Owens College being at first the only member college. Leeds now found itself in an educational union with close social cousins from Manchester and Liverpool.

    Unlike Owens College, the Leeds campus of the Victoria University had never barred women from its courses. However, it was not until special facilities were provided at the Day Training College in 1896 that women began enrolling in significant numbers. The first female student to begin a course at the university was Lilias Annie Clark, who studied Modern Literature and Education.

    The Victoria (Leeds) University was a short-lived concept, as the multiple university locations in Manchester and Liverpool were keen to establish themselves as separate, independent universities. This was partially due to the benefits a university had for the cities of Liverpool and Manchester whilst the institutions were also unhappy with the practical difficulties posed by maintaining a federal arrangement across broad distances. The interests of the universities and respective cities in creating independent institutions was further spurred by the granting of a charter to the University of Birmingham in 1900 after lobbying from Joseph Chamberlain.

    Following a Royal Charter and Act of Parliament in 1903, the then newly formed University of Liverpool began the fragmentation of the Victoria University by being the first member to gain independence. The University of Leeds soon followed suit and had been granted a royal charter as an independent body by King Edward VII by 1904.

    The Victoria University continued after the break-up of the group, with an amended constitution and renamed as the Victoria University of Manchester (though “Victoria” was usually omitted from its name except in formal usage) until September 2004. On 1 October 2004 a merger with the University of Manchester Institute of Science and Technology was enacted to form The University of Manchester.

    In December 2004, financial pressures forced the university’s governing body (the Council) to decide to close the Bretton campus. Activities at Bretton were moved to the main university campus in the summer of 2007 (allowing all Bretton-based students to complete their studies there). There was substantial opposition to the closure by the Bretton students. The university’s other satellite site, Manygates in Wakefield, also closed, but Lifelong Learning and Healthcare programmes are continuing on a new site next to Wakefield College.

    In May 2006, the university began re-branding itself to consolidate its visual identity to promote one consistent image. A new logo was produced, based on that used during the centenary celebrations in 2004, to replace the combined use of the modified university arms and the Parkinson Building, which has been in use since 2004. The university arms will still be used in its original form for ceremonial purposes only. Four university colours were also specified as being green, red, black and beige.

    Leeds provides the local community with over 2,000 university student volunteers. With 8,700 staff employed in 2019-20, the university is the third largest employer in Leeds and contributes around £1.23bn a year to the local economy – students add a further £211m through rents and living costs.

    The university’s educational partnerships have included providing formal accreditation of degree awards to The Leeds Arts University (UK) and The Leeds Trinity University (UK), although the latter now has the power to award its own degrees. The College of the Resurrection, an Anglican theological college in Mirfield with monastic roots, has, since its inception in 1904, been affiliated to the university, and ties remain close. The university is also a founding member of The Northern Consortium (UK).

    In August 2010, the university was one of the most targeted institutions by students entering the UCAS clearing process for 2010 admission, which matches undersubscribed courses to students who did not meet their firm or insurance choices. The university was one of nine The Russell Group Association(UK) universities offering extremely limited places to “exceptional” students after the universities in Birmingham, Bristol, Cambridge, Edinburgh and Oxford declared they would not enter the process due to courses being full to capacity.

    On 12 October 2010, The Refectory of the Leeds University Union hosted a live edition of the Channel 4 News, with students, academics and economists expressing their reaction to the Browne Review, an independent review of Higher Education funding and student finance conducted by John Browne, Baron Browne of Madingley. University of Leeds Vice-Chancellor and Russell Group chairman Michael Arthur participated, giving an academic perspective alongside current vice-chancellor of The Kingston University (UK) and former Pro Vice-Chancellor and Professor of Education at the University of Leeds, Sir Peter Scott. Midway through the broadcast a small group of protesters against the potential rise of student debt entered the building before being restrained and evacuated.

    In 2016, The University of Leeds became University of the Year 2017 in The Times and The Sunday Times’ Good University Guide. The university has risen to 13th place overall, which reflects impressive results in student experience, high entry standards, services and facilities, and graduate prospects.

    In 2018, the global world ranking of the University of Leeds is No.93. There are currently 30,842 students are studying in this university. The average tuition fee is 12,000 – US$14,000.

    Research

    Many of the academic departments have specialist research facilities, for use by staff and students to support research from internationally significant collections in university libraries to state-of-the-art laboratories. These include those hosted at the Institute for Transport Studies, such as the University of Leeds Driving Simulator which is one of the most advanced worldwide in a research environment, allowing transport researchers to watch driver behaviour in accurately controlled laboratory conditions without the risks associated with a live, physical environment.

    With extensive links to the St James’s University Hospital through the Leeds School of Medicine, the university operates a range of high-tech research laboratories for biomedical and physical sciences, food and engineering – including clean rooms for bionanotechnology and plant science greenhouses. The university is connected to Leeds General Infirmary and the institute of molecular medicine based at St James’s University Hospital which aids integration of research and practice in the medical field.

    The university also operate research facilities in the aviation field, with the Airbus A320 flight simulator. The simulator was devised with an aim to promote the safety and efficiency of flight operations; where students use the simulator to develop their reactions to critical situations such as engine failure, display malfunctioning and freak weather.

    In addition to these facilities, many university departments conduct research in their respective fields. There are also various research centres, including Leeds University Centre for African Studies.

    Leeds was ranked joint 19th (along with The University of St Andrews (SCT)) amongst multi-faculty institutions in the UK for the quality (GPA) of its research and 10th for its Research Power in the 2014 Research Excellence Framework.

    Between 2014-15, Leeds was ranked as the 10th most targeted British university by graduate employers, a two place decrease from 8th position in the previous 2014 rankings.

    The 2021 The Times Higher Education World University Rankings ranked Leeds as 153rd in the world. The university ranks 84th in the world in the CWTS Leiden Ranking. Leeds is ranked 91st in the world (and 15th in the UK) in the 2021 QS World University Rankings.

    The university won the biennially awarded Queen’s Anniversary Prize in 2009 for services to engineering and technology. The honour being awarded to the university’s Institute for Transport Studies (ITS) which for over forty years has been a world leader in transport teaching and research.

    The university is a founding member of The Russell Group Association(UK), comprising the leading research-intensive universities in the UK, as well as the N8 Group for research collaboration, The Worldwide Universities Network (UK), The Association of Commonwealth Universities (UK), The European University Association (EU), The White Rose University Consortium (UK), the Santander Network and the CDIO Initiative. It is also affiliated to The Universities (UK). The Leeds University Business School holds the ‘Triple Crown’ of accreditations from the Association to Advance Collegiate Schools of Business, the Association of MBAs and the European Quality Improvement System.

     
  • richardmitnick 9:30 am on September 14, 2022 Permalink | Reply
    Tags: "Igneous provinces": giant fingerprints of volcanic igneous rock., , "What Killed Dinosaurs and Other Life on Earth?", A series of eruptions in what is now known as Siberia triggered the most destructive of the mass extinctions about 252 million years ago., , , , , , Dartmouth-led study fortifies link between mega volcanoes and mass extinctions., , , , Large igneous provinces releasa gigantic pulses of carbon dioxide into the atmosphere and nearly choking off all life., , Paleoanthropology, , The eruption rate of the Deccan Traps in India suggests that the stage was set for widespread extinction even without the asteroid., The total amount of carbon dioxide being released into the atmosphere in modern climate change is still very much smaller than the amount emitted by a large igneous province., To count as “large” an igneous province must contain at least 100000 cubic kilometers of magma., Volcanic eruptions rocked the Indian subcontinent around the time of the great dinosaur die-off creating what is known today as the Deccan plateau.,   

    From Dartmouth College: “What Killed Dinosaurs and Other Life on Earth?” 

    From Dartmouth College

    9.12.22
    Harini Barath

    Dartmouth-led study fortifies link between mega volcanoes and mass extinctions.

    1
    The Mount Fagradalsfjall volcano, near Iceland’s capital of Reykjavík, erupted for six months in 2021, and also again in August. (Photo by Tanya Grypachevskaya/Unsplash Photo Community)

    The biological history of the Earth has been punctuated by mass extinctions that wiped out a vast majority of living species in a geological instant.

    Based on evidence in the fossil record, scientists have identified five such events that reshaped life on Earth, the most familiar of which brought about the demise of the mighty dinosaurs at the end of the Cretaceous Period 66 million years ago.

    What caused these catastrophes remains a matter of keen scientific debate. Some scientists argue that comets or asteroids that crashed into Earth were the most likely agents of mass destruction, while others point fingers at large volcanic eruptions.

    Assistant Professor of Earth Sciences Brenhin Keller belongs to the latter camp. In a new study published in PNAS [below], Keller and his co-authors make a strong case for volcanic activity being the key driver of mass extinctions. Their study provides the most compelling quantitative evidence so far that the link between major volcanic eruptions and wholesale species turnover is not simply a matter of chance.

    Four of the five mass extinctions are contemporaneous with a type of volcano called a flood basalt, the researchers say. These are a series of eruptions (or one giant one) that flood vast areas with lava in the blink of a geological eye, a mere million years. They leave behind giant fingerprints as evidence—extensive regions of step-like, igneous rock that geologists call large igneous provinces.

    To count as “large” an igneous province must contain at least 100,000 cubic kilometers of magma. For scale, the 1980 eruption of Mount St. Helens involved less than one cubic kilometer of magma.

    In fact, a series of eruptions in what is now known as Siberia triggered the most destructive of the mass extinctions about 252 million years ago, releasing a gigantic pulse of carbon dioxide into the atmosphere and nearly choking off all life. Bearing witness are the Siberian Traps, a large region of volcanic rock roughly the size of Australia.

    Volcanic eruptions also rocked the Indian subcontinent around the time of the great dinosaur die-off creating what is known today as the Deccan plateau. This, much like an asteroid strike, would have had far-reaching global effects, blanketing the atmosphere in dust and toxic fumes, asphyxiating dinosaurs and other life.

    “It seems like these large igneous provinces line up in time with mass extinctions and other significant climactic and environmental events,” says Theodore Green ’21, lead author of the paper.

    On the other hand, the researchers say, the theories in favor of annihilation by asteroid impact hinge upon the Chicxulub impactor, a space rock that crash-landed into Mexico’s Yucatan Peninsula around the same time that the dinosaurs went extinct.

    “All other theories that attempted to explain what killed the dinosaurs got steamrolled when the crater the asteroid had gouged out was discovered,” says Keller. But there’s very little evidence of similar impact events that coincide with the other mass extinctions despite decades of exploration, he points out.

    For his Senior Fellowship thesis, Green set out to find a way to quantify the apparent link between eruptions and extinctions and test whether the coincidence was just chance or whether there was evidence of a causal relationship between the two. Working with Keller and co-author Paul Renne, professor of Earth and planetary science at the University of California-Berkeley, Green turned to the supercomputers at the Dartmouth Discovery Cluster to crunch the numbers.

    2
    Discovery is a 3000+ core Linux cluster that is available to the Dartmouth research community.

    Discovery contains ‘C’ and FORTRAN compilers as well as third party applications. Requests to install additional application software are welcomed and should be directed to Research Computing.

    Job submissions on Discovery are submitted to a queue. A queuing system allows for more equitable allocation of resources and optimizes cpu usage. For more information see the Scheduling Jobs to Run page.

    Discovery is available for all Dartmouth faculty research including the Geisel School of Medicine, and professional schools.

    The researchers compared the best available estimates of flood basalt eruptions with periods of drastic species kill-off in the geological timescale, including but not limited to the five mass extinctions. To prove that the timing was more than a random chance, they examined whether the eruptions would line up just as well with a randomly generated pattern and repeated the exercise with 100 million such patterns. “Less than 1% of the simulated timelines agreed as well as the actual record of flood basalts and extinctions, suggesting the relationship is not just random chance,” says Green, who is now a graduate student at Princeton.

    But is this proof enough that volcanic flood basalts sparked extinctions? If there were a causal link, scientists expect that larger eruptions would entail more severe extinctions, but such a correlation has not been observed until now.

    By recasting how the severity of the eruptions is defined, the researchers make a convincing case to unequivocally incriminate volcanoes in their paper.

    Rather than considering the absolute magnitude of eruptions, they ordered the events by the rate at which they spewed lava and found that the ones with the highest eruptive rates did indeed cause the most destruction.

    “Our results make it hard to ignore the role of volcanism in extinction,” says Keller.

    3
    Examples of flood basalt volcanism can be seen in what are known as Grande Ronde flows exposed in Joseph Canyon on the Oregon-Washington border. (Photo courtesy of Brenhin Keller)

    The researchers ran the numbers for asteroids too. The coincidence of impacts with periods of species turnover was significantly weaker, and only worsened when the Chicxulub impactor was not considered.

    The eruption rate of the Deccan Traps in India suggests that the stage was set for widespread extinction even without the asteroid, says Green. The impact was the double whammy that loudly sounded the death knell for the dinosaurs, he adds.

    Flood basalt eruptions aren’t common in the geologic record, says Green. The last one of comparable scale happened about 16 million years ago in the Pacific Northwest. But there are other sources of emissions that pose a threat in the present day, the researchers say.

    “While the total amount of carbon dioxide being released into the atmosphere in modern climate change is still very much smaller than the amount emitted by a large igneous province, thankfully,” says Keller, “we’re emitting it very fast, which is reason to be concerned.”

    Green says that this rate of carbon dioxide emissions places climate change in the framework of historical periods of environmental catastrophe.

    Green describes Dartmouth’s Senior Fellowship program, which allows undergraduates to go beyond the curriculum in their senior year, as a unique opportunity to dive into a field of his choice and develop a taste for research.

    “This work is a great example of what Senior Fellows can achieve,” says Keller.

    Science paper:
    PNAS

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Dartmouth College campus

    Dartmouth College is a private Ivy League research university in Hanover, New Hampshire. Established in 1769 by Eleazar Wheelock, Dartmouth is one of the nine colonial colleges chartered before the American Revolution and among the most prestigious in the United States. Although founded to educate Native Americans in Christian theology and the English way of life, the university primarily trained Congregationalist ministers during its early history before it gradually secularized, emerging at the turn of the 20th century from relative obscurity into national prominence.

    Following a liberal arts curriculum, Dartmouth provides undergraduate instruction in 40 academic departments and interdisciplinary programs, including 60 majors in the humanities, social sciences, natural sciences, and engineering, and enables students to design specialized concentrations or engage in dual degree programs. In addition to the undergraduate faculty of arts and sciences, Dartmouth has four professional and graduate schools: the Geisel School of Medicine, the Thayer School of Engineering, the Tuck School of Business, and the Guarini School of Graduate and Advanced Studies. The university also has affiliations with the Dartmouth–Hitchcock Medical Center. Dartmouth is home to the Rockefeller Center for Public Policy and the Social Sciences, the Hood Museum of Art, the John Sloan Dickey Center for International Understanding, and the Hopkins Center for the Arts. With a student enrollment of about 6,700, Dartmouth is the smallest university in the Ivy League. Undergraduate admissions are highly selective with an acceptance rate of 6.24% for the class of 2026, including a 4.7% rate for regular decision applicants.

    Situated on a terrace above the Connecticut River, Dartmouth’s 269-acre (109 ha) main campus is in the rural Upper Valley region of New England. The university functions on a quarter system, operating year-round on four ten-week academic terms. Dartmouth is known for its strong undergraduate focus, Greek culture, and wide array of enduring campus traditions. Its 34 varsity sports teams compete intercollegiately in the Ivy League conference of the NCAA Division I.

    Dartmouth is consistently cited as a leading university for undergraduate teaching by U.S. News & World Report. In 2021, the Carnegie Classification of Institutions of Higher Education listed Dartmouth as the only majority-undergraduate, arts-and-sciences focused, doctoral university in the country that has “some graduate coexistence” and “very high research activity”.

    The university has many prominent alumni, including 170 members of the U.S. Senate and the U.S. House of Representatives, 24 U.S. governors, 23 billionaires, 8 U.S. Cabinet secretaries, 3 Nobel Prize laureates, 2 U.S. Supreme Court justices, and a U.S. vice president. Other notable alumni include 79 Rhodes Scholars, 26 Marshall Scholarship recipients, and 14 Pulitzer Prize winners. Dartmouth alumni also include many CEOs and founders of Fortune 500 corporations, high-ranking U.S. diplomats, academic scholars, literary and media figures, professional athletes, and Olympic medalists.

    Comprising an undergraduate population of 4,307 and a total student enrollment of 6,350 (as of 2016), Dartmouth is the smallest university in the Ivy League. Its undergraduate program, which reported an acceptance rate around 10 percent for the class of 2020, is characterized by the Carnegie Foundation and U.S. News & World Report as “most selective”. Dartmouth offers a broad range of academic departments, an extensive research enterprise, numerous community outreach and public service programs, and the highest rate of study abroad participation in the Ivy League.

    Dartmouth, a liberal arts institution, offers a four-year Bachelor of Arts and ABET-accredited Bachelor of Engineering degree to undergraduate students. The college has 39 academic departments offering 56 major programs, while students are free to design special majors or engage in dual majors. For the graduating class of 2017, the most popular majors were economics, government, computer science, engineering sciences, and history. The Government Department, whose prominent professors include Stephen Brooks, Richard Ned Lebow, and William Wohlforth, was ranked the top solely undergraduate political science program in the world by researchers at The London School of Economics (UK) in 2003. The Economics Department, whose prominent professors include David Blanchflower and Andrew Samwick, also holds the distinction as the top-ranked bachelor’s-only economics program in the world.

    In order to graduate, a student must complete 35 total courses, eight to ten of which are typically part of a chosen major program. Other requirements for graduation include the completion of ten “distributive requirements” in a variety of academic fields, proficiency in a foreign language, and completion of a writing class and first-year seminar in writing. Many departments offer honors programs requiring students seeking that distinction to engage in “independent, sustained work”, culminating in the production of a thesis. In addition to the courses offered in Hanover, Dartmouth offers 57 different off-campus programs, including Foreign Study Programs, Language Study Abroad programs, and Exchange Programs.

    Through the Graduate Studies program, Dartmouth grants doctorate and master’s degrees in 19 Arts & Sciences graduate programs. Although the first graduate degree, a PhD in classics, was awarded in 1885, many of the current PhD programs have only existed since the 1960s. Furthermore, Dartmouth is home to three professional schools: the Geisel School of Medicine (established 1797), Thayer School of Engineering (1867)—which also serves as the undergraduate department of engineering sciences—and Tuck School of Business (1900). With these professional schools and graduate programs, conventional American usage would accord Dartmouth the label of “Dartmouth University”; however, because of historical and nostalgic reasons (such as Dartmouth College v. Woodward), the school uses the name “Dartmouth College” to refer to the entire institution.

    Dartmouth employs a total of 607 tenured or tenure-track faculty members, including the highest proportion of female tenured professors among the Ivy League universities, and the first black woman tenure-track faculty member in computer science at an Ivy League university. Faculty members have been at the forefront of such major academic developments as the Dartmouth Workshop, the Dartmouth Time Sharing System, Dartmouth BASIC, and Dartmouth ALGOL 30. In 2005, sponsored project awards to Dartmouth faculty research amounted to $169 million.

    Dartmouth serves as the host institution of the University Press of New England, a university press founded in 1970 that is supported by a consortium of schools that also includes Brandeis University, The University of New Hampshire, Northeastern University, Tufts University and The University of Vermont.

    Rankings

    Dartmouth was ranked tied for 13th among undergraduate programs at national universities by U.S. News & World Report in its 2021 rankings. U.S. News also ranked the school 2nd best for veterans, tied for 5th best in undergraduate teaching, and 9th for “best value” at national universities in 2020. Dartmouth’s undergraduate teaching was previously ranked 1st by U.S. News for five years in a row (2009–2013). Dartmouth College is accredited by The New England Commission of Higher Education.

    In Forbes’ 2019 rankings of 650 universities, liberal arts colleges and service academies, Dartmouth ranked 10th overall and 10th in research universities. In the Forbes 2018 “grateful graduate” rankings, Dartmouth came in first for the second year in a row.

    The 2021 Academic Ranking of World Universities ranked Dartmouth among the 90–110th best universities in the nation. However, this specific ranking has drawn criticism from scholars for not adequately adjusting for the size of an institution, which leads to larger institutions ranking above smaller ones like Dartmouth. Dartmouth’s small size and its undergraduate focus also disadvantage its ranking in other international rankings because ranking formulas favor institutions with a large number of graduate students.

    The 2006 Carnegie Foundation classification listed Dartmouth as the only “majority-undergraduate”, “arts-and-sciences focus[ed]”, “research university” in the country that also had “some graduate coexistence” and “very high research activity”.

    The Dartmouth Plan

    Dartmouth functions on a quarter system, operating year-round on four ten-week academic terms. The Dartmouth Plan (or simply “D-Plan”) is an academic scheduling system that permits the customization of each student’s academic year. All undergraduates are required to be in residence for the fall, winter, and spring terms of their freshman and senior years, as well as the summer term of their sophomore year. However, students may petition to alter this plan so that they may be off during their freshman, senior, or sophomore summer terms. During all terms, students are permitted to choose between studying on-campus, studying at an off-campus program, or taking a term off for vacation, outside internships, or research projects. The typical course load is three classes per term, and students will generally enroll in classes for 12 total terms over the course of their academic career.

    The D-Plan was instituted in the early 1970s at the same time that Dartmouth began accepting female undergraduates. It was initially devised as a plan to increase the enrollment without enlarging campus accommodations, and has been described as “a way to put 4,000 students into 3,000 beds”. Although new dormitories have been built since, the number of students has also increased and the D-Plan remains in effect. It was modified in the 1980s in an attempt to reduce the problems of lack of social and academic continuity.

    3

     
  • richardmitnick 7:29 pm on August 3, 2022 Permalink | Reply
    Tags: "A Spike in Wildfires Contributed to the End-Permian Extinction", An upward trend in fossilized charcoal indicates that wildfires may have contributed to extinctions during the "Great Dying"., , , , , Paleoanthropology, , ,   

    From “Eos” : “A Spike in Wildfires Contributed to the End-Permian Extinction” 

    Eos news bloc

    From “Eos”

    AT

    AGU

    8.2.22
    Jackie Rocheleau

    An upward trend in fossilized charcoal indicates that wildfires may have contributed to extinctions during the “Great Dying”.

    1
    During the end-Permian extinction event, vast wetlands across what is now Australia suffered increased numbers of wildfires and saw the extinction of small therapsids, such as Lystrosaurus (right). Credit: Victor O. Leshyk, CC0.

    Around 252 million years ago, volcanic eruptions set off a geologic domino effect culminating in the largest extinction event in Earth’s history. The end-Permian extinction (EPE), also known as the Permian-Triassic extinction or the Great Dying, wiped out 96% of ocean life and around 70% of terrestrial species.

    According to a new study published in the journal Palaios [below], the eruptions may have led to a spike in wildfires that might have been an EPE driver in eastern Gondwanan forest mires, in what are now Australia and Antarctica.
    By studying charcoal remains from the EPE, the scientists found evidence that wildfires turned the wetlands into a scorched, sparse landscape.

    A Change in Charcoal

    Scientists believe volcanic eruptions [Science Advances 2021 (below)] in the Siberian Traps ultimately caused the end-Permian mass extinction by creating or enhancing extinction drivers like polluted soil and acidic rain. Wildfires have been suggested as drivers too, but no work has analyzed fires before and during the EPE.

    To quantify this prehistoric fire activity, Chris Mays, a paleontology lecturer at University College Cork, and coauthor Stephen McLoughlin at the Swedish Museum of Natural History looked at charcoal content preserved in samples from three mid- to late Permian peat deposits in the southern Sydney Basin, the northern Bowen Basin, and eastern Antarctica. Using microscopy techniques to count the remains of burned, charcoalified plants, they found evidence that wildfires were a regular feature of the region before the EPE. “Then, what we discovered is leading up to the mass extinction, there was a great increase in the amount of charcoal being preserved,” said Mays.

    A rise in charcoal levels around the EPE suggested that fire activity spiked during the peak of the Siberian Traps eruptions. But looking at rock from the beginning of the Triassic (after the extinction event), researchers were hard pressed to find charcoal, signaling that by that time, wildfire activity may have declined significantly.

    Mays said one possible explanation for these results could be that warming from the greenhouse gases released by the Siberian Traps eruptions led to extreme seasonal temperature and precipitation changes. These shifts could have created dry seasons in the wetlands, which, combined with high atmospheric oxygen levels, would have helped wildfires flourish. “Then, after the fact, because [the wildfires] burned off those high-vegetated areas, the fires couldn’t get a good hold in the postextinction realm,” said Mays.

    But that hypothesis still needs confirmation. “All we can really say is that on average, the amount of charcoal being produced [during the EPE] was much higher, probably 2 to 3 times higher than preextinction levels,” Mays said. The samples don’t allow researchers to see whether there were seasonal changes in fires from year to year, nor do they show whether the charcoal spike represents an increase in fire frequency or intensity.

    David Bond, a professor of paleoenvironments at the University of Hull, said this work represents an important advance in the field. “This is a good study that takes a long-term view, looks at the background conditions,” said Bond. “It’s based on a relatively small number of samples, but that’s the nature of this kind of study.”

    Wildfires Then and Now

    Today’s wildfire threats are different, and so are the flora and fauna. Although intense fires in fire-adapted areas are common to both the EPE and today, one notable difference between then and now is that modern fires are also tearing through non-fire-adapted areas. “It’s quite difficult to tell how modern ecosystems will react and whether [their response is] going to be similar to what happened back in the day,” said Mays.

    Another major difference is the rate of climate change. Today, temperatures and carbon dioxide (CO2) levels are climbing at a faster clip compared to the Permian, on the scale of hundreds of years rather than tens of thousands. But, Mays said, it’s not too late. “We’re still in the early, early stages of that increase in CO2. So we can definitely turn the ship around.”

    Science papers:
    Palaios 2022

    Science Advances 2021

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    “Eos” is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

     
  • richardmitnick 1:44 pm on July 11, 2022 Permalink | Reply
    Tags: "The First Mass Extinction Event Explained: End-Ordovician", , , , , , How long did the Ordovician period last and what caused the Ordovician mass extinction to wipe out 85 percent of life on earth 445 million years ago?, Paleoanthropology, , ,   

    From “Discover Magazine” : “The First Mass Extinction Event Explained: End-Ordovician” 

    DiscoverMag

    From “Discover Magazine”

    Jul 11, 2022
    Gabe Allen

    How long did the Ordovician period last and what caused the Ordovician mass extinction to wipe out 85 percent of life on earth 445 million years ago?

    1
    (Credit: Cagla Acikgoz/Shutterstock)

    Long before the dawn of humans, dinosaurs, insects or even trees, a cascade of unfortunate events threatened to end life on earth.

    During the Ordovician Period, around 485 to 444 million years ago, the diversity of marine life exploded. Trilobites and mollusks crawled on the ocean floor, plankton-like filter-feeders floated at all depths and coral and algae bloomed. Jawless fish, perhaps our oldest ancestors, drifted in shallow lagoons and deltas. Life may have also taken its first steps onto land during this period. Some researchers have speculated [JSTOR] that Ordovician green algae may have migrated onto the shore with assistance from mycorrhizal fungi.

    However, sometime around 445 million years ago, 85 percent of species went extinct [Geology] over the relatively short interval of 1.4 million years. This unprecedented die-off is now known as the earth’s first mass extinction, the Late Ordovician mass extinction or simply LOME. Many researchers have devoted time, or even careers, to uncovering the underlying forces of extinction. But pieces of the puzzle are still missing.

    “As you might imagine, trying to infer what exactly happened in the environment 445 million years ago is a fairly inexact process,” paleobiologist Charles Mitchell says. “But we can discern some things quite clearly.”

    What Caused the Ordovician Extinction

    Around the time of the extinction, the earth’s climate underwent a series of significant changes [Nature Communications]. A period of warming and sea level rise was followed by an ice age. Glaciers encapsulated much of the ancient supercontinent Gondwana, a landmass that gave rise to parts of every major modern continent. Eventually the ice age gave way to warming once again.

    These climatic changes disrupted the ways in which nutrients like oxygen, carbon and nitrogen, cycled through the ocean at the time.

    “When you shift from greenhouse conditions to ice house conditions, there are going to be major changes in ocean circulation patterns,” Mitchell says.

    One prominent theory [GSA Bulletin] posits that an initial wave of extinction occurred when the ice age began. The organisms at the bottom of the food chain, algae and cyanobacteria, may have been slow to adjust to a colder climate. The same theory aligns the second wave of extinction with the end of the ice age. Warming temperatures may have caused a global “algal bloom,” much like the blooms caused by nutrient-rich wastewater in lakes and rivers today.

    This rapid proliferation of cyanobacteria could have caused the de-oxygenation of the ocean, which scientists have observed in the geologic record.

    A second theory that has gained some traction, ties both waves of extinction to the warm periods [Nature Communications above] that bookend the ice age. In a 2020 paper [Geology above], two geologists assert that a large volcanic eruption may have been a leading factor as well.

    “Rather than being the odd-one-out of the ‘Big Five’ extinctions with origins in cooling, the LOME is similar to the others in being caused by volcanism, warming and anoxia,” they write.

    Ordovician Species

    While scientists will hotly debate the causes for decades to come, the outcomes of the extinction are clearer. All major groups of Ordovician organisms were affected — trilobites, brachiopods and bryozoans died off in large proportions. But, while subsequent mass extinctions selected broad categories of winners or losers, some species, from nearly every major group or organisms, survived the LOME. During the Silurian period, which succeeded the Ordovician, these survivors repopulated the oceans.

    Mitchell has focused much of his work on a group of filter feeders that the extinction hit especially hard: graptolites. These tube-like organisms were plentiful in the Ordovician oceans.

    “They were planktonic, so they were directly harvesting algae, which is at the bottom of the food chain,” Mitchell says. “For that reason, they’re a bit of a canary in a coal mine.”

    By looking through thousands of graptolite fossils, Mitchell and his colleagues noticed something curious. The creatures were dying off, slowly, for long before the sharp decline associated with the mass extinction event.

    “Graptolites started going extinct considerably before the big pulse,” Mitchell says. “That means that whatever caused the turnover had to have been a longer-term event.”

    In other words, slow and incremental change eventually gave way to rapid decline. Here, Mitchell sees a parallel to current human-caused shifts in global biodiversity. Over the past century, vertebrate species have gone extinct at a rate 100 times that of the pre-industrial average [Science Advances]. This rate is projected to increase [IPCC]as global temperatures rise.

    “It looks like things are occurring predictably, and then you fall off a cliff,” Mitchell says. “Right now, we are still in the phase of incremental change. We can’t be fooled into thinking that this is manageable.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 10:16 am on June 28, 2022 Permalink | Reply
    Tags: "Baby woolly mammoth – beautifully preserved – found in Yukon", , , , , , Paleoanthropology   

    From “EarthSky” : “Baby woolly mammoth – beautifully preserved – found in Yukon” 

    1

    From “EarthSky”

    June 28, 2022
    Deborah Byrd

    1
    Miners in Yukon, Canada, stumbled upon an intact and beautifully preserved baby woolly mammoth on June 21, 2022. Geologists suggest the animal was frozen in permafrost during the ice age, over 30,000 years ago.

    Baby woolly mammoth: ‘Beautiful’

    The Canadian territory Yukon – and Tr’ondëk Hwëch’in, a First Nation band – said late last week (June 24, 2022) that miners in the region have discovered a whole, 30,000-year-old mummified baby woolly mammoth. It’s only the second one ever found in the world. And it’s the first and most complete discovery of its kind in North America.

    Miners with the Treadstone Mining company found the near-complete mummified baby woolly mammoth. They found her in the Klondike gold fields within Tr’ondëk Hwëch’in Traditional Territory. A joint statement from Yukon and Tr’ondëk Hwëch’in said:

    “Miners working on Eureka Creek uncovered the frozen woolly mammoth while excavating through the permafrost. This is a significant discovery for Tr’ondëk Hwëch’in and the Government of Yukon. Tr’ondëk Hwëch’in Elders named the mammoth calf Nun cho ga, meaning ‘big baby animal’ in the Hän language.

    The Yukon has a world-renowned fossil record of ice age animals. But mummified remains with skin and hair are rarely unearthed. Nun cho ga is the most complete mummified mammoth found in North America.”

    “It took my breath away”

    Yukon paleontologist Grant Zazula has been studying the ice age in the Yukon since 1999. He said:

    “As an ice age paleontologist, it has been one of my lifelong dreams to come face to face with a real woolly mammoth. And that dream came true today. Nun cho ga is beautiful and one of the most incredible mummified ice age animals ever discovered in the world. So I am excited to get to know her more.”

    Tr’ondëk Hwëch’in Elder Peggy Kormendy said:

    “It’s amazing. It took my breath away when they removed the tarp. We must all treat it with respect. When that happens, it is going to be powerful, and we will heal.”

    Brian McCaughan of Treadstone Mining said:

    “There will be one thing that stands out in a person’s entire life. And I can guarantee you this is my one thing.”

    2
    “She’s beautiful,” said Yukon government paleontologist Dr. Grant Zazula. The 1st whole baby woolly mammoth found in North America and 2nd in the world has been named Nun cho ga (“Big baby animal” in the Hän language). You can see her well-preserved trunk, ears and tail. Image via Government of Yukon.

    “Most important discovery in paleontology in North America”

    Michel Proulx of CBC News in Canada reported that miners made the discovery on June 21, which is National Indigenous People’s Day:

    A little after noon … a young miner working in Yukon’s Eureka Creek, south of Dawson City, was digging up muck using a front end loader when he struck something. He stopped and called his boss, who went to see him right away.

    When he arrived, Treadstone Mining’s Brian McCaughan put a stop to the operation on the spot. Within half an hour, Zazula received a picture of the discovery. According to Zazula, the miner had made the “most important discovery in paleontology in North America.”

    “She would have been lost in the storm”

    Proulx continued:

    National Indigenous People’s Day is a statutory holiday in the Yukon so when Zazula received the email, he tried to contact anyone he could find in Dawson City who could help.

    Two geologists, one with the Yukon Geological Survey and another with the University of Calgary, were able to drive to the creek and recover the baby woolly mammoth and do a complete geological description and sampling of the site.

    “And the amazing thing is, within an hour of them being there to do the work, the sky opened up, it turned black, lightning started striking and rain started pouring in,” said Zazula.

    “So if she wasn’t recovered at that time, she would have been lost in the storm.”

    3
    On June 21, 2022, miners discovered the intact baby woolly mammoth at Treadstone Mine in the Yukon’s Eureka Creek. The mine is located south of Dawson City, a town in the Canadian territory of Yukon. Image via Government of Yukon.

    Quick facts:

    – A quick examination of the woolly mammoth suggests she is female and roughly the same size as the 42,000-year-old infant mummy woolly mammoth Lyuba, found in Siberia in 2007.

    – Geologists from the Yukon Geological Survey and University of Calgary recovered the frozen mammoth on site. They suggest that Nun cho ga died and was frozen in permafrost during the ice age, over 30,000 years ago.

    – These amazing ice age remains provide an extremely detailed glimpse into a time when Nun cho ga roamed the Yukon alongside wild horses, cave lions and giant steppe bison.

    – The discovery of Nun cho ga marks the first near complete and best-preserved mummified woolly mammoth found in North America. A partial mammoth calf, named Effie, was found in 1948 at a gold mine in interior Alaska.

    – The successful recovery of Nun cho ga was possible because of the partnership between miners, Tr’ondëk Hwëch’in and the Government of Yukon’s Department of Environment, Yukon Geological Survey, and Yukon Palaeontology Program.

    Baby woolly mammoth: What’s next?

    In the months to come, Tr’ondëk Hwëch’in and the Government of Yukon say they will work together to respectfully preserve and learn more about Nun cho ga and share these stories and information with the community of Dawson City, residents of the Yukon and the global scientific community.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    Deborah Byrd created the EarthSky radio series in 1991 and founded EarthSky.org in 1994. Today, she serves as Editor-in-Chief of this website. She has won a galaxy of awards from the broadcasting and science communities, including having an asteroid named 3505 Byrd in her honor. A science communicator and educator since 1976, Byrd believes in science as a force for good in the world and a vital tool for the 21st century. “Being an EarthSky editor is like hosting a big global party for cool nature-lovers,” she says.

     
  • richardmitnick 7:37 am on June 28, 2022 Permalink | Reply
    Tags: "Australopithecus africanus", "Fossils in the ‘Cradle of Humankind’ may be more than a million years older than previously thought", "Little Foot", A dating method developed by a Purdue University geologist just pushed the age of some of these fossils found at the site of Sterkfontein Caves back more than a million years., , All of the Australopithecus-bearing cave sediments date from about 3.4 to 3.7 million years old rather than 2-2.5 million years old as scientists previously theorized., , , , For decades scientists have studied fossils of early human ancestors and their long-lost relatives., , Granger and the research group at the Purdue Rare Isotope Measurement Laboratory (PRIME Lab) study so-called cosmogenic nuclides and what they can reveal about the history of fossils., Paleoanthropology, , , Sterkfontein has more Australopithecus fossils than anywhere else in the world., Sterkfontein is a deep and complex cave system that preserves a long history of hominin occupation of the area., The age of the fossils matters because it influences scientists’ understanding of the living landscape of the time., The “Cradle of Humankind” is a UNESCO World Heritage Site in South Africa that comprises a variety of fossil-bearing cave deposits including at Sterkfontein Caves., The new dating method would make them older than Dinkinesh-also called Lucy: the world’s most famous Australopithecus fossil.   

    From Purdue University: “Fossils in the ‘Cradle of Humankind’ may be more than a million years older than previously thought” 

    From Purdue University

    June 27, 2022
    Media contact:
    Brittany Steff
    bsteff@purdue.edu

    Source:
    Darryl Granger
    dgranger@purdue.edu

    1
    Darryl Granger of Purdue University developed the technology that updated the age of an Australopithecus found in Sterkfontein Cave. New data pushes its age back more than a million years, to 3.67 million years old. Credit: Lena Kovalenko/Purdue University photo.

    The earth doesn’t give up its secrets easily – not even in the Cradle of Humankind in South Africa, where a wealth of fossils relating to human evolution have been found.

    For decades scientists have studied these fossils of early human ancestors and their long-lost relatives. Now, a dating method developed by a Purdue University geologist just pushed the age of some of these fossils found at the site of Sterkfontein Caves back more than a million years. This would make them older than Dinkinesh-also called Lucy-the world’s most famous Australopithecus fossil.

    The “Cradle of Humankind” is a UNESCO World Heritage Site in South Africa that comprises a variety of fossil-bearing cave deposits including at Sterkfontein Caves. Sterkfontein was made famous by the discovery of the first adult Australopithecus, an ancient hominin, in 1936. Hominins includes humans and our ancestral relatives, but not the other great apes. Since then, hundreds of Australopithecus fossils have been found there, including the well-known Mrs. Ples, and the nearly complete skeleton known as Little Foot [Nature].

    1
    Palaeoanthropologists recovering Little Foot from a rock inside a cave. Credit: Patrick Landmann/Science Photo Library.

    2
    Little Foot’s fossil bones. Credit: Patrick Landmann/Science Photo Library.

    Paleoanthropologists and other scientists have studied Sterkfontein and other cave sites in the Cradle of Humankind for decades to shed light on human and environmental evolution over the past 4 million years.

    Darryl Granger, a professor of earth, atmospheric, and planetary sciences in Purdue University’s College of Science, is one of those scientists, working as part of an international team. Granger specializes in dating geologic deposits, including those in caves. As a doctoral student, he devised a method for dating buried cave sediments that is now used by researchers all over the world. His previous work at Sterkfontein dated the Little Foot skeleton to about 3.7 million years old, but scientists are still debating the age of other fossils at the site.


    New instrument dates ‘Little Foot’ skeleton.

    In a study published in the PNAS, Granger and a team of scientists including researchers from the University of the Witwatersrand in Johannesburg, South Africa and the University Toulouse Jean Jaurès in France, have discovered that not only Little Foot, but all of the Australopithecus-bearing cave sediments date from about 3.4 to 3.7 million years old rather than 2-2.5 million years old as scientists previously theorized.

    3
    Map and cross section of Sterkfontein showing sample locations. (A) Map shows the extent of surface deposits and excavations superposed on the cave system. Sample locations reported here are shown as green circles; selected hominin fossils are shown with red stars and U-Pb-dated samples with yellow circles. Universal Transverse Mercator (UTM) coordinates are shown. (B) Cross section of the surface deposits along east-west red line in A. Cosmogenic sample locations are in green circles, and flowstone sample BH4-9 from ref. 5 in BH 4 is shown as a yellow circle. Measured bedding shows that the flowstone is located stratigraphically between the cosmogenic samples, although like other flowstones in Member 4, it is likely intrusive and younger than the breccia. Cross-section topography based on light detection and ranging (LiDAR) collected at the surface and underground.

    4
    Stratigraphic sections and associated photos showing previously dated flowstone. Two sections are located at red bars shown in the base map found in the figure legend. (A) North-south section shows that the previously dated flowstone OE-14 (5) is not in stratigraphic contact with Member 4 but instead is separated by fins of dolomite and decayed dolomite that were removed by blasting. Its age therefore does not constrain that of Member 4. (B) Detailed section of the OE-14 flowstone (5) shows that it lies on decayed dolomite and reworked decayed dolomite breccia derived internally within the cave. The flowstone is overlain by and interfingers with orange sandy microbreccia with no clear stratigraphic relation to Member 4 or Member 5. The north-south cross section intersects at ca. 3.5 m on the west-northwest–east-southeast section, at the plaque.

    That age places these fossils toward the beginning of the Australopithecus era, rather than near the end. Dinkinesh, who hails from Ethiopia, is 3.2 million years old, and her species, Australopithecus africanus, hails back to about 3.9 million years old.

    Sterkfontein is a deep and complex cave system that preserves a long history of hominin occupation of the area. Understanding the dates of the fossils here can be tricky, as rocks and bones tumbled to the bottom of a deep hole in the ground, and there are few ways to date cave sediments.

    In East Africa, where many hominin fossils have been found, the Great Rift Valley volcanoes lay down layers of ash that can be dated. Researchers use those layers to estimate how old a fossil is. In South Africa – especially in a cave – the scientists don’t have that luxury. They typically use other animal fossils found around the bones to estimate their age or calcite flowstone deposited in the cave. But bones can shift in the cave, and young flowstone can be deposited in old sediment, making those methods potentially incorrect. A more accurate method is to date the actual rocks in which the fossils were found. The concrete-like matrix that embeds the fossil, called breccia, is the material Granger and his team analyze.

    “Sterkfontein has more Australopithecus fossils than anywhere else in the world,” Granger said. “But it’s hard to get a good date on them. People have looked at the animal fossils found near them and compared the ages of cave features like flowstones and gotten a range of different dates. What our data does is resolve these controversies. It shows that these fossils are old – much older than we originally thought.”

    Granger and the team used accelerator mass spectrometry to measure radioactive nuclides in the rocks, as well as geologic mapping and an intimate understanding of how cave sediments accumulate to determine the age of the Australopithecus-bearing sediments at Sterkfontein,

    Granger and the research group at the Purdue Rare Isotope Measurement Laboratory (PRIME Lab) study so-called cosmogenic nuclides and what they can reveal about the history of fossils, geological features and rock. Cosmogenic nuclides are extremely rare isotopes produced by cosmic rays —high-energy particles that constantly bombard the earth. These incoming cosmic rays have enough energy to cause nuclear reactions inside rocks at the ground surface, creating new, radioactive isotopes within the mineral crystals. An example is aluminum-26: aluminum that is missing a neutron and slowly decays to turn into magnesium over a period of millions of years. Since aluminum-26 is formed when a rock is exposed at the surface, but not after it has been deeply buried in a cave, PRIME lab researchers can date cave sediments (and the fossils within them) by measuring levels of aluminum-26 in tandem with another cosmogenic nuclide, beryllium-10.

    In addition to the new dates at Sterkfontein based on cosmogenic nuclides, the research team made careful maps of the cave deposits and showed how animal fossils of different ages would have been mixed together during excavations in the 1930s and 1940s, leading to decades of confusion with the previous ages. “What I hope is that this convinces people that this dating method gives reliable results,” Granger said. “Using this method, we can more accurately place ancient humans and their relatives in the correct time periods, in Africa, and elsewhere across the world.”

    The age of the fossils matters because it influences scientists’ understanding of the living landscape of the time. How and where humans evolved, how they fit into the ecosystem, and who their closest relatives are and were, are pressing and complex questions. Putting the fossils at Sterkfontein into their proper context is one step towards solving the entire puzzle.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Purdue University is a public land-grant research university in West Lafayette, Indiana, and the flagship campus of the Purdue University system. The university was founded in 1869 after Lafayette businessman John Purdue donated land and money to establish a college of science, technology, and agriculture in his name. The first classes were held on September 16, 1874, with six instructors and 39 students.

    The main campus in West Lafayette offers more than 200 majors for undergraduates, over 69 masters and doctoral programs, and professional degrees in pharmacy and veterinary medicine. In addition, Purdue has 18 intercollegiate sports teams and more than 900 student organizations. Purdue is a member of the Big Ten Conference and enrolls the second largest student body of any university in Indiana, as well as the fourth largest foreign student population of any university in the United States.

    Purdue University is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. Purdue has 25 American astronauts as alumni and as of April 2019, the university has been associated with 13 Nobel Prizes.

    In 1865, the Indiana General Assembly voted to take advantage of the Morrill Land-Grant Colleges Act of 1862 and began plans to establish an institution with a focus on agriculture and engineering. Communities throughout the state offered facilities and funding in bids for the location of the new college. Popular proposals included the addition of an agriculture department at Indiana State University, at what is now Butler University. By 1869, Tippecanoe County’s offer included $150,000 (equivalent to $2.9 million in 2019) from Lafayette business leader and philanthropist John Purdue; $50,000 from the county; and 100 acres (0.4 km^2) of land from local residents.

    On May 6, 1869, the General Assembly established the institution in Tippecanoe County as Purdue University, in the name of the principal benefactor. Classes began at Purdue on September 16, 1874, with six instructors and 39 students. Professor John S. Hougham was Purdue’s first faculty member and served as acting president between the administrations of presidents Shortridge and White. A campus of five buildings was completed by the end of 1874. In 1875, Sarah A. Oren, the State Librarian of Indiana, was appointed Professor of Botany.

    Purdue issued its first degree, a Bachelor of Science in chemistry, in 1875, and admitted its first female students that autumn.

    Emerson E. White, the university’s president, from 1876 to 1883, followed a strict interpretation of the Morrill Act. Rather than emulate the classical universities, White believed Purdue should be an “industrial college” and devote its resources toward providing a broad, liberal education with an emphasis on science, technology, and agriculture. He intended not only to prepare students for industrial work, but also to prepare them to be good citizens and family members.

    Part of White’s plan to distinguish Purdue from classical universities included a controversial attempt to ban fraternities, which was ultimately overturned by the Indiana Supreme Court, leading to White’s resignation. The next president, James H. Smart, is remembered for his call in 1894 to rebuild the original Heavilon Hall “one brick higher” after it had been destroyed by a fire.

    By the end of the nineteenth century, the university was organized into schools of agriculture, engineering (mechanical, civil, and electrical), and pharmacy; former U.S. President Benjamin Harrison served on the board of trustees. Purdue’s engineering laboratories included testing facilities for a locomotive, and for a Corliss steam engine—one of the most efficient engines of the time. The School of Agriculture shared its research with farmers throughout the state, with its cooperative extension services, and would undergo a period of growth over the following two decades. Programs in education and home economics were soon established, as well as a short-lived school of medicine. By 1925, Purdue had the largest undergraduate engineering enrollment in the country, a status it would keep for half a century.

    President Edward C. Elliott oversaw a campus building program between the world wars. Inventor, alumnus, and trustee David E. Ross coordinated several fundraisers, donated lands to the university, and was instrumental in establishing the Purdue Research Foundation. Ross’s gifts and fundraisers supported such projects as Ross–Ade Stadium, the Memorial Union, a civil engineering surveying camp, and Purdue University Airport. Purdue Airport was the country’s first university-owned airport and the site of the country’s first college-credit flight training courses.

    Amelia Earhart joined the Purdue faculty in 1935 as a consultant for these flight courses and as a counselor on women’s careers. In 1937, the Purdue Research Foundation provided the funds for the Lockheed Electra 10-E Earhart flew on her attempted round-the-world flight.

    Every school and department at the university was involved in some type of military research or training during World War II. During a project on radar receivers, Purdue physicists discovered properties of germanium that led to the making of the first transistor. The Army and the Navy conducted training programs at Purdue and more than 17,500 students, staff, and alumni served in the armed forces. Purdue set up about a hundred centers throughout Indiana to train skilled workers for defense industries. As veterans returned to the university under the G.I. Bill, first-year classes were taught at some of these sites to alleviate the demand for campus space. Four of these sites are now degree-granting regional campuses of the Purdue University system. On-campus housing became racially desegregated in 1947, following pressure from Purdue President Frederick L. Hovde and Indiana Governor Ralph F. Gates.

    After the war, Hovde worked to expand the academic opportunities at the university. A decade-long construction program emphasized science and research. In the late 1950s and early 1960s the university established programs in veterinary medicine, industrial management, and nursing, as well as the first computer science department in the United States. Undergraduate humanities courses were strengthened, although Hovde only reluctantly approved of graduate-level study in these areas. Purdue awarded its first Bachelor of Arts degrees in 1960. The programs in liberal arts and education, formerly administered by the School of Science, were soon split into an independent school.

    The official seal of Purdue was officially inaugurated during the university’s centennial in 1969.

    1

    Consisting of elements from emblems that had been used unofficially for 73 years, the current seal depicts a griffin, symbolizing strength, and a three-part shield, representing education, research, and service.

    In recent years, Purdue’s leaders have continued to support high-tech research and international programs. In 1987, U.S. President Ronald Reagan visited the West Lafayette campus to give a speech about the influence of technological progress on job creation.

    In the 1990s, the university added more opportunities to study abroad and expanded its course offerings in world languages and cultures. The first buildings of the Discovery Park interdisciplinary research center were dedicated in 2004.

    Purdue launched a Global Policy Research Institute in 2010 to explore the potential impact of technical knowledge on public policy decisions.

    On April 27, 2017, Purdue University announced plans to acquire for-profit college Kaplan University and convert it to a public university in the state of Indiana, subject to multiple levels of approval. That school now operates as Purdue University Global, and aims to serve adult learners.

    Campuses

    Purdue’s campus is situated in the small city of West Lafayette, near the western bank of the Wabash River, across which sits the larger city of Lafayette. State Street, which is concurrent with State Road 26, divides the northern and southern portions of campus. Academic buildings are mostly concentrated on the eastern and southern parts of campus, with residence halls and intramural fields to the west, and athletic facilities to the north. The Greater Lafayette Public Transportation Corporation (CityBus) operates eight campus loop bus routes on which students, faculty, and staff can ride free of charge with Purdue Identification.

    Organization and administration

    The university president, appointed by the board of trustees, is the chief administrative officer of the university. The office of the president oversees admission and registration, student conduct and counseling, the administration and scheduling of classes and space, the administration of student athletics and organized extracurricular activities, the libraries, the appointment of the faculty and conditions of their employment, the appointment of all non-faculty employees and the conditions of employment, the general organization of the university, and the planning and administration of the university budget.

    The Board of Trustees directly appoints other major officers of the university including a provost who serves as the chief academic officer for the university, several vice presidents with oversight over specific university operations, and the regional campus chancellors.

    Academic divisions

    Purdue is organized into thirteen major academic divisions.

    College of Agriculture

    The university’s College of Agriculture supports the university’s agricultural, food, life, and natural resource science programs. The college also supports the university’s charge as a land-grant university to support agriculture throughout the state; its agricultural extension program plays a key role in this.

    College of Education

    The College of Education offers undergraduate degrees in elementary education, social studies education, and special education, and graduate degrees in these and many other specialty areas of education. It has two departments: (a) Curriculum and Instruction and (b) Educational Studies.

    College of Engineering

    The Purdue University College of Engineering was established in 1874 with programs in Civil and Mechanical Engineering. The college now offers B.S., M.S., and Ph.D. degrees in more than a dozen disciplines. Purdue’s engineering program has also educated 24 of America’s astronauts, including Neil Armstrong and Eugene Cernan who were the first and last astronauts to have walked on the Moon, respectively. Many of Purdue’s engineering disciplines are recognized as top-ten programs in the U.S. The college as a whole is currently ranked 7th in the U.S. of all doctorate-granting engineering schools by U.S. News & World Report.

    Exploratory Studies

    The university’s Exploratory Studies program supports undergraduate students who enter the university without having a declared major. It was founded as a pilot program in 1995 and made a permanent program in 1999.

    College of Health and Human Sciences

    The College of Health and Human Sciences was established in 2010 and is the newest college. It offers B.S., M.S. and Ph.D. degrees in all 10 of its academic units.

    College of Liberal Arts

    Purdue’s College of Liberal Arts contains the arts, social sciences and humanities programs at the university. Liberal arts courses have been taught at Purdue since its founding in 1874. The School of Science, Education, and Humanities was formed in 1953. In 1963, the School of Humanities, Social Sciences, and Education was established, although Bachelor of Arts degrees had begun to be conferred as early as 1959. In 1989, the School of Liberal Arts was created to encompass Purdue’s arts, humanities, and social sciences programs, while education programs were split off into the newly formed School of Education. The School of Liberal Arts was renamed the College of Liberal Arts in 2005.

    Krannert School of Management

    The Krannert School of Management offers management courses and programs at the undergraduate, master’s, and doctoral levels.

    College of Pharmacy

    The university’s College of Pharmacy was established in 1884 and is the 3rd oldest state-funded school of pharmacy in the United States. The school offers two undergraduate programs leading to the B.S. in Pharmaceutical Sciences (BSPS) and the Doctor of Pharmacy (Pharm.D.) professional degree. Graduate programs leading to M.S. and Ph.D. degrees are offered in three departments (Industrial and Physical Pharmacy, Medicinal Chemistry and Molecular Pharmacology, and Pharmacy Practice). Additionally, the school offers several non-degree certificate programs and post-graduate continuing education activities.

    Purdue Polytechnic Institute

    The Purdue Polytechnic Institute offers bachelor’s, master’s and Ph.D. degrees in a wide range of technology-related disciplines. With over 30,000 living alumni, it is one of the largest technology schools in the United States.

    College of Science

    The university’s College of Science houses the university’s science departments: Biological Sciences; Chemistry; Computer Science; Earth, Atmospheric, & Planetary Sciences; Mathematics; Physics & Astronomy; and Statistics. The science courses offered by the college account for about one-fourth of Purdue’s one million student credit hours.

    College of Veterinary Medicine

    The College of Veterinary Medicine is accredited by the AVMA to offer the Doctor of Veterinary Medicine degree, associate’s and bachelor’s degrees in veterinary technology, master’s and Ph.D. degrees, and residency programs leading to specialty board certification. Within the state of Indiana, the Purdue University College of Veterinary Medicine is the only veterinary school, while the Indiana University School of Medicine is one of only two medical schools (the other being Marian University College of Osteopathic Medicine). The two schools frequently collaborate on medical research projects.

    Honors College

    Purdue’s Honors College supports an honors program for undergraduate students at the university.

    The Graduate School

    The university’s Graduate School supports graduate students at the university.

    Research

    The university expended $622.814 million in support of research system-wide in 2017, using funds received from the state and federal governments, industry, foundations, and individual donors. The faculty and more than 400 research laboratories put Purdue University among the leading research institutions. Purdue University is considered by the Carnegie Classification of Institutions of Higher Education to have “very high research activity”. Purdue also was rated the nation’s fourth best place to work in academia, according to rankings released in November 2007 by The Scientist magazine. Purdue’s researchers provide insight, knowledge, assistance, and solutions in many crucial areas. These include, but are not limited to Agriculture; Business and Economy; Education; Engineering; Environment; Healthcare; Individuals, Society, Culture; Manufacturing; Science; Technology; Veterinary Medicine. The Global Trade Analysis Project (GTAP), a global research consortium focused on global economic governance challenges (trade, climate, resource use) is also coordinated by the University. Purdue University generated a record $438 million in sponsored research funding during the 2009–10 fiscal year with participation from National Science Foundation, National Aeronautics and Space Administration, and the Department of Agriculture, Department of Defense, Department of Energy, and Department of Health and Human Services. Purdue University was ranked fourth in Engineering research expenditures amongst all the colleges in the United States in 2017, with a research expenditure budget of 244.8 million. Purdue University established the Discovery Park to bring innovation through multidisciplinary action. In all of the eleven centers of Discovery Park, ranging from entrepreneurship to energy and advanced manufacturing, research projects reflect a large economic impact and address global challenges. Purdue University’s nanotechnology research program, built around the new Birck Nanotechnology Center in Discovery Park, ranks among the best in the nation.

    The Purdue Research Park which opened in 1961 was developed by Purdue Research Foundation which is a private, nonprofit foundation created to assist Purdue. The park is focused on companies operating in the arenas of life sciences, homeland security, engineering, advanced manufacturing and information technology. It provides an interactive environment for experienced Purdue researchers and for private business and high-tech industry. It currently employs more than 3,000 people in 155 companies, including 90 technology-based firms. The Purdue Research Park was ranked first by the Association of University Research Parks in 2004.

    Purdue’s library system consists of fifteen locations throughout the campus, including an archives and special collections research center, an undergraduate library, and several subject-specific libraries. More than three million volumes, including one million electronic books, are held at these locations. The Library houses the Amelia Earhart Collection, a collection of notes and letters belonging to Earhart and her husband George Putnam along with records related to her disappearance and subsequent search efforts. An administrative unit of Purdue University Libraries, Purdue University Press has its roots in the 1960 founding of Purdue University Studies by President Frederick Hovde on a $12,000 grant from the Purdue Research Foundation. This was the result of a committee appointed by President Hovde after the Department of English lamented the lack of publishing venues in the humanities. Since the 1990s, the range of books published by the Press has grown to reflect the work from other colleges at Purdue University especially in the areas of agriculture, health, and engineering. Purdue University Press publishes print and ebook monograph series in a range of subject areas from literary and cultural studies to the study of the human-animal bond. In 1993 Purdue University Press was admitted to membership of the Association of American University Presses. Purdue University Press publishes around 25 books a year and 20 learned journals in print, in print & online, and online-only formats in collaboration with Purdue University Libraries.

    Sustainability

    Purdue’s Sustainability Council, composed of University administrators and professors, meets monthly to discuss environmental issues and sustainability initiatives at Purdue. The University’s first LEED Certified building was an addition to the Mechanical Engineering Building, which was completed in Fall 2011. The school is also in the process of developing an arboretum on campus. In addition, a system has been set up to display live data detailing current energy production at the campus utility plant. The school holds an annual “Green Week” each fall, an effort to engage the Purdue community with issues relating to environmental sustainability.

    Rankings

    In its 2021 edition, U.S. News & World Report ranked Purdue University the 5th most innovative national university, tied for the 17th best public university in the United States, tied for 53rd overall, and 114th best globally. U.S. News & World Report also rated Purdue tied for 36th in “Best Undergraduate Teaching, 83rd in “Best Value Schools”, tied for 284th in “Top Performers on Social Mobility”, and the undergraduate engineering program tied for 9th at schools whose highest degree is a doctorate.

     
  • richardmitnick 10:58 am on April 14, 2022 Permalink | Reply
    Tags: "How ancient and recurring climate changes may have shaped human evolution", , Paleoanthropology,   

    FromScience News: “How ancient and recurring climate changes may have shaped human evolution” 

    From Science News

    4.13.22
    Bruce Bower

    1
    A new study claims climate change–induced travels of a disputed hominid species called Homo heidelbergensis, represented here by a roughly 600,000-year-old East African skull, led to the evolution of H. sapiens in southern Africa and Neandertals in Europe. Credit: Ryan Somma/Flickr (CC BY-SA 2.0)

    Recurring climate changes may have orchestrated where Homo species lived over the last 2 million years and how humankind evolved.

    Ups and downs in temperature, rainfall and plant growth promoted ancient hominid migrations within and out of Africa that fostered an ability to survive in unfamiliar environments, say climate physicist and oceanographer Axel Timmermann and colleagues. Based on how the timing of ancient climate variations matched up with the comings and goings of different fossil Homo species, the researchers generated a novel — and controversial — outline of human evolution. Timmermann, of Pusan National University [부산대학교](KR), and his team present that scenario April 13, 2022 in Nature.

    Here’s how these scientists tell the story of humankind, starting roughly 2 million years ago. By that time, Homo erectus had already begun to roam outside Africa, while an East African species called H. ergaster stuck close to its home region. H. ergaster probably evolved into a disputed East African species called H. heidelbergensis, which split into southern and northern branches between 850,000 and 600,000 years ago. These migrations coincided with warmer, survival-enhancing climate shifts that occur every 20,000 to 100,000 years due to variations in Earth’s orbit and tilt that modify how much sunlight reaches the planet.

    Then, after traveling north to Eurasia, H. heidelbergensis possibly gave rise to Denisovans around 430,000 years ago, the researchers say. And in central Europe, harsh habitats created by recurring ice ages spurred the evolution of H. heidelbergensis into Neandertals between 400,000 and 300,000 years ago. Finally, in southern Africa between 310,000 and 200,000 years ago, increasingly harsh environmental conditions accompanied a transition from H. heidelbergensis to H. sapiens, who later moved out of Africa.

    But some researchers contend [Evolutionary Anthropology] that H. heidelbergensis, as defined by its advocates, contains too many hard-to-categorize fossils to qualify as a species.

    An alternative view to the newly proposed scenario suggests that, during the time that H. heidelbergensis allegedly lived, closely related Homo populations periodically split up, reorganized and bred with outsiders, without necessarily operatingIt has proven difficult to show more definitively that ancient environmental changes caused transitions in hominid evolution. For instance, a previous proposal that abrupt climate shifts resulted in rainy, resource-rich stretches of southern Africa’s coast, creating conditions where H. sapiens then evolved (SN: 3/31/21), still lacks sufficient climate, fossil and other archaeological evidence. as distinct biological species (SN: 12/13/21). In this view, mating among H. sapiens groups across Africa starting as early as 500,000 years ago eventually produced a physical makeup typical of people today. If so, that would undermine the validity of a neatly branching evolutionary tree of Homo species leading up to H. sapiens, as proposed by Timmermann’s group.

    The new scenario derives from a computer simulation of the probable climate over the last 2 million years, in 1,000-year intervals, across Africa, Asia and Europe. The researchers then examined the relationship between simulated predictions of what ancient habitats were like in those regions and the dates of known hominid fossil and archaeological sites. Those sites range in age from around 2 million to 30,000 years old.

    Previous fossil evidence indicates that H. erectus spread as far as East Asia and Java (SN: 12/18/19). Timmermann’s climate simulations suggest that H. erectus, as well as H. heidelbergensis and H. sapiens, adapted to increasingly diverse habitats during extended travels. Those migrations stimulated brain growth and cultural innovations that “may have made [all three species] the global wanderers that they were,” Timmermann says.

    The new habitat simulations also indicate that H. sapiens was particularly good at adjusting to hot, dry regions, such as northeastern Africa and the Arabian Peninsula.

    Climate, habitat and fossil data weren’t sufficient to include additional proposed Homo species in the new evolutionary model, including H. floresiensis in Indonesia (SN: 3/30/16) and H. naledi in South Africa (SN: 5/9/17).

    It has proven difficult [Trends in Ecology and Evolution] to show more definitively that ancient environmental changes caused transitions in hominid evolution. For instance, a previous proposal that abrupt climate shifts resulted in rainy, resource-rich stretches of southern Africa’s coast, creating conditions where H. sapiens then evolved (SN: 3/31/21), still lacks sufficient climate, fossil and other archaeological evidence.

    Paleoanthropologist Rick Potts of the Smithsonian Institution in Washington, D.C., has developed another influential theory about how climate fluctuations influenced human evolution that’s still open to debate. A series of climate-driven booms and busts in resource availability, starting around 400,000 years ago in East Africa, resulted in H. sapiens evolving as a species with a keen ability to survive in unpredictably shifting environments, Potts argues (SN: 10/21/20). But the new model indicates that ancient H. sapiens often migrated into novel but relatively stable environments, Timmermann says, undermining support for Potts’ hypothesis, known as variability selection.

    The new findings need to be compared with long-term environmental records at several well-studied fossil sites in Africa and East Asia before rendering a verdict on variability selection, Potts says.

    The new model “provides a great framework” to evaluate ideas such as variability selection, says paleoclimatologist Rachel Lupien of Lamont-Doherty Earth Observatory in Palisades, N.Y. That’s especially true, Lupien says, if researchers can specify whether climate and ecosystem changes that played out over tens or hundreds of years were closely linked to ancient Homo migrations.

    For now, much remains obscured on the ancient landscape of human evolution.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: