Tagged: NYU Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:11 pm on January 13, 2020 Permalink | Reply
    Tags: "Influential electrons? Physicists uncover a quantum relationship", How electron energies vary from region to region in a particular quantum state, , , NYU, , Quantum hybridization in the relationships between moving electrons, , Spectromicroscopy   

    From New York University, the Lawrence Berkeley National Laboratory, Rutgers University, and MIT via phys.org: “Influential electrons? Physicists uncover a quantum relationship” 

    From

    via


    phys.org

    A team of physicists has mapped how electron energies vary from region to region in a particular quantum state with unprecedented clarity. This understanding reveals an underlying mechanism by which electrons influence one another, termed quantum “hybridization,” that had been invisible in previous experiments.

    1
    Credit: CC0 Public Domain

    The findings, the work of scientists at New York University, the Lawrence Berkeley National Laboratory, Rutgers University, and MIT, are reported in the journal Nature Physics.

    “This sort of relationship is essential to understanding a quantum electron system—and the foundation of all movement—but had often been studied from a theoretical standpoint and not thought of as observable through experiments,” explains Andrew Wray, an assistant professor in NYU’s Department of Physics and one of the paper’s co-authors. “Remarkably, this work reveals a diversity of energetic environments inside the same material, allowing for comparisons that let us spot how electrons shift between states.”

    The scientists focused their work on bismuth selenide, or Bi2Se3, a material that has been under intense investigation for the last decade as the basis of advanced information and quantum computing technologies. Research in 2008 and 2009 identified bismuth selenide to host a rare “topological insulator” quantum state that changes the way electrons at its surface interact with and store information.

    Studies since then have confirmed a number of theoretically inspired ideas about topological insulator surface electrons. However, because these particles are on a material’s surface, they are exposed to environmental factors not present in the bulk of the material, causing them to manifest and move in different ways from region to region.

    The resulting knowledge gap, together with similar challenges for other material classes, has motivated scientists to develop techniques for measuring electrons with micron- or nanometer- scale spatial resolution, allowing researchers to examine electron interaction without external interference.

    The Nature Physics research is one of the first studies to use this new generation of experimental tools, termed “”—and the first spectromicroscopy investigation of Bi2Se3. This procedure can track how the motion of surface electrons differs from region to region within a material. Rather than focusing on average electron activity over a single large region on a sample surface, the scientists collected data from nearly 1,000 smaller regions.

    By broadening the terrain through this approach, they could observe signatures of quantum hybridization in the relationships between moving electrons, such as a repulsion between electronic states that come close to one another in energy. Measurements from this method illuminated the variation of electronic quasiparticles across the material surface.

    “Looking at how the electronic states vary in tandem with one another across the sample surface reveals conditional relationships between different kinds of electrons, and it’s really a new way of studying a material,” explains Erica Kotta, an NYU graduate student and first author on the paper. “The results provide new insight into the physics of topological insulators by providing the first direct measurement of quantum hybridization between electrons near the surface.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    About Science X in 100 words

    Science X™ is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004 (Physorg.com), Science X’s readership has grown steadily to include 5 million scientists, researchers, and engineers every month. Science X publishes approximately 200 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Science X community members enjoy access to many personalized features such as social networking, a personal home page set-up, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.
    Mission 12 reasons for reading daily news on Science X Organization Key editors and writersinclude 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

     
  • richardmitnick 8:49 pm on January 11, 2016 Permalink | Reply
    Tags: , , , NYU, SCIENCELINE, Starquake   

    From NYU SCIENCELINE: “Starquake!” 

    NYU BLOC

    New York University

    NYU SCIENCELINE bloc
    SCIENCELINE

    Massive radiation pulses occasionally rock the Earth – and they’re still a mystery

    Temp 1

    January 11, 2016
    Dyani Sabin

    On Dec. 27, 2004, for a tenth of second, a blast of energy knocked satellites offline, disrupted submarine and radio transmissions, and shifted the magnetic field of the Earth. Within minutes, everything was back to normal, but astrophysicists all over the world were left staring at their instruments asking, “what was that?”

    Every researcher with an instrument pointed at the sky was bombarded with emails and phone calls, despite the holiday season. David Palmer, an astrophysicist at Los Alamos National Laboratory, got an email asking if the pulse detection software he had designed for the SWIFT satellite had gotten any weird readings that day.

    NASA SWIFT Telescope
    NASA/SWIFT

    The satellite had only been in space for slightly over a month, but Palmer logged in anyway to check. Although the satellite was looking the wrong way, gamma rays, which are powerful bursts of energy, had gone straight through it — more gamma rays than are emitted from the Sun in the course of 150,000 years.

    “I thought, it was probably a giant burst [from a star], or there was something going wrong in the instrument,” Palmer said. But he and researchers all over the world concluded that the satellite was fine — and that the mass of radiation that hit the earth came from something called a starquake.

    A starquake is vaguely similar to an earthquake but occurs on a magnetar, a mysterious type of star that is extremely dense and magnetic.

    2
    Artist’s conception of a magnetar, with magnetic field lines.

    To date, scientists have only identified 23 magnetars, and recorded three starquakes: one each in 1979, 1998 and 2004. Researchers cannot predict starquakes, so while they wait for one they are working on tools to better understand these events and the stars that create them. Two of those new tools are almost ready: a new technique to look at the magnetic interior of stars, and NASA’s Neutron Star Interior Composition Explorer mission, or NICER, due to launch in late 2016.

    NASA NICER
    NASA/NICER

    Only about 15 miles across, magnetars are likely the cores that remain after the deaths of supermassive stars. They have the strongest magnetic fields of any object in the universe by several orders of magnitude, says Anna Watts, an astrophysicist at the University of Amsterdam who studies neutron stars and black holes. In fact, a magnetar’s magnetic field is about two quadrillion times more powerful than the magnetic field of the Earth, and a thousand times stronger than a neutron star — the bright cores that remain after the death of a supernova. Conditions inside a magnetar are at a scale that cannot be replicated anywhere else, even at the largest particle physics lab in the world, she says. “CERN is never going to get to the energy and density we [see in these stars].”

    Deep inside the magnetar “everything just becomes a soup of neutrons and protons,” the basic building blocks of atoms, explains Tod Strohmayer, a NASA astrophysicist and co-investigator on the NICER mission. In fact, he says, a magnetar is so dense that it may be crushing these atomic components into a soup of their fundamental particles, called quarks. Structured like a cosmic M&M, the magnetar’s soupy core may be surrounded by a crust resembling superhot, dense, iron crystal. “A neutron star crust is the strongest material that we know of in the universe,” says Strohmayer — but it’s not quite strong enough to contain the phenomenal power of a bursting starquake.

    “We have no idea what the trigger process is for these things,” says Watts. The current theory suggests that, similarly to earthquakes, the crust rips as the magnetar’s powerful magnetic field moves. The shift pulls the inside of the star like a ball of rubber bands that eventually snap under the pressure. When the crust heats up and finally tears, a fireball of electrons, photons and plasma emerges as a bubble on the side of the star, researchers believe. A bright beam of radiation attaches the fiery bubble to the magnetar, and emits a giant burst of energy. As the bubble rotates around the star, it slowly shrinks back down its beam like the ball dropping on New Years Eve, eventually merging back into the core.

    Even though it originated 50,000 light years away, the giant pulse of energy from the 2004 starquake was enough to knock all research and commercial satellites offline, says Brian Gaensler, director of the Dunlap Institute of Astronomy and Astrophysics at the University of Toronto in Canada. Satellites are designed to withstand short bursts of radiation, like what happens during solar flares, and can typically reboot and go back online after the event is over. As the satellites rebooted, researchers were able to track the direction of the starquake by mapping when each satellite was knocked offline. Gaensler says that he suspects the blast also affected military satellites but that researchers were not supplied with that data.

    Some U.S. Navy’s stealthy communication equipment was briefly knocked out too, because the starquake temporarily altered the shape of the ionosphere, the outer edge of Earth’s atmosphere. As the pulses of energy hit the Earth, the powerful waves caused the ionosphere to expand and contract as each wave passed. The weird alteration knocked out low-frequency radio communications that rely on bouncing signals off the ionosphere, a technique used by Navy submarines, Gaensler says. Once the flare was over, transmission resumed as normal, but the magnetic field of the Earth remains slightly shifted, a constant reminder of the power contained in these dim stars.

    Magnetars are difficult for astronomers to see except during a starquake, but can be identified by their semi-regular pulsation of radiation. Researchers believe that what they see as pulses are actually hotspots of radiation on the magnetar’s surface. Like a lighthouse beam, the spinning of the star moves the hotspot in and out of view as the magnetar rotates. Scientists have been tracking these soft pulses of radiation since 1973, when U.S. satellites created to monitor nuclear testing by the Soviet Union picked up this background noise during the Cold War. Today, the pulses provide most of the data researchers have on magnetars.

    Charting the radiation pulses allows researchers to estimate the strength of a magnetar’s magnetic field — the more slowly the magnetar pulses, the stronger the field — as well as to estimate its composition and size. As telescopes get better, researchers are able to get more information on subtle shifts of the magnetar pulses. But the technique is limited by the fact that magnetars are relatively small and dim, so it’s hard to get sensitive data unless they’re flaring, says NASA’s Strohmayer. “You always want to build a bigger telescope.”

    Soon, Strohmayer may get the better data he’s pining for. In late 2016, NASA is set to send its NICER mission to the International Space Station. Its primary objective is to measure gamma radiation to better understand the size and mass of neutron stars, including magnetars. Strohmayer hopes that a starquake will occur while NICER is operational, but if it doesn’t, he is already scouting new technology to follow NICER. “Currently there’s nothing being built, although there are things on the drawing board,” he says.

    One of those tools could potentially come from a different field of astrophysics called astroseismology that uses the tiny changes in starlight to study the interior of a star. In October, two astroseismologists published the results of a technique they developed to detect the interior magnetic field of a star. Using minuscule variations in star brightness, Jim Fuller, a postdoctoral fellow in astrophysics at the California Institute of Technology, and Matteo Cantiello, an astrophysicist at the University of California at Santa Barbara, created a model that exposed the magnetic core hidden in a red giant star. They hope their work could one day be turned to other types of stars and maybe even help scientists understand how magnetars form when giant stars explode and die.

    “This will open up a whole new window into the interiors of stars,” says Fuller, though he adds that there is still a long way to go before the technique can be applied to the super giant stars that form magnetars or to magnetars themselves. But magnetar specialists like Amsterdam’s Watts are already excited to have recently learned that the core of a red giant is more magnetic than previously predicted. If this finding applies to other star types, it would explain how magnetars become so magnetic, she says.

    If all stars are more magnetic than we thought, “it’s not so hard to make a magnetar,” says Watts. Other possible explanations of magnetars’ super-magnetism involve rapidly spinning the dying super giant star. But the truth about magnetars and starquakes, she says, is that “we don’t know why they’re so odd.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NYU Campus

    More than 175 years ago, Albert Gallatin, the distinguished statesman who served as secretary of the treasury under Presidents Thomas Jefferson and James Madison, declared his intention to establish “in this immense and fast-growing city … a system of rational and practical education fitting for all and graciously opened to all.” Founded in 1831, New York University is now one of the largest private universities in the United States. Of the more than 3,000 colleges and universities in America, New York University is one of only 60 member institutions of the distinguished Association of American Universities.

     
  • richardmitnick 10:35 am on December 13, 2015 Permalink | Reply
    Tags: , , NYU   

    From NYU: “Scientists Teach Machines to Learn Like Humans” 

    NYU BLOC

    New York University

    December 10, 2015
    James Devitt | (212) 998-6808

    1
    A team of scientists has developed an algorithm that captures our learning abilities, enabling computers to recognize and draw simple visual concepts that are mostly indistinguishable from those created by humans. (c)iStock/Niyazz

    A team of scientists has developed an algorithm that captures our learning abilities, enabling computers to recognize and draw simple visual concepts that are mostly indistinguishable from those created by humans. The work, which appears in the latest issue of the journal Science, marks a significant advance in the field—one that dramatically shortens the time it takes computers to “learn” new concepts and broadens their application to more creative tasks.

    “Our results show that by reverse engineering how people think about a problem, we can develop better algorithms,” explains Brenden Lake, a Moore-Sloan Data Science Fellow at New York University and the paper’s lead author. “Moreover, this work points to promising methods to narrow the gap for other machine learning tasks.”

    The paper’s other authors were Ruslan Salakhutdinov, an assistant professor of Computer Science at the University of Toronto, and Joshua Tenenbaum, a professor at MIT in the Department of Brain and Cognitive Sciences and the Center for Brains, Minds and Machines.

    When humans are exposed to a new concept—such as new piece of kitchen equipment, a new dance move, or a new letter in an unfamiliar alphabet—they often need only a few examples to understand its make-up and recognize new instances. While machines can now replicate some pattern-recognition tasks previously done only by humans—ATMs reading the numbers written on a check, for instance—machines typically need to be given hundreds or thousands of examples to perform with similar accuracy.

    “It has been very difficult to build machines that require as little data as humans when learning a new concept,” observes Salakhutdinov. “Replicating these abilities is an exciting area of research connecting machine learning, statistics, computer vision, and cognitive science.”

    Salakhutdinov helped to launch recent interest in learning with “deep neural networks,” in a paper published in Science almost 10 years ago with his doctoral advisor Geoffrey Hinton. Their algorithm learned the structure of 10 handwritten character concepts—the digits 0-9—from 6,000 examples each, or a total of 60,000 training examples.

    In the work appearing in Science this week, the researchers sought to shorten the learning process and make it more akin to the way humans acquire and apply new knowledge—i.e., learning from a small number of examples and performing a range of tasks, such as generating new examples of a concept or generating whole new concepts.

    To do so, they developed a “Bayesian Program Learning” (BPL) framework, where concepts are represented as simple computer programs. For instance, the letter ‘A’ is represented by computer code —resembling the work of a computer programmer— that generates examples of that letter when the code is run. Yet no programmer is required during the learning process: the algorithm programs itself by constructing code to produce the letter it sees. Also, unlike standard computer programs that produce the same output every time they run, these probabilistic programs produce different outputs at each execution. This allows them to capture the way instances of a concept vary, such as the differences between how two people draw the letter ‘A.’

    While standard pattern recognition algorithms represent concepts as configurations of pixels or collections of features, the BPL approach learns “generative models” of processes in the world, making learning a matter of “model building” or “explaining” the data provided to the algorithm. In the case of writing and recognizing letters, BPL is designed to capture both the causal and compositional properties of real-world processes, allowing the algorithm to use data more efficiently. The model also “learns to learn” by using knowledge from previous concepts to speed learning on new concepts—e.g., using knowledge of the Latin alphabet to learn letters in the Greek alphabet. The authors applied their model to over 1,600 types of handwritten characters in 50 of the world’s writing systems, including Sanskrit, Tibetan, Gujarati, Glagolitic—and even invented characters such as those from the television series Futurama.

    In addition to testing the algorithm’s ability to recognize new instances of a concept, the authors asked both humans and computers to reproduce a series of handwritten characters after being shown a single example of each character, or in some cases, to create new characters in the style of those it had been shown. The scientists then compared the outputs from both humans and machines through “visual Turing tests.” Here, human judges were given paired examples of both the human and machine output, along with the original prompt, and asked to identify which of the symbols were produced by the computer.

    While judges’ correct responses varied across characters, for each visual Turing test, fewer than 25 percent of judges performed significantly better than chance in assessing whether a machine or a human produced a given set of symbols.

    “Before they get to kindergarten, children learn to recognize new concepts from just a single example, and can even imagine new examples they haven’t seen,” notes Tenenbaum. “I’ve wanted to build models of these remarkable abilities since my own doctoral work in the late nineties. We are still far from building machines as smart as a human child, but this is the first time we have had a machine able to learn and use a large class of real-world concepts—even simple visual concepts such as handwritten characters—in ways that are hard to tell apart from humans.”

    The work was supported by grants from the National Science Foundation to MIT’s Center for Brains, Minds and Machines (CCF-1231216), the Army Research Office (W911NF-08-1-0242, W911NF-13-1-2012), the Office of Naval Research (N000141310333), and the Moore-Sloan Data Science Environment at New York University.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NYU Campus

    More than 175 years ago, Albert Gallatin, the distinguished statesman who served as secretary of the treasury under Presidents Thomas Jefferson and James Madison, declared his intention to establish “in this immense and fast-growing city … a system of rational and practical education fitting for all and graciously opened to all.” Founded in 1831, New York University is now one of the largest private universities in the United States. Of the more than 3,000 colleges and universities in America, New York University is one of only 60 member institutions of the distinguished Association of American Universities.

     
  • richardmitnick 2:21 pm on August 3, 2015 Permalink | Reply
    Tags: , , NYU   

    From NYU: NYU Scientists bring order, and color, to microparticles” 

    NYU BLOC

    New York University

    August 3, 2015
    No Writer Credit

    1
    A team of New York University scientists has developed a technique that prompts microparticles to form ordered structures in a variety of materials. The advance offers a method to potentially improve the makeup and color of optical materials used in computer screens along with other consumer products. (c) iStock/dolphfyn

    A team of New York University scientists has developed a technique that prompts microparticles to form ordered structures in a variety of materials. The advance, which appears in the Journal of the American Chemical Society (JACS) as an “Editors’ Choice” article, offers a method to potentially improve the makeup and color of optical materials used in computer screens along with other consumer products.

    The work is centered on enhancing the arrangement of colloids—small particles suspended within a fluid medium. Colloidal dispersions are composed of such everyday items such as paint, milk, gelatin, glass, and porcelain, but their potential to create new materials remains largely untapped.

    Notably, DNA-coated colloids offer particular promise because they can be linked together, with DNA serving as the glue to form a range of new colloidal structures. However, previous attempts have produced uneven results, with these particles attaching to each other in ways that produce chaotic or inflexible configurations.

    The NYU team developed a new method to apply DNA coating to colloids so that they crystallize—or form new compounds—in an orderly manner. Specifically, it employed a synthetic strategy—click chemistry—introduced more than a decade ago that is a highly efficient way of attaching DNA. Here, scientists initiated a chemical reaction that allows molecular components to stick together in a particular fashion—a process some have compared to connecting Legos.

    In a previous paper, published earlier this year in the journal Nature Communications, the research team outlined the successful execution of this technique. However, the method, at that point, could manipulate only one type of particle. In the JACS study, the research team shows the procedure can handle five additional types of materials—and in different combinations.

    The advance, the scientists say, is akin to a builder having the capacity to construct a house using glass, metal, brick, and concrete—rather than only wood.

    “If you want to program and create structures at microscopic levels, you need to have the ability for a particle to move around and find its optimal position,” explains David Pine, a professor of physics at NYU and chair of the Chemical and Bioengineering Department at NYU Polytechnic School of Engineering. “Our research shows that this be done and be achieved with multiple materials, all resulting in several different types of compounds.”

    The work was conducted by researchers at NYU’s Molecular Design Institute and Center for Soft Matter Research and at South Korea’s Sungkyunkwan University. The paper’s other authors were: Yufeng Wang of the Center for Soft Matter Research and Molecular Design Institute; Yu Wang and Xiaolong Zheng of the Molecular Design Institute; Etienne Ducrot of the Center for Soft Matter Research; Myung-Goo Lee and Gi-Ra Yi of Sungkyunkwan University’s School of Chemical Engineering; and Marcus Weck of the Molecular Design Institute.

    The research was supported, in part, by grants from the U.S. Army Research Office (W911NF- 510 10-1-0518), the National Research Foundation of Korea (NRF-2014S1A2A2028608), and by the National Science Foundation’s Materials Research Science and Engineering Center (MRSEC) Program (DMR-0820341).

    NYU’s center is one of 24 MRSECs in the country. These NSF-backed centers support interdisciplinary and multidisciplinary materials research to address fundamental problems in science and engineering.

    For more on the NYU MRSEC, click here.

    See the full article here..

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NYU Campus

    More than 175 years ago, Albert Gallatin, the distinguished statesman who served as secretary of the treasury under Presidents Thomas Jefferson and James Madison, declared his intention to establish “in this immense and fast-growing city … a system of rational and practical education fitting for all and graciously opened to all.” Founded in 1831, New York University is now one of the largest private universities in the United States. Of the more than 3,000 colleges and universities in America, New York University is one of only 60 member institutions of the distinguished Association of American Universities.

     
  • richardmitnick 5:09 am on February 19, 2015 Permalink | Reply
    Tags: , , NYU,   

    From phys.org: “Does dark matter cause mass extinctions and geologic upheavals?” 

    physdotorg
    phys.org

    Feb 19, 2015

    1
    A massive cluster of yellowish galaxies, seemingly caught in a red and blue spider web of eerily distorted background galaxies, makes for a spellbinding picture from the new Advanced Camera for Surveys aboard NASA’s Hubble Space Telescope. To make this unprecedented image of the cosmos, Hubble peered straight through the center of one of the most massive galaxy clusters known, called Abell 1689. The gravity of the cluster’s trillion stars — plus dark matter — acts as a 2-million-light-year-wide lens in space. This gravitational lens bends and magnifies the light of the galaxies located far behind it. Some of the faintest objects in the picture are probably over 13 billion light-years away (redshift value 6). Strong gravitational lensing as observed by the Hubble Space Telescope in Abell 1689 indicates the presence of dark matter. Credit: NASA, N. Benitez (JHU), T. Broadhurst (Racah Institute of Physics/The Hebrew University), H. Ford (JHU), M. Clampin (STScI),G. Hartig (STScI), G. Illingworth (UCO/Lick Observatory), the ACS Science Team and ESA

    NASA Hubble Telescope
    Hubble

    Research by New York University Biology Professor Michael Rampino concludes that Earth’s infrequent but predictable path around and through our Galaxy’s disc may have a direct and significant effect on geological and biological phenomena occurring on Earth. In a new paper in Monthly Notices of the Royal Astronomical Society, he concludes that movement through dark matter may perturb the orbits of comets and lead to additional heating in the Earth’s core, both of which could be connected with mass extinction events.

    The Galactic disc is the region of the Milky Way Galaxy where our solar system resides. It is crowded with stars and clouds of gas and dust, and also a concentration of elusive dark matter—small subatomic particles that can be detected only by their gravitational effects.

    Previous studies have shown that Earth rotates around the disc-shaped Galaxy once every 250 million years. But the Earth’s path around the Galaxy is wavy, with the Sun and planets weaving through the crowded disc approximately every 30 million years. Analyzing the pattern of the Earth’s passes through the Galactic disc, Rampino notes that these disc passages seem to correlate with times of comet impacts and mass extinctions of life. The famous comet strike 66 million ago that led to the extinction of the dinosaurs is just one example.

    What causes this correlation between Earth’s passes through the Galactic disc, and the impacts and extinctions that seem to follow?

    While traveling through the disc, the dark matter concentrated there disturbs the pathways of comets typically orbiting far from the Earth in the outer Solar System, Rampino observes. This means that comets that would normally travel at great distances from the Earth instead take unusual paths, causing some of them to collide with the planet.

    But even more remarkably, with each dip through the disc, the dark matter can apparently accumulate within the Earth’s core. Eventually, the dark matter particles annihilate each other, producing considerable heat. The heat created by the annihilation of dark matter in Earth’s core could trigger events such as volcanic eruptions, mountain building, magnetic field reversals, and changes in sea level, which also show peaks every 30 million years. Rampino therefore suggests that astrophysical phenomena derived from the Earth’s winding path through the Galactic disc, and the consequent accumulation of dark matter in the planet’s interior, can result in dramatic changes in Earth’s geological and biological activity.

    His model of dark matter interactions with the Earth as it cycles through the Galaxy could have a broad impact on our understanding of the geological and biological development of Earth, as well as other planets within the Galaxy.

    “We are fortunate enough to live on a planet that is ideal for the development of complex life,” Rampino says. “But the history of the Earth is punctuated by large scale extinction events, some of which we struggle to explain. It may be that dark matter – the nature of which is still unclear but which makes up around a quarter of the universe – holds the answer. As well as being important on the largest scales, dark matter may have a direct influence on life on Earth.”

    In the future, he suggests, geologists might incorporate these astrophysical findings in order to better understand events that are now thought to result purely from causes inherent to the Earth. This model, Rampino adds, likewise provides new knowledge of the possible distribution and behaviour of dark matter within the Galaxy.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About Phys.org in 100 Words

    Phys.org™ (formerly Physorg.com) is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004, Phys.org’s readership has grown steadily to include 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

     
  • richardmitnick 10:33 am on November 27, 2014 Permalink | Reply
    Tags: , , , NYU, ,   

    From phys.org: “It’s particle-hunting season! NYU scientists launch Higgs Hunters Project” 

    physdotorg
    phys.org

    November 26, 2014
    No Writer Credit

    New York University scientists and their colleagues have launched the Higgs Hunters project, which will allow members of the general public to study images recorded at the Large Hadron Collider and to help search for previously unobserved particles.

    p
    A graphic shows particle traces extending from a proton-proton collision at the Large Hadron Collider in 2012. The event shows characteristics expected from the decay of the Standard Model Higgs boson to a pair of photons

    CERN LHC Map
    CERN LHC Grand Tunnel
    CERN LHC particles
    LHC at CERN

    The Higgs Hunters project follows the successful 2012 discovery of the famous Higgs boson particle, a sub-atomic particle that plays a key role in our understanding of the Universe, at the CERN laboratory near Geneva, where the collider is based.

    In 2013, Peter Higgs and François Englert received the Nobel Prize for Physics in recognition of their work to develop the theory of what is now known as the Higgs field, which gives elementary particles mass.

    The project will also include researchers from the University of Oxford, the University of Birmingham, the Zooniverse project, and the ATLAS experiment at CERN.

    CERN ATLAS New
    ATLAS at CERN’s LHC

    “Writing computer algorithms to identify these particles is tough, so we’re excited to see how much better we can do when people help us with the hunt,” observes Andy Haas, an assistant professor of physics at NYU and one of the project’s collaborators.

    “Having found the Higgs Boson particle, now we want to know how it works,” adds Alan Barr, a professor of particle physics at the University of Oxford, and lead scientist of the Higgs Hunters project. “To do that, we’d like you to look at these pictures of collisions and tell us what you can see.”

    The project scientists are searching for previously unobserved microscopic particles that might be created when the Higgs Boson particle decays. The new particles are predicted to leave tell-tale tracks inside the ATLAS experiment, which computer programs find difficult to identify, but which human eyes can often pick out.

    A successful detection would be a huge leap forward for particle physics, researchers say, as any new particles would lie beyond the “Standard Model” – the current best theory of the fundamental constituents of the universe.

    sm
    The Standard Model of elementary particles, with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    For more, please visit http://www.higgshunters.org .

    The project was funded by a Google Global Impact Award, the Science and Technology Research Council of the United Kingdom, and the National Science Foundation, which supports ATLAS work at NYU that includes research and education.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About Phys.org in 100 Words

    Phys.org™ (formerly Physorg.com) is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004, Phys.org’s readership has grown steadily to include 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: