From The Arizona State University (US) : “Scientists measure the atmosphere of a planet 340 light-years away”
From The Arizona State University (US)
October 27, 2021
Karin Valentine
Media Relations & Marketing manager
School of Earth and Space Exploration
480-965-9345
Karin.Valentine@asu.edu
An international team of scientists, using the ground-based Gemini Observatory telescope in Chile, is the first to directly measure the amount of both water and carbon monoxide in the atmosphere of a planet in another solar system roughly 340 light-years away.
The team is led by Assistant Professor Michael Line of Arizona State University’s School of Earth and Space Exploration, and the results have been recently published in the journal Nature.
There are thousands of known planets outside of our own solar system (called exoplanets). Scientists use both space telescopes and ground-based telescopes to examine how these exoplanets form and how they are different from the planets in our own solar system.
For this study, Line and his team focused on planet WASP-77Ab a type of exoplanet called a hot Jupiter because they are like our solar system’s Jupiter, but with a temperature upwards of 2,000 degrees Fahrenheit.
They then focused on measuring the composition of its atmosphere to determine what elements are present compared with the star it orbits.
“Because of their sizes and temperatures, hot Jupiters are excellent laboratories for measuring atmospheric gases and testing our planet-formation theories,” Line said.
While we cannot yet send spacecraft to planets beyond our solar system, scientists can study the light from exoplanets with telescopes. The telescopes they use to observe this light can be either in space, like the Hubble Space Telescope, or from the ground, like the Gemini Observatory telescopes.
Line and his team had been extensively involved in measuring the atmospheric compositions of exoplanets using Hubble, but obtaining these measurements was challenging. Not only is there steep competition for telescope time, Hubble’s instruments only measure water (or oxygen) and the team needed to also gather measurements of carbon monoxide (or carbon) as well.
“We needed to try something different to address our questions,” Line said. “And our analysis of the capabilities of Gemini South indicated that we could obtain ultra-precise atmospheric measurements.”
Gemini South is an 8.1-meter diameter telescope located on a mountain in the Chilean Andes called Cerro Pachón, where very dry air and negligible cloud cover make it a prime telescope location. It is operated by the National Science Foundation’s NOIRLab (National Optical-Infrared Astronomy Research Laboratory).
Using the Gemini South telescope, with an instrument called the Immersion GRating INfrared Spectrometer (IGRINS), the team observed the thermal glow of the exoplanet as it orbited its host star. From this instrument, they gathered information on the presence and relative amounts of different gases in its atmosphere.
Like weather and climate satellites that are used to measure the amount of water vapor and carbon dioxide in Earth’s atmosphere, scientists can use spectrometers and telescopes, like IGRINS on Gemini South, to measure the amounts of different gases on other planets.
“Trying to figure out the composition of planetary atmospheres is like trying to solve a crime with fingerprints,” Line said. “A smudged fingerprint doesn’t really narrow it down too much, but a very nice, clean fingerprint provides a unique identifier to who committed the crime.”
Where the Hubble Space Telescope provided the team with maybe one or two fuzzy fingerprints, IGRINS on Gemini South provided the team with a full set of perfectly clear fingerprints.
And with clear measurements of both water and carbon monoxide in the atmosphere of WASP-77Ab, the team was then able to estimate the relative amounts of oxygen and carbon in the exoplanet’s atmosphere.
By measuring the Doppler shift illustrated in the right column of this figure, scientists can reconstruct a planet’s orbital velocity in time toward or away from Earth. The strength of the planet signal as shown in the middle column, along the expected apparent velocity (navy dashed curve) of the planet as it orbits the star, contains information on the amounts of different gases in the atmosphere. Credit: P. Smith/M. Line/S. Selkirk/ASU.
“These amounts were in line with our expectations and are about the same as the host star’s,” Line said.
Obtaining ultra-precise gas abundances in exoplanet atmospheres is not only an important technical achievement, especially with a ground-based telescope, it may also help scientists look for life on other planets.
“This work represents a pathfinder demonstration for how we will ultimately measure biosignature gases like oxygen and methane in potentially habitable worlds in the not-too-distant future,” Line said.
What Line and the team expect to do next is repeat this analysis for many more planets and build up a “sample” of atmospheric measurements on at least 15 more planets.
“We are now at the point where we can obtain comparable gas abundance precisions to those planets in our own solar system. Measuring the abundances of carbon and oxygen (and other elements) in the atmospheres of a larger sample of exoplanets provides much needed context for understanding the origins and evolution of our own gas giants like Jupiter and Saturn,” Line said.
They also look forward to what future telescopes will be able to offer.
“If we can do this with today’s technology, think about what we will be able to do with the up-and-coming telescopes like the Giant Magellan Telescope,” Line said.
Giant Magellan Telescope(CL) 21 meters, to be at the Carnegie Institution for Science (US)’s Las Campanas Observatory(CL) some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.
Carnegie Institution for Science (US)’s Las Campanas Observatory in the southern Atacama Desert of Chile in the Atacama Region approximately 100 kilometres (62 mi) northeast of the city of La Serena,near the southern end and over 2,500 m (8,200 ft) high.
“It is a real possibility that we can use this same method by the end of this decade to sniff out potential signatures of life, which also contain carbon and oxygen, on rocky Earth-like planets beyond our own solar system.”
In addition to Line, the research team includes Joseph Zalesky, Evgenya Shkolnik, Jennifer Patience and Peter Smith of ASU’s School of Earth and Space Exploration; Matteo Brogi and Siddharth Gandhi of The University of Warwick (UK); Jacob Bean and Megan Mansfield of The University of Chicago (US); Vivien Parmentier and Joost Wardenier of The University of Oxford (UK); Gregory Mace of The University of Texas-Austin(US); Eliza Kempton of The University of Maryland (US); Jonathan Fortney of The University of California-Santa Cruz (US); Emily Rauscher of The University of Michigan (US); and Jean-Michel Désert of The University of Amsterdam [Universiteit van Amsterdam](NL).
See the full article here .
five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.
The Arizona State University (US) is a public research university in the Phoenix metropolitan area. Founded in 1885 by the 13th Arizona Territorial Legislature, Arizona State University is one of the largest public universities by enrollment in the U.S.
One of three universities governed by the Arizona Board of Regents, Arizona State University is a member of the Universities Research Association (US) and classified among “R1: Doctoral Universities – Very High Research Activity.” Arizona State University has nearly 150,000 students attending classes, with more than 38,000 students attending online, and 90,000 undergraduates and more nearly 20,000 postgraduates across its five campuses and four regional learning centers throughout Arizona. Arizona State University offers 350 degree options from its 17 colleges and more than 170 cross-discipline centers and institutes for undergraduates students, as well as more than 400 graduate degree and certificate programs. The Arizona State Sun Devils compete in 26 varsity-level sports in the NCAA Division I Pac-12 Conference and is home to over 1,100 registered student organizations.
Arizona State University’s charter, approved by the board of regents in 2014, is based on the New American University model created by Arizona State University President Michael M. Crow upon his appointment as the institution’s 16th president in 2002. It defines Arizona State University as “a comprehensive public research university, measured not by whom it excludes, but rather by whom it includes and how they succeed; advancing research and discovery of public value; and assuming fundamental responsibility for the economic, social, cultural and overall health of the communities it serves.” The model is widely credited with boosting Arizona State University’s acceptance rate and increasing class size.
The university’s faculty of more than 4,700 scholars has included 5 Nobel laureates, 6 Pulitzer Prize winners, 4 MacArthur Fellows, and 19 National Academy of Sciences members. Additionally, among the faculty are 180 Fulbright Program American Scholars, 72 National Endowment for the Humanities fellows, 38 American Council of Learned Societies fellows, 36 members of the Guggenheim Fellowship, 21 members of the American Academy of Arts and Sciences, 3 members of National Academy of Inventors, 9 National Academy of Engineering members and 3 National Academy of Medicine members. The National Academies has bestowed “highly prestigious” recognition on 227 ASU faculty members.
History
Arizona State University was established as the Territorial Normal School at Tempe on March 12, 1885, when the 13th Arizona Territorial Legislature passed an act to create a normal school to train teachers for the Arizona Territory. The campus consisted of a single, four-room schoolhouse on a 20-acre plot largely donated by Tempe residents George and Martha Wilson. Classes began with 33 students on February 8, 1886. The curriculum evolved over the years and the name was changed several times; the institution was also known as Tempe Normal School of Arizona (1889–1903), Tempe Normal School (1903–1925), Tempe State Teachers College (1925–1929), Arizona State Teachers College (1929–1945), Arizona State College (1945–1958) and, by a 2–1 margin of the state’s voters, Arizona State University in 1958.
In 1923, the school stopped offering high school courses and added a high school diploma to the admissions requirements. In 1925, the school became the Tempe State Teachers College and offered four-year Bachelor of Education degrees as well as two-year teaching certificates. In 1929, the 9th Arizona State Legislature authorized Bachelor of Arts in Education degrees as well, and the school was renamed the Arizona State Teachers College. Under the 30-year tenure of president Arthur John Matthews (1900–1930), the school was given all-college student status. The first dormitories built in the state were constructed under his supervision in 1902. Of the 18 buildings constructed while Matthews was president, six are still in use. Matthews envisioned an “evergreen campus,” with many shrubs brought to the campus, and implemented the planting of 110 Mexican Fan Palms on what is now known as Palm Walk, a century-old landmark of the Tempe campus.
During the Great Depression, Ralph Waldo Swetman was hired to succeed President Matthews, coming to Arizona State Teachers College in 1930 from Humboldt State Teachers College where he had served as president. He served a three-year term, during which he focused on improving teacher-training programs. During his tenure, enrollment at the college doubled, topping the 1,000 mark for the first time. Matthews also conceived of a self-supported summer session at the school at Arizona State Teachers College, a first for the school.
1930–1989
In 1933, Grady Gammage, then president of Arizona State Teachers College at Flagstaff, became president of Arizona State Teachers College at Tempe, beginning a tenure that would last for nearly 28 years, second only to Swetman’s 30 years at the college’s helm. Like President Arthur John Matthews before him, Gammage oversaw the construction of several buildings on the Tempe campus. He also guided the development of the university’s graduate programs; the first Master of Arts in Education was awarded in 1938, the first Doctor of Education degree in 1954 and 10 non-teaching master’s degrees were approved by the Arizona Board of Regents in 1956. During his presidency, the school’s name was changed to Arizona State College in 1945, and finally to Arizona State University in 1958. At the time, two other names were considered: Tempe University and State University at Tempe. Among Gammage’s greatest achievements in Tempe was the Frank Lloyd Wright-designed construction of what is Grady Gammage Memorial Auditorium/ASU Gammage. One of the university’s hallmark buildings, Arizona State University Gammage was completed in 1964, five years after the president’s (and Wright’s) death.
Gammage was succeeded by Harold D. Richardson, who had served the school earlier in a variety of roles beginning in 1939, including director of graduate studies, college registrar, dean of instruction, dean of the College of Education and academic vice president. Although filling the role of acting president of the university for just nine months (Dec. 1959 to Sept. 1960), Richardson laid the groundwork for the future recruitment and appointment of well-credentialed research science faculty.
By the 1960s, under G. Homer Durham, the university’s 11th president, Arizona State University began to expand its curriculum by establishing several new colleges and, in 1961, the Arizona Board of Regents authorized doctoral degree programs in six fields, including Doctor of Philosophy. By the end of his nine-year tenure, Arizona State University had more than doubled enrollment, reporting 23,000 in 1969.
The next three presidents—Harry K. Newburn (1969–71), John W. Schwada (1971–81) and J. Russell Nelson (1981–89), including and Interim President Richard Peck (1989), led the university to increased academic stature, the establishment of the Arizona State University West campus in 1984 and its subsequent construction in 1986, a focus on computer-assisted learning and research, and rising enrollment.
1990–present
Under the leadership of Lattie F. Coor, president from 1990 to 2002, Arizona State University grew through the creation of the Polytechnic campus and extended education sites. Increased commitment to diversity, quality in undergraduate education, research, and economic development occurred over his 12-year tenure. Part of Coor’s legacy to the university was a successful fundraising campaign: through private donations, more than $500 million was invested in areas that would significantly impact the future of ASU. Among the campaign’s achievements were the naming and endowing of Barrett, The Honors College, and the Herberger Institute for Design and the Arts; the creation of many new endowed faculty positions; and hundreds of new scholarships and fellowships.
In 2002, Michael M. Crow became the university’s 16th president. At his inauguration, he outlined his vision for transforming Arizona State University into a “New American University”—one that would be open and inclusive, and set a goal for the university to meet Association of American Universities (US) criteria and to become a member. Crow initiated the idea of transforming Arizona State University into “One university in many places”—a single institution comprising several campuses, sharing students, faculty, staff and accreditation. Subsequent reorganizations combined academic departments, consolidated colleges and schools, and reduced staff and administration as the university expanded its West and Polytechnic campuses. Arizona State University’s Downtown Phoenix campus was also expanded, with several colleges and schools relocating there. The university established learning centers throughout the state, including the Arizona State University Colleges at Lake Havasu City and programs in Thatcher, Yuma, and Tucson. Students at these centers can choose from several Arizona State University degree and certificate programs.
During Crow’s tenure, and aided by hundreds of millions of dollars in donations, Arizona State University began a years-long research facility capital building effort that led to the establishment of the Biodesign Institute at Arizona State University, the Julie Ann Wrigley Global Institute of Sustainability, and several large interdisciplinary research buildings. Along with the research facilities, the university faculty was expanded, including the addition of five Nobel Laureates. Since 2002, the university’s research expenditures have tripled and more than 1.5 million square feet of space has been added to the university’s research facilities.
The economic downturn that began in 2008 took a particularly hard toll on Arizona, resulting in large cuts to Arizona State University’s budget. In response to these cuts, Arizona State University capped enrollment, closed some four dozen academic programs, combined academic departments, consolidated colleges and schools, and reduced university faculty, staff and administrators; however, with an economic recovery underway in 2011, the university continued its campaign to expand the West and Polytechnic Campuses, and establish a low-cost, teaching-focused extension campus in Lake Havasu City.
As of 2011, an article in Slate reported that, “the bottom line looks good,” noting that:
“Since Crow’s arrival, Arizona State University’s research funding has almost tripled to nearly $350 million. Degree production has increased by 45 percent. And thanks to an ambitious aid program, enrollment of students from Arizona families below poverty is up 647 percent.”
In 2015, the Thunderbird School of Global Management became the fifth Arizona State University campus, as the Thunderbird School of Global Management at Arizona State University. Partnerships for education and research with Mayo Clinic established collaborative degree programs in health care and law, and shared administrator positions, laboratories and classes at the Mayo Clinic Arizona campus.
The Beus Center for Law and Society, the new home of Arizona State University’s Sandra Day O’Connor College of Law, opened in fall 2016 on the Downtown Phoenix campus, relocating faculty and students from the Tempe campus to the state capital.
Reply