Tagged: NYT Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:46 am on October 18, 2017 Permalink | Reply
    Tags: , , , NYT   

    From NYT: “How Dennis Overbye Makes Space-Time Relatable” 

    New York Times

    The New York Times

    OCT. 17, 2017
    RAILLAN BROOKS

    1
    Dennis Overbye, a Times science reporter, inside the Large Hadron Collider in Switzerland. No image credit.

    Dennis Overbye, The New York Times’s cosmic affairs correspondent, has never owned a telescope. They were of little use in the cloudy environs of Mercer Island, Wash., where he grew up.

    Instead, his interest in science began, as it did for many who came of age immersed in the starward ambitions of the space age, with science fiction. There were the paperbacks by Arthur C. Clarke, Isaac Asimov and Robert Heinlein — “that whole crew who had imagined the future of the human race as I saw it now being played out by Sputnik and Apollo,” Mr. Overbye said.

    In the nearly 20 years he has worked for The Times, Mr. Overbye has similarly tried to nourish the imaginations of others. “My job as I see it is to relate people to the universe they live in,” he said. “It’s kind of everybody’s business what the universe is and what it means to be here.”

    He has covered the discovery of planets beyond our sun; the detection of fundamental particles and the gravitational waves created by colliding black holes; and dark energy, the mysterious and inscrutable substance that makes up 70 percent of the universe and may very well determine its destiny. Earlier this week, Mr. Overbye wrote about the first collision of neutron stars ever observed. “I don’t look at page views,” he said. “Very little of what I write about moves the markets.”

    Still, Mr. Overbye’s stories often live where the earthly meets the cosmic. His first book, “Lonely Hearts of the Cosmos,” recounts the birth of cosmology through the personal dramas of its founders and was nominated for the National Book Critics Circle Award in 1991. And in 2014, he was named a Pulitzer Prize finalist for his reporting on the race to discover the Higgs boson, which focused on the lives of just a handful of the thousands of scientists swept up in the search for “the God particle.”

    Once Mr. Overbye identifies a story, he said, the work is in putting it in terms people can understand. “Metaphors are very important to the way I write,” he said. The results are vivid descriptions that surpass mere translation. Einstein’s epiphany that space-time is distorted by gravity, for instance, renders the universe as “the ultimate sagging mattress,” and elementary particles derive mass from the Higgs boson “the way politicians draw succor from cheers and handshakes at the rope line.”

    “I once compared the Milky Way galaxy to a piñata that the Kepler spacecraft had whacked and hundreds or thousands of new planets had fallen out,” Mr. Overbye said.

    Sometimes the effect can be rhapsodic. Astronomers on Monday announced the first detection of a kilonova, the collision of hyperdense dead stars thought to be responsible for creating many of the heavier elements in the universe, including gold, silver, platinum and uranium. As Mr. Overbye describes it: “All the atoms in your wedding band, in the pharaoh’s treasures and the bombs that destroyed Hiroshima and still threaten us all, so the story goes, have been formed in cosmic gong shows that reverberated across the heavens.”

    Yet although it may seem that scientists are observing novel celestial events all the time, the pace of paradigm-shifting discoveries in cosmology has begun to slow; these days experimental results rarely shake theory off its foundations. (In June, Mr. Overbye reported on the existential crisis facing scientists at the Large Hadron Collider, where the Higgs boson was detected five years ago, now that one of particle physics’s biggest mysteries has essentially been licked.)

    “Huge discoveries are not moving the field,” said Jim Glanz, an investigative reporter at The Times who started on the Science desk under Mr. Overbye. As a result, Mr. Glanz described this moment in science journalism as a doldrums, which might tempt many to overstate the incremental or obscure. But not Mr. Overbye. “Dennis doesn’t like to pull a rabbit out of a hat,” Mr. Glanz said. “He’s writing ‘War and Peace.’ The disappointments have to be as dramatized as breakthroughs.”

    It is a reality in which Mr. Overbye feels perfectly comfortable. In fact, he prefers to think of himself as “an evangelist of Cosmic Ignorance” — that we haven’t even learned the right questions to ask yet. As he put it in the preface to “Lonely Hearts”: “Science, inching along by trial-and-error and by doubt, is a graveyard of final answers.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Advertisements
     
  • richardmitnick 11:36 am on October 18, 2017 Permalink | Reply
    Tags: , , NYT, ,   

    From NYT: “A Surprise From the Supervolcano Under Yellowstone” 

    New York Times

    The New York Times

    OCT. 10, 2017
    SHANNON HALL

    1
    The Grand Prismatic Spring in Yellowstone National Park, a large hot spring known for its vibrant coloration. Beneath the park is a powerful supervolcano which drives the spring and other geological activity. Credit Marie-Louise Mandl/EyeEm, via Getty Images.

    Beneath Yellowstone National Park lies a supervolcano, a behemoth far more powerful than your average volcano. It has the ability to expel more than 1,000 cubic kilometers of rock and ash at once — 2,500 times more material than erupted from Mount St. Helens in 1980, which killed 57 people. That could blanket most of the United States in a thick layer of ash and even plunge the Earth into a volcanic winter.

    Yellowstone’s last supereruption occurred 631,000 years ago. And it’s not the planet’s only buried supervolcano. Scientists suspect that a supereruption scars the planet every 100,000 years, causing many to ask when we can next expect such an explosive planet-changing event.

    To answer that question, scientists are seeking lessons from Yellowstone’s past. And the results have been surprising. They show that the forces that drive these rare and violent events can move much more rapidly than volcanologists previously anticipated.

    The early evidence, presented at a recent volcanology conference, shows that Yellowstone’s most recent supereruption was sparked when new magma moved into the system only decades before the eruption. Previous estimates assumed that the geological process that led to the event took millenniums to occur.

    To reach that conclusion, Hannah Shamloo, a graduate student at Arizona State University, and her colleagues spent weeks at Yellowstone’s Lava Creek Tuff — a fossilized ash deposit from its last supereruption. There, they hauled rocks under the heat of the sun to gather samples, occasionally suspending their work when a bison or a bear roamed nearby.

    Ms. Shamloo later analyzed trace crystals in the volcanic leftovers, allowing her to pin down changes before the supervolcano’s eruption. Each crystal once resided within the vast, seething ocean of magma deep underground. As the crystals grew outward, layer upon layer, they recorded changes in temperature, pressure and water content beneath the volcano, much like a set of tree rings.

    “We expected that there might be processes happening over thousands of years preceding the eruption,” said Christy Till, a geologist at Arizona State, and Ms. Shamloo’s dissertation adviser. Instead, the outer rims of the crystals revealed a clear uptick in temperature and a change in composition that occurred on a rapid time scale. That could mean the supereruption transpired only decades after an injection of fresh magma beneath the volcano.

    The time scale is the blink of an eye, geologically speaking. It’s even shorter than a previous study that found that another ancient supervolcano beneath California’s Long Valley caldera awoke hundreds of years before its eruption. As such, scientists are just now starting to realize that the conditions that lead to supereruptions might emerge within a human lifetime.

    “It’s shocking how little time is required to take a volcanic system from being quiet and sitting there to the edge of an eruption,” said Ms. Shamloo, though she warned that there’s more work to do before scientists can verify a precise time scale.

    Kari Cooper, a geochemist at the University of California, Davis who was not involved in the research, said Ms. Shamloo and Dr. Till’s research offered more insights into the time frames of supereruptions, although she is not yet convinced that scientists can pin down the precise trigger of the last Yellowstone event. Geologists must now figure out what kick-starts the rapid movements leading up to supereruptions.

    “It’s one thing to think about this slow gradual buildup — it’s another thing to think about how you mobilize 1,000 cubic kilometers of magma in a decade,” she said.

    As the research advances, scientists hope they will be able to spot future supereruptions in the making. The odds of Yellowstone, or any other supervolcano, erupting anytime soon are small. But understanding the largest eruptions can only help scientists better understand, and therefore forecast, the entire spectrum of volcanic eruptions — something that Dr. Cooper thinks will be possible in a matter of decades.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 2:10 pm on October 14, 2017 Permalink | Reply
    Tags: , , Fraud Scandals Sap China’s Dream of Becoming a Science Superpower, NYT   

    From NYT: “Fraud Scandals Sap China’s Dream of Becoming a Science Superpower” 

    New York Times

    The New York Times

    OCT. 13, 2017
    AMY QIN

    1
    A plastic surgery procedure at a hospital in Shanghai in August. Under President Xi Jinping, China has set a goal of becoming “a global scientific and technology power” by 2049. Credit Chandan Khanna/Agence France-Presse — Getty Images

    Having conquered world markets and challenged American political and military leadership, China has set its sights on becoming a global powerhouse in a different field: scientific research. It now has more laboratory scientists than any other country, outspends the entire European Union on research and development, and produces more scientific articles than any other nation except the United States.

    But in its rush to dominance, China has stood out in another, less boastful way. Since 2012, the country has retracted more scientific papers because of faked peer reviews than all other countries and territories put together, according to Retraction Watch, a blog that tracks and seeks to publicize retractions of research papers.

    Now, a recent string of high-profile scandals over questionable or discredited research has driven home the point in China that to become a scientific superpower, it must first overcome a festering problem of systemic fraud.

    “China wants to become a global leader in science,” said Zhang Lei, a professor of applied physics at Xi’an Jiaotong University. “But how do you achieve that and still preserve the quality of science? We still haven’t figured out how to do that yet.”

    In April, a scientific journal retracted 107 biology research papers, the vast majority of them written by Chinese authors, after evidence emerged that they had faked glowing reviews of their articles. Then, this summer, a Chinese gene scientist who had won celebrity status for breakthroughs once trumpeted as Nobel Prize-worthy was forced to retract his research when other scientists failed to replicate his results.

    At the same time, a government investigation highlighted the existence of a thriving online black market that sells everything from positive peer reviews to entire research articles.

    President Xi Jinping, whose leadership is expected to be reaffirmed at a Communist Party congress that begins next week, has stated his goal of turning China into “a global scientific and technology power” by 2049. But the revelations have been a setback to this effort.

    China has, of course, made enormous strides in science, research and technology. Worried that its economy is still too dependent on low-end manufacturing, the government is investing hundreds of billions of dollars in developing high-tech industries like semiconductors, solar panels, artificial intelligence, medical technologies and electric cars.

    China has built extensive infrastructure across the country, with roads, railroads, ports and bridges that exhibit enviable engineering prowess. And it has reshaped many other parts of the world by exporting its expertise, offering it yet another way to drive its rapid economic growth.

    But it has also endured problems of piracy and poor quality that have plagued its economic rise, blemishing what has been an otherwise dramatic entry into the ranks of the world’s leading scientific nations.

    China has made inroads partly because of its willingness to invest in new research at a time when such spending has stagnated in countries like the United States and Japan. The government in Beijing has poured the equivalent of billions of dollars into new projects in order to catch up with the West in producing original research, and also reverse decades of scientific brain drain by luring home top Western-trained Chinese researchers.

    2
    Many Chinese universities offer generous research grants and salary bonuses to faculty who get published in prestigious scientific journals. Credit Kevin Frayer/Getty Images

    “The state needs the strategic support of science and technology more urgently than any other time in the past,” Mr. Xi said last year in announcing the 2049 goal. “The situation that our country is under others’ control in core technologies of key fields has not changed.”

    Now there are worries that persistent problems of academic fraud and lax standards exposed by the recent scandals could slow China’s ascent.

    Scandals over faked research results have shaken many countries, including Japan, the United States and South Korea. But fraud appears to be especially widespread in Chinese academic institutions, as seen in the large number of retracted articles and faked peer reviews.

    In part, these numbers may simply reflect the enormous scale of the world’s most populous nation. But Chinese scientists also blame what they call the skewed incentives they say are embedded within their nation’s academic system.

    As in the West, career advancement can often seem to be based more on the quantity of research papers published rather than the quality. However, in China, scientists there say, this obsession with numerical goal posts can reach extremes. Compounding the problem, they say, is the fact that Chinese universities and research institutes suffer from a lack of oversight, and mete out weak punishments for those who are caught cheating.

    Put these together and the result is an academic system that is willing to wink at ethical lapses, they say.

    “In America, if you purposely falsify data, then your career in academia is over,” Professor Zhang said. “But in China, the cost of cheating is very low. They won’t fire you. You might not get promoted immediately, but once people forget, then you might have a chance to move up.”

    Some scientists say China’s overemphasis on numerical measures of success can be seen in its almost single-minded focus on the Science Citation Index, or S.C.I. This index is used to assign an “impact factor” score to scientific journals, which ranks their importance in part by counting how many times their articles are cited in other papers.

    Getting an article published in a high-ranking journal can lead to career promotions and monetary rewards. Many Chinese universities offer hefty research grants and salary bonuses to faculty members who get published in journals with high impact factors. In June, Sichuan Agricultural University in Ya’an awarded a group of researchers about $2 million in funding after members got a paper published in the academic journal Cell.

    “Everything revolves around the S.C.I.,” said Chen Li, a professor in the medical school at Fudan University in Shanghai. He and other scientists compared Chinese academia’s obsession with this numerical index to the government’s fixation on gross domestic product as a measure of economic success.

    “Sometimes we joke that to evaluate faculty in China, all you need is a primary school kid who can do addition,” Professor Chen said. “Just add up the impact factors of the different journals.”

    One result has been increasingly elaborate schemes for getting papers into prestigious journals. These include the use of faked peer reviews, a practice that came under strict scrutiny following the retraction of 107 biology papers last spring — the largest such mass retraction by a single journal in history. Many of those authors were clinical doctors, who in China face intense pressure to publish.

    They took advantage of the fact that many scholarly journals rely on evaluations by other scientists in the same field in deciding whether to publish a paper. Some journals — including Tumor Biology, which retracted the 107 articles — go so far as to ask the authors themselves to suggest peers to write these reviews, a fact that critics say opened the door to fraud.

    In Tumor Biology’s case, government investigators found that many of the authors had submitted the names of real researchers, but with fabricated email addresses. This apparently allowed the authors, or more often writers hired by the authors, to pose as academic peers, and write positive reviews that would help get their own papers published.

    According to an investigation led by the country’s Ministry of Science and Technology, Chinese researchers used such methods to manipulate the peer-review process in 101 out of the 107 retracted articles. In many cases, government investigators said authors had gone online to hire people to write professional-sounding reviews.

    A recent search revealed a teeming, illicit trade in faked peer reviews. A search for the term “help publishing papers” on Taobao, a popular Chinese e-commerce site, yielded a long list of sellers who offered services ranging from faked peer reviews to entire scientific papers already written and ready to submit. Depending on the service, they charge from a few hundred dollars up to $10,000.

    “We have helped professors of all backgrounds,” one seller wrote through Taobao’s chat function. “Don’t worry, we’ll keep it a secret.”

    Fang Shimin, a prominent muckraking blogger, said: “The fraud techniques have become more sophisticated. They’re not as easy to uncover.”

    Over all, experts say, there are signs that the academic environment in China is improving. Plagiarism appears to be in decline thanks to new detection tools, and Chinese-born researchers returning from universities overseas have brought back best practices, helping to raise ethical standards.

    But the pressure to produce original, groundbreaking research remains. Many say that appears to have been the case with Han Chunyu, a scientist at Hebei University of Science and Technology who made a big splash last year by claiming that he had found a new way to edit human genes — a technique that could one day make it possible to eliminate hereditary diseases, or allow parents to tailor their unborn children’s height or I.Q.

    The claim, contained in a paper published in the journal Nature Biotechnology, made Mr. Han an overnight celebrity. The local government even offered to build a $32 million gene-editing research center at his university, which he would run.

    Then, late last year, other scientists began reporting failures replicating Mr. Han’s results. Facing mounting pressure, he and his co-authors finally retracted the paper, though they have since vowed to clear their names.

    “When it comes to research culture and academic integrity, it all depends on self-discipline,” said Zhang Yuehong, editor of the Journal of Zhejiang University, who has studied the problem of plagiarism in research articles. “We need to work harder to develop a culture of integrity.”

    Karoline Kan contributed research.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 9:01 pm on July 21, 2017 Permalink | Reply
    Tags: , Messier 13, , NYT, , The Arecibo message,   

    From NYT: “Greetings, E.T. (Please Don’t Murder Us.)” 

    New York Times

    The New York Times

    JUNE 28, 2017
    STEVEN JOHNSON

    A new initiative to beam messages into space may be
    our best shot yet at learning whether we’re alone in the
    universe. There’s just one problem: What if we’re not?

    On Nov. 16, 1974, a few hundred astronomers, government officials and other dignitaries gathered in the tropical forests of Puerto Rico’s northwest interior, a four-hour drive from San Juan. The occasion was a rechristening of the Arecibo Observatory, at the time the largest radio telescope in the world.

    NAIC/Arecibo Observatory, Puerto Rico, USA

    The mammoth structure — an immense concrete-and-aluminum saucer as wide as the Eiffel Tower is tall, planted implausibly inside a limestone sinkhole in the middle of a mountainous jungle — had been upgraded to ensure its ability to survive the volatile hurricane season and to increase its precision tenfold.

    To celebrate the reopening, the astronomers who maintained the observatory decided to take the most sensitive device yet constructed for listening to the cosmos and transform it, briefly, into a machine for talking back. After a series of speeches, the assembled crowd sat in silence at the edge of the telescope while the public-address system blasted nearly three minutes of two-tone noise through the muggy afternoon heat. To the listeners, the pattern was indecipherable, but somehow the experience of hearing those two notes oscillating in the air moved many in the crowd to tears.

    That 168 seconds of noise, now known as the Arecibo message, was the brainchild of the astronomer Frank Drake, then the director of the organization that oversaw the Arecibo facility.

    1
    Frank Drake

    The broadcast marked the first time a human being had intentionally transmitted a message targeting another solar system. The engineers had translated the missive into sound, so that the assembled group would have something to experience during the transmission. But its true medium was the silent, invisible pulse of radio waves, traveling at the speed of light.

    It seemed to most of the onlookers to be a hopeful act, if a largely symbolic one: a message in a bottle tossed into the sea of deep space. But within days, the Royal Astronomer of England, Martin Ryle, released a thunderous condemnation of Drake’s stunt. By alerting the cosmos of our existence, Ryle wrote, we were risking catastrophe. Arguing that ‘‘any creatures out there [might be] malevolent or hungry,’’ Ryle demanded that the International Astronomical Union denounce Drake’s message and explicitly forbid any further communications. It was irresponsible, Ryle fumed, to tinker with interstellar outreach when such gestures, however noble their intentions, might lead to the destruction of all life on earth.

    Today, more than four decades later, we still do not know if Ryle’s fears were warranted, because the Arecibo message is still eons away from its intended recipient, a cluster of roughly 300,000 stars known as Messier 13. If you find yourself in the Northern Hemisphere this summer on a clear night, locate the Hercules constellation in the sky, 21 stars that form the image of a man, arms outstretched, perhaps kneeling. Imagine hurtling 250 trillion miles toward those stars. Though you would have traveled far outside our solar system, you would only be a tiny fraction of the way to Messier 13. But if you were somehow able to turn on a ham radio receiver and tune it to 2,380 MHz, you might catch the message in flight: a long series of rhythmic pulses, 1,679 of them to be exact, with a clear, repetitive structure that would make them immediately detectable as a product of intelligent life.

    In its intended goal of communicating with life-forms outside our planet, the Arecibo message has surprisingly sparse company. Perhaps the most famous is housed aboard the Voyager 1 spacecraft — a gold-plated audiovisual disc, containing multilingual greetings and other evidence of human civilization — which slipped free of our solar system just a few years ago, traveling at a relatively sluggish 35,000 miles per hour. By contrast, at the end of the three-minute transmission of the Arecibo message, its initial pulses had already reached the orbit of Mars. The entire message took less than a day to leave the solar system.

    NASA/Voyager 1

    8
    Voyager – The Interstellar Mission. THE GOLDEN RECORD.

    True, some signals emanating from human activity have traveled much farther than even Arecibo, thanks to the incidental leakage of radio and television broadcasts. This was a key plot point in Carl Sagan’s novel, ‘‘Contact,’’ which imagined an alien civilization detecting the existence of humans through early television broadcasts from the Berlin Olympic Games, including clips of Hitler speaking at the opening ceremony.

    9

    Those grainy signals of Jesse Owens, and later of Howdy Doody and the McCarthy hearings, have ventured farther into space than the Arecibo pulses. But in the 40 years since Drake transmitted the message, just over a dozen intentional messages have been sent to the stars, most of them stunts of one fashion or another, including one broadcast of the Beatles’ ‘‘Across the Universe’’ to commemorate the 40th anniversary of that song’s recording. (We can only hope the aliens, if they exist, receive that message before they find the Hitler footage.)

    In the age of radio telescopes, scientists have spent far more energy trying to look for signs that other life might exist than they have signaling the existence of our own. Drake himself is now more famous for inaugurating the modern search for extraterrestrial intelligence (SETI) nearly 60 years ago, when he used a telescope in West Virginia to scan two stars for structured radio waves. Today the nonprofit SETI Institute oversees a network of telescopes and computers listening for signs of intelligence in deep space.

    SETI Institute

    SETI/Allen Telescope Array situated at the Hat Creek Radio Observatory, 290 miles (470 km) northeast of San Francisco, California, USA

    A new SETI-like project called Breakthrough Listen, funded by a $100 million grant from the Russian billionaire Yuri Milner, promises to radically increase our ability to detect signs of intelligent life.

    Breakthrough Listen Project

    1

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA



    GBO radio telescope, Green Bank, West Virginia, USA


    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia

    As a species, we are gathered around more interstellar mailboxes than ever before, waiting eagerly for a letter to arrive. But we have, until recently, shown little interest in sending our own.

    Now this taciturn phase may be coming to an end, if a growing multidisciplinary group of scientists and amateur space enthusiasts have their way. A newly formed group known as METI (Messaging Extra Terrestrial Intelligence), led by the former SETI scientist Douglas Vakoch, is planning an ongoing series of messages to begin in 2018.

    9
    METI (Messaging Extraterrestrial Intelligence) International has announced plans to start sending signals into space

    And Milner’s Breakthrough Listen endeavor has also promised to support a ‘‘Breakthrough Message’’ companion project, including an open competition to design the messages that we will transmit to the stars. But as messaging schemes proliferate, they have been met with resistance. The intellectual descendants of Martin Ryle include luminaries like Elon Musk and Stephen Hawking, and they caution that an assumption of interstellar friendship is the wrong way to approach the question of extraterrestrial life. They argue that an advanced alien civilization might well respond to our interstellar greetings with the same graciousness that Cortés showed the Aztecs, making silence the more prudent option.

    If you believe that these broadcasts have a plausible chance of making contact with an alien intelligence, the choice to send them must rank as one of the most important decisions we will ever make as a species. Are we going to be galactic introverts, huddled behind the door and merely listening for signs of life outside? Or are we going to be extroverts, conversation-starters? And if it’s the latter, what should we say?

    Amid the decommissioned splendor of Fort Mason, on the northern edge of San Francisco, sits a bar and event space called the Interval. It’s run by the Long Now Foundation, an organization founded by Stewart Brand and Brian Eno, among others, to cultivate truly long-term thinking. The group is perhaps most famous for its plan to build a clock that will successfully keep time for 10,000 years. Long Now says the San Francisco space is designed to push the mind away from our attention-sapping present, and this is apparent from the 10,000-year clock prototypes to the menu of ‘‘extinct’’ cocktails.

    The Interval seemed like a fitting backdrop for my first meeting with Doug Vakoch, in part because Long Now has been advising METI on its message plans and in part because the whole concept of sending interstellar messages is the epitome of long-term decision-making. The choice to send a message into space is one that may well not generate a meaningful outcome for a thousand years, or a hundred thousand. It is hard to imagine any decision confronting humanity that has a longer time horizon.

    As Vakoch and I settled into a booth, I asked him how he found his way to his current vocation. ‘‘I liked science when I was a kid, but I couldn’t make up my mind which science,’’ he told me. Eventually, he found out about a burgeoning new field of study known as exobiology, or sometimes astrobiology, that examined the possible forms life could take on other planets. The field was speculative by nature: After all, its researchers had no actual specimens to study. To imagine other forms of life in the universe, exobiologists had to be versed in the astrophysics of stars and planets; the chemical reactions that could capture and store energy in these speculative organisms; the climate science that explains the weather systems on potentially life-compatible planets; the biological forms that might evolve in those different environments. With exobiology, Vakoch realized, he didn’t have to settle on one discipline: ‘‘When you think about life outside the earth, you get to dabble in all of them.’’

    As early as high school, Vakoch began thinking about how you might communicate with an organism that had evolved on another planet, the animating question of a relatively obscure subfield of exobiology known as exosemiotics. By the time Vakoch reached high school in the 1970s, radio astronomy had advanced far enough to turn exosemiotics from a glorified thought experiment into something slightly more practical. Vakoch did a science-fair project on interstellar languages, and he continued to follow the field during his college years, even as he was studying comparative religion at Carleton College in Minnesota. ‘‘The issue that really hit me early on, and that has stayed with me, is just the challenge of creating a message that would be understandable,’’ Vakoch says. Hedging his bets, he pursued a graduate degree in clinical psychology, thinking it might help him better understand the mind of some unknown organism across the universe. If the exosemiotics passion turned out to be a dead end professionally, he figured that he could always retreat back to a more traditional career path as a psychologist.

    During Vakoch’s graduate years, SETI was transforming itself from a NASA program sustained by government funding to an independent nonprofit organization, supported in part by the new fortunes of the tech sector. Vakoch moved to California and joined SETI in 1999. In the years that followed, Vakoch and other scientists involved in the program grew increasingly vocal in their argument for sending messages as well as listening for them. The ‘‘passive’’ approach was essential, they argued, but an ‘‘active’’ SETI — one targeting nearby star systems with high-powered radio signals — would increase the odds of contact. Concerned that embracing an active approach would imperil its funding, the SETI board resisted Vakoch’s efforts. Eventually Vakoch decided to form his own international organization, METI, with a multidisciplinary team that includes the former NASA chief historian Steven J. Dick, the French science historian Florence Raulin Cerceau, the Indian ecologist Abhik Gupta and the Canadian anthropologist Jerome H. Barkow.

    The newfound interest in messaging has been piqued in large part by an explosion of newly discovered planets. We now know that the universe is teeming with planets occupying what exobiologists call ‘‘the Goldilocks zone’’: not too hot and not too cold, with ‘‘just right’’ surface temperatures capable of supporting liquid water. At the start of Drake’s career in the 1950s, not a single planet outside our solar system had been observed. Today we can target a long list of potential Goldilocks-zone planets, not just distant clusters of stars. ‘‘Now we know that virtually all stars have planets,’’ Vakoch says, adding that, of these stars, ‘‘maybe one out of five have potentially habitable planets. So there’s a lot of real estate that could be inhabited.’’

    When Frank Drake and Carl Sagan first began thinking about message construction in the 1960s, their approach was genuinely equivalent to the proverbial message in a bottle. Now, we may not know the exact addresses of planets where life is likely, but we have identified many promising ZIP codes. The recent discovery of the Trappist-1 planets, three of which are potentially habitable, triggered such excitement in part because those planets were, relatively speaking, so close to home: just 40 light-years from Earth.

    The TRAPPIST-1 star, an ultracool dwarf, is orbited by seven Earth-size planets (NASA).

    If the Arecibo message does somehow find its way to an advanced civilization in Messier 13, word would not come back for at least 50,000 years. But a targeted message sent to Trappist-1 could generate a reply before the end of the century.

    Frank Drake is now 87 and lives with his wife in a house nestled in an old-growth redwood forest, at the end of a narrow, winding road in the hills near Santa Cruz. His circular driveway wraps around the trunk of a redwood bigger than a pool table. As I left my car, I found myself thinking again of the long now: a man who sends messages with a potential life span of 50,000 years, living among trees that first took root a millennium ago.

    Drake has been retired for more than a decade, but when I asked him about the Arecibo message, his face lit up at the memory. ‘‘We had just finished a very big construction project at Arecibo, and I was director then, and so they said, ‘Can you please arrange a big ceremony?’ ’’ he recalled. ‘‘We had to have some kind of eye-catching event for this ceremony. What could we do that would be spectacular? We could send a message!’’

    But how can you send a message to a life-form that may or may not exist and that you know nothing at all about, other than the fact that it evolved somewhere in the Milky Way? You need to start by explaining how the message is supposed to be read, which is known in exosemiotics as the ‘‘primer.’’ You don’t need a primer on Earth: You point to a cow, and you say, ‘‘Cow.’’ The plaques that NASA sent into space with Pioneer and Voyager had the advantage of being physical objects that could convey visual information, which at least enables you to connect words with images of the objects they refer to. In other words, you draw a cow and then put the word ‘‘cow’’ next to the drawing and slowly, with enough pointing, a language comes into view. But physical objects can’t be moved fast enough to get to a potential recipient in useful time scales. You need electromagnetic waves if you want to reach across the Milky Way.

    But how do you point to something with a radio wave? Even if you figured out a way to somehow point to a cow with electromagnetic signals, the aliens aren’t going to have cows in their world, which means the reference will most likely be lost on them. Instead, you need to think hard about the things that our hypothetical friends in the Trappist-1 system will have in common with us. If their civilization is advanced enough to recognize structured data in radio waves, they must share many of our scientific and technological concepts. If they are hearing our message, that means they are capable of parsing structured disturbances in the electromagnetic spectrum, which means they understand the electromagnetic spectrum in some meaningful way.

    The trick, then, is just getting the conversation started. Drake figured that he could count on intelligent aliens possessing the concept of simple numbers: one, three, 10, etc. And if they have numbers, then they will also very likely have the rest of what we know as basic math: addition, subtraction, multiplication, division. Furthermore, Drake reasoned, if they have multiplication and division, then they are likely to understand the concept of prime numbers — the group of numbers that are divisible only by themselves and one. (In ‘‘Contact,’’ the intercepted alien message begins with a long string of primes: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, and so on.) Many objects in space, like pulsars, send out radio signals with a certain periodicity: flashes of electromagnetic activity that switch on and off at regular rates. Primes, however, are a telltale sign of intelligent life. ‘‘Nature never uses prime numbers,’’ Drake says. ‘‘But mathematicians do.’’

    Drake’s Arecibo message drew upon a close relative of the prime numbers to construct its message. He chose to send exactly 1,679 pulses, because 1,679 is a semiprime number: a number that can be formed only by multiplying two prime numbers together, in this case 73 and 23. Drake used that mathematical quirk to turn his pulses of electromagnetic energy into a visual system. To simplify his approach, imagine I send you a message consisting of 10 X’s and 5 O’s: XOXOXXXXOXXOXOX. You notice that the number 15 is a semi-prime number, and so you organize the symbols in a 3-by-5 grid and leave the O’s as blank spaces. The result is this:

    4

    If you were an English speaker, you might just recognize a greeting in that message, the word ‘‘HI’’ mapped out using only a binary language of on-and-off states.

    Drake took the same approach, only using a much larger semiprime, which gave him a 23-by-73 grid to send a more complicated message. Because his imagined correspondents in Messier 13 were not likely to understand any human language, he filled the grid with a mix of mathematical and visual referents. The top of the grid counted from one to 10 in binary code — effectively announcing to the aliens that numbers will be represented using these symbols.

    Having established a way of counting, Drake then moved to connect the concept of numbers to some reference that the citizens of Messier 13 would likely share with us. For this step, he encoded the atomic numbers for five elements: hydrogen, carbon, nitrogen, oxygen and phosphorous, the building blocks of DNA. Other parts of the message were more visually oriented. Drake used the on-off pulses of the radio signal to ‘‘draw’’ a pixelated image of a human body. He also included a sketch of our solar system and of the Arecibo telescope itself. The message said, in effect: This is how we count; this is what we are made of; this is where we came from; this is what we look like; and this is the technology we are using to send this message to you.

    As inventive as Drake’s exosemiotics were in 1974, the Arecibo message was ultimately more of a proof-of-concept than a genuine attempt to make contact, as Drake himself is the first to admit. For starters, the 25,000 light-years that separate us from Messier 13 raise a legitimate question about whether humans will even be around — or recognizably human — by the time a message comes back. The choice of where to send it was almost entirely haphazard. The METI project intends to improve on the Arecibo model by directly targeting nearby Goldilocks-zone planets.

    One of the most recent planets added to that list orbits the star Gliese 411, a red dwarf located eight light-years away from Earth.

    On a spring evening in the Oakland hills, our own sun putting on a spectacular display as it slowly set over the Golden Gate Bridge, Vakoch and I met at one of the observatories at the Chabot Space and Science Center to take a peek at Gliese 411. A half moon overhead reduced our visibility but not so much that I couldn’t make out the faint tangerine glimmer of the star, a single blurred point of light that had traveled nearly 50 trillion miles across the universe to land on my retina. Even with the power of the Oakland telescope, there was no way to spot a planet orbiting the red dwarf. But in February of this year, a team of researchers using the Keck I telescope at the top of Mauna Kea in Hawaii announced that they had detected a ‘‘super-earth’’ in orbit around Gliese, a rocky and hot planet larger than our own.

    Keck Observatory, Maunakea, Hawaii, USA

    11
    Artist’s conceptions of the probable planet orbiting a star called GJ 411. Credit: Ricardo Ramirez.

    The METI group aims to improve on the Arecibo message not just by targeting specific planets, like that super-earth orbiting Gliese, but also by rethinking the nature of the message itself. ‘‘Drake’s original design plays into the bias that vision is universal among intelligent life,’’ Vakoch told me. Visual diagrams — whether formed through semiprime grids or engraved on plaques — seem like a compelling way to encode information to us because humans happen to have evolved an unusually acute sense of vision. But perhaps the aliens followed a different evolutionary path and found their way to a technologically advanced civilization with an intelligence that was rooted in some other sense: hearing, for example, or some other way of perceiving the world around them for which there is no earthly equivalent.

    Like so much of the SETI/METI debate, the question of visual messaging quickly spirals out into a deeper meditation, in this instance on the connection between intelligence and visual acuity. It is no accident that eyes developed independently so many times over the course of evolution on Earth, given the fact that light conveys information faster than any other conduit. That transmission-speed advantage would presumably apply on other planets in the Goldilocks zone, even if they happened to be on the other side of the Milky Way, and so it seems plausible that intelligent creatures would evolve some sort of visual system as well.

    But even more universal than sight would be the experience of time. Hans Freudenthal’s Lincos: Design of a Language for Cosmic Intercourse, a seminal book of exosemiotics published more than a half-century ago, relied heavily on temporal cues in its primer stage. Vakoch and his collaborators have been working with Freudenthal’s language in their early drafts for the message. In Lincos, duration is used as a key building block. A pulse that lasts for a certain stretch (say, in human terms, one second) is followed by a sequence of pulses that signify the ‘‘word’’ for one; a pulse that lasts for six seconds is followed by the word for six. The words for basic math properties can be conveyed by combining pulses of different lengths. You might demonstrate the property of addition by sending the word for ‘‘three’’ and ‘‘six’’ and then sending a pulse that lasts for nine seconds. ‘‘It’s a way of being able to point at objects when you don’t have anything right in front of you,’’ Vakoch explains.

    Other messaging enthusiasts think we needn’t bother worrying about primers and common referents. ‘‘Forget about sending mathematical relationships, the value of pi, prime numbers or the Fibonacci series,’’ the senior SETI astronomer, Seth Shostak, argued in a 2009 book.

    SETI astronomer Seth Shostak

    ‘‘No, if we want to broadcast a message from Earth, I propose that we just feed the Google servers into the transmitter. Send the aliens the World Wide Web. It would take half a year or less to transmit this in the microwave; using infrared lasers shortens the transmit time to no more than two days.’’ Shostak believes that the sheer magnitude of the transmitted data would enable the aliens to decipher it. There is some precedent for this in the history of archaeologists studying dead languages: The hardest code to crack is one with only a few fragments.

    Sending all of Google would be a logical continuation of Drake’s 1974 message, in terms of content if not encoding. ‘‘The thing about the Arecibo message is that, in a sense, it’s brief but its intent is encyclopedic,’’ Vakoch told me as we waited for the sky to darken in the Oakland hills. ‘‘One of the things that we are exploring for our transmission is the opposite extreme. Rather than being encyclopedic, being selective. Instead of this huge digital data dive, trying to do something elegant. Part of that is thinking about what are the most fundamental concepts we need.’’ There is something provocative about the question Vakoch is wrestling with here: Of all the many manifestations of our achievements as a species, what’s the simplest message we can create that will signal that we’re interesting, worthy of an interstellar reply?

    But to METI’s critics, what he should be worrying about instead is the form that the reply might take: a death ray, or an occupying army.

    6

    Before Doug Vakoch had even filed the papers to form the METI nonprofit organization in July 2015, a dozen or so science-and-tech luminaries, including SpaceX’s Elon Musk, signed a statement categorically opposing the project, at least without extensive further discussion, on a planetary scale. ‘‘Intentionally signaling other civilizations in the Milky Way Galaxy,’’ the statement argued, ‘‘raises concerns from all the people of Earth, about both the message and the consequences of contact. A worldwide scientific, political and humanitarian discussion must occur before any message is sent.’’

    One signatory to that statement was the astronomer and science-fiction author David Brin, who has been carrying on a spirited but collegial series of debates with Vakoch over the wisdom of his project. ‘‘I just don’t think anybody should give our children a fait accompli based on blithe assumptions and assertions that have been untested and not subjected to critical peer review,’’ he told me over a Skype call from his home office in Southern California. ‘‘If you are going to do something that is going to change some of the fundamental observable parameters of our solar system, then how about an environmental-impact statement?’’

    The anti-METI movement is predicated on a grim statistical likelihood: If we do ever manage to make contact with another intelligent life-form, then almost by definition, our new pen pals will be far more advanced than we are. The best way to understand this is to consider, on a percentage basis, just how young our own high-tech civilization actually is. We have been sending structured radio signals from Earth for only the last 100 years. If the universe were exactly 14 billion years old, then it would have taken 13,999,999,900 years for radio communication to be harnessed on our planet. The odds that our message would reach a society that had been tinkering with radio for a shorter, or even similar, period of time would be staggeringly long. Imagine another planet that deviates from our timetable by just a tenth of 1 percent: If they are more advanced than us, then they will have been using radio (and successor technologies) for 14 million years. Of course, depending on where they live in the universe, their signals might take millions of years to reach us. But even if you factor in that transmission lag, if we pick up a signal from another galaxy, we will almost certainly find ourselves in conversation with a more advanced civilization.

    7
    Carl Sagan holding the Pioneer plaque in Boston, in 1972. Credit Jeff Albertson Photograph Collection/UMass Amherst Libraries.

    It is this asymmetry that has convinced so many future-minded thinkers that METI is a bad idea. The history of colonialism here on Earth weighs particularly heavy on the imaginations of the METI critics. Stephen Hawking, for instance, made this observation in a 2010 documentary series: ‘‘If aliens visit us, the outcome would be much as when Columbus landed in America, which didn’t turn out well for the Native Americans.’’ David Brin echoes the Hawking critique: ‘‘Every single case we know of a more technologically advanced culture contacting a less technologically advanced culture resulted at least in pain.’’

    METI proponents counter the critics with two main arguments. The first is essentially that the horse has already left the barn: Given that we have been ‘‘leaking’’ radio waves in the form of Leave It to Beaver and the nightly news for decades, and given that other civilizations are likely to be far more advanced than we are, and thus capable of detecting even weak signals, then it seems likely that we are already visible to extraterrestrials. In other words, they know we’re here, but they haven’t considered us to be worthy of conversation yet. ‘‘Maybe in fact there are a lot more civilizations out there, and even nearby planets are populated, but they’re simply observing us,’’ Vakoch argues. ‘‘It’s as if we are in some galactic zoo, and if they’ve been watching us, it’s like watching zebras talking to one another. But what if one of those zebras suddenly turns toward you and with its hooves starts scratching out the prime numbers. You’d relate to that zebra differently!’’

    Brin thinks that argument dangerously underestimates the difference between a high-power, targeted METI transmission and the passive leakage of media signals, which are far more difficult to detect. ‘‘Think about it this way: If you want to communicate with a Boy Scout camp on the other side of the lake, you could kneel down at the end of the lake and slap the water in Morse code,’’ he says. ‘‘And if they are spectacularly technologically advanced Boy Scouts who happened also to be looking your way, they might build instruments that would be able to parse out your Morse code. But then you whip out your laser-pointer and point it at their dock. That is exactly the order of magnitude difference between picking up [reruns of] ‘I Love Lucy’ from the 1980s, when we were at our noisiest, and what these guys want to do.’’

    METI defenders also argue that the threat of some Klingon-style invasion is implausible, given the distances involved. If, in fact, advanced civilizations were capable of zipping around the galaxy at the speed of light, we would have already encountered them. The much more likely situation is that only communications can travel that fast, and so a malevolent presence on some distant planet will only be able to send us hate mail. But critics think that sense of security is unwarranted. Writing in Scientific American, the former chairman of SETI, John Gertz, argued that ‘‘a civilization with malign intent that is only modestly more advanced than we are might be able to annihilate Earth with ease by means of a small projectile filled with a self-replicating toxin or nano gray goo; a kinetic missile traveling at an appreciable percentage of the speed of light; or weaponry beyond our imagination.’’

    Brin looks to our own technological progress as a sign of where a more advanced civilization might be in terms of interstellar combat: ‘‘It is possible that within just 50 years, we could create an antimatter rocket that could propel a substantial pellet of several kilograms, at half the speed of light at times to intersect with the orbit of a planet within 10 light-years of us.’’ Even a few kilograms colliding at that speed would produce an explosion much greater than the Hiroshima and Nagasaki detonations combined. ‘‘And if we could do that in 50 years, imagine what anybody else could do, completely obeying Einstein and the laws of physics.’’

    Interestingly, Frank Drake himself is not a supporter of the METI efforts, though he does not share Hawking and Musk’s fear of interstellar conquistadors. ‘‘We send messages all the time, free of charge,’’ he says. ‘‘There’s a big shell out there now 80 light-years around us. A civilization only a little more advanced than we are can pick those things up. So the point is we are already sending copious amounts of information.’’ Drake believes that any other advanced civilization out there must be doing the same, so scientists like Vakoch should devote themselves to picking up on that chatter instead of trying to talk back. METI will consume resources, Drake says, that would be ‘‘better spent listening and not sending.’’

    METI critics, of course, might be right about the frightening sophistication of these other, presumably older civilizations but wrong about the likely nature of their response. Yes, they could be capable of sending projectiles across the galaxy at a quarter of the speed of light. But their longevity would also suggest that they have figured out how to avoid self-destruction on a planetary scale. As Steven Pinker has argued, human beings have become steadily less violent over the last 500 years; per capita deaths from military conflict are most likely at an all-time low. Could this be a recurring pattern throughout the universe, played out on much longer time scales: the older a civilization gets, the less warlike it becomes? In which case, if we do get a message to extraterrestrials, then perhaps they really will come in peace.

    These sorts of questions inevitably circle back to the two foundational thought experiments that SETI and METI are predicated upon: the Fermi Paradox and the Drake Equation. The paradox, first formulated by the Italian physicist and Nobel laureate Enrico Fermi, begins with the assumption that the universe contains an unthinkably large number of stars, with a significant percentage of them orbited by planets in the Goldilocks zone. If intelligent life arises on even a small fraction of those planets, then the universe should be teeming with advanced civilizations. And yet to date, we have seen no evidence of those civilizations, even after several decades of scanning the skies through SETI searches. Fermi’s question, apparently raised during a lunch conversation at Los Alamos in the early 1950s, was a simple one: ‘‘Where is everybody?’’

    The Drake Equation is an attempt to answer that question. The equation dates back to one of the great academic retreats in the history of scholarship: a 1961 meeting at the Green Bank observatory in West Virginia, which included Frank Drake, a 26-year-old Carl Sagan and the dolphin researcher (and later psychedelic explorer) John Lilly. During the session, Drake shared his musings on the Fermi Paradox, formulated as an equation. If we start scanning the cosmos for signs of intelligent life, Drake asked, how likely are we to actually detect something? The equation didn’t generate a clear answer, because almost all the variables were unknown at the time and continue to be largely unknown a half-century later. But the equation had a clarifying effect, nonetheless. In mathematical form, it looks like this:

    N= R* x ƒp x ne x ƒl x ƒi x ƒc x L

    N represents the number of extant, communicative civilizations in the Milky Way. The initial variable R* corresponds to the rate of star formation in the galaxy, effectively giving you the total number of potential suns that could support life. The remaining variables then serve as a kind of nested sequence of filters: Given the number of stars in the Milky Way, what fraction of those have planets, and how many of those have an environment that can support life? On those potentially hospitable planets, how often does life itself actually emerge, and what fraction of that life evolves into intelligent life, and what fraction of that life eventually leads to a civilization’s transmitting detectable signals into space? At the end of his equation, Drake placed the crucial variable L, which is the average length of time during which those civilizations emit those signals.

    What makes the Drake Equation so mesmerizing is in part the way it forces the mind to yoke together so many different intellectual disciplines in a single framework. As you move from left to right in the equation, you shift from astrophysics, to the biochemistry of life, to evolutionary theory, to cognitive science, all the way to theories of technological development. Your guess about each value in the Drake Equation winds up revealing a whole worldview: Perhaps you think life is rare, but when it does emerge, intelligent life usually follows; or perhaps you think microbial life is ubiquitous throughout the cosmos, but more complex organisms almost never form. The equation is notoriously vulnerable to very different outcomes, depending on the numbers you assign to each variable.

    The most provocative value is the last one: L, the average life span of a signal-transmitting civilization. You don’t have to be a Pollyanna to defend a relatively high L value. All you need is to believe that it is possible for civilizations to become fundamentally self-sustaining and survive for millions of years. Even if one in a thousand intelligent life-forms in space generates a million-year civilization, the value of L increases meaningfully. But if your L-value is low, that implies a further question: What is keeping it low? Do technological civilizations keep flickering on and off in the Milky Way, like so many fireflies in space? Do they run out of resources? Do they blow themselves up?

    Since Drake first sketched out the equation in 1961, two fundamental developments have reshaped our understanding of the problem. First, the numbers on the left-hand side of the equation (representing the amount of stars with habitable planets) have increased by several orders of magnitude. And second, we have been listening for signals for decades and heard nothing. As Brin puts it: ‘‘Something is keeping the Drake Equation small. And the difference between all the people in the SETI debates is not whether that’s true, but where in the Drake panoply the fault lies.’’

    If the left-hand values keep getting bigger and bigger, the question is which variables on the right-hand side are the filters. As Brin puts it, we want the filter to be behind us, not the one variable, L, that still lies ahead of us. We want the emergence of intelligent life to be astonishingly rare; if the opposite is true, and intelligent life is abundant in the Milky Way, then L values might be low, perhaps measured in centuries and not even millenniums. In that case, the adoption of a technologically advanced lifestyle might be effectively simultaneous with extinction. First you invent radio, then you invent technologies capable of destroying all life on your planet and shortly thereafter you push the button and your civilization goes dark.

    The L-value question explains why so many of METI’s opponents — like Musk and Hawking — are also concerned with the threat of extinction-level events triggered by other potential threats: superintelligent computers, runaway nanobots, nuclear weapons, asteroids. In a low L-value universe, planet-wide annihilation is an imminent possibility. Even if a small fraction of alien civilizations out there would be inclined to shoot a two-kilogram pellet toward us at half the speed of light, is it worth sending a message if there’s even the slightest chance that the reply could result in the destruction of all life on earth?

    Other, more benign, explanations for the Fermi Paradox exist. Drake himself is pessimistic about the L value, but not for dystopian reasons. ‘‘It’s because we’re getting better at technology,’’ he says. The modern descendants of the TV and radio towers that inadvertently sent Elvis to the stars are far more efficient in terms of the power they use, which means the ‘‘leaked’’ signals emanating from Earth are far fainter than they were in the 1950s. In fact, we increasingly share information via fiber optics and other terrestrial conduits that have zero leakage outside our atmosphere. Perhaps technologically advanced societies do flicker on and off like fireflies, but it’s not a sign that they’re self-destructive; it’s just a sign that they got cable.

    But to some METI critics, even a less-apocalyptic interpretation of the Fermi Paradox still suggests caution. Perhaps advanced civilizations tend to reach a point at which they decide, for some unknown reason, that it is in their collective best interest not to transmit any detectable signal to their neighbors in the Milky Way. ‘‘That’s the other answer for the Fermi Paradox,’’ Vakoch says with a smile. ‘‘There’s a Stephen Hawking on every planet, and that’s why we don’t hear from them.’’

    In his California home among the redwoods, Frank Drake has a version of the Arecibo message visually encoded in a very different format: not a series of radio-wave pulses but as a stained-glass window in his living room. A grid of pixels on a cerulean blue background, it almost resembles a game of Space Invaders. Stained glass is an appropriate medium, given the nature of the message: an offering dispatched to unknown beings residing somewhere in the sky.

    There is something about the METI question that forces the mind to stretch beyond its usual limits. You have to imagine some radically different form of intelligence, using only your human intelligence. You have to imagine time scales on which a decision made in 2017 might trigger momentous consequences 10,000 years from now. The sheer magnitude of those consequences challenges our usual measures of cause and effect. Whether you believe that the aliens are likely to be warriors or Zen masters, if you think that METI has a reasonable chance of making contact with another intelligent organism somewhere in the Milky Way, then you have to accept that this small group of astronomers and science-fiction authors and billionaire patrons debating semi-prime numbers and the ubiquity of visual intelligence may in fact be wrestling with a decision that could prove to be the most transformative one in the history of human civilization.

    8
    Frank Drake in front of the National Radio Astronomy Observatory Green Bank 300-foot radio telescope in West Virginia in the mid-1960’s.
    Credit National Radio Astronomy Observatory.

    All of which takes us back to a much more down-to-earth, but no less challenging, question: Who gets to decide? After many years of debate, the SETI community established an agreed-­upon procedure that scientists and government agencies should follow in the event that the SETI searches actually stumble upon an intelligible signal from space. The protocols specifically ordain that ‘‘no response to a signal or other evidence of extraterrestrial intelligence should be sent until appropriate international consultations have taken place.’’ But an equivalent set of guidelines does not yet exist to govern our own interstellar outreach.

    One of the most thoughtful participants in the METI debate, Kathryn Denning, an anthropologist at York University in Toronto, has argued that our decisions about extraterrestrial contact are ultimately more political than scientific. ‘‘If I had to take a position, I’d say that broad consultation regarding METI is essential, and so I greatly respect the efforts in that direction,’’ Denning says. ‘‘But no matter how much consultation there is, it’s inevitable that there will be significant disagreement about the advisability of transmitting, and I don’t think this is the sort of thing where a simple majority vote or even supermajority should carry the day . . . so this keeps bringing us back to the same key question: Is it O.K. for some people to transmit messages at significant power when other people don’t want them to?’’

    In a sense, the METI debate runs parallel to other existential decisions that we will be confronting in the coming decades, as our technological and scientific powers increase. Should we create superintelligent machines that exceed our own intellectual capabilities by such a wide margin that we cease to understand how their intelligence works? Should we ‘‘cure’’ death, as many technologists are proposing? Like METI, these are potentially among the most momentous decisions human beings will ever make, and yet the number of people actively participating in those decisions — or even aware such decisions are being made — is minuscule.

    ‘‘I think we need to rethink the message process so that we are sending a series of increasingly inclusive messages,’’ Vakoch says. ‘‘Any message that we initially send would be too narrow, too incomplete. But that’s O.K. Instead, what we should be doing is thinking about how to make the next round of messages better and more inclusive. We ideally want a way to incorporate both technical expertise — people who have been thinking about these issues from a range of different disciplines — and also getting lay input. I think it’s often been one or the other. One way we can get lay input in a way that makes a difference in terms of message content is to survey people about what sorts of things they would want to say. It’s important to see what the general themes are that people would want to say and then translate those into a Lincos-like message.’’

    When I asked Denning where she stands on the METI issue, she told me: ‘‘I have to answer that question with a question: Why are you asking me? Why should my opinion matter more than that of a 6-year-old girl in Namibia? We both have exactly the same amount at stake, arguably, she more than I, since the odds of being dead before any consequences of transmission occur are probably a bit higher for me, assuming she has access to clean water and decent health care and isn’t killed far too young in war.’’ She continued: ‘‘I think the METI debate may be one of those rare topics where scientific knowledge is highly relevant to the discussion, but its connection to obvious policy is tenuous at best, because in the final analysis, it’s all about how much risk the people of Earth are willing to tolerate. . . . And why exactly should astronomers, cosmologists, physicists, anthropologists, psychologists, sociologists, biologists, sci-fi authors or anyone else (in no particular order), get to decide what those tolerances should be?’’

    Wrestling with the METI question suggests, to me at least, that the one invention human society needs is more conceptual than technological: We need to define a special class of decisions that potentially create extinction-level risk. New technologies (like superintelligent computers) or interventions (like METI) that pose even the slightest risk of causing human extinction would require some novel form of global oversight. And part of that process would entail establishing, as Denning suggests, some measure of risk tolerance on a planetary level. If we don’t, then by default the gamblers will always set the agenda, and the rest of us will have to live with the consequences of their wagers.

    In 2017, the idea of global oversight on any issue, however existential the threat it poses, may sound naïve. It may also be that technologies have their own inevitability, and we can only rein them in for so long: If contact with aliens is technically possible, then someone, somewhere is going to do it soon enough. There is not a lot of historical precedent for humans voluntarily swearing off a new technological capability — or choosing not to make contact with another society — because of some threat that might not arrive for generations. But maybe it’s time that humans learned how to make that kind of choice. This turns out to be one of the surprising gifts of the METI debate, whichever side you happen to take. Thinking hard about what kinds of civilization we might be able to talk to ends up making us think even harder about what kind of civilization we want to be ourselves.

    Near the end of my conversation with Frank Drake, I came back to the question of our increasingly quiet planet: all those inefficient radio and television signals giving way to the undetectable transmissions of the internet age. Maybe that’s the long-term argument for sending intentional messages, I suggested; even if it fails in our lifetime, we will have created a signal that might enable an interstellar connection thousands of years from now.

    Drake leaned forward, nodding. ‘‘It raises a very interesting, nonscientific question, which is: Are extraterrestrial civilizations altruistic? Do they recognize this problem and establish a beacon for the benefit of the other folks out there? My answer is: I think it’s actually Darwinian; I think evolution favors altruistic societies. So my guess is yes. And that means there might be one powerful signal for each civilization.’’ Given the transit time across the universe, that signal might well outlast us as a species, in which case it might ultimately serve as a memorial as much as a message, like an interstellar version of the Great Pyramids: proof that a technologically advanced organism evolved on this planet, whatever that organism’s ultimate fate.

    As I stared at Drake’s stained-glass Arecibo message, in the middle of that redwood grove, it seemed to me that an altruistic civilization — one that wanted to reach across the cosmos in peace — would be something to aspire to, despite the potential for risk. Do we want to be the sort of civilization that boards up the windows and pretends that no one is home, for fear of some unknown threat lurking in the dark sky? Or do we want to be a beacon?

    Correction: June 30, 2017

    An earlier version of this article misstated the impact a few kilograms traveling half the speed of light would have if they collided with Earth. The impact would be less than that of the asteroid that killed off the dinosaurs, not more.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 10:10 am on July 9, 2017 Permalink | Reply
    Tags: , , CERN LHC LHCb, CERN Physicists Find a Particle With a Double Dose of Charm, , , NYT, ,   

    From NYT: “CERN Physicists Find a Particle With a Double Dose of Charm” 

    New York Times

    The New York Times

    JULY 6, 2017
    KENNETH CHANG

    3
    The new particle, awkwardly known as Xi-cc++ (pronounced ka-sigh-see-see-plus-plus)

    1
    The Vertex Locator detector is part of an experiment at CERN’s Large Hadron Collider that discovered a particle that contains two charm quarks. Credit CERN

    Physicists have discovered a particle that is doubly charming.

    Researchers reported on Thursday that in debris flying out from the collisions of protons at the CERN particle physics laboratory outside Geneva, they had spotted a particle that has long been predicted but not detected until now.

    The new particle, awkwardly known as Xi-cc++ (pronounced ka-sigh-see-see-plus-plus), could provide new insight into how tiny, whimsically named particles known as quarks, the building blocks of protons and neutrons, interact with each other.

    Protons and neutrons, which account for the bulk of ordinary matter, are made of two types of quarks: up and down. A proton consists of two up quarks and one down quark, while a neutron contains one up quark and two down quarks. These triplets of quarks are known as baryons.

    There are also heavier quarks with even quirkier names — strange, charm, top, bottom — and baryons containing permutations of heavier quarks also exist.

    An experiment at CERN, within the behemoth Large Hadron Collider, counted more 300 Xi-cc++ baryons, each consisting of two heavy charm quarks and one up quark.

    LHC

    CERN/LHC Map

    CERN LHC Tunnel

    CERN LHC particles

    The discovery fits with the Standard Model, the prevailing understanding of how the smallest bits of the universe behave, and does not seem to point to new physics.

    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    “The existence of these particles has been predicted by the Standard Model,” said Patrick Spradlin, a physicist at the University of Glasgow who led the research. “Their properties have also been predicted.”

    Dr. Spradlin presented the findings on Thursday at a European Physical Society conference in Venice, and a paper describing them has been submitted to the journal Physical Review Letters.

    Up and down quarks have almost the same mass, so in protons and neutrons, the three quarks swirl around each other in an almost uniform pattern. In the new particle, the up quark circulates around the two heavy charm quarks at the center. “You get something far more like an atom,” Dr. Spradlin said.

    Quark interactions are complex and difficult to calculate, and the structure of the new particles will enable physicists to check the assumptions and approximations they use in their calculations. “It’s a new regime in quark-quark dynamics,” said Jonathan L. Rosner, a retired theoretical physicist at the University of Chicago.

    The mass of the Xi-cc++ is about 3.8 times that of a proton. The particle is not stable. Dr. Spradlin said the scientists had not yet figured out its lifetime precisely, but it falls apart after somewhere between 50 millionths of a billionth of a second and 1,000 millionths of a billionth of a second.

    For Dr. Rosner, the CERN results appear to match predictions that he and Marek Karliner of Tel Aviv University made.

    What is less clear is how the new particle fits in with findings from 2002, when physicists working at Fermilab outside Chicago made the first claim of a doubly charmed baryon, one consisting of two charm quarks plus a down quark (instead of the up quark seen in the CERN experiment).

    FNAL Tevatron

    FNAL/Tevatron map


    FNAL/Tevatron DZero detector


    FNAL/Tevatron CDF detector

    The two baryons should be very close in mass, but the Fermilab one was markedly lighter than what the CERN researchers found for Xi-cc++, and it appeared to decay instantaneously, in less than 30 millionths of a billionth of a second.

    Theorists like Dr. Rosner had difficulty explaining the behavior of the Fermilab particle within the Standard Model. “I didn’t have an honest alternative to allow me to believe that result,” he said.

    Peter S. Cooper, a deputy spokesman for the Fermilab experiment, congratulated the CERN researchers on their discovery. “That paper smells sweet,” he said. “From an experimental point of view, there’s nothing wrong. They definitely have something.”

    But he said the Fermilab findings still stood, too. He acknowledged that the two results do not readily make sense together.

    “I consider this a problem for my theoretical brethren to work out,” Dr. Cooper said. He added that it was a textbook example of the scientific method: “Our theoretical colleagues make a prediction. We go out and make a measurement and see if it’s right. If it isn’t, they go back and think harder.”

    It is possible one of the experiments is wrong. Researchers at other laboratories, including at CERN, have sought to detect the Fermilab baryon without success. Dr. Spradlin said he and his colleagues are searching the same data that revealed the Xi-cc++ for the baryon with two charm quarks and one down quark. That could confirm the Fermilab findings or reveal a mass closer to theorists’ expectations.

    “We should be able to see it with the data we have,” Dr. Spradlin said. “I think we are very close to resolving this controversy.”

    I presented an earlier post from LHCb, but it contained no reference to the paper in Physical Review Letters.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 11:19 am on June 13, 2017 Permalink | Reply
    Tags: , During fetal development blood cells are born in the liver and though that task later migrates to the bone marrow, If your liver fails there’s no machine to replace all its different functions and the best you can hope for is a transplant, , NYT, The Liver, The Liver if chopped down to a fraction of its initial size will rapidly regenerate and perform as if brand-new, The liver is our largest internal organ, The organ is always flush with blood   

    From NYT: “The Liver: A ‘Blob’ That Runs the Body” 

    New York Times

    The New York Times

    JUNE 12, 2017
    NATALIE ANGIER

    1
    Guyco

    The underrated, unloved liver performs more
    than 300 vital functions. No wonder the ancients
    believed it to be the home of the human soul.

    To the Mesopotamians, the liver was the body’s premier organ, the seat of the human soul and emotions. The ancient Greeks linked the liver to pleasure: The words hepatic and hedonic are thought to share the same root.

    The Elizabethans referred to their monarch not as the head of state but as its liver, and woe to any people saddled with a lily-livered leader, whose bloodless cowardice would surely prove their undoing.

    Yet even the most ardent liverati of history may have underestimated the scope and complexity of the organ. Its powers are so profound that the old toss-away line, “What am I, chopped liver?” can be seen as a kind of humblebrag.

    After all, a healthy liver is the one organ in the adult body that, if chopped down to a fraction of its initial size, will rapidly regenerate and perform as if brand-new. Which is a lucky thing, for the liver’s to-do list is second only to that of the brain and numbers well over 300 items, including systematically reworking the food we eat into usable building blocks for our cells; neutralizing the many potentially harmful substances that we incidentally or deliberately ingest; generating a vast pharmacopoeia of hormones, enzymes, clotting factors and immune molecules; controlling blood chemistry; and really, we’re just getting started.

    “We have mechanical ventilators to breathe for you if your lungs fail, dialysis machines if your kidneys fail, and the heart is mostly just a pump, so we have an artificial heart,” said Dr. Anna Lok, president of the American Association for the Study of Liver Diseases and director of clinical hepatology at the University of Michigan.

    “But if your liver fails, there’s no machine to replace all its different functions, and the best you can hope for is a transplant.”

    And while scientists admit it hardly seems possible, the closer they look, the longer the liver’s inventory of talents and tasks becomes.

    In one recent study [Cell], researchers were astonished to discover that the liver grows and shrinks by up to 40 percent every 24 hours, while the organs around it barely budge.

    Others have found that signals from the liver may help dictate our dietary choices, particularly our cravings for sweets, like a ripe peach or a tall glass of Newman’s Own Virgin Limeade — which our local supermarket chain has, to our personal devastation, suddenly stopped selling, so please, liver, get a grip.

    Scientists have also discovered that hepatocytes, the metabolically active cells that constitute 80 percent of the liver, possess traits not seen in any other normal cells of the body. For example, whereas most cells have two sets of chromosomes — two sets of genetic instructions on how a cell should behave — hepatocytes can enfold and deftly manipulate up to eight sets of chromosomes, and all without falling apart or turning cancerous.

    That sort of composed chromosomal excess, said Dr. Markus Grompe, who studies the phenomenon at Oregon Health and Science University, is “superunique,” and most likely helps account for the liver’s regenerative prowess.

    Scientists hope that the new insights into liver development and performance will yield novel therapies for the more than 100 disorders that afflict the organ, many of which are on the rise worldwide, in concert with soaring rates of obesity and diabetes.

    “It’s a funny thing,” said Valerie Gouon-Evans, a liver specialist at the Mount Sinai School of Medicine. “The liver is not a very sexy organ. It doesn’t look important. It just looks like a big blob.

    “But it is quietly vital, the control tower of the body,” and the hepatocytes that it is composed of “are astonishing.”

    The liver is our largest internal organ, weighing three and a half-pounds and measuring six inches long. The reddish-brown mass of four unevenly sized lobes sprawls like a beached sea lion across the upper right side of the abdominal cavity, beneath the diaphragm and atop the stomach.

    The organ is always flush with blood, holding about 13 percent of the body’s supply at any given time. Many of the liver’s unusual features are linked to its intimate association with blood.

    During fetal development, blood cells are born in the liver, and though that task later migrates to the bone marrow, the liver never loses its taste for the bodywide biochemical gossip that only the circulatory system can bring.

    Most organs have a single source of blood. The liver alone has two blood supplies, the hepatic artery conveying oxygen-rich blood from the heart, the hepatic portal vein dropping off blood drained from the intestines and spleen. That portal blood delivers semi-processed foodstuffs in need of hepatic massaging, conversion, detoxification, storage, secretion, elimination.

    “Everything you put in your mouth must go through the liver before it does anything useful elsewhere in the body,” Dr. Lok said.

    The liver likes its bloodlines leaky. In contrast to the well-sealed vessels that prevent direct contact between blood and most tissues of the body, the arteries and veins that snake through the liver are stippled with holes, which means they drizzle blood right onto the hepatocytes.

    The liver cells in turn are covered with microvilli — fingerlike protrusions that “massively enlarge” the cell surface area in contact with blood, said Dr. Markus Heim, a liver researcher at the University of Basel.

    “Hepatocytes are swimming in blood,” he said. “That’s what makes them so incredibly efficient at taking up substances from the blood.”

    As the master sampler of circulating blood, the liver keeps track of the body’s moment-to-moment energy demands, releasing glucose as needed from its stash of stored glycogen, along with any vitamins, minerals, lipids, amino acids or other micronutrients that might be required.

    New research suggests the liver may take a proactive, as well as a reactive, role in the control of appetite and food choice.

    Humans are famously fond of sweets, for example, presumably a legacy of our fruit-eating primate ancestors. But to gorge on sugar-rich foods, even in the relatively healthy format of a bucketful of Rainier cherries, could mean neglecting other worthy menu items.

    Reporting in the journal Cell Metabolism, Matthew Gillum of the University of Copenhagen and his colleagues showed that after exposure to a high-sugar drink, the liver seeks to dampen further sugar indulgence by releasing a signaling hormone called fibroblast growth factor 21, or FGF21.

    The effort is not always successful. For reasons that remain unclear, the hormone comes in active and feeble varieties, and the researchers found that people with a mutant version of FGF21 confessed to a lifelong passion for sweets.

    The scientists are searching for other liver-borne hormones that might influence the hunger for protein or fat.

    “It makes sense that the liver could be a nexus of metabolic control,” Dr. Gillum said. “At some level it knows more than the brain does about energy availability, and whether you’re eating too many pears.”

    The liver also keeps track of time. In a recent issue of the journal Cell, Ulrich Schibler of the University of Geneva and his colleagues described their studies of the oscillating liver, and how it swells and shrinks each day, depending on an animal’s normal circadian rhythms and feeding schedule.

    The researchers found that in mice, which normally eat at night and sleep during the day, the size of the liver expands by nearly half after dark and then retrenches come daylight. The scientists also determined the cause of the changing dimensions.

    “We wanted to know, is it just extra water or glycogen?” Dr. Schibler said. “Because that would be boring.”

    The researchers found that in mice, which normally eat at night and sleep during the day, the size of the liver expands by nearly half after dark and then retrenches come daylight. The scientists also determined the cause of the changing dimensions.

    “We wanted to know, is it just extra water or glycogen?” Dr. Schibler said. “Because that would be boring.”

    It wasn’t boring. “The total gemish, the total soup of the liver turns out to be different,” he said. Protein production in mouse hepatocytes rises sharply at night, followed by equivalent protein destruction during the day.

    Evidence suggests that a similar extravaganza of protein creation and destruction occurs in the human liver, too, but the timing is flipped to match our largely diurnal pattern.

    The researchers do not yet know why the liver oscillates, but Dr. Schibler suggested it’s part of the organ’s fastidious maintenance program.

    “The liver gets a lot of bad stuff coming through,” he said. “If you damage some of its components, you need to replace them.” By having a rhythm to that replacement, he said, “you keep the liver in a good state.”

    Adding to the liver’s repair protocol, Dr. Grompe of Oregon Health and Science University said, is the extreme plasticity of hepatocytes.

    He and others have shown that, through their extraordinary ability to handle multiple sets of chromosomes and still perform and divide normally, liver cells become almost like immune cells — genetically diverse enough to handle nearly any poison thrown at them.

    “Our ancestors didn’t have healthy refrigerated food,” he said. “They ate a lot of crap, probably literally, and the liver in prehistoric times was continuously bombarded with toxins. You need every mechanism there is to adapt to that.”

    The liver rose to the evolutionary challenge. So yes, I’m chopped liver — and proud.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 6:49 am on May 30, 2017 Permalink | Reply
    Tags: , , Grand Canyon, NYT   

    From NYT: “A Creationist Wants Rocks to Study. The Grand Canyon Says No” 

    New York Times

    The New York Times

    MAY 29, 2017
    FERNANDA SANTOS

    1
    Officials at the Grand Canyon are in a dispute with a geologist who is a creationist and wants rocks from the canyon to study. Credit Richard Perry/The New York Times

    Did Noah’s flood create the Grand Canyon? Not a chance, say mainstream scientists, who maintain that the canyon’s layers of rocks were carved and chiseled by a persistent flow of water beginning some five million years ago. But Andrew A. Snelling — a geologist by training, a creationist by conviction — has a minority view, and he hoped to prove himself right.

    In November 2013, Dr. Snelling — he has a doctorate in geology from the University of Sydney, in Australia, where he was born — asked administrators of Grand Canyon National Park for permission to remove some 60 half-pound rocks from certain areas along the edges of the Colorado River, which snakes through the canyon.

    Last July, the administrators denied his request. This month, Dr. Snelling sued them, the National Park Service and the Interior Department, claiming the denial amounted to discrimination against his religious beliefs.

    In an interview on Thursday, Gary McCaleb, senior counsel for Alliance Defending Freedom, the conservative Christian legal defense group that is representing Dr. Snelling, said, “It’s one thing to debate the science, but to deny access to the data not based on the quality of a proposal or the nature of the inquiry, but on what you might do with it is an abuse of government power.”

    Heather Swift, a spokeswoman for the Interior Department, referred questions about the lawsuit to the Justice Department, which did not respond to a request for comment. Mr. McCaleb said that Parks Service officials reached out to him recently and that both sides would meet soon.

    As a young-Earth creationist, Dr. Snelling embraces a literal interpretation of the Bible’s Book of Genesis: God created the universe, Earth and all life in it in six days, and the flood caused rapid geological transformations. By these measures, Earth is not billions of years old, but only several thousand.

    His beliefs did not come up in his permit request, but he was no stranger to park officials, as he had guided many Biblical-themed rafting trips through the canyon and done research there. According to the lawsuit, the officials subjected him to cumbersome requirements, such as providing coordinates and photographs of each of the places from which he planned to collect rocks and submitting his proposal to peer reviews.

    The park also commissioned reviews of its own. One of them, by Peter Huntoon, a professor emeritus at the University of Wyoming, said the problem was not so much Dr. Snelling’s perspective, but the park’s adherence to its “narrowly defined institutional mandate predicated in part on the fact that ours is a secular society as per our Constitution.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 6:54 am on May 25, 2017 Permalink | Reply
    Tags: , , NYT, Rare Gene Mutations Inspire New Heart Drugs   

    From NYT: “Rare Gene Mutations Inspire New Heart Drugs” 

    New York Times

    The New York Times

    MAY 24, 2017
    GINA KOLATA

    1
    Anna Feurer learned she had unusually low triglyceride levels after having bloodwork at a corporate health fair. The discovery prompted researchers to recruit her and her family for a research study of their genetic makeup. Credit Jess T. Dugan for The New York Times.

    What if you carried a genetic mutation that left you nearly impervious to heart disease? What if scientists could bottle that miracle and use it to treat everyone else?

    In a series of studies, the most recent published on Wednesday, scientists have described two rare genetic mutations that reduce levels of triglycerides, a type of blood fat, far below normal. People carrying these genes seem invulnerable to heart disease, even if they have other risk factors.

    Drugs that mimic the effects of these mutations are already on the way, and many experts believe that one day they will become the next blockbuster heart treatments. Tens of millions of Americans have elevated triglyceride levels. Large genetic studies have consistently suggested a direct link to heart disease.

    Added to the existing arsenal of cholesterol-reducers and blood pressure medications, the new medications “will drive the final nail in the coffin of heart disease,” predicted Dr. John Kastelein, a professor of vascular medicine at the University of Amsterdam who was not involved in the new research.

    These experimental triglyceride-reducers are in early stages of development, however, and human trials have only just begun. At the moment, the optimism of researchers is rooted less in clinical trial data than in the fact that nature has produced strong evidence they should work.

    People like Anna Feurer may be walking proof.

    In 1994, Mrs. Feurer, then 40, attended a health fair held by her employer, Ralston Purina, in St. Louis. She rolled up her sleeve and let a technician take blood to measure her cholesterol.

    Later, the company doctor called her in and told her that her triglyceride levels were almost inconceivably low. And so were her levels of LDL, which raises the risk of heart disease, and HDL, which is linked to a lower risk. The results were so unusual that he encouraged her to see a specialist.

    “It was all an accident,” Mrs. Feurer recalled in an interview. That her single blood sample could lead to new treatments is “definitely amazing.”

    She went to Dr. Gustav Schonfeld at Washington University in Saint Louis. He asked Mrs. Feurer if she and others in her family might participate in a research study. She agreed, recruiting her immediate family and even a few cousins and aunts.

    Some had strikingly low triglyceride levels, some had normal levels, and some were in between, Dr. Schonfeld found. He tried for years to locate the gene responsible but failed. (Dr. Schonfeld died in 2011.)

    In 2009, he sent Mrs. Feurer’s DNA to Dr. Sekar Kathiresan, a cardiologist at Massachusetts General Hospital. He discovered that she carried mutations in both copies of a gene, ANGPTL3, involved in triglyceride metabolism. (Each individual carries two copies of a given gene, one from each parent.)

    As it turned out, three of her nine siblings also had no working copy of the gene and extremely low triglyceride levels. Three others had one mutated gene and one normal gene; these siblings had low triglyceride levels, but nowhere near as low as those with no functioning gene.

    The other three siblings had inherited two normal ANGPTL3 genes and had normal triglyceride levels.

    “The big question was, ‘Does this loss-of-function mutation reduce coronary risk?’” Dr. Daniel Rader of the University of Pennsylvania, who is an author of three of the recently published studies, said.

    Dr. Nathan O. Stitziel, a cardiologist at Washington University in Saint Louis, said the evidence so far was that people with Mrs. Feurer’s mutation, at least, seemed to be protected.

    Dr. Stitziel and his colleagues scanned Mrs. Feurer’s coronary arteries and those of two siblings who also had two mutated ANGPTL3 genes. Each one was free of plaque, the researchers recently reported in the Journal of the American College of Cardiology.

    One sibling had been a heavy smoker, had high blood pressure and even had Type 2 diabetes, a powerful risk factor for heart disease. Yet there was no plaque in his arteries.

    Dr. Stitziel went on to lead an international group of researchers who looked for mutations that destroyed the gene in 180,180 people. It was a rare event, occurring in just one in 309 people.

    But Dr. Stitziel and his colleagues discovered the mutation reduced heart attack risk by a third.

    The second line of evidence for these drugs originated with a study of Old Order Amish in Lancaster, Pa. About 5 percent appeared to have arteries that were clear of plaque and low levels of triglycerides.

    As it turned out, these lucky people had inherited a single mutated copy of another gene related to triglyceride production, called ApoC3. Researchers wanted desperately to find people who had inherited two mutated copies to see whether short-circuiting the gene might be safe.

    They began by searching genetic data collected from more than 200,000 people around the world — but to no avail. Then the scientists tried a different tack, focusing on participants in a heart disease study in Pakistan, where first cousins often marry and mutations like these are more easily handed down.

    The strategy worked. After combing the world and turning up nothing, the investigators discovered more than 100 in Pakistan who had mutations in both ApoC3 genes. And these people were healthy, with low levels of triglycerides, researchers reported last month in the journal Nature.

    Now, with surprising speed, companies are starting to test experimental drugs that mimic a loss of ApoC3 by blocking the ApoC3 protein.

    In addition, two companies, Regeneron and Ionis Pharmaceuticals, are now testing drugs based on the mutations in the same gene that was found in the Feurer family, company scientists and academic researchers reported on Wednesday in The New England Journal of Medicine.

    Both companies reported that in preliminary studies, drugs based on these mutations reduced triglycerides in people with elevated levels. Both also reported studies of the drugs in mice showing the drugs protected the animals from heart disease.

    “The basic bottom line is that the reductions in triglycerides with these things is pretty unprecedented,” George Yancopoulos, president and chief scientific officer at Regeneron, said. Still, it’s not yet clear to what extent this will prevent heart attacks.

    Even more significant may be the way in which these drugs were identified. Finding people who are impervious to a disease like heart disease can open a door to letting the rest of the population share their genetic luck.

    “It’s a huge advance,” said Dr. Christie Mitchell Ballantyne, chief of cardiology and cardiovascular research at Baylor College of Medicine and a consultant for Regeneron (although not for the triglyceride studies). “That doesn’t mean it’s easy.”

    Still, he added, “what we are seeing is a new approach toward drug development.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 2:08 pm on May 22, 2017 Permalink | Reply
    Tags: , , , In ‘Enormous Success’ Scientists Tie 52 Genes to Human Intelligence, NYT   

    From NYT: “In ‘Enormous Success,’ Scientists Tie 52 Genes to Human Intelligence” 

    New York Times

    The New York Times

    MAY 22, 2017
    Carl Zimmer

    1
    Blood samples from some participants in a new study of genes linked to intelligence were held at the U.K. Biobank, above. Credit Wellcome Trust

    In a significant advance in the study of mental ability, a team of European and American scientists announced on Monday that they had identified 52 genes linked to intelligence in nearly 80,000 people.

    These genes do not determine intelligence, however. Their combined influence is minuscule, the researchers said [Nature Genetics], suggesting that thousands more are likely to be involved and still await discovery. Just as important, intelligence is profoundly shaped by the environment.

    Still, the findings could make it possible to begin new experiments into the biological basis of reasoning and problem-solving, experts said. They could even help researchers determine which interventions would be most effective for children struggling to learn.

    “This represents an enormous success,” said Paige Harden, a psychologist at the University of Texas, who was not involved in the study.

    For over a century, psychologists have studied intelligence by asking people questions. Their exams have evolved into batteries of tests, each probing a different mental ability, such as verbal reasoning or memorization.

    In a typical test, the tasks might include imagining an object rotating, picking out a shape to complete a figure, and then pressing a button as fast as possible whenever a particular type of word appears.

    Each test-taker may get varying scores for different abilities. But over all, these scores tend to hang together — people who score low on one measure tend to score low on the others, and vice versa. Psychologists sometimes refer to this similarity as general intelligence.

    It’s still not clear what in the brain accounts for intelligence. Neuroscientists have compared the brains of people with high and low test scores for clues, and they’ve found a few.

    Brain size explains a small part of the variation, for example, although there are plenty of people with small brains who score higher than others with bigger brains.

    Other studies hint that intelligence has something to do with how efficiently a brain can send signals from one region to another.

    Danielle Posthuma, a geneticist at Vrije University Amsterdam and senior author of the new paper, first became interested in the study of intelligence in the 1990s. “I’ve always been intrigued by how it works,” she said. “Is it a matter of connections in the brain, or neurotransmitters that aren’t sufficient?”

    Dr. Posthuma wanted to find the genes that influence intelligence. She started by studying identical twins who share the same DNA. Identical twins tended to have more similar intelligence test scores than fraternal twins, she and her colleagues found.

    Hundreds of other studies have come to the same conclusion, showing a clear genetic influence on intelligence [Nature Genetics]. But that doesn’t mean that intelligence is determined by genes alone.

    Our environment exerts its own effects, only some of which scientists understand well. Lead in drinking water, for instance, can drag down test scores. In places where food doesn’t contain iodine, giving supplements to children can raise scores.

    Advances in DNA sequencing technology raised the possibility that researchers could find individual genes underlying differences in intelligence test scores. Some candidates were identified in small populations, but their effects did not reappear in studies on larger groups.

    So scientists turned to what’s now called the genome-wide association study: They sequence bits of genetic material scattered across the DNA of many unrelated people, then look to see whether people who share a particular condition — say, a high intelligence test score — also share the same genetic marker.

    In 2014, Dr. Posthuma was part of a large-scale study of over 150,000 people that revealed 108 genes linked to schizophrenia. But she and her colleagues had less luck with intelligence, which has proved a hard nut to crack for a few reasons.

    Standard intelligence tests can take a long time to complete, making it hard to gather results on huge numbers of people. Scientists can try combining smaller studies, but they often have to merge different tests together, potentially masking the effects of genes.

    As a result, the first generation of genome-wide association studies on intelligence failed to find any genes. Later studies managed to turn up promising results, but when researchers turned to other groups of people, the effect of the genes again disappeared.

    But in the past couple of years, larger studies relying on new statistical methods finally have produced compelling evidence that particular genes really are involved in shaping human intelligence.

    “There’s a huge amount of real innovation going on,” said Stuart J. Ritchie, a geneticist at the University of Edinburgh who was not involved in the new study.

    Dr. Posthuma and other experts decided to merge data from 13 earlier studies, forming a vast database of genetic markers and intelligence test scores. After so many years of frustration, Dr. Posthuma was pessimistic it would work.

    “I thought, ‘Of course we’re not going to find anything,’” she said.

    She was wrong. To her surprise, 52 genes emerged with firm links to intelligence. A dozen had turned up in earlier studies, but 40 were entirely new.

    But all of these genes together account for just a small percentage of the variation in intelligence test scores, the researchers found; each variant raises or lowers I.Q. by only a small fraction of a point.

    “It means there’s a long way to go, and there are going to be a lot of other genes that are going to be important,” Dr. Posthuma said.

    Christopher F. Chabris, a co-author of the new study at Geisinger Health System in Danville, Pa., was optimistic that many of those missing genes would come to light, thanks to even larger studies involving hundreds of thousands, perhaps millions, of people.

    “It’s just like astronomy getting better with bigger telescopes,” he said.

    In the new study, Dr. Posthuma and her colleagues limited their research to people of European descent because that raised the odds of finding common genetic variants linked to intelligence.

    But other gene studies have shown that variants in one population can fail to predict what people are like in other populations. Different variants turn out to be important in different groups, and this may well be the case with intelligence.

    “If you try to predict height using the genes we’ve identified in Europeans in Africans, you’d predict all Africans are five inches shorter than Europeans, which isn’t true,” Dr. Posthuma said.

    Studies like the one published today don’t mean that intelligence is fixed by our genes, experts noted. “If we understand the biology of something, that doesn’t mean we’re putting it down to determinism,” Dr. Ritchie said.

    As an analogy, he noted that nearsightedness is strongly influenced by genes. But we can change the environment — in the form of eyeglasses — to improve people’s eyesight.

    Dr. Harden predicted that an emerging understanding of the genetics of intelligence would make it possible to find better ways to help children develop intellectually. Knowing people’s genetic variations would help scientists measure how effective different strategies are.

    Still, Dr. Harden said, we don’t have to wait for such studies to change people’s environments for the better. “We know that lead harms children’s intellectual abilities,” she said. “There’s low-hanging policy fruit here.”

    For her part, Dr. Posthuma wants to make sense of the 52 genes she and her colleagues discovered. There are intriguing overlaps between their influence on intelligence and on other traits.

    The genetic variants that raise intelligence also tend to pop up more frequently in people who have never smoked. Some of them also are found more often in people who take up smoking but quit successfully.

    As for what the genes actually do, Dr. Posthuma can’t say. Four of them are known to control the development of cells, for example, and three do an assortment of things inside neurons.

    To understand what makes these genes special, scientists may need to run experiments on brain cells. One possibility would be to take cells from people with variants that predict high and low intelligence.

    She and her colleagues might coax them to develop into neurons, which could then grow into “mini-brains” — clusters of neurons that exchange signals in the laboratory. Researchers could then see if their genetic differences made them behave differently.

    “We can’t do it overnight,” Dr. Posthuma said, “but it’s something I hope to be able to do in the future.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 7:19 am on May 16, 2017 Permalink | Reply
    Tags: Magglio Boscarino, , NYT, Pompe disease, When the Immune System Thwarts Lifesaving Drugs   

    From NYT: “When the Immune System Thwarts Lifesaving Drugs” 

    New York Times

    The New York Times

    MAY 15, 2017
    GINA KOLATA

    1
    Magglio Boscarino, who has the genetic disorder Pompe disease, with his mother Becka at home, above, and at school. Credit Max Whittaker for The New York Times

    The miracle treatment that should have saved Becka Boscarino’s baby boy almost killed him.

    Doctors diagnosed her newborn son, Magglio, with Pompe disease, a rare and deadly genetic disorder that leads to a buildup of glycogen in the body. Left untreated, the baby would probably die before his first birthday.

    There is just one treatment: a series of infusions. But after the boy received his fifth dose, he turned blue, stopped breathing and slipped into anaphylactic shock.

    The problem? Eventually doctors discovered that Magglio’s body was producing antibodies to the very drug saving his life.

    It is a problem few patients and doctors have ever heard of; indeed, the phenomenon has not been systematically studied. But experts say what happened to Magglio has happened to many other patients taking many other drugs.

    The body’s immune system produces antibodies, blood proteins, in order to attack molecules the body recognizes as alien, often carried on viruses and bacteria. But antibodies also are deployed against other foreign substances, and this may include drugs given to patients.

    Antibodies directed against a particular drug can attach to the drug and completely neutralize its effects in the body. But there is no way to know in advance which patient is most likely to make them, or which drug is likely to trigger such a reaction in a large number of patients.

    “Once a drug is approved and out in the market, it is pretty rare that a clinician would measure antibodies,” said Dr. Mary Crow, a rheumatologist and physician in chief at the Hospital for Special Surgery in New York City. “There is no commercially available test.”

    In a paper published in March by The New England Journal of Medicine, Pfizer reported that in the final phase of testing a new drug to lower cholesterol, many of the 30,000 patients taking it had stopped responding to it.

    Their cholesterol levels, which had plunged when they began taking the drug, were rising again. As it turned out, the subjects had begun making antibodies to the drug.

    2
    Magglio needs a ventilator to breathe and plays on a baseball team for children with disabilities. His mother helps him bat. Credit Max Whittaker for The New York Times

    Pfizer was forced to stop the trial and pull the drug after investing billions of dollars. (Similar drugs, made by Amgen and Sanofi Regeneron did not elicit such antibodies and are now being sold.)

    The problem seems almost intractable.

    Drugs containing proteins can provoke these immune system reactions. Steve Danehy, a Pfizer spokesman, said that up to 87 percent of patients taking drugs known as monoclonal antibodies, for instance, will develop antibodies of their own that block the drug. (Pifzer’s experimental drug was a monoclonal.)

    Patients and their doctors often have no idea what has happened; patients notice only that a drug they take has stopped working. Doctors will switch them to a similar drug and hope for the best.

    But that strategy only works when there are alternatives. For some diseases, there are none.

    For the small subset of gout patients whose disease is extremely severe, for example, antibodies are “really a huge problem,” said Dr. Robert Terkeltaub, a gout specialist at the University of California, San Diego. There is only one drug that can help, and most patients develop antibodies that eventually block it.

    Medicine Stops Working

    For patients like Magglio Boscarino, finding a way to tamp down the immune system’s response to these drugs is a matter of life or death.

    He had seemed fine at birth, but soon developed what looked like a bad cold and congestion. When he did not get better, his doctors X-rayed his chest and discovered a very large heart.

    By the time Magglio was 6 months old, he was weak and lacked muscle tone. Then came the diagnosis of Pompe disease and the beginning of his treatments, infusions with an enzyme his body was failing to make.

    At first, Magglio improved. Within a few months, he was learning to sit up and to use his arms. His enlarged heart was shrinking. But his fifth treatment was a disaster.

    He fell into anaphylactic shock and stopped breathing. The doctors gave him oxygen and epinephrine, and eventually he recovered. They did not realize the drug was at fault, however, and two weeks later Magglio received another infusion — with the same result.

    3
    Becka Boscarino, and her son, Magglio at home. Magglio has Pompe disease, which causes a buildup of glycogen in the body. Untreated, it usually kills within the first year. Credit Max Whittaker for The New York Times

    Then doctors realized what the problem was. But because Magglio’s disease would worsen and kill him if he did not get the drug, his doctors kept hoping he might be able to tolerate repeated infusions.

    For a year and a half, the treatments continued, and Magglio suffered severe reactions even as his disease was progressing. Soon he could not breathe on his own, and a tube was inserted in his trachea. He could not sit up. At 2 years old, he had heart failure.

    “He was dying,” Ms. Boscarino said. “It was awful, so awful,”

    Magglio was hardly alone: Most babies with Pompe disease who received the only available treatment soon produced antibodies that rendered it useless.

    “We tried everything, but these babies did not make it,” said Dr. Priya Kishnani, a professor of pediatrics at Duke University.

    Dr. Kishnani realized she had to find a way to trick the immune system so it would leave the infused protein alone. Her idea was to give the babies a chemotherapy drug, rituximab, that wipes out cells that develop into antibody producers.

    Along with it, she tried giving the children methotrexate, which destroys many of the body’s white blood cells, and infusions of antibodies from pooled donors’ serum so the children would have a way to fight off infections.

    And for babies like Magglio, who already were making antibodies that blocked the drug they need, she added another drug — bortezomib — to eliminate those antibody-producing cells.

    As the children’s immune systems were brought under control, the treatments began to work again. “It was breathtaking,” Dr. Kishnani said. “We were able to rescue these babies.”

    Broadening the Approach

    The principles tried in children with this rare genetic condition may soon be applied to a wide range of patients. “I feel that Pompe opened up the field,” Dr. Kishnani said. “The more we talked about it, the more awareness there was of the role of antibodies.”

    4
    “The good news is that he is still alive,” Ms. Boscarino said. “But he is a complete rag doll. He mouths words a lot. He does not have a voice so he uses his eyes to use a computer screen to talk for him.” Credit Max Whittaker for The New York Times

    Already, scientists have begun clinical trials testing ways to help patients with very severe gout who make antibodies blocking their treatment. In one, investigators are altering the dose of the drug used to treat the disease and how often it is given.

    In another trial, researchers at Selecta Biosciences are testing an antibody-suppressing drug packaged in a biodegradable nanoparticle to be taken along with the drug the patient needs.

    At Brigham and Women’s Hospital in Boston, cardiologist Dr. Paul Ridker, who directed the Pfizer study, is taking a different tack.

    He wants to do a large genetic study to see if he can predict which patients will develop antibodies to the Pfizer drug and perhaps to other drugs that the immune system might see as foreign.

    “We probably have the best opportunity ever afforded to understand the cause of these antibodies,” Dr. Ridker said. “That would be very valuable for the development of future drugs if you could say, ‘This one patient out of 20 should not take this drug.’”

    It would mean, too, that drugs that might have been abandoned could be developed for the patients who can tolerate them.

    Magglio received the treatment to tamp down his immune system developed in Dr. Kishnani’s lab, and it seems to have worked. “The good news is that he is still alive,” his mother said.

    “But he is a complete rag doll. He mouths words a lot. He does not have a voice so he uses his eyes to use a computer screen to talk for him.”

    Magglio needs a ventilator to breathe, as he has since he was 9 months old. But he has his own sign language, using his tongue, his mother said.

    Still, he goes to school — general education, 4th grade — and even plays on a baseball team for children with disabilities. His mother helps him bat.

    “He’s a big Yankees fan,” Ms. Boscarino says.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: