Tagged: ORNL Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:24 pm on October 13, 2017 Permalink | Reply
    Tags: A new ultrafast optical technique for thermal measurements—time-domain thermoreflectance, , Chengyun Hua, , ORNL, ,   

    From ORNL: Women in STEM – “Laser-Focused: Chengyun Hua turns the heat up on materials research” 

    i1

    Oak Ridge National Laboratory

    October 13, 2017
    Bill Cabage
    cabagewh@ornl.gov
    865.574.4399

    1
    Chengyun Hua applied for a Liane B. Russell Distinguished Early Career Fellowship after meeting ORNL researchers at a Society of Women Engineers conference.

    In Chengyun Hua’s research, everything revolves around heat and how it moves. As a Russell Fellow at the Department of Energy’s Oak Ridge National Laboratory, Hua carefully analyzes nanoscale heat transfer mechanisms using laser spectroscopy.

    “Heat is being generated from everywhere and we can collect that heat and convert it to energy,” she explained. “We essentially have enough heat being produced 24/7 through electronics and other sources that we could potentially impact the world’s energy production and ease today’s energy concerns.”

    Although heat has the potential to generate enough energy to power the universe, if not channeled properly, it can also become problematic.

    “We’ve seen recent news of cell phones bursting into flames,” Hua said. “The reason is too much heat is produced locally, and it has nowhere to go in a short period of time. The challenge is to capture that heat flow at the nanoscale and understand how we can more effectively dissipate it.”

    Through Hua’s work in ORNL’s Building Equipment Research group, a new ultrafast optical technique for thermal measurements—time-domain thermoreflectance—was deployed at ORNL for the first time. The technique measures the thermal properties of materials, including thermal conductivity. Using ORNL’s Ultrafast Laser Spectroscopy Laboratory, Hua measures material conductivity down to the nanometer.

    “When a material is heated using a pulsed laser, thermal stress is induced,” she explained. “The objective of raising the temperature of a material is to unveil the microscopic processes of the phonons [a type of elementary particle that plays an important role in many of the physical properties of solids, such as the thermal conductivity and the electrical conductivity] that govern the heat transport in solids. Ultimately, with this better understanding, we can design the next generation of materials—materials that not only withstand heat but also manage the heat and convert it into energy.”

    For the love of physics

    Hua grew up a world away in Shanghai, China. An only child of accountant parents, she excelled in mathematics and science, something that was not unusual in her home country.

    “It’s easy to get a job in the engineering discipline in China; it’s a highly respected profession,” she said. For Hua, however, getting accepted to study engineering physics at the University of Michigan, Ann Arbor, was an opportunity not to be missed.

    “Studying in Michigan was the first time I had ever been to the United States,” she said. “But it wasn’t until I entered the mechanical engineering program at Cal Tech that I truly felt at home.”

    Hua completed her PhD in mechanical engineering at the California Institute of Technology at Pasadena. There she met an advisor and professor who helped steer her current career path, challenging her to continue focusing on nanoscale heat transfer properties. “Cal Tech was a unique playground if you love mathematics and physics,” she said.

    After meeting some ORNL researchers at a Society of Women Engineers conference, Hua made the decision in early 2016 to apply for a fellowship that would allow her to focus on micro- and nanoscale heat transfer and energy conversion at the lab. The Liane B. Russell Distinguished Early Career Fellowship attracts scientists who have demonstrated outstanding scientific ability and research interests that align with core capabilities at the lab.

    “My advisor encouraged me to apply and within one week I wrote my proposal on ‘Exploring Thermal Transport in Nanostructured Materials for Thermal Energy Conversion and Management.’ I interviewed in November 2015 and four days after the new year, I was invited to become a fellow at ORNL,” she said.

    Uprooting again to East Tennessee, Hua has found a supportive community that encourages the sharing of new ideas and interdisciplinary research.

    “I’ve been able to live in different parts of the U.S.,” she said. “But, everywhere I’ve been, I’ve found support and an environment that promotes ideas and stimulating conversation between scientists.”

    While Hua has adapted to many moves and changes, one part of her research and studies remains unchanged.

    “Heat always flows from hot to cold,” she said. “It’s the constant in the continuum.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

    i2

    Advertisements
     
  • richardmitnick 9:32 am on July 7, 2017 Permalink | Reply
    Tags: , , , ORNL, St. Jude Children’s Research Hospital   

    From ORNL: “ORNL researchers apply imaging, computational expertise to St. Jude research” 

    i1

    Oak Ridge National Laboratory

    July 6, 2017
    Stephanie G. Seay
    seaysg@ornl.gov
    865.576.9894

    1
    Left to right: ORNL’s Derek Rose, Matthew Eicholtz, Philip Bingham, Ryan Kerekes, and Shaun Gleason.

    2
    Measuring migrating neurons in a developing mouse brain.

    3
    Identifying and analyzing neurons in a mouse auditory cortex.
    No image credits for above images

    In the quest to better understand and cure childhood diseases, scientists at St. Jude Children’s Research Hospital accumulate enormous amounts of data from powerful video microscopes. To help St. Jude scientists mine that trove of data, researchers at Oak Ridge National Laboratory have created custom algorithms that can provide a deeper understanding of the images and quicken the pace of research.

    The work resides in St. Jude’s Department of Developmental Neurobiology in Memphis, Tennessee, where scientists use advanced microscopy to capture the details of phenomena such as nerve cell growth and migration in the brains of mice. ORNL researchers take those videos and leverage their expertise in image processing, computational science, and machine learning to analyze the footage and create statistics.

    A recent Science article details St. Jude research on brain plasticity, or the ability of the brain to change and form new connections between neurons. In this work, ORNL helped track mice brain cell electrical activity in the auditory cortex when the animals were exposed to certain tones.

    ORNL researchers created an algorithm to measure electrical activations, or signals, across groups of neurons, collecting statistics and making correlations between cell activity in the auditory cortex and tones heard by the mice. The team first had to stabilize the video because it was taken while the mice were awake and moving to ensure a proper analysis was being conducted, said Derek Rose, who now leads the work at ORNL.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

    i2

     
  • richardmitnick 3:37 pm on July 5, 2017 Permalink | Reply
    Tags: A condensed matter cousin of the Higgs boson, Condensed matter researchers have recently uncovered new quantum states known as quasiparticles including the Higgs mode, Higgs amplitude mode, Neutron scattering techniques, ORNL   

    From ORNL: “Neutrons detect elusive Higgs amplitude mode in quantum material” 

    i1

    Oak Ridge National Laboratory

    July 5, 2017
    Sara Shoemaker
    shoemakerms@ornl.gov
    865.576.9219

    1
    ORNL’s Tao Hong analyzed a copper bromide compound’s low-energy behavior during a neutron scattering experiment at the lab’s High Flux Isotope Reactor that yielded the elusive Higgs amplitude mode in two dimensions with no decay.

    ORNL High Flux Isotope Reactor

    2
    The ORNL-led research team selected a crystal composed of copper bromide – because the copper ion is ideal for studying exotic quantum effects – to observe the elusive Higgs amplitude mode in two dimensions. The sample was examined using cold neutron triple-axis spectrometer beams for neutron scattering at the High Flux Isotope Reactor.

    3
    During the neutron scattering experiment, the sample containing copper ions exhibited exotic quantum properties as certain quasiparticles spin in a wave-like configuration, eventually revealing the Higgs amplitude mode.

    A team led by the Department of Energy’s Oak Ridge National Laboratory has used sophisticated neutron scattering techniques to detect an elusive quantum state known as the Higgs amplitude mode in a two-dimensional material.

    The Higgs amplitude mode is a condensed matter cousin of the Higgs boson, the storied quantum particle theorized in the 1960s and proven experimentally in 2012. It is one of a number of quirky, collective modes of matter found in materials at the quantum level. By studying these modes, condensed matter researchers have recently uncovered new quantum states known as quasiparticles, including the Higgs mode.

    These studies provide unique opportunities to explore quantum physics and apply its exotic effects in advanced technologies such as spin-based electronics, or spintronics, and quantum computing.

    “To excite a material’s quantum quasiparticles in a way that allows us to observe the Higgs amplitude mode is quite challenging,” said Tao Hong, an instrument scientist with ORNL’s Quantum Condensed Matter Division.

    Although the Higgs amplitude mode has been observed in various systems, “the Higgs mode would often become unstable and decay, shortening the opportunity to characterize it before losing sight of it,” Hong said.

    The ORNL-led team offered an alternative method. The researchers selected a crystal composed of copper bromide, because the copper ion is ideal for studying exotic quantum effects, Hong explained. They began the delicate task of “freezing” the material’s agitating quantum-level particles by lowering its temperature to 1.4 Kelvin, which is about minus 457.15 degrees Fahrenheit.

    The researchers fine-tuned the experiment until the particles reached the phase located near the desired quantum critical point—the sweet spot where collective quantum effects spread across wide distances in the material, which creates the best conditions to observe a Higgs amplitude mode without decay.

    With neutron scattering performed at ORNL’s High Flux Isotope Reactor, the research team observed the Higgs mode with an infinite lifetime: no decay.

    “There’s an ongoing debate in physics about the stability of these very delicate Higgs modes,” said Alan Tennant, chief scientist of ORNL’s Neutron Sciences Directorate. “This experiment is really hard to do, especially in a two-dimensional system. And, yet, here’s a clear observation, and it’s stabilized.”

    The research team’s observation provides new insights into the fundamental theories underlying exotic materials including superconductors, charge-density wave systems, ultracold bosonic systems and antiferromagnets.

    “These breakthroughs are having widespread impact on our understanding of materials’ behavior at the atomic scale,” Hong added.

    The study, titled, Direct observation of the Higgs amplitude mode in a two-dimensional quantum antiferromagnet near the quantum critical point, was published in Nature Physics. It was co-authored by ORNL’s Tao Hong, Sachith E. Dissanayake, Harish Agrawal and David A. (Alan) Tennant, and scientists from Shizuoka University, the National Institute of Standards and Technology [NIST], University of Maryland, University of Jordan, Clark University, Helmholtz-Zentrum Berlin for Materials and Energy and Lehrstuhl für Theoretische Physik I.

    The team used cold neutron triple-axis spectrometer beams for studying exotic magnetic effects and analyzed low-energy excitations in the copper bromide compound. The unpolarized neutron scattering measurements were performed at ORNL’s HFIR and at Helmholtz-Zentrum Berlin for Materials and Energy. For contrasting data from polarized neutron-scattering measurements, they also employed a high-intensity multi-axis crystal spectrometer at NIST’s Center for Neutron Research.

    The work performed at ORNL’s HFIR, a DOE Office of Science User Facility, and was funded by the DOE Office of Science.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

    i2

     
  • richardmitnick 3:19 pm on June 28, 2017 Permalink | Reply
    Tags: , IMAGINE neutron scattering diffractometer, LPMOs - lytic polysaccharide monooxygenases, , North Carolina State University, ORNL, ORNL’s High Flux Isotope Reactor   

    From ORNL: “‘On your mark, get set'” 

    i1

    Oak Ridge National Laboratory

    June 27, 2017
    Jeremy Rumsey
    rumseyjp@ornl.gov
    865.576.2038

    1
    A combination of X-ray and neutron scattering has revealed new insights into how a highly efficient industrial enzyme is used to break down cellulose. Knowing how oxygen molecules (red) bind to catalytic elements (illustrated by a single copper ion) will guide researchers in developing more efficient, cost-effective biofuel production methods. (Image credit: ORNL/Jill Hemman)

    Producing biofuels like ethanol from plant materials requires various enzymes to break down the cellulosic fibers. Scientists using neutron scattering have identified the specifics of an enzyme-catalyzed reaction that could significantly reduce the total amount of enzymes used, improving production processes and lowering costs.

    Researchers from the Department of Energy’s Oak Ridge National Laboratory and North Carolina State University used a combination of X-ray and neutron crystallography to determine the detailed atomic structure of a specialized fungal enzyme.

    A deeper understanding of the enzyme reactivity could also lead to improved computational models that will further guide industrial applications for cleaner forms of energy. Their results are published in the journal Angewandte Chemie International Edition.

    Part of a larger family known as lytic polysaccharide monooxygenases, or LPMOs, these oxygen-dependent enzymes act in tandem with hydrolytic enzymes—which chemically break down large complex molecules with water—by oxidizing and breaking the bonds that hold cellulose chains together. The combined enzymes can digest biomass more quickly than currently used enzymes and speed up the biofuel production process.

    “These enzymes are already used in industrial applications, but they’re not well understood,” said lead author Brad O’Dell, a graduate student from NC State working in the Biology and Soft Matter Division of ORNL’s Neutron Sciences Directorate. “Understanding each step in the LPMO mechanism of action will help industry use these enzymes to their full potential and, as a result, make final products cheaper.”

    In an LPMO enzyme, oxygen and cellulose arrange themselves through a sequence of steps before the biomass deconstruction reaction occurs. Sort of like “on your mark, get set, go,” says O’Dell.

    To better understand the enzyme’s reaction mechanism, O’Dell and coauthor Flora Meilleur, ORNL instrument scientist and an associate professor at NC State, used the IMAGINE neutron scattering diffractometer at ORNL’s High Flux Isotope Reactor to see how the enzyme and oxygen molecules were behaving in the steps leading up to the reaction—from the “resting state” to the “active state.”

    ORNL IMAGINE neutron scattering diffractometer

    The resting state, O’Dell says, is where all the critical components of the enzyme assemble to bind oxygen and carbohydrate. When electrons are delivered to the enzyme, the system moves from the resting state to the active state—i.e., from “on your mark” to “get set.”

    In the active state, oxygen binds to a copper ion that initiates the reaction. Aided by X-ray and neutron diffraction, O’Dell and Meilleur identified a previously unseen oxygen molecule being stabilized by an amino acid, histidine 157.

    Hydrogen is a key element of amino acids like histidine 157. Because neutrons are particularly sensitive to hydrogen atoms, the team was able to determine that histidine 157 plays a significant role in transporting oxygen molecules to the copper ion in the active site, revealing a vital detail about the first step of the LPMO catalytic reaction.

    “Because neutrons allow us to see hydrogen atoms inside the enzyme, we gained essential information in deciphering the protein chemistry. Without that data, the role of histidine 157 would have remained unclear,” Meilleur said. “Neutrons were instrumental in determining how histidine 157 stabilizes oxygen to initiate the first step of the LPMO reaction mechanism.”

    Their results were subsequently confirmed via quantum chemical calculations performed by coauthor Pratul Agarwal from ORNL’s Computing and Computational Sciences Directorate.

    Research material preparation was supported by the ORNL Center for Structural Molecular Biology. X-ray data were collected at the Argonne National Laboratory Advanced Photon Source through access provided by the Southeast Regional Collaborative Access Team.

    O’Dell says their results refine the current understanding of LPMOs for science and industry researchers.

    “This is a big step forward in unraveling how LPMO’s initiate the breakdown of carbohydrates,” O’Dell said. “Now we need to characterize the enzyme’s activated state when the protein is also bound to a carbohydrate that mimics cellulose. Then we’ll have the chance to see what structural changes happen when the starting pistol is fired and the reaction takes off.”

    HFIR is a DOE Office of Science User Facility. UT-Battelle manages ORNL for the Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

    i2

     
  • richardmitnick 3:19 pm on May 9, 2017 Permalink | Reply
    Tags: $3.9 Million to Help Industry Address High Performance Computing Challenges, , ORNL   

    From ORNL via energy.gov: “Energy Department Announces $3.9 Million to Help Industry Address High Performance Computing Challenges” 

    i1

    Oak Ridge National Laboratory

    ENERGY.GOV

    May 8, 2017
    Today, the U.S. Department of Energy announced nearly $3.9 million for 13 projects designed to stimulate the use of high performance supercomputing in U.S. manufacturing. The Office of Energy Efficiency and Renewable Energy (EERE) Advanced Manufacturing Office’s High Performance Computing for Manufacturing (HPC4Mfg) program enables innovation in U.S. manufacturing through the adoption of high performance computing (HPC) to advance applied science and technology relevant to manufacturing. HPC4Mfg aims to increase the energy efficiency of manufacturing processes, advance energy technology, and reduce energy’s impact on the environment through innovation.

    The 13 new project partnerships include application of world-class computing resources and expertise of the national laboratories including Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, Lawrence Berkley National Laboratory, National Renewable Energy Laboratory, and Argonne National Laboratory. These projects will address key challenges in U.S. manufacturing proposed in partnership with companies and improve energy efficiency across the manufacturing industry through applied research and development of energy technologies.

    Each of the 13 newly selected projects will receive up to $300,000 to support work performed by the national lab partners and allow the partners to use HPC compute cycles.

    The 13 projects selected for awards are led by:

    7AC Technologies
    8 Rivers Capital
    Applied Materials, Inc.
    Arconic Inc.*
    Ford Motor Company
    General Electric Global Research Center*
    LanzaTech
    Samsung Semiconductor, Inc.
    Sierra Energy
    The Timken Company
    United Technologies Research Corporation

    *Awarded two projects

    Read more about the individual projects.

    The Advanced Manufacturing Office (AMO) recently published a draft of its Multi-year Program Plan that identifies the technology, research and development, outreach, and crosscutting activities that AMO plans to focus on over the next five years. Some of the technical focus areas in the plan align with the high-priority, energy-related manufacturing activities that the HPC4Mfg program also aims to address.

    Led by Lawrence Livermore National Laboratory, with Lawrence Berkeley National Laboratory and Oak Ridge National Laboratory as strong partners, the HPC4Mfg program has a diverse portfolio of small and large companies, consortiums, and institutes within varying industry sectors that span the country. Established in 2015, it currently supports 28 projects that range from improved turbine blades for aircraft engines and reduced heat loss in electronics, to steel-mill energy efficiency and improved fiberglass production.

    ORNL Cray XK7 Titan Supercomputer

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

    i2

     
  • richardmitnick 10:08 am on April 26, 2017 Permalink | Reply
    Tags: , , Building the Bridge to Exascale, , , , ORNL,   

    From OLCF at ORNL: “Building the Bridge to Exascale” 

    i1

    Oak Ridge National Laboratory

    OLCF

    April 18, 2017 [Where was this hiding?]
    Katie Elyce Jones

    Building an exascale computer—a machine that could solve complex science problems at least 50 times faster than today’s leading supercomputers—is a national effort.

    To oversee the rapid research and development (R&D) of an exascale system by 2023, the US Department of Energy (DOE) created the Exascale Computing Project (ECP) last year. The project brings together experts in high-performance computing from six DOE laboratories with the nation’s most powerful supercomputers—including Oak Ridge, Argonne, Lawrence Berkeley, Lawrence Livermore, Los Alamos, and Sandia—and project members work closely with computing facility staff from the member laboratories.

    ORNL IBM Summit supercomputer depiction.

    At the Exascale Computing Project’s (ECP’s) annual meeting in February 2017, Oak Ridge Leadership Computing Facility (OLCF) staff discussed OLCF resources that could be leveraged for ECP research and development, including the facility’s next flagship supercomputer, Summit, expected to go online in 2018.

    At the first ECP annual meeting, held January 29–February 3 in Knoxville, Tennessee, about 450 project members convened to discuss collaboration in breakout sessions focused on project organization and upcoming R&D milestones for applications, software, hardware, and exascale systems focus areas. During facility-focused sessions, senior staff from the Oak Ridge Leadership Computing Facility (OLCF) met with ECP members to discuss opportunities for the project to use current petascale supercomputers, test beds, prototypes, and other facility resources for exascale R&D. The OLCF is a DOE Office of Science User Facility located at DOE’s Oak Ridge National Laboratory (ORNL).

    “The ECP’s fundamental responsibilities are to provide R&D to build exascale machines more efficiently and to prepare the applications and software that will run on them,” said OLCF Deputy Project Director Justin Whitt. “The facilities’ responsibilities are to acquire, deploy, and operate the machines. We are currently putting advanced test beds and prototypes in place to evaluate technologies and enable R&D efforts like those in the ECP.”

    ORNL has a unique connection to the ECP. The Tennessee-based laboratory is the location of the project office that manages collaboration within the ECP and among its facility partners. ORNL’s Laboratory Director Thom Mason delivered the opening talk at the conference, highlighting the need for coordination in a project of this scope.

    On behalf of facility staff, Mark Fahey, director of operations at the Argonne Leadership Computing Facility, presented the latest delivery and deployment plans for upcoming computing resources during a plenary session. From the OLCF, Project Director Buddy Bland and Director of Science Jack Wells provided a timeline for the availability of Summit, OLCF’s next petascale supercomputer, which is expected to go online in 2018; it will be at least 5 times more powerful than the OLCF’s 27-petaflop Titan supercomputer.

    ORNL Cray XK7 Titan Supercomputer.

    “Exascale hardware won’t be around for several more years,” Wells said. “The ECP will need access to Titan, Summit, and other leadership computers to do the work that gets us to exascale.”

    Wells said he was able to highlight the spring 2017 call for Innovative and Novel Computational Impact on Theory and Experiment, or INCITE, proposals, which will give 2-year projects the first opportunity for computing time on Summit. OLCF staff also introduced a handful of computing architecture test beds—including the developmental environment for Summit known as Summitdev, NVIDIA’s deep learning and accelerated analytics system DGX-1, an experimental cluster of ARM 64-bit compute nodes, and a Cray XC40 cluster of 168 nodes known as Percival—that are now available for OLCF users.

    In addition to leveraging facility resources for R&D, the ECP must understand the future needs of facilities to design an exascale system that is ready for rigorous computational science simulations. Facilities staff can offer insight about the level of performance researchers will expect from science applications on exascale systems and estimate the amount of space and electrical power that will be available in the 2023 timeframe.

    “Getting to capable exascale systems will require careful coordination between the ECP and the user facilities,” Whitt said.

    One important collaboration so far was the development of a request for information, or RFI, for exascale R&D that the ECP released in February to industry vendors. The RFI enables the ECP to evaluate potential software and hardware technologies for exascale systems—a step in the R&D process that facilities often undertake. Facilities will later release requests for proposals when they are ready to begin building exascale systems

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

    i2

    The Oak Ridge Leadership Computing Facility (OLCF) was established at Oak Ridge National Laboratory in 2004 with the mission of accelerating scientific discovery and engineering progress by providing outstanding computing and data management resources to high-priority research and development projects.

    ORNL’s supercomputing program has grown from humble beginnings to deliver some of the most powerful systems in the world. On the way, it has helped researchers deliver practical breakthroughs and new scientific knowledge in climate, materials, nuclear science, and a wide range of other disciplines.

    The OLCF delivered on that original promise in 2008, when its Cray XT “Jaguar” system ran the first scientific applications to exceed 1,000 trillion calculations a second (1 petaflop). Since then, the OLCF has continued to expand the limits of computing power, unveiling Titan in 2013, which is capable of 27 petaflops.


    ORNL Cray XK7 Titan Supercomputer

    Titan is one of the first hybrid architecture systems—a combination of graphics processing units (GPUs), and the more conventional central processing units (CPUs) that have served as number crunchers in computers for decades. The parallel structure of GPUs makes them uniquely suited to process an enormous number of simple computations quickly, while CPUs are capable of tackling more sophisticated computational algorithms. The complimentary combination of CPUs and GPUs allow Titan to reach its peak performance.

    The OLCF gives the world’s most advanced computational researchers an opportunity to tackle problems that would be unthinkable on other systems. The facility welcomes investigators from universities, government agencies, and industry who are prepared to perform breakthrough research in climate, materials, alternative energy sources and energy storage, chemistry, nuclear physics, astrophysics, quantum mechanics, and the gamut of scientific inquiry. Because it is a unique resource, the OLCF focuses on the most ambitious research projects—projects that provide important new knowledge or enable important new technologies.

     
  • richardmitnick 10:31 am on March 29, 2017 Permalink | Reply
    Tags: A Seismic Mapping Milestone, , , , ORNL, ,   

    From ORNL: “A Seismic Mapping Milestone” 

    i1

    Oak Ridge National Laboratory

    March 28, 2017

    Jonathan Hines
    hinesjd@ornl.gov
    865.574.6944

    1
    This visualization is the first global tomographic model constructed based on adjoint tomography, an iterative full-waveform inversion technique. The model is a result of data from 253 earthquakes and 15 conjugate gradient iterations with transverse isotropy confined to the upper mantle. Credit: David Pugmire, ORNL

    When an earthquake strikes, the release of energy creates seismic waves that often wreak havoc for life at the surface. Those same waves, however, present an opportunity for scientists to peer into the subsurface by measuring vibrations passing through the Earth.

    Using advanced modeling and simulation, seismic data generated by earthquakes, and one of the world’s fastest supercomputers, a team led by Jeroen Tromp of Princeton University is creating a detailed 3-D picture of Earth’s interior. Currently, the team is focused on imaging the entire globe from the surface to the core–mantle boundary, a depth of 1,800 miles.

    These high-fidelity simulations add context to ongoing debates related to Earth’s geologic history and dynamics, bringing prominent features like tectonic plates, magma plumes, and hotspots into view. In September 2016, the team published a paper in Geophysical Journal International on its first-generation global model. Created using data from 253 earthquakes captured by seismograms scattered around the world, the team’s model is notable for its global scope and high scalability.

    “This is the first global seismic model where no approximations—other than the chosen numerical method—were used to simulate how seismic waves travel through the Earth and how they sense heterogeneities,” said Ebru Bozdag, a coprincipal investigator of the project and an assistant professor of geophysics at the University of Nice Sophia Antipolis. “That’s a milestone for the seismology community. For the first time, we showed people the value and feasibility of running these kinds of tools for global seismic imaging.”

    The project’s genesis can be traced to a seismic imaging theory first proposed in the 1980s. To fill in gaps within seismic data maps, the theory posited a method called adjoint tomography, an iterative full-waveform inversion technique. This technique leverages more information than competing methods, using forward waves that travel from the quake’s origin to the seismic receiver and adjoint waves, which are mathematically derived waves that travel from the receiver to the quake.

    The problem with testing this theory? “You need really big computers to do this,” Bozdag said, “because both forward and adjoint wave simulations are performed in 3-D numerically.”

    In 2012, just such a machine arrived in the form of the Titan supercomputer, a 27-petaflop Cray XK7 managed by the US Department of Energy’s (DOE’s) Oak Ridge Leadership Computing Facility (OLCF), a DOE Office of Science User Facility located at Oak Ridge National Laboratory.


    ORNL Cray XK7 Titan Supercomputer

    After trying out its method on smaller machines, Tromp’s team gained access to Titan in 2013. Working with OLCF staff, the team continues to push the limits of computational seismology to deeper depths.

    Stitching Together Seismic Slices

    As quake-induced seismic waves travel, seismograms can detect variations in their speed. These changes provide clues about the composition, density, and temperature of the medium the wave is passing through. For example, waves move slower when passing through hot magma, such as mantle plumes and hotspots, than they do when passing through colder subduction zones, locations where one tectonic plate slides beneath another.

    Each seismogram represents a narrow slice of the planet’s interior. By stitching many seismograms together, researchers can produce a 3-D global image, capturing everything from magma plumes feeding the Ring of Fire, to Yellowstone’s hotspots, to subducted plates under New Zealand.

    This process, called seismic tomography, works in a manner similar to imaging techniques employed in medicine, where 2-D x-ray images taken from many perspectives are combined to create 3-D images of areas inside the body.

    In the past, seismic tomography techniques have been limited in the amount of seismic data they can use. Traditional methods forced researchers to make approximations in their wave simulations and restrict observational data to major seismic phases only. Adjoint tomography based on 3-D numerical simulations employed by Tromp’s team isn’t constrained in this way. “We can use the entire data—anything and everything,” Bozdag said.

    Digging Deeper

    To improve its global model further, Tromp’s team is experimenting with model parameters on Titan. For example, the team’s second-generation model will introduce anisotropic inversions, which are calculations that better capture the differing orientations and movement of rock in the mantle. This new information should give scientists a clearer picture of mantle flow, composition, and crust–mantle interactions.

    Additionally, team members Dimitri Komatitsch of Aix-Marseille University in France and Daniel Peter of King Abdullah University in Saudi Arabia are leading efforts to simulate higher-frequency seismic waves. This would allow the team to model finer details in the Earth’s mantle and even begin mapping the Earth’s core.

    To make this leap, Tromp’s team is preparing for Summit, the OLCF’s next-generation supercomputer.


    ORNL IBM Summit supercomputer depiction

    Set to arrive in 2018, Summit will provide at least five times the computing power of Titan. As part of the OLCF’s Center for Accelerated Application Readiness, Tromp’s team is working with OLCF staff to take advantage of Summit’s computing power upon arrival.

    “With Summit, we will be able to image the entire globe from crust all the way down to Earth’s center, including the core,” Bozdag said. “Our methods are expensive—we need a supercomputer to carry them out—but our results show that these expenses are justified, even necessary.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

    i2

     
  • richardmitnick 10:20 am on October 22, 2016 Permalink | Reply
    Tags: , , , From greenhouse gas to usable ethanol, ORNL,   

    From Science Node: “From greenhouse gas to usable ethanol” 

    Science Node bloc
    Science Node

    19 Oct, 2016
    Morgan McCorkle

    ORNL scientists find a way to use nano-spike catalysts to convert carbon dioxide directly into ethanol.

    In a new twist to waste-to-fuel technology, scientists at the Department of Energy’s Oak Ridge National Laboratory (ORNL) have developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol. Their finding, which involves nanofabrication and catalysis science, was serendipitous.


    Access mp4 video here .
    Serendipitous science. Looking to understand a chemical reaction, scientists accidentally discovered a method for converting combustion waste products into ethanol. The chance discovery may revolutionize the ability to use variable energy sources. Courtesy ORNL.

    “We discovered somewhat by accident that this material worked,” said ORNL’s Adam Rondinone, lead author of the team’s study published in ChemistrySelect. “We were trying to study the first step of a proposed reaction when we realized that the catalyst was doing the entire reaction on its own.”

    The team used a catalyst made of carbon, copper and nitrogen and applied voltage to trigger a complicated chemical reaction that essentially reverses the combustion process. With the help of the nanotechnology-based catalyst which contains multiple reaction sites, the solution of carbon dioxide dissolved in water turned into ethanol with a yield of 63 percent. Typically, this type of electrochemical reaction results in a mix of several different products in small amounts.

    “We’re taking carbon dioxide, a waste product of combustion, and we’re pushing that combustion reaction backwards with very high selectivity to a useful fuel,” Rondinone said. “Ethanol was a surprise — it’s extremely difficult to go straight from carbon dioxide to ethanol with a single catalyst.”

    The catalyst’s novelty lies in its nanoscale structure, consisting of copper nanoparticles embedded in carbon spikes. This nano-texturing approach avoids the use of expensive or rare metals such as platinum that limit the economic viability of many catalysts.

    “By using common materials, but arranging them with nanotechnology, we figured out how to limit the side reactions and end up with the one thing that we want,” Rondinone said.

    The researchers’ initial analysis suggests that the spiky textured surface of the catalysts provides ample reactive sites to facilitate the carbon dioxide-to-ethanol conversion.

    “They are like 50-nanometer lightning rods that concentrate electrochemical reactivity at the tip of the spike,” Rondinone said.

    Given the technique’s reliance on low-cost materials and an ability to operate at room temperature in water, the researchers believe the approach could be scaled up for industrially relevant applications. For instance, the process could be used to store excess electricity generated from variable power sources such as wind and solar.

    “A process like this would allow you to consume extra electricity when it’s available to make and store as ethanol,” Rondinone said. “This could help to balance a grid supplied by intermittent renewable sources.”

    The researchers plan to refine their approach to improve the overall production rate and further study the catalyst’s properties and behavior.

    ORNL’s Yang Song, Rui Peng, Dale Hensley, Peter Bonnesen, Liangbo Liang, Zili Wu, Harry Meyer III, Miaofang Chi, Cheng Ma, Bobby Sumpter and Adam Rondinone are coauthors on the study.

    The work was supported by DOE’s Office of Science and used resources at the ORNL’s Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Science Node is an international weekly online publication that covers distributed computing and the research it enables.

    “We report on all aspects of distributed computing technology, such as grids and clouds. We also regularly feature articles on distributed computing-enabled research in a large variety of disciplines, including physics, biology, sociology, earth sciences, archaeology, medicine, disaster management, crime, and art. (Note that we do not cover stories that are purely about commercial technology.)

    In its current incarnation, Science Node is also an online destination where you can host a profile and blog, and find and disseminate announcements and information about events, deadlines, and jobs. In the near future it will also be a place where you can network with colleagues.

    You can read Science Node via our homepage, RSS, or email. For the complete iSGTW experience, sign up for an account or log in with OpenID and manage your email subscription from your account preferences. If you do not wish to access the website’s features, you can just subscribe to the weekly email.”

     
  • richardmitnick 11:58 am on October 12, 2016 Permalink | Reply
    Tags: "Oak Ridge Scientists Are Writing Code That Not Even The World's Fastest Computers Can Run (Yet), Department of Energy’s Exascale Computing Project, ORNL, , ,   

    From ORNL via Nashville Public Radio: “Oak Ridge Scientists Are Writing Code That Not Even The World’s Fastest Computers Can Run (Yet)” 

    i1

    Oak Ridge National Laboratory

    1

    Nashville Public Radio

    Oct 10, 2016
    Emily Siner

    2
    The current supercomputer at Oak Ridge National Lab, Titan, will be replaced by what could be the fastest computer in the world, Summit — and even that won’t even be fast enough for some of the programs that are being written at the lab. Oak Ridge National Laboratory, U.S. Dept. of Energy

    ORNL IBM Summit supercomputer depiction
    ORNL IBM Summit supercomputer depiction

    Scientists at Oak Ridge National Laboratory are starting to build applications for a supercomputer that might not go live for another seven years.

    The lab recently received more than $5 million from the Department of Energy to start developing several longterm projects.

    Thomas Evans’s research is among those funded, and it’s a daunting task: His team is trying to predict how small sections of particles inside a nuclear reactor will behave over a long period time.

    The more precisely they can simulate nuclear reactors on a computer, the better engineers can build them in real life.

    “Analysts can use that [data] to design facilities, experiments and working engineering platforms,” Evans says.

    But these very elaborate simulations that Evans is creating take so much computing power that they cannot run on Oak Ridge’s current supercomputer, Titan — nor will it be able to run on the lab’s new supercomputer, Summit, which could be the fastest in the world when it goes live in two years.

    So Evans is thinking ahead, he says, “to ultimately harness the power of the next generation — technically two generations from now — of supercomputing.

    “And of course, the challenge is, that machine doesn’t exist yet.”

    The current estimate is that this exascale computer, as it’s called, will be several times faster than Summit and go live around 2023. And it could very well take that long for Evans’s team to write code for it.

    The machine won’t just be faster, Evans says. It’s also going to work in a totally new way, which changes how applications are written.

    “In other words, I can’t take a simulation code that we’ve been using now and just drop it in the new machine and expect it to work,” he says.

    The computer will not necessarily be housed at Oak Ridge, but Tennessee researchers are playing a major role in the Department of Energy’s Exascale Computing Project. In addition to Evans’ nuclear reactor project, scientists at Oak Ridge will be leading the development of two other applications, including one that will simulate complex 3D printing. They’ll also assist in developing nine other projects.

    Doug Kothe, who leads the lab’s exascale application development, says the goal is not just to think ahead to 2023. The code that the researchers write should be able run on any supercomputer built in next several decades, he says.

    Despite the difficulty, working on incredibly fast computers is also an exciting prospect, Kothe says.

    “For a lot of very inquisitive scientists who love challenges, it’s just a way cool toy that you can’t resist.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

    i2

     
  • richardmitnick 8:54 am on October 6, 2016 Permalink | Reply
    Tags: , Geothermal heat pump (GHP) technology, ORNL   

    From ORNL: “Xiaobing Liu: Making geothermal heat pump technology a household name” 

    i1

    Oak Ridge National Laboratory

    October 5, 2016
    Bill Cabage, Communications
    cabagewh@ornl.gov
    865.574.4399

    1
    ORNL researcher Xiaobing Liu works in the laboratory’s Building Technologies Research and Integration Center.

    As a boy growing up in China, Xiaobing Liu knew all about Oak Ridge and the World War II Manhattan Project. He had no idea that he would one day work at DOE’s Oak Ridge National Laboratory, the Secret City’s successor.

    Liu is a lead researcher in geothermal heat pump (GHP) technology, developing software and smart controls and performing characterization and modeling for GHPs in both component and system levels. Accessing energy stored in the Earth’s crust to heat and cool buildings is a no-brainer to Liu. His years of research have made him confident, if not passionate, about using GHP as a viable option to clean and renewable energy.

    “Living in China, I saw how people made homes in the sides of hills—they’re called Yao Dong— and the temperature inside was always comfortable, both in summer and winter,” said Liu. “Visiting my grandpa at age six, I was aware of the comfort in these cave-like structures compared to the outside temperatures.”

    Perhaps his early exposure to these Chinese abodes is what fueled his drive to tackle geothermal energy in his career, so much so that his division director introduces him as the “evangelist of geothermal heat pumps.”

    After receiving his bachelor’s and master’s degrees in mechanical engineering at Tongji University in Shanghai, Liu came to the U.S. for his Ph.D. at Oklahoma State University, which is the epicenter of GHP technology. After earning his Ph.D., Liu went to work as the system engineering manager at ClimateMaster, which at the time, was the largest GHP manufacturer in North America. At ClimateMaster, Liu developed software used in designing, analyzing, and optimizing GHP systems. The software is still in wide use today. He also helped design more than 30 GHP systems in the United States and other countries.

    In 2009, Liu joined the ORNL Building Technologies Research and Integration Center.

    “It was a difficult decision for me but very hard to refuse,” said Liu. “I had admired and respected the scientists at ORNL for a long time and was familiar with their work.” His boyhood knowledge of Oak Ridge’s history also enticed him to the laboratory.

    Liu was the technical lead of building equipment research in the US-China Clean Energy Research Center for Building Energy Efficiency (CERC BEE), a partnership that was just renewed for another five years. He also serves as the research chair for the International Ground Source Heat Pump Association (IGSHPA), and the research chair for the TC 6.8 Geothermal Heat Pump and Energy Recovery Applications technical committee of the American Society of Heating, Refrigeration & Air-Conditioning Engineers (ASHRAE).

    What would Liu like to see in GHP development if given more opportunities?

    “First, invest R&D in ground heat exchanger designs, installation, and drillings. If we can send people to the moon, we can make drilling cheap,” he says. “Geothermal systems need to be cheap and reliable.”

    Second, enable wider adoption of the GHP technology. Liu said people need to be able to easily and accurately measure the energy savings they achieve when using GHP.

    And third, Liu says the industry needs software tools and cost effective systems for performance monitoring, as well as real-time diagnosis and optimization, to ensure GHP systems are running at optimal performance at all times.

    Liu makes a strong statement for conditioning buildings with GHP technology with one simple comparison. “We use a flame that burns at approximately 3,000°F to heat our homes when we only need 76 – 80°F. Why do we do that?”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

    i2

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: