Tagged: Optics technology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:58 am on June 24, 2016 Permalink | Reply
    Tags: , ESRF, Let there be light: how silver clusters in nano-cages produce light, Optics technology   

    From ESRF: “Let there be light: how silver clusters in nano-cages produce light “ 

    ESRF bloc
    The European Synchrotron

    24-06-2016
    No writer credit found

    Future LEDs might have been partly brewed at the ESRF’s beamline DUBBLE. An international team of researchers has shown that highly luminescent clusters of silver atoms can be assembled in the porous framework of minerals known as zeolites. The high efficiency of light emission from the materials, along with cheap and scalable synthesis makes them very attractive for next generation fluorescent lamps and LEDs or for biological imaging.

    Silver clusters are small ensembles of just a few silver atoms (<10), which have remarkable catalytic and optical properties. Current applications for silver clusters are limited due to a natural tendency to aggregate into larger particles which do not exhibit these enhanced properties. To overcome this limitation, researchers from the Université de Strasbourg & CNRS and KU Leuven (Belgium) assembled and stabilised the clusters in nano-scale confined spaces. In particular, they used the pores in carefully chosen minerals, called zeolites.

    Zeolites can be found naturally or produced synthetically on an industrial scale. Owing to their rigid and well-defined framework made of molecular-scale channels and cavities, zeolites are already used for a wide range of domestic and industrial applications (e.g. laundry detergent, water purification, gas separation, catalysis).

    In this study, the researchers investigated silver clusters assembled in four different types of zeolite. Silver ions were introduced into the zeolites by means of ion-exchange, leading to the partial or total replacement of the native sodium or potassium ions in the parent zeolites. Thermal treatment at elevated temperature allowed the controlled assembly of the silver ions into well-defined clusters within the confined space of the zeolite cavities.

    The team used the Dutch-Belgian beamline BM26 at the ESRF to carry out an in-depth characterisation of these heat-treated silver-exchanged zeolites using X-ray absorption fine structure (EXAFS). Wim Bras, responsible for the beamline, explains that "these results show that X-ray spectroscopy really is an unique tool and required for the characterization of technologically important new materials".

    1
    Photoluminescence properties of heat-treated silver-exchanged zeolites.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    ESRF

    The ESRF – the European Synchrotron Radiation Facility – is the most intense source of synchrotron-generated light, producing X-rays 100 billion times brighter than the X-rays used in hospitals. These X-rays, endowed with exceptional properties, are produced at the ESRF by the high energy electrons that race around the storage ring, a circular tunnel measuring 844 metres in circumference. Each year, the demand to use these X-ray beams increases and thousands of scientists from around the world come to Grenoble, to access the 43 highly specialised experimental stations, called “beamlines”, each equipped with state-of-the-art instrumentation, operating 24 hours a day, seven days a week.

    Thanks to the brilliance and quality of its X-rays, the ESRF functions like a “super-microscope” which “films” the position and motion of atoms in condensed and living matter, and reveals the structure of matter in all its beauty and complexity. It provides unrivalled opportunities for scientists in the exploration of materials and living matter in a very wide variety of fields: chemistry, material physics, archaeology and cultural heritage, structural biology and medical applications, environmental sciences, information science and nanotechnologies.

    Following on from 20 years of success and excellence, the ESRF has embarked upon an ambitious and innovative modernisation project, the Upgrade Programme, implemented in two phases: Phase I (2009-2015) and the ESRF-EBS (Extremely Brilliant Source) (2015-2022) programmes. With an investment of 330 million euros, the Upgrade Programme is paving the way to a new generation of synchrotron storage rings, that will produce more intense, coherent and stable X-ray beams. By constructing a new synchrotron, deeply rooted in the existing infrastructure, the ESRF will lead the way in pushing back the boundaries of scientific exploration of matter, and contribute to answering the great technological, economic, societal and environmental challenges confronting our society.

     
  • richardmitnick 6:22 pm on June 2, 2016 Permalink | Reply
    Tags: "Metalens works in the visible spectrum sees smaller than a wavelength of light, , , Optics technology   

    From Harvard: “Metalens works in the visible spectrum, sees smaller than a wavelength of light” 

    Harvard School of Engineering and Applied Sciences
    Harvard John A Paulson School of Engineering and Applied Sciences

    June 2, 2016
    Leah Burrows

    High efficiency ultra-thin planar lens could replace heavy, bulky lenses in smart phones, cameras and telescopes.

    1
    Schematic showing the ultra-thin meta-lens. The lens consists of titanium dioxide nanofins on a glass substrate. The meta-lens focuses an incident light (entering from bottom and propagating upward) to a spot (yellow area) smaller than the incident wavelength. Small meta-lens at the side (red color) showing a different view of the meta-lens. Credit: Peter Allen/ Harvard John A. Paulson School of Engineering and Applied Sciences [from phys.org]

    Curved lenses, like those in cameras or telescopes, are stacked in order to reduce distortions and resolve a clear image. That’s why high-power microscopes are so big and telephoto lenses so long.

    While lens technology has come a long way, it is still difficult to make a compact and thin lens (rub a finger over the back of a cellphone and you’ll get a sense of how difficult). But what if you could replace those stacks with a single flat — or planar — lens?

    Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have demonstrated the first planar lens that works with high efficiency within the visible spectrum of light — covering the whole range of colors from red to blue. The lens can resolve nanoscale features separated by distances smaller than the wavelength of light. It uses an ultrathin array of tiny waveguides, known as a metasurface, which bends light as it passes through.

    The research* is described in the journal Science.

    2
    Light passing through the meta-lens is focused by millions of nano structures (Capasso Lab)

    “This technology is potentially revolutionary because it works in the visible spectrum, which means it has the capacity to replace lenses in all kinds of devices, from microscopes to cameras, to displays and cell phones,” said Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering and senior author of the paper. “In the near future, metalenses will be manufactured on a large scale at a small fraction of the cost of conventional lenses, using the foundries that mass produce microprocessors and memory chips.”

    “Correcting for chromatic spread over the visible spectrum in an efficient way, with a single flat optical element, was until now out of reach,” said Bernard Kress, Partner Optical Architect at Microsoft, who was not part of the research. “The Capasso group’s metalens developments enable the integration of broadband imaging systems in a very compact form, allowing for next generations of optical sub-systems addressing effectively stringent weight, size, power and cost issues, such as the ones required for high performance AR/VR wearable displays.”

    In order to focus red, blue and green light — light in the visible spectrum — the team needed a material that wouldn’t absorb or scatter light, said Rob Devlin, a graduate student in the Capasso lab and co-author of the paper.

    “We needed a material that would strongly confine light with a high refractive index,” he said. “And in order for this technology to be scalable, we needed a material already used in industry.”

    The team used titanium dioxide, a ubiquitous material found in everything from paint to sunscreen, to create the nanoscale array of smooth and high-aspect ratio nanostructures that form the heart of the metalens.

    3
    Scanning electron microscope micrograph of the fabricated meta-lens. The lens consists of titanium dioxide nanofins on a glass substrate. Scale bar: 2 mm (Image courtesy of the Capasso Lab)

    “We wanted to design a single planar lens with a high numerical aperture, meaning it can focus light into a spot smaller than the wavelength,” said Mohammadreza Khorasaninejad, a postdoctoral fellow in the Capasso lab and first author of the paper. “The more tightly you can focus light, the smaller your focal spot can be, which potentially enhances the resolution of the image.”

    The team designed the array to resolve a structure smaller than a wavelength of light, around 400 nanometers across. At these scales, the metalens could provide better focus than a state-of-the art commercial lens.

    “Normal lenses have to be precisely polished by hand,” said Wei Ting Chen, coauthor and a postdoctoral fellow in the Capasso Lab. “Any kind of deviation in the curvature, any error during assembling makes the performance of the lens go way down. Our lens can be produced in a single step — one layer of lithography and you have a high performance lens, with everything where you need it to be.”

    “The amazing field of metamaterials brought up lots of new ideas but few real-life applications have come so far,” said Vladimir M. Shalaev, professor of electrical and computer engineering at Purdue University, who was not involved in the research. “The Capasso group with their technology-driven approach is making a difference in that regard. This new breakthrough solves one of the most basic and important challenges, making a visible-range meta-lens that satisfies the demands for high numerical aperture and high efficiency simultaneously, which is normally hard to achieve.”

    One of the most exciting potential applications, said Khorasaninejad, is in wearable optics such as virtual reality and augmented reality.

    “Any good imaging system right now is heavy because the thick lenses have to be stacked on top of each other. No one wants to wear a heavy helmet for a couple of hours,” he said. “This technique reduces weight and volume and shrinks lenses thinner than a sheet of paper. Imagine the possibilities for wearable optics, flexible contact lenses or telescopes in space.”

    The authors have filed patents and are actively pursuing commercial opportunities.

    The paper was coauthored by Jaewon Oh and Alexander Zhu of SEAS. It was supported in part by a MURI grant from the Air Force Office of Scientific Research, Draper Laboratory and Thorlabs Inc.

    *Science paper:
    Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Through research and scholarship, the Harvard School of Engineering and Applied Sciences (SEAS) will create collaborative bridges across Harvard and educate the next generation of global leaders. By harnessing the power of engineering and applied sciences we will address the greatest challenges facing our society.

    Specifically, that means that SEAS will provide to all Harvard College students an introduction to and familiarity with engineering and technology as this is essential knowledge in the 21st century.

    Moreover, our concentrators will be immersed in the liberal arts environment and be able to understand the societal context for their problem solving, capable of working seamlessly withothers, including those in the arts, the sciences, and the professional schools. They will focus on the fundamental engineering and applied science disciplines for the 21st century; as we will not teach legacy 20th century engineering disciplines.

    Instead, our curriculum will be rigorous but inviting to students, and be infused with active learning, interdisciplinary research, entrepreneurship and engineering design experiences. For our concentrators and graduate students, we will educate “T-shaped” individuals – with depth in one discipline but capable of working seamlessly with others, including arts, humanities, natural science and social science.

    To address current and future societal challenges, knowledge from fundamental science, art, and the humanities must all be linked through the application of engineering principles with the professions of law, medicine, public policy, design and business practice.

    In other words, solving important issues requires a multidisciplinary approach.

    With the combined strengths of SEAS, the Faculty of Arts and Sciences, and the professional schools, Harvard is ideally positioned to both broadly educate the next generation of leaders who understand the complexities of technology and society and to use its intellectual resources and innovative thinking to meet the challenges of the 21st century.

    Ultimately, we will provide to our graduates a rigorous quantitative liberal arts education that is an excellent launching point for any career and profession.

     
  • richardmitnick 4:35 pm on August 26, 2015 Permalink | Reply
    Tags: , Optics technology,   

    From U Arizona: “Optics undergrads win competition” A Great Story 

    U Arizona bloc

    University of Arizona

    8.26.15
    Alexandria Farrar

    If you’ve ever stepped into the College of Optical Sciences at the UA, it has something pointedly futuristic about it. In the lobby stands a hefty sphere of glass, propped on a stand and receiving ample light from beyond the large northerly glass walls.

    “You can form an image of the landscape by placing a piece of paper behind it; you’ll see that the image is actually curved and upside down,” said Travis Sawyer, a senior studying optical sciences and engineering. “Seeing people do this is how we tell who’s new here.”

    Sawyer along with Stephanie Guzman, Nicholas Lyons and Fabian Wildenstein, all seniors studying optical sciences and engineering, have certainly earned their way into this challenging and bright world of optics—they recently won the Robert S. Hilbert Memorial Optical Design Competition, a competition housed by Synopsys to encourage the use of their optics imaging software, Code V. This hefty achievement is amplified by the fact that they are amongst the youngest ever to win.

    “Most of the winners have been graduate students,” said Yuzura Takashima, an associate professor for the College of Optical Sciences and the team’s adviser, “This was the first group pursuing their B.S. to win.”

    1
    From left to right, Nick Lyons, Stephanie Guzman, Favian Wildenstein, and Travis Sawyer, seniors studying optical sciences and engineering, stand in front of the Meinel building on Tuesday, Aug. 25. The undergraduate UA team is the only winner of the Robert S. Hilbert Memorial Optical Design Competition this year that is not comprised of Ph.D. candidates.By Tom Price / The Daily Wildcat

    The group members have an explanation for why they were successful despite not being graduate students like the rest of the winners.

    “I think it helped that we got along so well,” Wildenstein said. Certainly each had an enthusiasm for their field of a study, a discipline that combines elegant trigonometry with the topsy-turvy world of mirrors, distorted images and redirecting light itself.

    “My first introduction to optics was one of my natural science gen eds, called Light, Color and Vision,” Guzman said. “I was excited about everything we studied. I remember going back to my roommate and being like, ‘Look at that Polaris!’”

    But even with their passion and teamwork, it wasn’t an easy task. The students started with only basic knowledge, and had to learn the program as well as come up with an idea. The original inspiration came from a mission to one of Saturn’s moons back in the ’90s.

    The imager that was deployed captured data about the atmosphere of Titan. It rotated and took images of the atmosphere, but was essentially useless on the actual terrain of the moon. The team’s idea was to make and optimize an imager which was high-resolution enough to collect data in nothing less than the liquid methane seas of Titan.

    The key to their task was Synopsys’s program, designed for imaging optics and programmed to do the mathematical heavy lifting. The hardest part about utilizing the actual Code V program?

    “Opening it up,” said Alonzo Espinoza, an optical sciences graduate student who guided the team in their project. Starting as they had with a basic knowledge of working with such complex technology, it’s clear how strong the team was.

    In a conference room in the Meinel Optical Sciences building, they chat cheerfully amongst each other. Around discussions of how they’ll spend the reward from winning, Lyons and Sawyer cite where they’re applying to graduate school, new innovations in optics and plans for the semester.

    “Tuition…” Lyons said.

    “Tuition,” Sawyer agreed, nodding.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U Arizona campus

    The University of Arizona (UA) is a place without limits-where teaching, research, service and innovation merge to improve lives in Arizona and beyond. We aren’t afraid to ask big questions, and find even better answers.

    In 1885, establishing Arizona’s first university in the middle of the Sonoran Desert was a bold move. But our founders were fearless, and we have never lost that spirit. To this day, we’re revolutionizing the fields of space sciences, optics, biosciences, medicine, arts and humanities, business, technology transfer and many others. Since it was founded, the UA has grown to cover more than 380 acres in central Tucson, a rich breeding ground for discovery.

    Where else in the world can you find an astronomical observatory mirror lab under a football stadium? An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why the UA is a university unlike any other.

     
  • richardmitnick 4:59 am on February 20, 2015 Permalink | Reply
    Tags: , , Optics technology   

    From Harvard: “Perfect colors, captured with one ultra-thin lens” 

    Harvard University

    Harvard University

    February 19, 2015
    Caroline Perry, (617) 496-1351

    No need for color correction—Harvard physicists’ flat optics, using nanotechnology, gets it right the first time

    Most lenses are, by definition, curved. After all, they are named for their resemblance to lentils, and a glass lens made flat is just a window with no special powers.
    But a new type of lens created at the Harvard School of Engineering and Applied Sciences (SEAS) turns conventional optics on its head.

    1
    This completely flat, ultrathin lens can focus different wavelengths of light at the same point, achieving instant color correction in one extremely thin, miniaturized device. (Image courtesy of Patrice Genevet, Federico Capasso, and Francesco Aieta, Harvard SEAS.)

    A major leap forward from a prototype device demonstrated in 2012, it is an ultra-thin, completely flat optical component made of a glass substrate and tiny, light-concentrating silicon antennas. Light shining on it bends instantaneously, rather than gradually, while passing through. The bending effects can be designed in advance, by an algorithm, and fine-tuned to fit almost any purpose.

    With this new invention described today in Science, the Harvard research team has overcome an inherent drawback of a wafer-thin lens: light at different wavelengths (i.e., colors) responds to the surface very differently. Until now, this phenomenon has prevented planar optics from being used with broadband light. Now, instead of treating all wavelengths equally, the researchers have devised a flat lens with antennas that compensate for the wavelength differences and produce a consistent effect—for example, deflecting three beams of different colors by the same angle, or focusing those colors on a single spot.

    “What this now means is that complicated effects like color correction, which in a conventional optical system would require light to pass through several thick lenses in sequence, can be achieved in one extremely thin, miniaturized device,” said principal investigator Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering at Harvard SEAS.

    2
    Ordinary refractive lenses (left) suffer from significant chromatic aberrations as different wavelengths are focused in different spots. To compensate for this chromatic dispersion, additional lenses have to be added in an objective to compensate for chromatic aberrations as the number of wavelengths to be corrected increases. An achromatic doublet corrects for 2 wavelengths, an apochromat for 3 and finally a so called super-achromat for four wavelengths. The Harvard team’s new metasurface lenses (right) are designed to focus light in the same spot for 3 different wavelengths with no need to increase the lens thickness and footprint. (Image courtesy of Patrice Genevet, Federico Capasso, and Francesco Aieta, Harvard SEAS.)

    Bernard Kress, Principal Optical Architect at Google [X], who was not involved in the research, hailed the advance:

    “Google [X], and especially the Google Glass group, is relying heavily on state-of-the-art optical technologies to develop products that have higher functionalities, are easier to mass produce, have a smaller footprint, and are lighter, without compromising efficiency,” he said. “Last year, we challenged Professor Capasso’s group to work towards a goal which was until now unreachable by flat optics. While there are many ways to design achromatic optics, there was until now no solution to implement a dispersionless flat optical element which at the same time had uniform efficiency and the same diffraction angle for three separate wavelengths. We are very happy that Professor Capasso did accept the challenge, and also were very surprised to learn that his group actually solved that challenge within one year.”

    The team of researchers, led by Capasso and postdoctoral fellow Francesco Aieta, has developed a design that rivals the bulky equipment currently used in photography, astronomy, and microscopy. It could also enable the creation of new miniature optical communications devices and find application in compact cameras and imaging devices.

    The new lens, dubbed an “achromatic metasurface,” dramatically improves on the flat lens Capasso’s research group demonstrated in 2012. That prototype, the first of its kind, corrected for some of the aberrations of conventional lenses but suffered from the limitation of only focusing light of a single wavelength, and its focusing efficiency was small. The new model uses a dielectric material rather than a metal for the nanoantennas, a change which greatly improves its efficiency and, combined with a new design approach, enables operation over a broad range of wavelengths.

    Most significantly, the new design enables the creation of two different flat optical devices. The first, instead of sending different colors in different directions like a conventional grating, deflects three wavelengths of light by exactly the same angle. In the second device, the three wavelengths can all be focused at the same point. A flat lens can thus create a color image—focusing for example red, green, and blue, the primary colors used in most digital displays. The team’s computational simulations also suggest that a similar architecture can be used to create a lens that collimates many different wavelengths, not just three.

    “This is a major step forward in establishing a planar optical technology with a small footprint which overcomes the limitations of standard flat optics, known as diffractive optics,” said Capasso. “It also opens the door to new functionalities because of the enormous design space made possible by metasurfaces.”

    3
    In 2012, the research demonstrated a prototype flat lens that could create a perfectly focused image or a twisting vortex beam. In a major leap forward, announced in February 2015, the researchers have demonstrated that a metasurface can focus different wavelengths of light at the same point, achieving instant color correction in one extremely thin, miniaturized device. Left to right: Francesco Aieta, Federico Capasso, and Patrice Genevet. Not pictured, Mikhail Kats. (File photo by Eliza Grinnell, Harvard SEAS.)

    “This is an elegant and groundbreaking accomplishment,” said Nader Engheta, H. Nedwill Ramsey Professor at the University of Pennsylvania, who was not involved in the research. “The planar optical structures designed and demonstrated by Professor Capasso’s group have much less volume than their conventional bulky counterparts and at the same time their chromatic aberration has been suppressed. This is an important development that will undoubtedly lead to other exciting innovations in the field of flat photonics.”

    Harvard’s Office of Technology Development has filed for a provisional patent on the new optical technology and is actively pursuing commercial opportunities.

    “Our previous work on the metallic flat lens produced a great excitement in regard to the possibility of achieving high numerical aperture and spherical aberration-free focusing with a very compact design. By demonstrating achromatic lenses we have now made a major step forward towards widespread future application of flat optics that will certainly attract the interest of the industry,” said lead author Francesco Aieta, now employed by Hewlett Packard, who conducted the research at Harvard SEAS.

    Additional coauthors of the Science paper include Mikhail A. Kats and Patrice Genevet, both former members of the Capasso laboratory. Kats, who earned his Ph.D. at Harvard SEAS in 2013, is now an assistant professor at the University of Wisconsin, Madison. Genevet, formerly a postdoctoral research associate at SEAS, is now at the Singapore Institute of Manufacturing Technology.

    This research was supported in part by a MURI grant from the Air Force Office of Scientific Research (FA9550-12-1-0389), with additional support from Draper Laboratory (SC001-0000000731), and the National Science Foundation (NSF, ECCS-1347251). Fabrication was performed at the Harvard Center for Nanoscale Systems, which is a member of the NSF-funded National Nanotechnology Infrastructure Network.

    See the full article here.

    Harvard is the oldest institution of higher education in the United States, established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. It was named after the College’s first benefactor, the young minister John Harvard of Charlestown, who upon his death in 1638 left his library and half his estate to the institution. A statue of John Harvard stands today in front of University Hall in Harvard Yard, and is perhaps the University’s best known landmark.

    Harvard University has 12 degree-granting Schools in addition to the Radcliffe Institute for Advanced Study. The University has grown from nine students with a single master to an enrollment of more than 20,000 degree candidates including undergraduate, graduate, and professional students. There are more than 360,000 living alumni in the U.S. and over 190 other countries.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 7:50 am on September 11, 2014 Permalink | Reply
    Tags: , , Optics technology   

    From LLNL: “New energy record set for multilayer-coated mirrors” 


    Lawrence Livermore National Laboratory

    09/11/2014
    Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov

    Multilayer-coated mirrors, if used as focusing optics in the soft gamma-ray photon energy range, can enable and advance a range of scientific and technological applications that would benefit from the large improvements in sensitivity and resolution that true imaging provides.

    In a paper published in a recent online edition of Optics Express, LLNL postdoc Nicolai Brejnholt and colleagues from LLNL, the Technical University of Denmark and the European Synchrotron Radiation Facility demonstrate for the first time that very short-period multilayer coatings deposited on super-polished substrates operate efficiently as reflective optics above 0.6 MeV, nearly a factor of two higher than the previous record at 384 keV, set last year by this same group (Physical Review Letters 101 027404, 2013).

    three
    Regina Soufli, Marie-Anne Descalle, postdoc Nicolai Brejnholt (shown in photo) and LLNL colleagues and collaborators recently demonstrated that very short-period multilayer coatings deposited on super-polished substrates operate efficiently as reflective optics.

    Multilayer mirrors can be used for two broad classes of applications. First, they can be used in spectroscopy, to enhance or suppress certain photon. energies. The team is looking into how to use multilayers to examine spent nuclear fuel for non-proliferation missions.

    Second, multilayer mirrors can be used as focusing, imaging optics by applying multilayer coatings to curved substrates. “We have previously made hard X-ray optics for nuclear medicine and astrophysics applications, and we can now consider adapting the same fabrication techniques to work in the soft gamma-ray band,” said Michael Pivovaroff, LLNL co-author.

    The field of astrophysics would benefit the most from gamma-ray focusing optics, including the sub-disciplines of galactic and extragalactic astronomy, solar astronomy, cosmic-ray research and potentially observational cosmology. Gamma-ray optics also have shown promise for nuclear medicine and nuclear non-proliferation applications.

    “We have demonstrated the capability to make highly reflective multilayer thin films with ultra-short period thickness (1-2 nanometers) and stable, ultra-smooth interfaces between the layers, as needed for operation at these extremely high photon energies. We chose tungsten carbide/silicon carbide (WC/SiC) multilayers for this purpose,” said Regina Soufli, another LLNL co-author.

    “The measurements at 0.65 MeV showed we had to understand sub-nanometer variations across the 36-square-inch mirror to model the measured performance,” Brejnholt said.

    The team demonstrated that multilayer mirrors in the gamma-ray band operate efficiently and according to well-understood models. The team combined classical, wave interference models with a Monte-Carlo particle simulation code. The latter was used to account for incoherent scattering, a phenomenon that is negligible at lower photon energies but becomes significant in the soft gamma ray range. Incoherent scattering was observed and modeled on multilayer structures for the first time by the LLNL team.

    Other Livermore co-authors include Marie-Anne Descalle, principal investigator of the Laboratory Directed Research and Development (LDRD) project that funded this effort, Mónica Fernández-Perea, Jennifer Alameda, Tom McCarville and Sherry Baker.

    See the full article here.

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security
    Administration
    DOE Seal
    NNSA
    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 5:54 pm on December 6, 2012 Permalink | Reply
    Tags: , , , Optics technology, ,   

    From Brookhaven: “Growing Cutting-edge X-ray Optics” 

    Brookhaven Lab

    Scientists use a custom-designed machine and a reprogrammed Xbox controller to create atomically precise lenses

    December 6, 2012
    Justin Eure

    Unleashing some of the most promising energy technologies of tomorrow—from electric vehicle fuel cells to photovoltaics—hinges upon understanding tiny structures spanning just billionths of a meter. One way to explore this critical nanoscale world is by sending high-intensity x-ray beams through materials, similar to the way doctors capture images of internal bone structure using large x-ray devices. The challenge with fringe physics, however, is that focusing that penetrating power on just a single nanometer takes an entirely different caliber of lens.…”

    See how it is done-

    Is that cool, or what?

    “Using a massive, custom-built deposition device, Brookhaven Lab scientist Ray Conley and his team are able to grow special lenses one atomic layer at a time. As intense x-rays pass through these multilayer Laue lenses (MLL), the light diffracts and bends toward a single point. Creating these atomically precise optics is no small feat, and Conley continues to tweak the process of growing light-bending films and carving them into precise lenses.”

    See the full article here.

    The completed MLLs will be deployed on beamlines at Brookhaven Lab’s forthcoming National Synchrotron Light Source II, one of the world’s most advanced light sources, to reveal unparalleled details of nanomaterial structures.

    nsls
    Brookhaven’s current light source — the National Synchrotron Light Source (NSLS) — is one of the world’s most widely used scientific facilities. Each year, 2,200 researchers from 400 universities, government laboratories, and companies use its bright beams of x-rays, ultraviolet light, and infrared light for research in such fields as biology, medicine, chemistry, environmental sciences, physics, and materials science. The scientific productivity of the NSLS user community is very high and has widespread impact, with more than 900 publications per year, many in premier scientific journals.

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.
    i1


    ScienceSprings is powered by MAINGEAR computers

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 582 other followers

%d bloggers like this: