Tagged: Oceanography Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:40 am on August 28, 2021 Permalink | Reply
    Tags: "How a Volcanic Surge 56 Million Years Ago Cut Off The Arctic Ocean From The Atlantic", , , , Oceanography, ,   

    From Science Alert (US) : “How a Volcanic Surge 56 Million Years Ago Cut Off The Arctic Ocean From The Atlantic” 

    ScienceAlert

    From Science Alert (US)

    28 AUGUST 2021
    DAVID NIELD

    1
    Credit: SinghaphanAllB/Moment/Getty Images.

    Travel back in time 56 million years, and you’d arrive during a period of heightened volcanic activity on Earth. The activity triggered significant shifts in the planet’s climate, effectively turning some parts of the far north into a tropical paradise.

    The outpouring of carbon dioxide is one cause for this warming, but it seems there’s more to the story. According to a new study, the volcanism plugged up the seaway between the Arctic and Atlantic, changing how the oceans’ waters mixed.

    While the Paleocene-Eocene Thermal Maximum (PETM) is a well-known event in the geological history of Earth, the remote area of northeast Greenland studied here hasn’t been the subject of much geological research – even though it lies at a crucial point for volcanic activity and the flow of water between the Arctic and the Atlantic.

    Through a combination of sedimentary analysis across hundreds of kilometers, the study of microfossils, and the charting of geological boundaries through seismic imaging, a team of researchers led by the Geological Survey of Denmark and Greenland (GEUS) found that an uplifting of the geology in the area at this time caused a level of fragmentation that more or less cut two major oceans off from one another.

    “We found that volcanic activity and the resulting uplift of the edge of the Greenland continent 56 million years ago led to the formation of a new tropical landscape and narrowing of the seaway connecting the Atlantic and Arctic oceans,” says paleontologist Milo Barham from Curtin University (AU).

    “So not only did the spike in volcanic activity produce an increase in greenhouse gases, but the restriction of the seaway also reduced the flow of water between the oceans, disturbing heat distribution and the acidity of the deeper ocean.”

    The uplift, created through a combination of tectonic plate movements and rock made from cooling lava, would have narrowed the seaway separating Greenland and Norway (which is much bigger than it used to be). Deep waters would have been transformed into shallow estuaries, rivers, and swamps.

    Then as now, these ocean connections play a major role in shaping the circulation of winds and weather around the globe. In this case, the waters of the Arctic would have been almost entirely isolated from the waters of the Atlantic, compounding the warming that was already happening.

    There was another consequence, though: more land meant more migration options for the flora and fauna of the area. The researchers think many animals may have taken advantage of the extra space to move to cooler locations.

    “The volcanic surge also changed the shape of Earth’s continents, creating land bridges or narrowed straits, and enabling crucial migration responses for mammalian species such as early primates, to survive climate change,” says geologist Jussi Hovikoski from GEUS.

    Fast forward to today: While we don’t have molten lava extending the size of the continents, the oceans and the air currents that move above them are just as important in terms of managing the climate of the planet.

    The current climate crisis means some of the crucial weather patterns that we’ve come to rely on are now starting to collapse. As and when they do, that will mean severe consequences for how the planet continues to cool down or warm up in the future.

    Our current condition has drawn many comparisons with the PETM – a time when there were palm trees in the Arctic – and through understanding how the climate has shifted in the past, we should be able to better prepare for the future.

    “Recent studies have reported alarming signs of weakening ocean circulation, such as the Gulf Stream, which is an ocean current important to global climate and this slowing may lead to climatic tipping points or irreversible changes to weather systems,” says Barham.

    “As fires and floods increasingly ravage our ever-warming planet, the frozen north of eastern Greenland would seem an unlikely place to yield insights into a greenhouse world. However, the geological record there provides crucial understanding of environmental and ecological responses to complex climate disturbances.”

    The research has been published in Communications Earth & Environment.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

     
  • richardmitnick 12:57 pm on August 23, 2021 Permalink | Reply
    Tags: "How a scientist made sure the oceans weren't forgotten", , , Blue New Deal, Coastal ecosystems such as mangroves can absorb four times more carbon per hectare than a forest and provide protection from storms “which are increasingly frequent and severe”., , Green New Deal, Oceanography, The future of our oceans in this critical period of climate change., The ocean has absorbed a third of the carbon dioxide emitted by burning fossil fuels., The ocean is not just a victim-it’s also a hero.,   

    From University of New South Wales (AU) : “How a scientist made sure the oceans weren’t forgotten” 

    U NSW bloc

    From University of New South Wales (AU)

    23 Aug 2021
    Diane Nazaroff

    In a UNSW Science Week event, Dr Ayana Elizabeth Johnson said the key to fighting the climate crisis is saving the oceans.

    1
    US marine scientist Dr Ayana Elizabeth Johnson says the ocean has absorbed a third of the carbon dioxide emitted by burning fossil fuels. Photo: Shutterstock.

    US marine scientist and self-described policy nerd Dr Ayana Elizabeth Johnson remembers scrolling through the 2019 policy Green New Deal and being stunned to see no mention of the oceans in there.

    The 14-page document was proposed by congressional Democrats to tackle climate change with the goal of net zero global emissions by 2050 and the creation of new clean energy industries.

    “My gut reaction was if this proposal doesn’t include the ocean, it’s just never going to be enough,” Dr Johnson told Dean of UNSW Science, Professor Emma Johnston at the Justice for the Oceans event last weekend.

    The event was hosted by the UNSW Centre for Ideas as part of UNSW’s Science Week festivities.

    Prof. Johnston, also a marine biologist who is focused on coastal ecology, led a discussion that explored the future of our oceans in this critical period of climate change.

    “Because the ocean is bearing the brunt of a lot of impacts of climate…it has absorbed over 90 per cent of the heat that we’ve trapped with greenhouse gases,” Dr Johnson said.

    “It’s absorbed about a third of the carbon dioxide we’ve emitted by burning fossil fuels and this has changed the ocean dramatically.”

    Blue New Deal

    Last year Dr Johnson co-authored the Blue New Deal, a roadmap for including ocean in climate policy, for Democrat Elizabeth Warren as part of her 2020 presidential campaign.

    “What I thought of when I saw this congressional resolution [Green New Deal] was that ‘they’re leaving out a lot of solutions’,” she said.

    “Because the ocean is not just a victim-it’s also a hero.”

    Coastal ecosystems such as mangroves can absorb four times more carbon per hectare than a forest and provide protection from storms “which are increasingly frequent and severe”.

    There are many other benefits of the ocean, such as offshore wind turbines, floating solar panels, tidal energy, seaweed and shellfish farming, “things that you don’t need to feed that absorb a lot of carbon and can be very nutritious…and provide a lot of jobs”.

    Dr Johnson described how her fascination with the sea started as a child, growing up in Brooklyn, New York.

    She didn’t often go to the beach but when she was five, her family took her to Florida where she learned to swim.

    “I went to the beach and I went on a glass-bottomed boat and I saw a coral reef for the first time,” she said.

    “And I realised that there was this whole other universe and I wanted to know everything about it…I was like, why did no one tell me about this?”

    Dr Johnson said while many of her fellow students at university were “experienced scuba divers, or who had grown up sailing or as lifeguards at the beach”, she had a more academic interest in studying marine science.

    “Clearly there needs to be better management and learning that, after falling in love with something and then realising that it’s threatened, of course your reaction is, ‘well, what are we going to do about it?’

    Disruptions to culture

    As the daughter of a Jamaican immigrant, Dr Johnson said she grew up understanding how deeply intertwined Caribbean cultures were with the sea.

    “I was always so curious about, through [my dad’s] stories, and hearing that in his lifetime, the coral reef ecosystems of Jamaica had really crumbled before his eyes,” she said.

    “It’s the thought of a grandparent not being able to take their grandkid fishing, because there’s nothing to catch, is heartbreaking.

    “And this is something that is passed down from generations. Or to think you can’t have a fish fry on the beach, or the water’s too polluted to go swimming with your family and friends.

    “Like, these are not just disruptions to nature, but also disruptions to culture.”

    For this reason, she said it’s important to broaden diversity “of people deciding on the hypotheses”.

    Dr Johnson said she wouldn’t describe herself as good at science, “I just really cared”.

    “When I got to college…certainly my best grades were not in science and it wasn’t the easiest for me, but it was the most interesting,” she said.

    “For a lot of people, it’s this passion and curiosity that leads to discoveries, it’s not who can memorize the most facts.”


    Justice for the Oceans. 56 minutes

    Dr Johnson said she has been “very grateful” for her scientific education as a way to help her translate science for informing policymaking.

    “I’m one of those weirdos who did a PhD in marine biology, without ever intending to be a researcher, without ever intending to be an academic or a professor, but I was like, I want to understand this stuff really well,” she said.

    Early in her career, Dr Johnson was a former executive director of the Waitt Institute, a not-for-profit organisation which creates sustainable ocean plans with governments and local stakeholders such as in the Caribbean.

    She has also developed policy at the Environmental Protection Authority (US) and the National Oceanic and Atmospheric Administration (US).

    Coastal city solutions

    In recent years, Dr Johnson co-founded the Urban Ocean Lab, a think tank which provides policy solutions for coastal cities, where a big proportion of humanity live.

    In the US, about a third of the population live in coastal cities, mirroring the global trend, and 40 per cent of Americans live in coastal counties.

    “So how are we preparing for the impacts of climate change that are already certain to come, and adapting accordingly?,” she said.

    “Urban Ocean Lab is focused on cities because cities as a level of government can make a lot of their own decisions about policy and how they want to approach things.”

    Dr Johnson said she now focuses her policy work on three urgent issues for the ocean: how to sustainably manage fishing; how to fix ocean pollution from untreated sewage and plastic waste; and the destruction of coastal ecosystems for housing and infrastructure.

    “I’ve shifted my work to say ‘How do we make sure that we’re including the ocean when it comes to climate policy?’,” she said.

    Besides governments, Dr Johnson is also keen to inspire the general public into action on climate change.

    She created and co-hosts the popular US podcast How to Save a Planet, which asks the questions of what do people need to do to solve the climate crisis and how to get it done.

    Last year she published the anthology All We Can Save, written by female “not world famous” contributors who are working on climate solutions.

    Elevate women

    The purpose of the book was to elevate the platform and voices of the women who were being overlooked for their important work, and at the same time, show the many ways others can contribute climate solutions.

    “I would say one of the major failings of the modern environmental movement has often been to ask everyone to do the same thing,” she said.

    “Like everyone march, everyone donate, everyone spread the word, everyone vote and like do those things, please do those things, I do those things, I’m not going to stop.

    “But if we don’t bring to the table the thing that we are particularly good at, then it’s a real missed opportunity.”

    Women have often been left out of the decision making on climate issues, the marine scientist said.

    “And we know that quantitatively that that is making the outcomes worse,” she said.

    “When there are more women members of parliament we get more and better environmental policy and its more well enforced and we sign the treaties and we do the things to reduce the impacts of climate change.”

    Need more leaders

    She said the environmental movement could model itself on the Black Lives Matter movement, which has “a lot of people in different cities organising their people in their place, around local policies or injustices”.

    “We don’t need one hero, we need thousands of people transforming the places where they live, because if what we need to do is transform our electricity transportation, land use, agriculture, manufacturing, buildings…we need leaders in all of those sectors, in every location.”

    While the work of building consensus about how to manage the ocean is time consuming, she said it’s a frustrating truth that “if you want to go fast, go alone, if you want to go far, go together”.

    “But at the same time, we absolutely can’t wait until everyone 100 per cent agrees on everything, because we’d never get anything done,” she said.

    “There also has to be a limit…we have to restore and protect things.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U NSW Campus

    The University of New South Wales is an Australian public university with its largest campus in the Sydney suburb of Kensington.

    Established in 1949, UNSW is a research university, ranked 44th in the world in the 2021 QS World University Rankings and 67th in the world in the 2021 Times Higher Education World University Rankings. UNSW is one of the founding members of the Group of Eight, a coalition of Australian research-intensive universities, and of Universitas 21, a global network of research universities. It has international exchange and research partnerships with over 200 universities around the world.

    According to the 2021 QS World University Rankings by Subject, UNSW is ranked top 20 in the world for Law, Accounting and Finance, and 1st in Australia for Mathematics, Engineering and Technology. UNSW also leads Australia in Medicine, where the median ATAR (Australian university entrance examination results) of its Medical School students is higher than any other Australian medical school. UNSW enrolls the highest number of Australia’s top 500 high school students academically, and produces more millionaire graduates than any other Australian university.

    The university comprises seven faculties, through which it offers bachelor’s, master’s and doctoral degrees. The main campus is in the Sydney suburb of Kensington, 7 kilometres (4.3 mi) from the Sydney CBD. The creative arts faculty, UNSW Art & Design, is located in Paddington, and subcampuses are located in the Sydney CBD as well as several other suburbs, including Randwick and Coogee. Research stations are located throughout the state of New South Wales.

    The university’s second largest campus, known as UNSW Canberra at ADFA (formerly known as UNSW at ADFA), is situated in Canberra, in the Australian Capital Territory (ACT). ADFA is the military academy of the Australian Defense Force, and UNSW Canberra is the only national academic institution with a defense focus.

    Research centres

    The university has a number of purpose-built research facilities, including:

    UNSW Lowy Cancer Research Centre is Australia’s first facility bringing together researchers in childhood and adult cancers, as well as one of the country’s largest cancer-research facilities, housing up to 400 researchers.
    The Mark Wainwright Analytical Centre is a centre for the faculties of science, medicine, and engineering. It is used to study the structure and composition of biological, chemical, and physical materials.
    UNSW Canberra Cyber is a cyber-security research and teaching centre.
    The Sino-Australian Research Centre for Coastal Management (SARCCM) has a multidisciplinary focus, and works collaboratively with the Ocean University of China [中國海洋大學](CN) in coastal management research.

     
  • richardmitnick 9:12 pm on August 20, 2021 Permalink | Reply
    Tags: "New tool cuts guesswork about ‘eddy killing’ in oceans", , Oceanography,   

    From University of Rochester (US): “New tool cuts guesswork about ‘eddy killing’ in oceans” 

    From University of Rochester (US)

    August 19, 2021
    Bob Marcotte
    bmarcotte@ur.rochester.edu

    1
    Eddies are circular currents of water (shown here as green and light blue swirling patterns of phytoplankton blooms) that play an important role in determining the ocean’s currents, heat flow, salt concentrations, and upwelling of nutrients and organisms. Credit: National Aeronautics Space Agency (US)/Goddard Space Flight Center Ocean Color image.

    University of Rochester scientists provide first direct measure of the phenomenon’s impact on Earth’s oceans.

    Ocean currents, propelled by kinetic energy from the wind, are the great moderators of our climate. By transferring heat from the equator to polar regions, they help make our planet habitable.

    And yet, the large-scale models used by scientists to study this complex system fail to accurately account for the impact of wind on the ocean’s most energetic components: swirling, mesoscale eddies. These temporary, circular currents of water 50 to 500 kilometers in size are critical to determining the trajectory of larger ocean currents like the Gulf Stream.

    In a paper in Science Advances, researchers from the University of Rochester and DOE’s Los Alamos National Laboratory (US) document for the first time how the wind, which propels larger currents, has the opposite effect on eddies less than 260 kilometers in size—resulting in a phenomenon called “eddy killing.”

    They also provide the first direct measurement of the overall impact of this eddy killing: a continual loss of 50 gigawatts of kinetic energy—equivalent to the detonation of a Hiroshima nuclear bomb every 20 minutes, year-round.

    Better analysis with satellite observations

    3
    via UNIVERSITY OF ROCHESTER on GIPHY

    “For the first time we are able to unravel eddy killing by direct measurement from satellite observations, with minimal assumptions,” says corresponding author Hussein Aluie, associate professor of mechanical engineering at Rochester.

    The team—which also includes Shikhar Rai, a PhD student in Aluie’s Turbulence and Complex Flow Group, and Los Alamos National Laboratory scientists Matthew Hecht and Matthew Maltrud—applied a coarse-graining approach to satellite imagery. Doing so allowed them to separate the complex, multiscale structures of ocean currents and eddies embedded within each other.

    This method provides a more detailed spatial analysis than is possible with the ones used by most oceanographers, which concentrate on temporal fluctuations, Aluie says. Those methods either fail to account for the impact of eddy killing or provide wildly varying estimates. “The numbers have been all over the place,” Aluie says.

    Aluie praised Rai, a fifth-year PhD student, for doing “all the heavy lifting” for the paper. “There were many technical issues, but he persevered and was able to figure them out,” Aluie says.

    New method could turn the tide for studies of ocean currents.

    Scientists have known about eddy killing since the late 1980s from idealized models, Aluie says.

    The basic concept is fairly simple to visualize. An eddy is like a circle rotating either clockwise or counterclockwise. Any wind flowing over the eddy, however, will be moving in only one direction, “helping” the half of the circle moving at least partly in the same direction, while impeding the other half.

    Imagine riding a bicycle alongside a car going in the same direction—much like the wind flowing over the part of the eddy moving in the same direction. The difference in velocity is proportionately much less than occurs when you bike past a car moving in the opposite direction, much like the wind pushing against the other side of the eddy. That difference in proportional velocity accounts for the net “killing” effect on the eddy, resulting in the wind extracting energy.

    “On the one hand the wind is making the ocean move, and yet it is killing the part of it that is the most energetic. So, it is counterintuitive and something that had not been directly measured before because people were using the wrong tools,” Aluie says.

    A better tool is important because many questions remain about other factors that may influence eddy killing, and about the importance of eddies in other aspects of the ocean’s currents, heat flow, salt concentrations, and upwelling of nutrients and marine organisms, he says.

    The method demonstrated in this paper will hopefully be adapted by oceanographers to “unravel” these mysteries as well, Aluie says.

    The National Aeronautics and Space Administration, the Los Alamos National Laboratory, the Department of Energy (US), the National Science Foundation (US), and the National Nuclear Security Administration funded the project.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    University of Rochester campus

    The University of Rochester (US) is a private research university in Rochester, New York. The university grants undergraduate and graduate degrees, including doctoral and professional degrees.

    The University of Rochester (US) enrolls approximately 6,800 undergraduates and 5,000 graduate students. Its 158 buildings house over 200 academic majors. According to the National Science Foundation (US), Rochester spent $370 million on research and development in 2018, ranking it 68th in the nation. The university is the 7th largest employer in the Finger lakes region of New York.

    The College of Arts, Sciences, and Engineering is home to departments and divisions of note. The Institute of Optics was founded in 1929 through a grant from Eastman Kodak and Bausch and Lomb as the first educational program in the US devoted exclusively to optics and awards approximately half of all optics degrees nationwide and is widely regarded as the premier optics program in the nation and among the best in the world. The Departments of Political Science and Economics have made a significant and consistent impact on positivist social science since the 1960s and historically rank in the top 5 in their fields. The Department of Chemistry is noted for its contributions to synthetic organic chemistry, including the first lab based synthesis of morphine. The Rossell Hope Robbins Library serves as the university’s resource for Old and Middle English texts and expertise. The university is also home to Rochester’s Laboratory for Laser Energetics, a Department of Energy (US) supported national laboratory.

    University of Rochester(US) Laboratory for Laser Energetics.

    The University of Rochester’s Eastman School of Music (US) ranks first among undergraduate music schools in the U.S. The Sibley Music Library at Eastman is the largest academic music library in North America and holds the third largest collection in the United States.

    In its history university alumni and faculty have earned 13 Nobel Prizes; 13 Pulitzer Prizes; 45 Grammy Awards; 20 Guggenheim Awards; 5 National Academy of Sciences; 4 National Academy of Engineering; 3 Rhodes Scholarships; 3 National Academy of Inventors; and 1 National Academy of Inventors Hall of Fame.

    History

    Early history

    The University of Rochester traces its origins to The First Baptist Church of Hamilton (New York) which was founded in 1796. The church established the Baptist Education Society of the State of New York later renamed the Hamilton Literary and Theological Institution in 1817. This institution gave birth to both Colgate University(US) and the University of Rochester. Its function was to train clergy in the Baptist tradition. When it aspired to grant higher degrees it created a collegiate division separate from the theological division.

    The collegiate division was granted a charter by the State of New York in 1846 after which its name was changed to Madison University. John Wilder and the Baptist Education Society urged that the new university be moved to Rochester, New York. However, legal action prevented the move. In response, dissenting faculty, students, and trustees defected and departed for Rochester, where they sought a new charter for a new university.

    Madison University was eventually renamed as Colgate University (US).

    Founding

    Asahel C. Kendrick- professor of Greek- was among the faculty that departed Madison University for Rochester. Kendrick served as acting president while a national search was conducted. He reprised this role until 1853 when Martin Brewer Anderson of the Newton Theological Seminary in Massachusetts was selected to fill the inaugural posting.

    The University of Rochester’s new charter was awarded by the Regents of the State of New York on January 31, 1850. The charter stipulated that the university have $100,000 in endowment within five years upon which the charter would be reaffirmed. An initial gift of $10,000 was pledged by John Wilder which helped catalyze significant gifts from individuals and institutions.

    Classes began that November with approximately 60 students enrolled including 28 transfers from Madison. From 1850 to 1862 the university was housed in the old United States Hotel in downtown Rochester on Buffalo Street near Elizabeth Street- today West Main Street near the I-490 overpass. On a February 1851 visit Ralph Waldo Emerson said of the university:

    “They had bought a hotel, once a railroad terminus depot, for $8,500, turned the dining room into a chapel by putting up a pulpit on one side, made the barroom into a Pythologian Society’s Hall, & the chambers into Recitation rooms, Libraries, & professors’ apartments, all for $700 a year. They had brought an omnibus load of professors down from Madison bag and baggage… called in a painter and sent him up the ladder to paint the title “University of Rochester” on the wall, and they had runners on the road to catch students. And they are confident of graduating a class of ten by the time green peas are ripe.

    For the next 10 years the college expanded its scope and secured its future through an expanding endowment; student body; and faculty. In parallel a gift of 8 acres of farmland from local businessman and Congressman Azariah Boody secured the first campus of the university upon which Anderson Hall was constructed and dedicated in 1862. Over the next sixty years this Prince Street Campus grew by a further 17 acres and was developed to include fraternities houses; dormitories; and academic buildings including Anderson Hall; Sibley Library; Eastman and Carnegie Laboratories the Memorial Art Gallery and Cutler Union.

    Twentieth century

    Coeducation

    The first female students were admitted in 1900- the result of an effort led by Susan B. Anthony and Helen Barrett Montgomery. During the 1890s a number of women took classes and labs at the university as “visitors” but were not officially enrolled nor were their records included in the college register. President David Jayne Hill allowed the first woman- Helen E. Wilkinson- to enroll as a normal student although she was not allowed to matriculate or to pursue a degree. Thirty-three women enrolled among the first class in 1900 and Ella S. Wilcoxen was the first to receive a degree in 1901. The first female member of the faculty was Elizabeth Denio who retired as Professor Emeritus in 1917. Male students moved to River Campus upon its completion in 1930 while the female students remained on the Prince Street campus until 1955.

    Expansion

    Major growth occurred under the leadership of Benjamin Rush Rhees over his 1900-1935 tenure. During this period George Eastman became a major donor giving more than $50 million to the university during his life. Under the patronage of Eastman the Eastman School of Music (US) was created in 1921. In 1925 at the behest of the General Education Board and with significant support for John D. Rockefeller George Eastman and Henry A. Strong’s family medical and dental schools were created. The university award its first Ph.D that same year.

    During World War II Rochester was one of 131 colleges and universities nationally that took part in the V-12 Navy College Training Program which offered students a path to a Navy commission. In 1942, the university was invited to join the Association of American Universities(US) as an affiliate member and it was made a full member by 1944. Between 1946 and 1947 in infamous uranium experiments researchers at the university injected uranium-234 and uranium-235 into six people to study how much uranium their kidneys could tolerate before becoming damaged.

    In 1955 the separate colleges for men and women were merged into The College on the River Campus. In 1958 three new schools were created in engineering; business administration and education. The Graduate School of Management was named after William E. Simon- former Secretary of the Treasury in 1986. He committed significant funds to the school because of his belief in the school’s free market philosophy and grounding in economic analysis.

    Financial decline and name change controversy

    Following the princely gifts given throughout his life George Eastman left the entirety of his estate to the university after his death by suicide. The total of these gifts surpassed $100 million before inflation and as such Rochester enjoyed a privileged position amongst the most well endowed universities. During the expansion years between 1936 and 1976 the University of Rochester’s financial position ranked third, near Harvard University’s(US) endowment and the University of Texas (US) System’s Permanent University Fund. Due to a decline in the value of large investments and a lack of portfolio diversity the university’s place dropped to the top 25 by the end of the 1980s. At the same time the preeminence of the city of Rochester’s major employers began to decline.

    In response the University commissioned a study to determine if the name of the institution should be changed to “Eastman University” or “Eastman Rochester University”. The study concluded a name change could be beneficial because the use of a place name in the title led respondents to incorrectly believe it was a public university, and because the name “Rochester” connoted a “cold and distant outpost.” Reports of the latter conclusion led to controversy and criticism in the Rochester community. Ultimately, the name “University of Rochester” was retained.

    Renaissance Plan

    In 1995 university president Thomas H. Jackson announced the launch of a “Renaissance Plan” for The College that reduced enrollment from 4,500 to 3,600 creating a more selective admissions process. The plan also revised the undergraduate curriculum significantly creating the current system with only one required course and only a few distribution requirements known as clusters. Part of this plan called for the end of graduate doctoral studies in chemical engineering; comparative literature; linguistics; and mathematics the last of which was met by national outcry. The plan was largely scrapped and mathematics exists as a graduate course of study to this day.

    Twenty-first century

    Meliora Challenge

    Shortly after taking office university president Joel Seligman commenced the private phase of the “Meliora Challenge”- a $1.2 billion capital campaign- in 2005. The campaign reached its goal in 2015- a year before the campaign was slated to conclude. In 2016, the university announced the Meliora Challenge had exceeded its goal and surpassed $1.36 billion. These funds were allocated to support over 100 new endowed faculty positions and nearly 400 new scholarships.

    The Mangelsdorf Years

    On December 17, 2018 the University of Rochester announced that Sarah C. Mangelsdorf would succeed Richard Feldman as President of the University. Her term started in July 2019 with a formal inauguration following in October during Meliora Weekend. Mangelsdorf is the first woman to serve as President of the University and the first person with a degree in psychology to be appointed to Rochester’s highest office.

    In 2019 students from China mobilized by the Chinese Students and Scholars Association (CSSA) defaced murals in the University’s access tunnels which had expressed support for the 2019 Hong Kong Protests, condemned the oppression of the Uighurs, and advocated for Taiwanese independence. The act was widely seen as a continuation of overseas censorship of Chinese issues. In response a large group of students recreated the original murals. There have also been calls for Chinese government run CSSA to be banned from campus.

    Research

    Rochester is a member of the Association of American Universities (US) and is classified among “R1: Doctoral Universities – Very High Research Activity”. Rochester had a research expenditure of $370 million in 2018. In 2008 Rochester ranked 44th nationally in research spending but this ranking has declined gradually to 68 in 2018. Some of the major research centers include the Laboratory for Laser Energetics, a laser-based nuclear fusion facility, and the extensive research facilities at the University of Rochester Medical Center. Recently the university has also engaged in a series of new initiatives to expand its programs in biomedical engineering and optics including the construction of the new $37 million Robert B. Goergen Hall for Biomedical Engineering and Optics on the River Campus. Other new research initiatives include a cancer stem cell program and a Clinical and Translational Sciences Institute. UR also has the ninth highest technology revenue among U.S. higher education institutions with $46 million being paid for commercial rights to university technology and research in 2009. Notable patents include Zoloft and Gardasil. WeBWorK, a web-based system for checking homework and providing immediate feedback for students was developed by University of Rochester professors Gage and Pizer. The system is now in use at over 800 universities and colleges as well as several secondary and primary schools. Rochester scientists work in diverse areas. For example, physicists developed a technique for etching metal surfaces such as platinum; titanium; and brass with powerful lasers enabling self-cleaning surfaces that repel water droplets and will not rust if tilted at a 4 degree angle; and medical researchers are exploring how brains rid themselves of toxic waste during sleep.

     
  • richardmitnick 12:28 pm on August 7, 2021 Permalink | Reply
    Tags: "Groundwater resources off the coast of Malta", , , Helmholtz Centre for Ocean Research Kiel [Helmholtz-Zentrum für Ozeanforschung Kiel] GEOMAR (DE), Oceanography   

    From Helmholtz Centre for Ocean Research Kiel [Helmholtz-Zentrum für Ozeanforschung Kiel] GEOMAR (DE): “Groundwater resources off the coast of Malta” 

    From Helmholtz Centre for Ocean Research Kiel [Helmholtz-Zentrum für Ozeanforschung Kiel] GEOMAR (DE)

    6 August 2021

    Dr. Andreas Villwock
    Head of communication and media
    Tel +49 431 600 2802
    presse@geomar.de

    Researchers discover fresh water in the Mediterranean Sea.

    1
    Satellite view on Malta, Box indicates the working area.

    There is enough water on our planet, but by far the largest part is salt water that is unsuitable as drinking water. Therefore, especially in dry regions of the earth, the search for new freshwater resources is very active. An international team of researchers let by University of Malta [L-Università ta’ Malta](MT) and GEOMAR Helmholtz Centre for Ocean Research Kiel has now discovered strong evidence of a groundwater deposit off the coast of Malta. The results of their investigations have now been published in the international journal Geophysical Research Letters.

    Only about 3% of the water on earth is fresh water. Of this, only a small part can be used for drinking water or irrigation. Therefore, especially in arid or semi-arid regions, the search for usable freshwater resources is very intensive. In recent years, with the help of new, innovative methods, previously unknown deposits have also been discovered below the seafloor. Using such methods, an international team of scientists let by GEOMAR Helmholtz Centre for Ocean Research Kiel and the University of Malta have obtained strong evidence of a groundwater reservoir off the Mediterranean island.

    “Our discovery is based on an oceanographic expedition we conducted in 2018”, explains Prof. Dr. Amir Haroon, from GEOMAR, lead author of the study. “We used geophysical methods, called reflection seismics, combined with novel electromagnetic techniques to detect these deposits”, Haroon continues. “Our data suggest that the groundwater occurs as an isolated body in limestone formations three kilometres from the coast”, the scientist explains.

    Using numerical modelling, the researchers found evidence that a second near-shore groundwater body may exist close to the Maltese coast. The water body was probably formed there during the last ice age 20,000 years ago, when the sea level was lower than today.

    From Professor Aaron Micallef, co-author from GEOMAR & University of Malta, perspective, this discovery has a number of important implications. “Offshore groundwater may represent a new, unconventional source of drinking water that should be considered in future national water management strategies for the Maltese islands”, he states. Furthermore, he says, the presence of groundwater off a dry, calcareous coast like Malta’s is a good sign for similar areas in the Mediterranean that suffer from water scarcity. However, he cautions, the use of the groundwater now found would likely be unsustainable, as it would not be actively recharged and pumping rates would likely be low.

    Note:

    This project has received funding from the European Research Council (ERC)(EU) under the European Union’s Horizon 2020 (EU) Research and Innovation Programme (grant agreement no 677898; MARCAN).

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Helmholtz Centre for Ocean Research Kiel-GEOMAR (DE), is a research institute in Kiel, Germany. It was formed in 2004 by merging the Institute for Marine Science (Institut für Meereskunde Kiel, (IFM)) with the Research Center for Marine Geosciences (GEOMAR) and is co-funded by both federal and provincial governments. It was a member of the Leibniz Association till 2012 and is coordinator of the FishBase Consortium. Since 2012 it is member of the Helmholtz Association and named GEOMAR – Helmholtz Centre for Ocean Research Kiel. The institute operates worldwide in all ocean basins, specialising in climate dynamics; marine ecology and biogeochemistry; and ocean floor dynamics and circulation. GEOMAR offers degree courses in affiliation with the Christian-Albrecht University of Kiel [Christian-Albrechts-Universität zu Kiel](DE), and operates the Kiel Aquarium and the Lithothek, a repository for split sediment core samples.

    Research divisions

    GEOMAR is structured into four research divisions:

    Ocean circulation and climate dynamics: This division, led by Katja Matthes and Mojib Latif, investigates climate from different time perspectives, with computer simulations and ocean current models that include meteorological, geological and oceanographic considerations. Current ocean measurements are made from research vessels at sea, and include the use of remote sensing.

    Marine biogeochemistry: Work in this division looks at the way the components of the marine biogeochemical processes interact with each other. These components include the material in the atmosphere, the sediment and oceanic reservoirs, and the biological organisms including humans. Particular attention is paid to the atmosphere/ocean interface and the sediment/ocean interface, as well as to elements and compounds which can cycle and cause radiative forcing. Research ranges from the atmosphere over the ocean, through the ocean surface layer into the water column, and then down to the marine sediments and the oceanic crust. Field work is also undertakes, as well as laboratory and mesocosm studies. The division also develops biological, chemical and isotope diagnostic tools for measuring proxy variables.

    Marine ecology: This division, led by Ulrich Sommer, aims to “understand the sensitivity of marine ecosystems to anthropogenic and natural changes, with a mid-term focus on climate change and overexploitation of marine bio-resources.” It is important to understand how much stress a given ecosystem can absorb before structural shifts occur. When a shift does occur, it is necessary to understand how this will impact the ecosystem populations and the degree to which the shift can be reversed. Structural shifts can result in invasions by harmful organisms, species collapse and a radical reconfiguring of the biogeochemical cycles. Traditional approaches group species broadly into size classes and trophic levels measured by productivity or biomass. But to understand how ecosystems react to natural and anthropogenic stressors, specific differences in the way individual species react must also be understood, particularly where keystone species are involved. Research within this division range from genes to ecosystems, including the “ecophysiology of key species and its genetic basis, dynamics and genetics of individual populations and of communities, interactions within and among species, structure and response of entire food webs.”

    Dynamics of the ocean floor: Research is focused on “processes that shape the oceanic lithosphere, and the impact of these processes on the environment, e.g. climate and natural hazards. These research themes are pursued in the three main geotectonic settings: divergent and convergent margins and in intraplate regions. These three settings represent critical stages in the life-cycle of the ocean floor. The ocean basins are created by the rifting apart of continents. Oceanic lithosphere then forms at mid-ocean ridges. It is subsequently modified by low and high temperature interactions with the overlying oceans, the addition of intraplate magmas, the deposition of marine sediments, and tectonic processes occurring at or near transform and convergent plate margins. When it subducts at convergent margins, the dehydration of the plate induces arc volcanism that creates and modifies the continental crust and transfers climate-relevant volatiles into the atmosphere. Such continental margins are sites of sediment accumulation, fluid exchange, important resources and major geo-hazards.”

     
  • richardmitnick 9:24 pm on July 31, 2021 Permalink | Reply
    Tags: "Geologists take Earth’s inner temperature using erupted sea glass", , , Geologists at MIT have analyzed thousands of samples of erupted material along ocean ridges and traced back their chemical history to estimate the temperature of the Earth’s interior., , , Oceanography, , ,   

    From Massachusetts Institute of Technology (US) : “Geologists take Earth’s inner temperature using erupted sea glass” 

    MIT News

    From Massachusetts Institute of Technology (US)

    July 29, 2021
    Jennifer Chu

    1
    A map of the World Ocean Floor
    Credits: Library of Congress, Geography and Map Division.

    If the Earth’s oceans were drained completely, they would reveal a massive chain of undersea volcanoes snaking around the planet. This sprawling ocean ridge system is a product of overturning material in the Earth’s interior, where boiling temperatures can melt and loft rocks up through the crust, splitting the sea floor and reshaping the planet’s surface over hundreds of millions of years.

    Now geologists at MIT have analyzed thousands of samples of erupted material along ocean ridges and traced back their chemical history to estimate the temperature of the Earth’s interior.

    Their analysis shows that the temperature of the Earth’s underlying ocean ridges is relatively consistent, at around 1,350 degrees Celsius — about as hot as a gas range’s blue flame. There are, however, “hotspots” along the ridge that can reach 1,600 degrees Celsius, comparable to the hottest lava.

    The team’s results, appearing in the Journal of Geophysical Research:Solid Earth, provide a temperature map of the Earth’s interior around ocean ridges. With this map, scientists can better understand the melting processes that give rise to undersea volcanoes, and how these processes may drive the pace of plate tectonics over time.

    “Convection and plate tectonics have been important processes in shaping Earth history,” says lead author Stephanie Brown Krein, a postdoc in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS). “Knowing the temperature along this whole chain is fundamental to understanding the planet as a heat engine, and how Earth might be different from other planets and able to sustain life.”

    Krein’s co-authors include Zachary Molitor, an EAPS graduate student, and Timothy Grove, the R.R. Schrock Professor of Geology at MIT.

    A chemical history

    The Earth’s interior temperature has played a critical role in shaping the planet’s surface over hundreds of millions of years. But there’s been no way to directly read this temperature tens to hundreds of kilometers below the surface. Scientists have applied indirect means to infer the temperature of the upper mantle — the layer of the Earth just below the crust. But estimates thus far are inconclusive, and scientists disagree about how widely temperatures vary beneath the surface.

    For their new study, Krein and her colleagues developed a new algorithm, called “ReversePetrogen”, that is designed to trace a rock’s chemical history back in time, to identify its original composition of elements and determine the temperature at which the rock initially melted below the surface.

    The algorithm is based on years of experiments carried out in Grove’s lab to reproduce and characterize the melting processes of the Earth’s interior. Researchers in the lab have heated up rocks of various compositions, reaching various temperatures and pressures, to observe their chemical evolution. From these experiments, the team has been able to derive equations — and ultimately, the new algorithm — to predict the relationships between a rock’s temperature, pressure, and chemical composition.

    Krein and her colleagues applied their new algorithm to rocks collected along the Earth’s ocean ridges — a system of undersea volcanoes spanning more than 70,000 kilometers in length. Ocean ridges are regions where tectonic plates are spread apart by the eruption of material from the Earth’s mantle — a process that is driven by underlying temperatures.

    “You could effectively make a model of the temperature of the entire interior of the Earth, based partly on the temperature at these ridges,” Krein says. “The question is, what is the data really telling us about the temperature variation in the mantle along the whole chain?”

    Mantle map

    The data the team analyzed include more than 13,500 samples collected along the length of the ocean ridge system over several decades, by multiple research cruises. Each sample in the dataset is of an erupted sea glass — lava that erupted in the ocean and was instantly chilled by the surrounding water into a pristine, preserved form.

    Scientists previously identified the chemical compositions of each glass in the dataset. Krein and her colleagues ran each sample’s chemical compositions through their algorithm to determine the temperature at which each glass originally melted in the mantle.

    In this way, the team was able to generate a map of mantle temperatures along the entire length of the ocean ridge system. From this map, they observed that much of the mantle is relatively homogenous, with an average temperature of around 1,350 degrees Celsius. There are however, “hotspots,” or regions along the ridge, where temperatures in the mantle appear significantly hotter, at around 1,600 degrees Celsius.

    “People think of hotspots as regions in the mantle where it’s hotter, and where material may be melting more, and potentially rising faster, and we don’t exactly know why, or how much hotter they are, or what the role of composition is at hotspots,” Krein says. “Some of these hotspots are on the ridge, and now we may get a sense of what the hotspot variation is globally using this new technique. That tells us something fundamental about the temperature of the Earth now, and now we can think of how it’s changed over time.”

    Krein adds: “Understanding these dynamics will help us better determine how continents grew and evolved on Earth, and when subduction and plate tectonics started — which are critical for complex life.”

    This research was supported, in part, by the National Science Foundation(US).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    Massachusetts Institute of Technology (US) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory (US), the MIT Bates Research and Engineering Center (US), and the Haystack Observatory (US), as well as affiliated laboratories such as the Broad Institute of MIT and Harvard(US) and Whitehead Institute (US).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology (US) adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with Massachusetts Institute of Technology (US) . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology (US) is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia (US), wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after Massachusetts Institute of Technology (US) was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst (US)). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    Massachusetts Institute of Technology (US) was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology (US) faculty and alumni rebuffed Harvard University (US) president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the Massachusetts Institute of Technology (US) administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology (US) catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities (US)in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at Massachusetts Institute of Technology (US) that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    Massachusetts Institute of Technology (US)‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology (US)’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, Massachusetts Institute of Technology (US) became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected Massachusetts Institute of Technology (US) profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of Massachusetts Institute of Technology (US) between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, Massachusetts Institute of Technology (US) no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and Massachusetts Institute of Technology (US)’s defense research. In this period Massachusetts Institute of Technology (US)’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. Massachusetts Institute of Technology (US) ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT (US) Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology (US) students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at Massachusetts Institute of Technology (US) over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, Massachusetts Institute of Technology (US)’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    Massachusetts Institute of Technology (US) has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology (US) classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    Massachusetts Institute of Technology (US) was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, Massachusetts Institute of Technology (US) launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, Massachusetts Institute of Technology (US) announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology (US) faculty adopted an open-access policy to make its scholarship publicly accessible online.

    Massachusetts Institute of Technology (US) has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology (US) community with thousands of police officers from the New England region and Canada. On November 25, 2013, Massachusetts Institute of Technology (US) announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the Massachusetts Institute of Technology (US) community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO (US) was designed and constructed by a team of scientists from California Institute of Technology (US), Massachusetts Institute of Technology (US), and industrial contractors, and funded by the National Science Foundation (US) .

    MIT/Caltech Advanced aLigo .

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology (US) physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an Massachusetts Institute of Technology (US) graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of Massachusetts Institute of Technology (US) is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the Massachusetts Institute of Technology (US) community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 12:06 pm on July 31, 2021 Permalink | Reply
    Tags: "Eerie Bioluminescence That Creates 'Milky Sea' Revealed in New Satellite Study", , , Colorado State University (US), , , Oceanography,   

    From Colorado State University (US) via Science Alert (US) : “Eerie Bioluminescence That Creates ‘Milky Sea’ Revealed in New Satellite Study” 

    From Colorado State University (US)

    via

    ScienceAlert

    Science Alert (US)

    30 JULY 2021
    MICHELLE STARR

    1
    Not the actual ‘milky sea’ phenomenon. (Alyssa Boobyer/Unsplash)

    2
    Credit: Mysterious World. (Illumination of glowing wave, Krabi, Thailand.)
    Milky Sea effect is referred to an unusual marine phenomenon in the ocean in which a large amount of sea water appears to glow brightly at night.This effect is caused by some bioluminescent bacteria or dinoflagellates, causing the sea to uniformly display an eerie blue glow at night. This effect is so bright that it can also been seen from space.

    ______________________________________________________________________________________________________________
    This phenomenon is observed from many centuries and is notably mentioned in 1870 novel 20,000 Leagues Under the Sea by Jules Verne.

    In 1995, a British merchant vessel in the Arabian Sea took water samples during milky seas. The captain and his crew were surrounded by glowing water that “appeared to cover the entire sea area, from horizon to horizon.” And knowing that it took them full six hours to cross from one edge of the glowing water to the other, it was quite the eerie scene. Their conclusions were that the effect was caused by the bacteria Vibrio harveyi.
    ______________________________________________________________________________________________________________

    The ocean is vast, and deep, and dark, and inhospitable to us feeble land-dwelling creatures. There’s much that remains unknown or poorly understood in its roiling, seething belly.

    Technology is changing that.

    For over a century, mariners have reported an eerily beautiful phenomenon they called the “milky sea” – enormous patches of glowing water that sometimes persist for several nights in a row. It wasn’t until 2005 that this phenomenon was finally confirmed – in the form of photographs taken from a satellite in low-Earth orbit.

    Now scientists have used nearly a decade’s worth of satellite data to reveal the phenomenon in detail. Although much remains to be discovered, we’ve made some important steps towards understanding the largest known form of bioluminescence on Earth.

    In his 1872 novel Twenty Thousand Leagues Under the Seas, Jules Verne wrote “It is called a milk sea .. a large extent of white wavelets often to be seen on the coasts of Amboyna .. the whiteness which surprises you is caused only by the presence of myriads of infusoria, a sort of luminous little worm”.

    The worm was conjecture on Verne’s part, but milky seas are otherwise real. Patches of this phenomenon can be larger than 100,000 square kilometers (around 39,000 square miles), and have been reported a great deal in the last century or so: 235 sightings were cataloged between 1915 and 1993, which suggests an occurrence rate of at least thrice per year.

    However, only once has a research vessel managed to sail through one, in 1985 in the Arabian Sea.

    The water they collected contained, among other organisms, a bioluminescent marine bacterium called Vibrio harveyi; the researchers aboard the vessel concluded this was likely the source of the glow, but some features remained unexplained. In addition, their conclusions are yet to be verified.

    The problems with verification are several. Milky seas occur in remote locations, primarily; and they are unpredictable, which means getting a research vessel in position prior to the appearance of one is nigh impossible. Now, using satellite imaging, a team of scientists led by marine biologist Steven Miller of Colorado State University hopes to fill in the gaps.

    The NOAA’s Suomi NPP and NOAA-20 are two weather satellites equipped with a variety of sensors, including an instrument called the Day/Night Band. This sensor is designed to capture low-light emission sources, under a variety of illumination conditions.

    2
    NOAA-20 satellite.

    This means it’s uniquely able to see faintly glowing patches of sea that other instruments might not. Sure enough, when Miller and his colleagues examined the Day/Night Band data for three commonly reported milky sea locations between 2012 and 2021, they found 12 instances of the phenomenon.

    3
    A three-night sequence from 2018 showing a milky sea in the Somali Sea. Credit: Miller et al., Sci. Rep., 2021.

    The Day/Night Band continues to amaze me with its ability to reveal light features of the night,” Miller said. “Like Captain Ahab of Moby-Dick, the pursuit of these bioluminescent milky seas has been my personal ‘white whale’ of sorts for many years.”

    The glow has long been known to be a strange one. Unlike bioluminescent algae, which discharge flashes of light in a warning signal in response to being disturbed and often appear in tumbling waves and turbulent ship wakes, milky seas glow wide and steady. We don’t know how they form, or why, or how the glow is composed and structured.

    The team’s data revealed that milky seas seem to resonate with the monsoons in the northwest Indian Ocean, which produces cool upwellings of nutrient-rich water, but no such monsoonal association was apparent in the Maritime Continent region.

    This means that some other process could be providing nutrient upwellings when the milky seas appear there.

    They also found that the bioluminescence remained stable and steady in choppy waters, which would not occur if the glow was confined to a surface slick. This suggests a well-mixed layer of water that contains the glowing organisms.

    Physically sampling milky seas will, of course, help solve the mystery once and for all. The team hopes that their satellite data will show us the way to find them more easily.

    “Milky seas are simply marvelous expressions of our biosphere whose significance in nature we have not yet fathomed,” Miller said.

    “Their very being spins an unlikely and compelling tale that ties the surface to the skies, the microscopic to the global scales, and the human experience and technology across the ages; from merchant ships of the 18th century to spaceships of the modern day. The Day/Night Band has lit yet another pathway to scientific discovery.”

    The research has been published in Scientific Reports.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    From Colorado State University (US) is a public research university in the U.S. state of Colorado. The university is the state’s land grant university, and the flagship university of the Colorado State University System.

    The current enrollment is approximately 37,198 students, including resident and non-resident instruction students and the University is planning on having 42,000 students by 2020. The university has approximately 2,000 faculty in eight colleges and 55 academic departments. Bachelor’s degrees are offered in 65 fields of study, with master’s degrees in 55 fields. Colorado State confers doctoral degrees in 40 fields of study, in addition to a professional degree in veterinary medicine.

     
  • richardmitnick 3:56 pm on July 29, 2021 Permalink | Reply
    Tags: "What happens to marine life when oxygen is scarce?", All of the macro-organisms are trying to get away from this deoxygenated water and those that cannot escape essentially suffocate., , Benthic Life, , Coral, How sudden deoxygenation events affect tropical marine ecosystems is poorly understood., Hypoxic ocean waters: there is little to no oxygen in that area., , Ocean Chemistry, Oceanography,   

    From Woods Hole Oceanographic Institution (US) : “What happens to marine life when oxygen is scarce?” 

    From Woods Hole Oceanographic Institution (US)

    July 26, 2021
    Media Relations Office
    media@whoi.edu
    (508) 289-3340

    1
    Brittle sea stars, which usually are in hiding, perch on top of coral to attempt to escape from hypoxic ocean waters, which have little to no oxygen in that area. Sadly, those that cannot escape essentially suffocate. Image Credit: Maggie Johnson © Woods Hole Oceanographic Institution.

    In September of 2017, Woods Hole Oceanographic Institution postdoctoral scholar Maggie Johnson was conducting an experiment with a colleague in Bocas del Toro off the Caribbean coast of Panama. After sitting on a quiet, warm open ocean, they snorkeled down to find a peculiar layer of murky, foul-smelling water about 10 feet below the surface, with brittle stars and sea urchins, which are usually in hiding, perching on the tops of coral.

    This unique observation prompted a collaborative study explained in a new paper published today in Nature Communications analyzing what this foggy water layer is caused by, and the impact it has on life at the bottom of the seafloor.

    “What we’re seeing are hypoxic ocean waters, meaning there is little to no oxygen in that area. All of the macro-organisms are trying to get away from this deoxygenated water and those that cannot escape essentially suffocate. I have never seen anything like that on a coral reef,” said Johnson.

    “There is a combination of stagnant water from low wind activity, warm water temperatures, and nutrient pollution from nearby plantations, which contributes to a stratification of the water column. From this, we see these hypoxic conditions form that start to expand and infringe on nearby shallow habitats,” explained Johnson.

    Investigators suggest that loss of oxygen in the global ocean is accelerating due to climate change and excess nutrients, but how sudden deoxygenation events affect tropical marine ecosystems is poorly understood. Past research shows that rising temperatures can lead to physical alterations in coral, such as bleaching, which occurs when corals are stressed and expel algae that live within their tissues. If conditions don’t improve, the bleached corals then die. However, the real-time changes caused by decreasing oxygen levels in the tropics have seldom been observed.

    At a local scale, hypoxic events may pose a more severe threat to coral reefs than the warming events that cause mass bleaching. These sudden events impact all oxygen-requiring marine life and can kill reef ecosystems quickly.

    Investigators reported coral bleaching and mass mortality due to this occurrence, causing a 50% loss of live coral, which did not show signs of recovery until a year after the event, and a drastic shift in the seafloor community. The shallowest measurement with hypoxic waters was about 9 feet deep and about 30 feet from the Bocas del Toro shore.

    What about the 50% of coral that survived? Johnson and her fellow investigators found that the coral community they observed in Bocas del Toro is dynamic, and some corals have the potential to withstand these conditions. This discovery sets the stage for future research to identify which coral genotypes or species have adapted to rapidly changing environments and the characteristics that help them thrive.

    Investigators also observed that the microorganisms living in the reefs restored to a normal state within a month, as opposed to the macro-organisms, like the brittle stars, who perished in these conditions. By collecting sea water samples and analyzing microbial DNA, they were able to conclude that these microbes did not necessarily adjust to their environment, but rather were “waiting” for their time to shine in these low-oxygen conditions.

    “The take home message here is that you have a community of microbes; it has a particular composition and plugs along, then suddenly, all of the oxygen is removed and you get a replacement of community members. They flourish for a while, and eventually hypoxia goes away, oxygen comes back, and that community rapidly shifts back to what it was before due to the change in resources. This is very much in contrast to what you see with macro-organisms,” said Jarrod Scott, paper co-author and postdoctoral fellow at the Smithsonian Tropical Research Institute in the Republic of Panama.

    Scott and Johnson agree that human activity can contribute to the nutrient pollution and warming waters which then lead to hypoxic ocean conditions. Activities such as coastal land development and farming can be better managed and improved, which will reduce the likelihood of deoxygenation events occurring.

    The study provides insight to the fate of microbe communities on a coral reef during an acute deoxygenation event. Reef microbes respond rapidly to changes in physicochemical conditions, providing reliable indications of both physical and biological processes in nature.

    The shift the team detected from the hypoxic microbial community to a normal condition community after the event subsided suggests that the recovery route of reef microbes is independent and decoupled from the benthic macro-organisms. This may facilitate the restart of key microbial processes that influence the recovery of other aspects of the reef community.

    Matthieu Leray: Smithsonian Tropical Research Institute [Instituto Smithsonian de Investigaciones Tropicales(US) (PA).

    Noelle Lucey Smithsonian Tropical Research Institute, Republic of Panama.

    Lucia M. Rodriguez Bravo: Smithsonian Tropical Research Institute, Republic of Panama & Facultad de Ciencias Marinas, Autonomous University of Baja California [Universidad Autónoma de Baja California] (MX).

    William L. Wied: Smithsonian Tropical Research Institute, Republic of Panama & Department of Biological Sciences, Center for Coastal Oceans Research, Florida International University (US).

    Andrew H. Altieri: Smithsonian Tropical Research Institute, Republic of Panama & Department of Environmental Engineering Sciences, University of Florida (US).

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Woods Hole Oceanographic Institute

    Mission Statement

    The Woods Hole Oceanographic Institution (US) is dedicated to advancing knowledge of the ocean and its connection with the Earth system through a sustained commitment to excellence in science, engineering, and education, and to the application of this knowledge to problems facing society.

    Vision & Mission

    The ocean is a defining feature of our planet and crucial to life on Earth, yet it remains one of the planet’s last unexplored frontiers. For this reason, WHOI scientists and engineers are committed to understanding all facets of the ocean as well as its complex connections with Earth’s atmosphere, land, ice, seafloor, and life—including humanity. This is essential not only to advance knowledge about our planet, but also to ensure society’s long-term welfare and to help guide human stewardship of the environment. WHOI researchers are also dedicated to training future generations of ocean science leaders, to providing unbiased information that informs public policy and decision-making, and to expanding public awareness about the importance of the global ocean and its resources.

    The Institution is organized into six departments, the Cooperative Institute for Climate and Ocean Research, and a marine policy center. Its shore-based facilities are located in the village of Woods Hole, Massachusetts(US) and a mile and a half away on the Quissett Campus. The bulk of the Institution’s funding comes from grants and contracts from the National Science Foundation(US) and other government agencies, augmented by foundations and private donations.

    WHOI scientists, engineers, and students collaborate to develop theories, test ideas, build seagoing instruments, and collect data in diverse marine environments. Ships operated by WHOI carry research scientists throughout the world’s oceans. The WHOI fleet includes two large research vessels (R/V Atlantis and R/V Neil Armstrong); the coastal craft Tioga; small research craft such as the dive-operation work boat Echo; the deep-diving human-occupied submersible Alvin; the tethered, remotely operated vehicle Jason/Medea; and autonomous underwater vehicles such as the REMUS and SeaBED.
    WHOI offers graduate and post-doctoral studies in marine science. There are several fellowship and training programs, and graduate degrees are awarded through a joint program with the Massachusetts Institute of Technology(US). WHOI is accredited by the New England Association of Schools and Colleges (US). WHOI also offers public outreach programs and informal education through its Exhibit Center and summer tours. The Institution has a volunteer program and a membership program, WHOI Associate.

    On October 1, 2020, Peter B. de Menocal became the institution’s eleventh president and director.

    History

    In 1927, a National Academy of Sciences(US) committee concluded that it was time to “consider the share of the United States of America in a worldwide program of oceanographic research.” The committee’s recommendation for establishing a permanent independent research laboratory on the East Coast to “prosecute oceanography in all its branches” led to the founding in 1930 of the Woods Hole Oceanographic Institution(US).

    A $2.5 million grant from the Rockefeller Foundation supported the summer work of a dozen scientists, construction of a laboratory building and commissioning of a research vessel, the 142-foot (43 m) ketch R/V Atlantis, whose profile still forms the Institution’s logo.

    WHOI grew substantially to support significant defense-related research during World War II, and later began a steady growth in staff, research fleet, and scientific stature. From 1950 to 1956, the director was Dr. Edward “Iceberg” Smith, an Arctic explorer, oceanographer and retired Coast Guard rear admiral.

    In 1977 the institution appointed the influential oceanographer John Steele as director, and he served until his retirement in 1989.

    On 1 September 1985, a joint French-American expedition led by Jean-Louis Michel of IFREMER and Robert Ballard of the Woods Hole Oceanographic Institution identified the location of the wreck of the RMS Titanic which sank off the coast of Newfoundland 15 April 1912.

    On 3 April 2011, within a week of resuming of the search operation for Air France Flight 447, a team led by WHOI, operating full ocean depth autonomous underwater vehicles (AUVs) owned by the Waitt Institute discovered, by means of sidescan sonar, a large portion of debris field from flight AF447.

    In March 2017 the institution effected an open-access policy to make its research publicly accessible online.

    The Institution has maintained a long and controversial business collaboration with the treasure hunter company Odyssey Marine. Likewise, WHOI has participated in the location of the San José galleon in Colombia for the commercial exploitation of the shipwreck by the Government of President Santos and a private company.

    In 2019, iDefense reported that China’s hackers had launched cyberattacks on dozens of academic institutions in an attempt to gain information on technology being developed for the United States Navy. Some of the targets included the Woods Hole Oceanographic Institution. The attacks have been underway since at least April 2017.

     
  • richardmitnick 3:47 pm on July 21, 2021 Permalink | Reply
    Tags: "Muddied waters- sinking organics alter seafloor records", Concerns about the common use of pyrite sulfur isotopes to reconstruct Earth’s evolving oxidation state., , , Oceanography, The scientists examined concentrations of carbon; nitrogen; sulfur; and stable isotopes of glacial-interglacial sediments on the seafloor along the continental margin off of modern-day Peru.,   

    From Washington University in St. Louis : “Muddied waters- sinking organics alter seafloor records” 

    Wash U Bloc

    From Washington University in St. Louis

    July 20, 2021
    Talia Ogliore
    talia.ogliore@wustl.edu

    The remains of microscopic plankton blooms in near-shore ocean environments slowly sink to the seafloor, setting off processes that forever alter an important record of Earth’s history, according to research from geoscientists, including David Fike at Washington University in St. Louis.

    Fike is co-author of a new study published July 20 in Nature Communications.

    1
    Photo: Shutterstock.

    “Our previous work identified the role that changing sedimentation rates had on local versus global controls on geochemical signatures [Science Advances] that we use to reconstruct environmental change,” said Fike, professor of earth and planetary sciences and director of environmental studies in Arts & Sciences.

    “In this study, we investigated organic carbon loading, or how much organic matter — which drives subsequent microbial activity in the sediments — is delivered to the seafloor,” Fike said. “We are able to show that this, too, plays a critical role in regulating the types of signals that get preserved in sediments.

    “We need to be aware of this when trying to extract records of past ‘global’ environmental change,” he said.

    Scientists have long used information from sediments at the bottom of the ocean — layers of rock and microbial muck — to reconstruct the conditions in oceans of the past.

    2
    Plankton are microscopic organisms drifting in the oceans. Photo: Shutterstock.

    A critical challenge in understanding Earth’s surface evolution is differentiating between signals preserved in the sedimentary record that reflect global processes, such as the evolution of ocean chemistry, and those that are local, representing the depositional environment and the burial history of the sediments.

    The new study is based on analyses of a mineral called pyrite (FeS2) that is formed in marine sediments influenced by bacterial activity. The scientists examined concentrations of carbon; nitrogen; sulfur; and stable isotopes of glacial-interglacial sediments on the seafloor along the continental margin off of modern-day Peru.

    Varying rates of microbial metabolic activity, regulated by regional oceanographic variations in oxygen availability and the flux of sinking organic matter, appear to have driven the observed pyrite sulfur variability on the Peruvian margin, the scientists discovered.

    The study was led by Virgil Pasquier, a postdoctoral fellow at the Weizmann Institute of Sciences (IL) , and co-authored by Itay Halevy, also of the Weizmann Institute. Pasquier previously worked with Fike at Washington University. Together, the collaborators have raised concerns about the common use of pyrite sulfur isotopes to reconstruct Earth’s evolving oxidation state.

    “We seek to understand how Earth’s surface environment has changed over time,” said Fike, who also serves as director of Washington University’s International Center for Energy, Environment and Sustainability. “In order to do this, it’s critical to understand the kinds of processes that can influence the records we use for these reconstructions.”

    “In this study, we have identified an important factor — local organic carbon delivery to the seafloor — that modifies the geochemical signatures preserved in sedimentary pyrite records,” he said. “It overprints potential records of global biogeochemical cycling with information about changes in the local environment.

    “This observation provides a new window to reconstruct past local environmental conditions, which is quite exciting,” Fike said.

    3
    Shallow water at the edge of the Pacific Ocean reflects cloudy morning skies at Moeraki Boulders Beach, on the South Island of New Zealand. Image: Shutterstock.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Wash U campus

    Washington University in St. Louis is a private research university in Greater St. Louis with its main campus (Danforth) mostly in unincorporated St. Louis County, Missouri, and Clayton, Missouri. It also has a West Campus in Clayton, North Campus in the West End neighborhood of St. Louis, Missouri, and Medical Campus in the Central West End neighborhood of St. Louis, Missouri.

    Founded in 1853 and named after George Washington, the university has students and faculty from all 50 U.S. states and more than 120 countries. Washington University is composed of seven graduate and undergraduate schools that encompass a broad range of academic fields. To prevent confusion over its location, the Board of Trustees added the phrase “in St. Louis” in 1976. Washington University is a member of the Association of American Universities (US) and is classified among “R1: Doctoral Universities – Very high research activity”.

    As of 2020, 25 Nobel laureates in economics, physiology and medicine, chemistry, and physics have been affiliated with Washington University, ten having done the major part of their pioneering research at the university. In 2019, Clarivate Analytics ranked Washington University 7th in the world for most cited researchers. The university also received the 4th highest amount of National Institutes of Health (US) medical research grants among medical schools in 2019.

    Research

    Virtually all faculty members at Washington University engage in academic research, offering opportunities for both undergraduate and graduate students across the university’s seven schools. Known for its interdisciplinary and departmental collaboration, many of Washington University’s research centers and institutes are collaborative efforts between many areas on campus. More than 60% of undergraduates are involved in faculty research across all areas; it is an institutional priority for undergraduates to be allowed to participate in advanced research. According to the Center for Measuring University Performance, it is considered to be one of the top 10 private research universities in the nation. A dedicated Office of Undergraduate Research is located on the Danforth Campus and serves as a resource to post research opportunities, advise students in finding appropriate positions matching their interests, publish undergraduate research journals, and award research grants to make it financially possible to perform research.

    According to the National Science Foundation (US), Washington University spent $816 million on research and development in 2018, ranking it 27th in the nation. The university has over 150 National Institutes of Health funded inventions, with many of them licensed to private companies. Governmental agencies and non-profit foundations such as the NIH, Department of Defense (US), National Science Foundation, and National Aeronautics Space Agency (US) provide the majority of research grant funding, with Washington University being one of the top recipients in NIH grants from year-to-year. Nearly 80% of NIH grants to institutions in the state of Missouri went to Washington University alone in 2007. Washington University and its Medical School play a large part in the Human Genome Project, where it contributes approximately 25% of the finished sequence. The Genome Sequencing Center has decoded the genome of many animals, plants, and cellular organisms, including the platypus, chimpanzee, cat, and corn.

    NASA hosts its Planetary Data System Geosciences Node on the campus of Washington University. Professors, students, and researchers have been heavily involved with many unmanned missions to Mars. Professor Raymond Arvidson has been deputy principal investigator of the Mars Exploration Rover mission and co-investigator of the Phoenix lander robotic arm.

    Washington University professor Joseph Lowenstein, with the assistance of several undergraduate students, has been involved in editing, annotating, making a digital archive of the first publication of poet Edmund Spenser’s collective works in 100 years. A large grant from the National Endowment for the Humanities (US) has been given to support this ambitious project centralized at Washington University with support from other colleges in the United States.

    In 2019, Folding@Home (US), a distributed computing project for performing molecular dynamics simulations of protein dynamics, was moved to Washington University School of Medicine from Stanford University (US). The project, currently led by Dr. Greg Bowman, uses the idle CPU time of personal computers owned by volunteers to conduct protein folding research. Folding@home’s research is primarily focused on biomedical problems such as Alzheimer’s disease, Cancer, Coronavirus disease 2019, and Ebola virus disease. In April 2020, Folding@home became the world’s first exaFLOP computing system with a peak performance of 1.5 exaflops, making it more than seven times faster than the world’s fastest supercomputer, Summit, and more powerful than the top 100 supercomputers in the world, combined.

     
  • richardmitnick 2:39 pm on July 17, 2021 Permalink | Reply
    Tags: "Study Examines the Role of Deep-Sea Microbial Predators at Hydrothermal Vents", Among the creatures having a field day feasting at the Gorda Ridge vents is a diverse assortment of microbial eukaryotes-or protists-that graze on chemosynthetic bacteria and archaea., , , , Oceanography, Researchers Emphasize the Need for Baseline Information of Microbial Food Webs.,   

    From Woods Hole Oceanographic Institution (US) : “Study Examines the Role of Deep-Sea Microbial Predators at Hydrothermal Vents” 

    From Woods Hole Oceanographic Institution (US)

    July 15, 2021

    Media Relations Office
    media@whoi.edu
    (508) 289-3340

    1
    A view of the Apollo Vent Field at the northern Gorda Ridge, where samples were collected by the ROV Hercules for studying microbial predators. Image credit: OET/Nautilus Live

    Researchers Emphasize the Need for Baseline Information of Microbial Food Webs.

    The hydrothermal vent fluids from the Gorda Ridge spreading center in the northeast Pacific Ocean create a biological hub of activity in the deep sea. There, in the dark ocean, a unique food web thrives not on photosynthesis but rather on chemical energy from the venting fluids. Among the creatures having a field day feasting at the Gorda Ridge vents is a diverse assortment of microbial eukaryotes-or protists-that graze on chemosynthetic bacteria and archaea.

    This protistan grazing, which is a key mechanism for carbon transport and recycling in microbial food webs, exerts a higher predation pressure at hydrothermal vent sites than in the surrounding deep-sea environment, a new paper finds.

    “Our findings provide a first estimate of protistan grazing pressure within hydrothermal vent food webs, highlighting the important role that diverse deep-sea protistan communities play in deep-sea carbon cycling,” according to the paper, Protistan grazing impacts microbial communities and carbon cycling ad deep-sea hydrothermal vents published in the PNAS.

    [Authors :

    Sarah K. Hu1*, Erica L. Herrera1, Amy R. Smith [1], Maria G. Pachiadaki [2], Virginia P. Edgcomb [3], Sean P. Sylva [1], Eric W. Chan [4], Jeffrey S. Seewald [1], Christopher R. German [3], and Julie A. Huber [1]

    Affiliations :

    1 Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA

    2 Department of Biology, Woods Hole Oceanographic Institution, Woods Hole MA, USA

    3 Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA

    4 School of Earth, Environment & Marine Sciences, University of Texas-Rio Grande Valley (US), Edinburg, TX, USA

    *corresponding author]

    Protists serve as a link between primary producers and higher trophic levels, and their grazing is a key mechanism for carbon transport and recycling in microbial food webs, the paper states.

    The research found that protists consume 28-62% of the daily stock of bacteria and archaea biomass within discharging hydrothermal vent fluids from the Gorda Ridge, which is located about 200 kilometers off the coast of southern Oregon. In addition, researchers estimate that protistan grazing could account for consuming or transferring up to 22% or carbon that is fixed by the chemosynthetic population in the discharging vent fluids. Though the fate of all of that carbon is unclear, “protistan grazing will release a portion of the organic carbon into the microbial loop as a result of excretion, egestion, and sloppy feeding,” and some of the carbon will be taken up by larger organisms that consume protistan cells, the paper states.

    After collecting vent fluid samples from the Sea Cliff and Apollo hydrothermal vent fields in the Gorda Ridge, researchers conducted grazing experiments, which presented some technical challenges that needed to be overcome. For instance, “prepping a quality meal for these protists is very difficult,” said lead author Sarah Hu, a postdoctoral investigator in the Marine Chemistry and Geochemistry Department at the Woods Hole Oceanographic Institution (WHOI).

    “Being able to do this research at a deep-sea vent site was really exciting because the food web there is so fascinating, and it’s powered by what’s happening at this discharging vent fluid,” said Hu, who was onboard the E/V Nautilus during the May-June 2019 cruise. “There is this whole microbial system and community that’s operating there below the euphotic zone outside of the reach of sunlight. I was excited to expand what we know about the microbial communities at these vents.”

    Hu and co-author Julie Huber said that quantitative measurements are important to understand how food webs operate at pristine and undisturbed vent sites.

    “The ocean provides us with a number of ecosystem services that many people are familiar with, such as seafood and carbon sinks. Yet, when we think about microbial ecosystem services, especially in the deep sea, we just don’t have that much data about how those food webs work,” said Huber, associate scientist in WHOI’s Marine Chemistry and Geochemistry Department.

    Obtaining baseline measurements “is increasingly important as these habitats are being looked at for deep-sea mining or carbon sequestration. How might that impact how much carbon is produced, exported, or recycled?” she said.

    “We need to understand these habitats and the ecosystems they support,” Huber said. “This research is connecting some new dots that we weren’t able to connect before.”

    The research was supported by National Aeronautics Space Agency (US), the National Oceanic and Atmospheric Administration (US), Ocean Exploration Trust (US), the National Science Foundation (US), and WHOI.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Woods Hole Oceanographic Institute

    Mission Statement

    The Woods Hole Oceanographic Institution (US) is dedicated to advancing knowledge of the ocean and its connection with the Earth system through a sustained commitment to excellence in science, engineering, and education, and to the application of this knowledge to problems facing society.

    Vision & Mission

    The ocean is a defining feature of our planet and crucial to life on Earth, yet it remains one of the planet’s last unexplored frontiers. For this reason, WHOI scientists and engineers are committed to understanding all facets of the ocean as well as its complex connections with Earth’s atmosphere, land, ice, seafloor, and life—including humanity. This is essential not only to advance knowledge about our planet, but also to ensure society’s long-term welfare and to help guide human stewardship of the environment. WHOI researchers are also dedicated to training future generations of ocean science leaders, to providing unbiased information that informs public policy and decision-making, and to expanding public awareness about the importance of the global ocean and its resources.

    The Institution is organized into six departments, the Cooperative Institute for Climate and Ocean Research, and a marine policy center. Its shore-based facilities are located in the village of Woods Hole, Massachusetts(US) and a mile and a half away on the Quissett Campus. The bulk of the Institution’s funding comes from grants and contracts from the National Science Foundation(US) and other government agencies, augmented by foundations and private donations.

    WHOI scientists, engineers, and students collaborate to develop theories, test ideas, build seagoing instruments, and collect data in diverse marine environments. Ships operated by WHOI carry research scientists throughout the world’s oceans. The WHOI fleet includes two large research vessels (R/V Atlantis and R/V Neil Armstrong); the coastal craft Tioga; small research craft such as the dive-operation work boat Echo; the deep-diving human-occupied submersible Alvin; the tethered, remotely operated vehicle Jason/Medea; and autonomous underwater vehicles such as the REMUS and SeaBED.
    WHOI offers graduate and post-doctoral studies in marine science. There are several fellowship and training programs, and graduate degrees are awarded through a joint program with the Massachusetts Institute of Technology(US). WHOI is accredited by the New England Association of Schools and Colleges (US). WHOI also offers public outreach programs and informal education through its Exhibit Center and summer tours. The Institution has a volunteer program and a membership program, WHOI Associate.

    On October 1, 2020, Peter B. de Menocal became the institution’s eleventh president and director.

    History

    In 1927, a National Academy of Sciences(US) committee concluded that it was time to “consider the share of the United States of America in a worldwide program of oceanographic research.” The committee’s recommendation for establishing a permanent independent research laboratory on the East Coast to “prosecute oceanography in all its branches” led to the founding in 1930 of the Woods Hole Oceanographic Institution(US).

    A $2.5 million grant from the Rockefeller Foundation supported the summer work of a dozen scientists, construction of a laboratory building and commissioning of a research vessel, the 142-foot (43 m) ketch R/V Atlantis, whose profile still forms the Institution’s logo.

    WHOI grew substantially to support significant defense-related research during World War II, and later began a steady growth in staff, research fleet, and scientific stature. From 1950 to 1956, the director was Dr. Edward “Iceberg” Smith, an Arctic explorer, oceanographer and retired Coast Guard rear admiral.

    In 1977 the institution appointed the influential oceanographer John Steele as director, and he served until his retirement in 1989.

    On 1 September 1985, a joint French-American expedition led by Jean-Louis Michel of IFREMER and Robert Ballard of the Woods Hole Oceanographic Institution identified the location of the wreck of the RMS Titanic which sank off the coast of Newfoundland 15 April 1912.

    On 3 April 2011, within a week of resuming of the search operation for Air France Flight 447, a team led by WHOI, operating full ocean depth autonomous underwater vehicles (AUVs) owned by the Waitt Institute discovered, by means of sidescan sonar, a large portion of debris field from flight AF447.

    In March 2017 the institution effected an open-access policy to make its research publicly accessible online.

    The Institution has maintained a long and controversial business collaboration with the treasure hunter company Odyssey Marine. Likewise, WHOI has participated in the location of the San José galleon in Colombia for the commercial exploitation of the shipwreck by the Government of President Santos and a private company.

    In 2019, iDefense reported that China’s hackers had launched cyberattacks on dozens of academic institutions in an attempt to gain information on technology being developed for the United States Navy. Some of the targets included the Woods Hole Oceanographic Institution. The attacks have been underway since at least April 2017.

     
  • richardmitnick 3:47 pm on July 16, 2021 Permalink | Reply
    Tags: "Nereid Under Ice" vehicle, "Spock versus the volcano"", A team of scientists and engineers are headed to the active volcano site as part of a NASA-funded program that will attempt to answer a number of key questions., , , During Kolumbo volcano's last eruption in 1650 CE things got ugly. It blasted pumice and ash as far as neighboring Turkey and triggered a tsunami that inundated the flat coastal areas., Kolumbo volcano-500 meters below the surface within the fault-heavy Hellenic Volcanic Arc just off Santorini—is the Aegean Sea’s most active and potentially dangerous volcano., , Oceanography, Questions: What can these organisms us about life on Earth and beyond? Are there signs of geohazards to predict the next eruption? Can we allow decision-making to robots letting them explore?, The ability of marine organisms to take CO2 and convert it to food without photosynthesis is a phenomenon that has caught the attention of planetary scientists., The poisonous cloud hung heavy in the air from September through December of that year a four-month period of Greek history known as the “Time of Evil.”, The WHOI-developed robotic vehicle is a hybrid—it can operate as an autonomous underwater vehicle (AUV) following a pre-programmed mission; or as a remotely operated vehicle (ROV)., Thick carpets of chemical-craving microbes blanket the benthos in red; orange; and white.,   

    From Woods Hole Oceanographic Institution (US) : “Spock versus the volcano” 

    From Woods Hole Oceanographic Institution (US)

    January 15, 2019 [Re-presented 7.15.21]
    Evan Lubofsky

    1
    Ocean robots are becoming so intelligent, they’re starting to make decisions on where to explore and what to focus on below the surface. Illustration by Natalie Reiner, © Woods Hole Oceanographic Institution.

    Far below the steep, whitewashed villages of Greece’s famed Santorini Island lies an ancient submarine volcano with a violent past.

    3
    Kolumbo volcano—which sits 500 meters below the surface within the fault-heavy Hellenic Volcanic Arc just off Santorini—is the Aegean Sea’s most active and potentially dangerous volcano. It’s been quiet over the past few centuries. But during its last eruption in 1650 CE things got ugly. The volcano blasted pumice and ash as far as neighboring Turkey and triggered a tsunami that inundated the flat coastal areas surrounding the island.

    “Beyond the natural devastation it caused, Kolumbo burped up CO2 and other gasses that asphyxiated people and animals on Santorini,” says Rich Camilli, an associate scientist at Woods Hole Oceanographic Institution (WHOI).

    The poisonous cloud hung heavy in the air from September through December of that year a four-month period of Greek history known as the “Time of Evil.”

    5
    The surface waters off Santorini Island are calm, but Kolumbo volcano—the region’s most dangerous—is active 500 meters below. Photo by Evan Lubofsky, © Woods Hole Oceanographic Institution.

    Now, Camilli and a team of scientists and engineers are headed to the active volcano site as part of a NASA-funded program that will attempt to answer a number of key questions: What can the organisms living in the extremes of this dark and chemical-laden underworld tell us about life on Earth and beyond? Are there signs of geohazards down there that may help predict the next eruption? And to what extent can we hand over the decision-making to ocean robots and let them explore without human control?

    The Mediterranean is dead calm as our makeshift research vessel—a cable-laying workhorse named Ocean Link—floats above Kolumbo volcano. The view from the aft deck is idyllic: Santorini’s soaring, multicolored cliffs rise directly to our left, while lower-lying isles are scattered off in the distance.

    But despite the postcard view, there’s trouble in paradise. A month ago, scientists from GEOMAR Helmholtz Centre for Ocean Research Kiel – GEOMAR [ Helmholtz-Zentrum für Ozeanforschung Kiel] (DE) and the National and Kapodistrian University of Athens [Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών](GR) detected the restless rumble of earthquakes right below the placid surface.

    “From a geological point of view, this is the most active volcano in the Aegean Sea,” says Evi Nomikou, a marine geologist from the National and Kapodistrian University of Athens who used ocean bottom seismometers to take the volcano’s pulse. “The cliffs are very steep, so if there’s a large enough earthquake, it could cause landslides and trigger a tsunami.”

    But for now, the conditions are just right for sending Nereid Under Ice—or NUI—into the caldera.

    8
    Nereid Under Ice – Woods Hole Oceanographic Institution.

    9
    WHOI ROV pilots (left to right) Mario Fernandez, Victor Naklicki, Casey Machado, Molly Curran, and Mike Jacuba work on the Ocean Link’s aft deck to get NUI ready to explore the Kolumbo volcano. (Photo courtesy of Mike Toillion, NASA Astrobiology).

    The WHOI-developed robotic vehicle is a hybrid—it can operate as an autonomous underwater vehicle (AUV) following a pre-programmed mission; or as a remotely operated vehicle (ROV) connected to the surface by a wispy optical fiber tether no thicker than a human hair.

    As its name implies, Nereid Under Ice was designed to explore the underside of Artic sea ice, but it’s also well-suited for other types of tough marine environments. Like an active submarine volcano with the shakes.

    “There are a lot of obstacles down there that Nereid Under Ice will have to contend with, including walls that can run hundreds of feet high and other geological features,” says Camilli. “It’s not far from a suicide mission for most ocean robots.”

    Teetering on the winch, Nereid Under Ice looks like a red Smart Car being lowered into the Aegean Sea. Within minutes, it plunges to its target depth of 500 meters. There, the vehicle’s lights pierce the ancient darkness and an otherworldly terrain pops up on the control room monitor.


    NUI teeters above the surface before being eased into the Aegean Sea. Video courtesy of Mike Toillion, NASA Astrobiology.

    Casey Machado a mechanical engineer and ROV pilot at WHOI, moves the vehicle around with an Xbox controller and quickly closes in on a hydrothermal vent jutting out of the lunar-like landscape. Its 10-foot chimney gushes plumes of CO2 and other chemicals from below the seafloor. The infusion of carbon makes the seawater so acidic, it could dissolve a hard-shell clam.

    But hard-shell clams don’t live here. In fact, the chemical soup—which includes traces of hydrogen sulfide and methane—isn’t a viable food source for most living things.

    There are, however, some takers. Thick carpets of chemical-craving microbes blanket the benthos in red; orange; and white. Maria Pachiadaki, a marine biologist at WHOI, perks up at her first glimpse of the microbial mats.

    “These bacteria are oxidizing the inorganic compounds found in the hydrothermal fluids, a process that creates energy that they can use to turn CO2 into biomass,” says Pachiadaki.

    Camilli says the ability of marine organisms to take CO2 and convert it to food without photosynthesis is a phenomenon that has caught the attention of planetary scientists.

    “If organisms possess that capability here on Earth it may be possible to find similar lifeforms on ocean worlds beyond our planet like Jupiter’s moon Europa or Saturn’s moon Enceladus,” he says.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Woods Hole Oceanographic Institute

    Mission Statement

    The Woods Hole Oceanographic Institution (US) is dedicated to advancing knowledge of the ocean and its connection with the Earth system through a sustained commitment to excellence in science, engineering, and education, and to the application of this knowledge to problems facing society.

    Vision & Mission

    The ocean is a defining feature of our planet and crucial to life on Earth, yet it remains one of the planet’s last unexplored frontiers. For this reason, WHOI scientists and engineers are committed to understanding all facets of the ocean as well as its complex connections with Earth’s atmosphere, land, ice, seafloor, and life—including humanity. This is essential not only to advance knowledge about our planet, but also to ensure society’s long-term welfare and to help guide human stewardship of the environment. WHOI researchers are also dedicated to training future generations of ocean science leaders, to providing unbiased information that informs public policy and decision-making, and to expanding public awareness about the importance of the global ocean and its resources.

    The Institution is organized into six departments, the Cooperative Institute for Climate and Ocean Research, and a marine policy center. Its shore-based facilities are located in the village of Woods Hole, Massachusetts(US) and a mile and a half away on the Quissett Campus. The bulk of the Institution’s funding comes from grants and contracts from the National Science Foundation(US) and other government agencies, augmented by foundations and private donations.

    WHOI scientists, engineers, and students collaborate to develop theories, test ideas, build seagoing instruments, and collect data in diverse marine environments. Ships operated by WHOI carry research scientists throughout the world’s oceans. The WHOI fleet includes two large research vessels (R/V Atlantis and R/V Neil Armstrong); the coastal craft Tioga; small research craft such as the dive-operation work boat Echo; the deep-diving human-occupied submersible Alvin; the tethered, remotely operated vehicle Jason/Medea; and autonomous underwater vehicles such as the REMUS and SeaBED.
    WHOI offers graduate and post-doctoral studies in marine science. There are several fellowship and training programs, and graduate degrees are awarded through a joint program with the Massachusetts Institute of Technology(US). WHOI is accredited by the New England Association of Schools and Colleges (US). WHOI also offers public outreach programs and informal education through its Exhibit Center and summer tours. The Institution has a volunteer program and a membership program, WHOI Associate.

    On October 1, 2020, Peter B. de Menocal became the institution’s eleventh president and director.

    History

    In 1927, a National Academy of Sciences(US) committee concluded that it was time to “consider the share of the United States of America in a worldwide program of oceanographic research.” The committee’s recommendation for establishing a permanent independent research laboratory on the East Coast to “prosecute oceanography in all its branches” led to the founding in 1930 of the Woods Hole Oceanographic Institution(US).

    A $2.5 million grant from the Rockefeller Foundation supported the summer work of a dozen scientists, construction of a laboratory building and commissioning of a research vessel, the 142-foot (43 m) ketch R/V Atlantis, whose profile still forms the Institution’s logo.

    WHOI grew substantially to support significant defense-related research during World War II, and later began a steady growth in staff, research fleet, and scientific stature. From 1950 to 1956, the director was Dr. Edward “Iceberg” Smith, an Arctic explorer, oceanographer and retired Coast Guard rear admiral.

    In 1977 the institution appointed the influential oceanographer John Steele as director, and he served until his retirement in 1989.

    On 1 September 1985, a joint French-American expedition led by Jean-Louis Michel of IFREMER and Robert Ballard of the Woods Hole Oceanographic Institution identified the location of the wreck of the RMS Titanic which sank off the coast of Newfoundland 15 April 1912.

    On 3 April 2011, within a week of resuming of the search operation for Air France Flight 447, a team led by WHOI, operating full ocean depth autonomous underwater vehicles (AUVs) owned by the Waitt Institute discovered, by means of sidescan sonar, a large portion of debris field from flight AF447.

    In March 2017 the institution effected an open-access policy to make its research publicly accessible online.

    The Institution has maintained a long and controversial business collaboration with the treasure hunter company Odyssey Marine. Likewise, WHOI has participated in the location of the San José galleon in Colombia for the commercial exploitation of the shipwreck by the Government of President Santos and a private company.

    In 2019, iDefense reported that China’s hackers had launched cyberattacks on dozens of academic institutions in an attempt to gain information on technology being developed for the United States Navy. Some of the targets included the Woods Hole Oceanographic Institution. The attacks have been underway since at least April 2017.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: