Tagged: NRAO Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:16 pm on April 14, 2020 Permalink | Reply
    Tags: "New Technologies, , , , , NRAO, , Strategies Expanding Search for Extraterrestrial Life"   

    From National Radio Astronomy Observatory: “New Technologies, Strategies Expanding Search for Extraterrestrial Life” 

    From National Radio Astronomy Observatory

    NRAO Banner

    February 11, 2020 [Just found this]

    1

    Emerging technologies and new strategies are opening a revitalized era in the Search for Extraterrestrial Intelligence (SETI). New discovery capabilities, along with the rapidly-expanding number of known planets orbiting stars other than the Sun, are spurring innovative approaches by both government and private organizations, according to a panel of experts speaking at a meeting of the American Association for the Advancement of Science (AAAS) in Seattle, Washington.

    New approaches will not only expand upon but also go beyond the traditional SETI technique of searching for intelligently-generated radio signals, first pioneered by Frank Drake’s Project Ozma in 1960. Scientists now are designing state-of-the-art techniques to detect a variety of signatures that can indicate the possibility of extraterrestrial technologies. Such “technosignatures” can range from the chemical composition of a planet’s atmosphere, to laser emissions, to structures orbiting other stars, among others.

    The National Radio Astronomy Observatory (NRAO) and the privately-funded SETI Institute announced an agreement to collaborate on new systems to add SETI capabilities to radio telescopes operated by NRAO. The first project will develop a system to piggyback on the National Science Foundation’s Karl G. Jansky Very Large Array (VLA) that will provide data to a state-of-the-art technosignature search system.

    ___________________________________________________________

    2

    Dave Finley, Public Information Officer
    (575) 835-7302
    dfinley@nrao.edu

    The National Radio Astronomy Observatory (NRAO) and the SETI Institute have agreed to collaborate on a broad range of future scientific and technical projects in radio astronomy and related research. Initial efforts under the agreement will be focused on developing capabilities for the Search for Extraterrestrial Intelligence (SETI) on radio telescopes operated by NRAO.

    The two organizations will collaborate to develop and install a signal processing system on the National Science Foundation’s Karl G. Jansky Very Large Array (VLA) that will analyze data collected by that telescope to identify transmissions possibly generated by extraterrestrial technologies. This system — dubbed COSMIC: the Commensal Open Source Multimode Interferometer Cluster — will receive data from a newly-developed parallel Ethernet interface to the VLA, using the same data stream used for other research but analyzed in parallel by COSMIC.

    “This plan will allow an additional, important use for the data we’re already collecting,” said NRAO Director Tony Beasley. “In addition to addressing one of the most profound questions in science, this system also may advance our capabilities in other areas of science, such as detecting Fast Radio Bursts, as well as produce improvements in detecting and excising radio interference from our observations,” Beasley added.

    The first step in realizing the new system will be to develop and install a wide-bandwidth Ethernet interface to the VLA’s current signal distribution system. This first phase of the project has been funded by John and Carol Giannandrea. John Giannandrea is a Trustee of the SETI Institute.

    Dr. Jack Hickish, of the SETI Institute and Real-Time Radio Systems Limited, who is leading development of the COSMIC system, said, “When the VLA digital instrumentation was originally conceived, the idea that astronomers could be provided with access to every bit of the data flowing through the system was laughable. An enormous amount of design expertise and engineering went into building custom hardware to reduce terabits-per-second of data to a rate which scientists could analyze effectively. Once the COSMIC interface is complete, the door will open to perform essentially arbitrary types of signal analysis, helping to further cement the VLA’s history as one of the world’s most productive, powerful, and versatile radio telescopes.”

    The NRAO is developing the concept for a next-generation VLA (ngVLA), which would dramatically advance radio astronomy beyond current capabilities. The SETI Institute desires to engage as a technical and scientific partner in this project. Specifically, NRAO and the SETI Institute will begin discussions on how to design relevant ngVLA systems so that they will allow leading-edge SETI research on that advanced facility.

    “Our observatory and the SETI Institute are both strongly committed to advancing science and technology, and we have many common interests in radio astronomy and related areas. This agreement, and the collaborations it will foster, will not only open new areas of research but also, we believe, help improve our technologies and make our telescopes more effective scientific tools,” Beasley said.

    “As the VLA conducts its usual scientific observations, this new system will allow for an additional and important use for the data we’re already collecting,” said NRAO Director Tony Beasley. “Determining whether we are alone in the Universe as technologically capable life is among the most compelling questions in science, and NRAO telescopes can play a major role in answering it,” Beasley continued.

    “The SETI Institute will develop and install an interface on the VLA permitting unprecedented access to the rich data stream continuously produced by the telescope as it scans the sky,” said Andrew Siemion, Bernard M. Oliver Chair for SETI at the SETI Institute and Principal Investigator for the Breakthrough Listen Initiative at the University of California, Berkeley. “This interface will allow us to conduct a powerful, wide-area SETI survey that will be vastly more complete than any previous such search,” he added.

    Siemion highlighted the singular role the $100-million Breakthrough Listen Initiative has played in reinvigorating the field of SETI in recent years.

    Breakthrough Listen Project

    1

    UC Observatories Lick Autmated Planet Finder, fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA




    GBO radio telescope, Green Bank, West Virginia, USA


    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia


    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA

    Newly added

    CfA/VERITAS, a major ground-based gamma-ray observatory with an array of four Čerenkov Telescopes for gamma-ray astronomy in the GeV – TeV energy range. Located at Fred Lawrence Whipple Observatory,Mount Hopkins, Arizona, US in AZ, USA, Altitude 2,606 m (8,550 ft)

    Siemion also announced the latest scientific results from Listen, a SETI survey in the direction of stars where a distant civilization could observe the Earth’s passage across the sun, and the availability of nearly 2 PetaBytes of data from the Listen Initiative’s international network of observatories.

    Other indicators of possible technologies include laser beams, structures built around stars to capture the star’s power output, atmospheric chemicals produced by industries, and rings of satellites similar to the ring of geosynchronous communication satellites orbiting above Earth’s equator.

    “Such indicators are becoming detectable as our technology advances, and this has renewed interest in SETI searches at both government agencies and private foundations,” Siemion said.

    Life forms, whether intelligent or not, also can produce detectable indicators. These include the presence of large amounts of oxygen, smaller amounts of methane, and a variety of other chemicals. Victoria Meadows, Principal Investigator for NASA’s Virtual Planetary Laboratory at the University of Washington, described how scientists are developing computer models to simulate extraterrestrial environments and to help support future searches for habitable planets and life beyond the Solar System.

    “Upcoming telescopes in space and on the ground will have the capability to observe the atmospheres of Earth-sized planets orbiting nearby cool stars, so it’s important to understand how best to recognize signs of habitability and life on these planets,” Meadows said, “These computer models will help us determine whether an observed planet is more or less likely to support life.”
    ___________________________________________________________

    “As the VLA conducts its usual scientific observations, this new system will allow for an additional and important use for the data we’re already collecting,” said NRAO Director Tony Beasley. “Determining whether we are alone in the Universe as technologically capable life is among the most compelling questions in science, and NRAO telescopes can play a major role in answering it,” Beasley continued.

    “The SETI Institute will develop and install an interface on the VLA permitting unprecedented access to the rich data stream continuously produced by the telescope as it scans the sky,” said Andrew Siemion, Bernard M. Oliver Chair for SETI at the SETI Institute and Principal Investigator for the Breakthrough Listen Initiative at the University of California, Berkeley. “This interface will allow us to conduct a powerful, wide-area SETI survey that will be vastly more complete than any previous such search,” he added.

    Other indicators of possible technologies include laser beams, structures built around stars to capture the star’s power output, atmospheric chemicals produced by industries, and rings of satellites similar to the ring of geosynchronous communication satellites orbiting above Earth’s equator.

    “Such indicators are becoming detectable as our technology advances, and this has renewed interest in SETI searches at both government agencies and private foundations,” Siemion said.

    Life forms, whether intelligent or not, also can produce detectable indicators. These include the presence of large amounts of oxygen, smaller amounts of methane, and a variety of other chemicals. Victoria Meadows, Principal Investigator for NASA’s Virtual Planetary Laboratory at the University of Washington, described how scientists are developing computer models to simulate extraterrestrial environments and to help support future searches for habitable planets and life beyond the Solar System.

    “Upcoming telescopes in space and on the ground will have the capability to observe the atmospheres of Earth-sized planets orbiting nearby cool stars, so it’s important to understand how best to recognize signs of habitability and life on these planets,” Meadows said, “These computer models will help us determine whether an observed planet is more or less likely to support life.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

    The NRAO operates a complementary, state-of-the-art suite of radio telescope facilities for use by the scientific community, regardless of institutional or national affiliation: the Very Large Array (VLA)

    NRAO/VLBA


    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).

    *The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

     
  • richardmitnick 7:56 am on March 10, 2020 Permalink | Reply
    Tags: "Irradiated Molecular Chemistry in Planetary Nebulae: Prospects for the ngVLA", , , , , NRAO   

    From National Radio Astronomy Observatory: “Irradiated Molecular Chemistry in Planetary Nebulae: Prospects for the ngVLA” 

    From National Radio Astronomy Observatory

    NRAO Banner

    9 March 2020
    Jesse Bublitz & Joel Kastner (Rochester Institute of Technology)

    1
    Spectra of the planetary nebula NGC 7027 (Kastner et al. 2018), adapted from an IRAM 30m single-dish molecular line survey (Bublitz et al. 2019). [Inset] Color montage of NGC 7027 images obtained with the HST Wide Field Camera 3 (Kastner et al. 2020, in prep).

    Planetary nebulae are the ejected envelopes of intermediate-mass stars in their last stages of evolution. They represent excellent subjects to explore astrophysical plasmas and shock processes, and provide tests of theories of stellar evolution and the enrichment of heavy elements in the interstellar medium.

    Planetary nebulae are born from material ejected by asymptotic giant branch (AGB) stars and, through their wide variety of shapes, can also betray the presence of binary companions to the AGB star progenitors. The central star of the nebula – the core of the former AGB star – ionizes the expanding shells and lobes of ejected AGB envelope gas to produce the nebula’s iconic bright, optical emission lines, which originate in 10,000 K plasma.

    Many planetaries also retain significant quantities of cold, dense molecule-rich material. The chemistries of these regions, as revealed by molecular line emission in the millimeter and submillimeter regimes, can be remarkably rich, as a consequence of irradiation by the central star’s ultraviolet, and often X-ray, emission. With their well-resolved structures and well-defined geometries, planetary nebulae hence constitute testbeds for the study of radiation-driven heating and chemistry in molecule-rich environments.

    Single-dish surveys and interferometric imaging of planetary nebulae have identified a host of molecular transitions over the past 50 years (e.g., Mufson et al. 1975, Bachiller et al. 1997, Edwards et al. 2014, Schmidt et al. 2016). The figure presents selected bright molecular lines identified in the young and rapidly evolving nebula NGC 7027 (Bublitz et al. 2019).

    With the next generation Very Large Array (ngVLA), all of these transitions will be accessible, and they can be mapped at sub-milliarcsecond resolution, exceeding the current state-of-the-art (ALMA) by nearly a factor of 10. This will facilitate exquisitely detailed chemical and kinematic studies aimed at understanding nebular irradiation and shaping processes. Measurement of key isotopologue ratios in planetaries and proto-planetary nebulae will advance knowledge of C and N enrichment of the interstellar medium. Additionally, the ngVLA will push the observable range of resolved objects well out past our solar neighborhood, allowing comprehensive molecular line surveys, which are currently limited to planetary nebulae within about 1 kpc, to extend as far as the Galactic Bulge.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

    The NRAO operates a complementary, state-of-the-art suite of radio telescope facilities for use by the scientific community, regardless of institutional or national affiliation: the Very Large Array (VLA)

    NRAO VLBA

    NRAO/VLBA


    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).

    *The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

     
  • richardmitnick 4:37 pm on February 15, 2020 Permalink | Reply
    Tags: COSMIC: the Commensal Open Source Multimode Interferometer Cluster, , NRAO, , SETI Institute Agree on New Research Programs", The Search for Extraterrestrial Intelligence (SETI)   

    From National Radio Astronomy Observatory: “NRAO, SETI Institute Agree on New Research Programs” 

    From National Radio Astronomy Observatory

    February 15, 2020
    Dave Finley, Public Information Officer
    (575) 835-7302
    dfinley@nrao.edu

    NRAO Banner

    1
    Credit: Bill Saxton, NRAO/AUI/NSF

    The National Radio Astronomy Observatory (NRAO) and the SETI Institute have agreed to collaborate on a broad range of future scientific and technical projects in radio astronomy and related research. Initial efforts under the agreement will be focused on developing capabilities for the Search for Extraterrestrial Intelligence (SETI) on radio telescopes operated by NRAO.

    The two organizations will collaborate to develop and install a signal processing system on the National Science Foundation’s Karl G. Jansky Very Large Array (VLA) [below] that will analyze data collected by that telescope to identify transmissions possibly generated by extraterrestrial technologies. This system — dubbed COSMIC: the Commensal Open Source Multimode Interferometer Cluster — will receive data from a newly-developed parallel Ethernet interface to the VLA, using the same data stream used for other research but analyzed in parallel by COSMIC.

    “This plan will allow an additional, important use for the data we’re already collecting,” said NRAO Director Tony Beasley. “In addition to addressing one of the most profound questions in science, this system also may advance our capabilities in other areas of science, such as detecting Fast Radio Bursts, as well as produce improvements in detecting and excising radio interference from our observations,” Beasley added.

    The first step in realizing the new system will be to develop and install a wide-bandwidth Ethernet interface to the VLA’s current signal distribution system. This first phase of the project has been funded by John and Carol Giannandrea. John Giannandrea is a Trustee of the SETI Institute.

    Dr. Jack Hickish, of the SETI Institute and Real-Time Radio Systems Limited, who is leading development of the COSMIC system, said, “When the VLA digital instrumentation was originally conceived, the idea that astronomers could be provided with access to every bit of the data flowing through the system was laughable. An enormous amount of design expertise and engineering went into building custom hardware to reduce terabits-per-second of data to a rate which scientists could analyze effectively. Once the COSMIC interface is complete, the door will open to perform essentially arbitrary types of signal analysis, helping to further cement the VLA’s history as one of the world’s most productive, powerful, and versatile radio telescopes.”

    The SETI Institute is a privately-funded, nonprofit research institute. Headquartered in Mountain View, California, it focuses on investigations into the origin, evolution, and distribution of life in the Universe. It was founded in 1984, and operates the Allen Telescope Array, the only research-class radio astronomy facility purpose-built to search for intelligent life, as well as conduct radio astronomy research.

    The NRAO is a federally-funded research facility of the National Science Foundation (NSF), and is operated by Associated Universities, Inc. NRAO operates the VLA, the Very Long Baseline Array (VLBA), and is the North American executive for the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, on behalf of the NSF. The NRAO enables cutting-edge research in the study of the Universe at radio wavelengths, helps train future scientists and engineers, and stimulates public interest in science and astronomy.

    The NRAO is developing the concept for a next-generation VLA (ngVLA), which would dramatically advance radio astronomy beyond current capabilities. The SETI Institute desires to engage as a technical and scientific partner in this project. Specifically, NRAO and the SETI Institute will begin discussions on how to design relevant ngVLA systems so that they will allow leading-edge SETI research on that advanced facility.

    “Our observatory and the SETI Institute are both strongly committed to advancing science and technology, and we have many common interests in radio astronomy and related areas. This agreement, and the collaborations it will foster, will not only open new areas of research but also, we believe, help improve our technologies and make our telescopes more effective scientific tools,” Beasley said.

    The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

    The NRAO operates a complementary, state-of-the-art suite of radio telescope facilities for use by the scientific community, regardless of institutional or national affiliation: the Very Large Array (VLA)

    NRAO VLBA

    NRAO/VLBA


    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).

    *The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

     
  • richardmitnick 3:49 pm on February 15, 2020 Permalink | Reply
    Tags: "New Technologies Strategies Expanding Search for Extraterrestrial Life", , , NRAO, ,   

    From National Radio Astronomy Observatory: “New Technologies, Strategies Expanding Search for Extraterrestrial Life” 

    From National Radio Astronomy Observatory

    NRAO Banner

    February 15, 2020
    Dave Finley, Public Information Officer
    (575) 835-7302
    dfinley@nrao.edu

    1
    Credit: Bill Saxton, NRAO/AUI/NSF

    Emerging technologies and new strategies are opening a revitalized era in the Search for Extraterrestrial Intelligence (SETI).

    New discovery capabilities, along with the rapidly-expanding number of known planets orbiting stars other than the Sun, are spurring innovative approaches by both government and private organizations, according to a panel of experts speaking at a meeting of the American Association for the Advancement of Science (AAAS) in Seattle, Washington.

    New approaches will not only expand upon but also go beyond the traditional SETI technique of searching for intelligently-generated radio signals, first pioneered by Frank Drake’s Project Ozma in 1960.

    Frank Drake with his Drake Equation. Credit Frank Drake

    Scientists now are designing state-of-the-art techniques to detect a variety of signatures that can indicate the possibility of extraterrestrial technologies. Such “technosignatures” can range from the chemical composition of a planet’s atmosphere, to laser emissions, to structures orbiting other stars, among others.

    The National Radio Astronomy Observatory (NRAO) and the privately-funded SETI Institute announced an agreement to collaborate on new systems to add SETI capabilities to radio telescopes operated by NRAO. The first project will develop a system to piggyback on the National Science Foundation’s Karl G. Jansky Very Large Array (VLA) that will provide data to a state-of-the-art technosignature search system.

    “As the VLA conducts its usual scientific observations, this new system will allow for an additional and important use for the data we’re already collecting,” said NRAO Director Tony Beasley. “Determining whether we are alone in the Universe as technologically capable life is among the most compelling questions in science, and NRAO telescopes can play a major role in answering it,” Beasley continued.

    “The SETI Institute will develop and install an interface on the VLA permitting unprecedented access to the rich data stream continuously produced by the telescope as it scans the sky,” said Andrew Siemion, Bernard M. Oliver Chair for SETI at the SETI Institute and Principal Investigator for the Breakthrough Listen Initiative at the University of California, Berkeley. “This interface will allow us to conduct a powerful, wide-area SETI survey that will be vastly more complete than any previous such search,” he added.

    Siemion highlighted the singular role the $100-million Breakthrough Listen Initiative has played in reinvigorating the field of SETI in recent years. Siemion also announced the latest scientific results from Listen, a SETI survey in the direction of stars where a distant civilization could observe the Earth’s passage across the sun, and the availability of nearly 2 PetaBytes of data from the Listen Initiative’s international network of observatories.

    Other indicators of possible technologies include laser beams, structures built around stars to capture the star’s power output, atmospheric chemicals produced by industries, and rings of satellites similar to the ring of geosynchronous communication satellites orbiting above Earth’s equator.

    “Such indicators are becoming detectable as our technology advances, and this has renewed interest in SETI searches at both government agencies and private foundations,” Siemion said.

    Life forms, whether intelligent or not, also can produce detectable indicators. These include the presence of large amounts of oxygen, smaller amounts of methane, and a variety of other chemicals. Victoria Meadows, Principal Investigator for NASA’s Virtual Planetary Laboratory at the University of Washington, described how scientists are developing computer models to simulate extraterrestrial environments and to help support future searches for habitable planets and life beyond the Solar System.

    “Upcoming telescopes in space and on the ground will have the capability to observe the atmospheres of Earth-sized planets orbiting nearby cool stars, so it’s important to understand how best to recognize signs of habitability and life on these planets,” Meadows said, “These computer models will help us determine whether an observed planet is more or less likely to support life.”

    NASA/ESA/CSA Webb Telescope annotated

    ESO/E-ELT, 39 meter telescope to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).

    TMT-Thirty Meter Telescope, proposed and now approved for Mauna Kea, Hawaii, USA4,207 m (13,802 ft) above sea level, the only giant 30 meter class telescope for the Northern hemisphere

    GMT

    Giant Magellan Telescope, 21 meters, to be at the Carnegie Institution for Science’s Las Campanas Observatory, to be built some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high

    As new programs implement the expanding technical capabilities for detecting extraterrestrial life and intelligence, it’s important to define what constitutes compelling, credible evidence, according to Jill Tarter, of the SETI Institute.

    Jill Tarter Image courtesy of Jill Tarter

    “How strong does the evidence need to be to justify claiming a discovery? Can we expect to find smoking guns? If the evidence requires many caveats, how do we responsibly inform the public,” Tarter asked.

    Tarter pointed out that projects such as the University of California at San Diego’s PANOSETI visible-light and infrared search, and the SETI Institute’s Laser SETI search are being built with co-observing sites to reduce false positives. Such measures, she said, will boost confidence in reported detections, but also add to the expense of the project.

    The news media also share responsibility for communicating accurately with the public, Tarter emphasized. She cited cases in recent years of “exuberant reporting” of bogus claims of SETI detections. “A real detection of extraterrestrial intelligence would be such an important milestone in our understanding of the Universe that journalists need to avoid uncritical reporting of obviously fake claims,” she said.

    “As continuing discoveries show us that planets are very common components of the Universe, and we are able to study the characteristics of those planets, it’s exciting that at the same time, technological advances are giving us the tools to greatly expand our search for signs of life. We look forward to this new realm of discovery,” said Beasley, who organized the AAAS panel.

    “We also look forward to the coming decade, when we hope to build a next-generation Very Large Array, which will be able to search a volume of the Universe a thousand times larger than that accessible to current telescopes — making it the most powerful radio technosignature search machine humanity has ever constructed,” Beasley added.

    The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

    The NRAO operates a complementary, state-of-the-art suite of radio telescope facilities for use by the scientific community, regardless of institutional or national affiliation: the Very Large Array (VLA)

    NRAO VLBA

    NRAO/VLBA


    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).

    *The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

    largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

    The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

     
  • richardmitnick 3:15 pm on February 15, 2020 Permalink | Reply
    Tags: (COSMIC SETI)-Commensal Open-Source Multimode Interferometer Cluster Search for Extraterrestrial Intelligence, A technosignature is considered by SETI scientists to be a proxy for the existence of a technologically advanced extraterrestrial civilization., , NRAO, , The new ethernet interface will be able to access raw data from each antenna routing it through new more flexible signal processing software to search for technosignatures in real-time.   

    From SETI Institute: “SETI Institute and National Radio Astronomy Observatory Team Up for SETI Science at the Very Large Array” 


    SETI Logo new


    From SETI Institute

    Feb 13, 2020
    Press Release

    NRAO/Karl V Jansky Expanded Very Large Array, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    The SETI Institute and the National Radio Astronomy Observatory (NRAO) are announcing a collaboration to bring a state-of-the-art search for extraterrestrial intelligence (SETI) instrument to the Very Large Array (VLA) for the first time. Thanks to a new, cost-effective Ethernet interface, it will be possible to employ the VLA to search for technosignatures 24 hours a day – 7 days a week, as well as explore other natural astrophysical phenomena in novel ways. The new system is called the Commensal Open-Source Multimode Interferometer Cluster Search for Extraterrestrial Intelligence (COSMIC SETI).

    Located in New Mexico, the VLA is the most productive radio telescope in the world, consisting of twenty-seven 25-meter telescopes that are used by astronomers to observe black holes, conduct research about the formation of the universe and study young stars to understand how planets form. Despite being prominently featured in the 1997 film Contact, featuring Jodie Foster as an astronomer searching for signs of extraterrestrial intelligence, the VLA has never before hosted a dedicated SETI instrument.

    “The SETI Institute will develop and install an interface on the VLA permitting unprecedented access to the rich data stream continuously produced by the telescope as it scans the sky,“ said Andrew Siemion, Bernard M. Oliver Chair for SETI at the SETI Institute and Principal Investigator for the Breakthrough Listen Initiative at the University of California, Berkeley. “This interface will allow us to conduct a powerful, wide-area SETI survey that will be vastly more complete than any previous such search,”

    “As the VLA conducts standard observations, this new system will allow for an additional and important use for the data we’re already collecting,” added NRAO Director Tony Beasley. “Determining whether we are alone in the universe as technologically capable life is among the most compelling questions in science, and NRAO telescopes can play a major role in answering it,” Beasley continued.

    “Having access to the most sensitive radio telescope in the northern hemisphere for SETI observations is perhaps the most transformative opportunity yet in the history of SETI programs,” said Bill Diamond, President and CEO of the SETI Institute. “We are delighted to have this opportunity to partner with NRAO, especially as we now understand the candidate pool of relevant planets numbers in the billions.”

    The new ethernet interface will be able to access raw data from each antenna, routing it through new, more flexible signal processing software to search for technosignatures in real-time. A technosignature is considered by SETI scientists to be a proxy for the existence of a technologically advanced, extraterrestrial civilization. The software will also be able to detect Fast Radio Bursts (FRBs), another possible type of technosignature. This research will be part of the VLA’s 5-year Sky Survey, which encompasses 75% of the entire sky, everything that is viewable from the VLA location.

    Dr. Jack Hickish (SETI Institute / Real-Time Radio Systems Ltd.), who is leading the development of the COSMIC interface said “When the VLA digital instrumentation was originally conceived, the idea that astronomers could be provided with access to every bit of the data flowing through the system was laughable. Once the COSMIC interface is complete, the door opens to perform new types of signal analysis, helping to further cement the VLA’s history as one of the world’s most productive, powerful, and versatile radio telescopes.”

    John Giannandrea, a trustee of the SETI Institute, funded the development of the COSMIC interface with a generous philanthropic gift, along with his wife, Carol. While NASA and the National Science Foundation (NSF) fund much of the scientific research conducted by the SETI Institute, SETI science receives virtually no government funding.

    Testing of the COSMIC Ethernet interface is already underway. The SETI Institute and NRAO hope to begin work on building the digital search system, for which they are seeking additional funding, and be ready when the VLA begins the 2nd epoch of its Sky Survey in 2021.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    SETI Institute


    About the SETI Institute
    What is life? How does it begin? Are we alone? These are some of the questions we ask in our quest to learn about and share the wonders of the universe. At the SETI Institute we have a passion for discovery and for passing knowledge along as scientific ambassadors.

    The SETI Institute is a 501 (c)(3) nonprofit scientific research institute headquartered in Mountain View, California. We are a key research contractor to NASA and the National Science Foundation (NSF), and we collaborate with industry partners throughout Silicon Valley and beyond.

    Founded in 1984, the SETI Institute employs more than 130 scientists, educators, and administrative staff. Work at the SETI Institute is anchored by three centers: the Carl Sagan Center for the Study of Life in the Universe (research), the Center for Education and the Center for Outreach.

    The SETI Institute welcomes philanthropic support from individuals, private foundations, corporations and other groups to support our education and outreach initiatives, as well as unfunded scientific research and fieldwork.

    A Special Thank You to SETI Institute Partners and Collaborators
    • Campoalto, Chile, NASA Ames Research Center, NASA Headquarters, National Science Foundation, Aerojet Rocketdyne,SRI International

    Frontier Development Lab Partners
    • Breakthrough Prize Foundation, European Space Agency, Google Cloud, IBM, Intel, KBRwyle. Kx Lockheed Martin, NASA Ames Research Center, Nvidia, SpaceResources Luxembourg, XPrize

    In-kind Service Providers
    • Gunderson Dettmer – General legal services, Hello Pilgrim – Website Design and Development Steptoe & Johnson – IP legal services, Danielle Futselaar

    SETI/Allen Telescope Array situated at the Hat Creek Radio Observatory, 290 miles (470 km) northeast of San Francisco, California, USA, Altitude 986 m (3,235 ft)

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

    Also in the hunt, but not a part of the SETI Institute


    SETI@home, a BOINC project originated in the Space Science Lab at UC Berkeley

    BOINCLarge

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

     
  • richardmitnick 11:38 am on October 3, 2019 Permalink | Reply
    Tags: "Brett McGuire searches space for the chemistry of life", , , , , , , NRAO, ,   

    From Science News: “Brett McGuire searches space for the chemistry of life” 

    From Science News

    October 2, 2019
    Lisa Grossman

    Cosmic molecules may point to the origins of carbon-based life.

    In a different reality, space might smell like almonds. After all, scientists surveying the chemicals in the cosmos have found benzonitrile; just a bit of the compound would fill your nostrils with a bitter almond scent.

    But our cosmos is too vast. “Space smells like nothing,” says astrochemist Brett McGuire. “There’s not enough to get an actual whiff.”

    2
    Astrochemist Brett McGuire combines skills in chemistry and astronomy to search for complex molecules in space. Courtesy of B. McGuire

    McGuire, 32, of the National Radio Astronomy Observatory in Charlottesville, Va., confirmed the presence of benzonitrile in a dark cloud in the Milky Way. He also discovered some of the other most complex molecules in space to date. By figuring out which molecules are out there, he and others hope to learn how the organic chemistry that undergirds all life on Earth — and perhaps anywhere else in the universe — gets started in space.

    McGuire got his start in space as an undergraduate chemistry major at the University of Illinois at Urbana-Champaign. During a talk, Ben McCall, now a sustainability expert at the University of Dayton in Ohio, explained what he does for a living. He said something like, “I blow shit up, torture it with lasers and then I look for it in space,” McGuire recalls.

    Enough said. McGuire spent that summer working in McCall’s lab, building a spectrometer to study how hydrogen gas, H2, reacts with H3+ — three hydrogen atoms with only two electrons. Some of McCall’s research included zapping gases of simple molecules with electricity — “an actual miniature lightning bolt,” McGuire says — to force atoms to recombine into new compounds that can’t be bought in a bottle.

    “Brett was a very precocious young scientist,” McCall says. “This was the only time I’ve had a student who really started a new instrument from scratch as an undergrad.”

    3
    The discovery of benzonitrile in a dust cloud in the Milky Way suggests that complex molecules can form from the buildup of smaller molecules in space. (Carbon is black, hydrogen white and nitrogen blue.) Ben Mills and Jynto/Wikimedia Commons

    Because space is so big and mostly empty, at least by Earth standards, it can take millions of years for two molecules flying around like billiard balls to get close enough to interact. “But it’s not just neutral billiard balls out there,” McGuire says. A charged molecule, like H3+, which has been discovered in interstellar space, can pull other molecules closer. “More or less all chemistry in space can trace itself back to H3+ at some point.”

    And all that chemistry includes some tantalizingly lifelike stuff. In 2016, McGuire and colleagues reported discovering propylene oxide in a gas cloud within the Milky Way.

    4
    MOLECULE CLUE A gas cloud (Sagittarius B2) near the center of the galaxy (Sagittarius A*) is loaded with propylene oxide, a molecule that comes in mirror-image configurations. B. Saxton, NRAO/AUI/NSF from data provided by N.E. Kassim, Naval Research Laboratory, Sloan Digital Sky Survey.

    That was the first molecule seen in space that, like the amino acids that make up proteins and are essential to life on Earth, has two forms that are mirror images of each other. Large rings of carbon and hydrogen, called polycyclic aromatic hydrocarbons, or PAHs, have also been spotted around dead or dying stars — though it’s been hard to tell how many carbons and hydrogens the PAHs contain.

    PAHs are thought to be the seeds of dust, planets and organic chemistry in our galaxy and other galaxies, McGuire says. So how do they form? “How do you go from H3+ to things that literally click together to make the building blocks of life?” he asks.

    The work of enumerating what’s out there mostly takes place in a lab on Earth. McGuire injects a puff of gas of the molecule he’s interested in into a large vacuum chamber, where the low temperature and pressure make the gas expand. Then he hits the gas with a pulse of intense microwave or radio radiation, sending the molecules tumbling. As they tumble, the molecules emit photons at a specific frequency. That light signature, called the molecule’s rotational spectrum, is what McGuire looks for when he searches for those molecules in space.

    Once McGuire knows the molecular fingerprint he’s after, he turns to radio telescopes to find the same print in space. Many scientists focus on one branch of this process or the other, the laboratory spectroscopy or the interstellar astronomy; only a few have expertise in both. “Brett is one of those very few people,” McCall says.

    To sniff almonds in space, McGuire and colleagues focused the Robert C. Byrd Green Bank Telescope in West Virginia on TMC-1, a dark cloud about 450 light-years from Earth “where maybe there are stars that are considering starting to form,” McGuire says. Forty hours of observing confirmed that benzonitrile, a benzene ring with a cyanide molecule stuck on the end, was there [Science].

    Green Bank Radio Telescope, West Virginia, USA, now the center piece of the GBO, Green Bank Observatory, being cut loose by the NSF

    6
    Scientists have detected complex molecules in TMC-1, a stellar nursery in the Milky Way. The cloud lacks big, bright stars, and its dust grains glow only faintly (shown in orange). ESO

    Lately, McGuire and colleagues are closing in on a bigger prize: specific PAHs in the space between stars. Knowing the makeup of PAHs in space will help reveal how they click together from smaller molecules, McGuire says. Finding these molecules would show that advanced chemistry is happening, in some cases before stars begin forming.

    Benzonitrile and the more complex molecules it hints at are “the first clear marker” of carbon-based chemistry in space, says Ryan Fortenberry, an astrochemist at the University of Mississippi in Oxford who wasn’t involved in the benzonitrile finding. “Before this, we were just kind of wandering around in the wilderness,” Fortenberry says. “Now we have found the trail.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 11:12 am on August 7, 2019 Permalink | Reply
    Tags: "ALMA Dives into Black Hole’s ‘Sphere of Influence’", , , , , , NRAO, , The giant elliptical galaxy NGC 3258   

    From ALMA via NRAO: “ALMA Dives into Black Hole’s ‘Sphere of Influence’” 

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    From ALMA

    via

    National Radio Astronomy Observatory

    Nicolás Lira
    Education and Public Outreach Coordinator
    Joint ALMA Observatory, Santiago – Chile
    Phone: +56 2 2467 6519
    Cell phone: +56 9 9445 7726
    Email: nicolas.lira@alma.cl

    Masaaki Hiramatsu
    Education and Public Outreach Officer, NAOJ Chile
    Observatory
, Tokyo – Japan
    Phone: +81 422 34 3630
    Email: hiramatsu.masaaki@nao.ac.jp

    Calum Turner
    ESO Assistant Public Information Officer
    Garching bei München, Germany
    Phone: +49 89 3200 6670
    Email: calum.turner@eso.org

    Charles E. Blue
    Public Information Officer
    National Radio Astronomy Observatory Charlottesville, Virginia – USA
    Phone: +1 434 296 0314
    Cell phone: +1 202 236 6324
    Email: cblue@nrao.edu

    1
    Credit: ALMA (ESO/NAOJ/NRAO), B. Boizelle; NRAO/AUI/NSF, S. Dagnello; Hubble Space Telescope (NASA/ESA); Carnegie-Irvine Galaxy Survey

    ALMA has made the most precise measurements of cold gas swirling around a supermassive black hole — the cosmic behemoth at the center of the giant elliptical galaxy NGC 3258. The multi-color ellipse reflects the motion of the gas orbiting the black hole, with blue indicating motion toward us and red motion away from us. The inset box represents how the orbital velocity changes with distance from the black hole. The material was found to rotate faster the closer in the astronomers observed to the black hole, enabling them to accurately calculate its mass: a whopping 2.25 billion times the mass of our Sun.

    What happens inside a black hole stays inside a black hole, but what happens inside a black hole’s “sphere of influence” – the innermost region of a galaxy where a black hole’s gravity is the dominant force – is of intense interest to astronomers and can help determine the mass of a black hole as well as its impact on its galactic neighborhood.

    New observations with the Atacama Large Millimeter/submillimeter Array (ALMA) provide an unprecedented close-up view of a swirling disk of cold interstellar gas rotating around a supermassive black hole. This disk lies at the center of NGC 3258, a massive elliptical galaxy about 100 million light-years from Earth. Based on these observations, a team led by astronomers from Texas A&M University and the University of California, Irvine, have determined that this black hole weighs a staggering 2.25 billion solar masses, the most massive black hole measured with ALMA to date.

    Though supermassive black holes can have masses that are millions to billions of times that of the Sun, they account for just a small fraction of the mass of an entire galaxy. Isolating the influence of a black hole’s gravity from the stars, interstellar gas, and dark matter in the galactic center is challenging and requires highly sensitive observations on phenomenally small scales.

    “Observing the orbital motion of material as close as possible to a black hole is vitally important when accurately determining the black hole’s mass.” said Benjamin Boizelle, a postdoctoral researcher at Texas A&M University and lead author on the study appearing in The Astrophysical Journal. “These new observations of NGC 3258 demonstrate ALMA’s amazing power to map the rotation of gaseous disks around supermassive black holes in stunning detail.”

    Astronomers use a variety of methods to measure black hole masses. In giant elliptical galaxies, most measurements come from observations of the orbital motion of stars around the black hole, taken in visible or infrared light. Another technique, using naturally occurring water masers (radio-wavelength lasers) in gas clouds orbiting around black holes, provides higher precision, but these masers are very rare and are associated almost exclusively with spiral galaxies having smaller black holes.

    During the past few years, ALMA has pioneered a new method to study black holes in giant elliptical galaxies. About 10 percent of elliptical galaxies contain regularly rotating disks of cold, dense gas at their centers. These disks contain carbon monoxide (CO) gas, which can be observed with millimeter-wavelength radio telescopes.

    By using the Doppler shift of the emission from CO molecules, astronomers can measure the velocities of orbiting gas clouds, and ALMA makes it possible to resolve the very centers of galaxies where the orbital speeds are highest.

    “Our team has been surveying nearby elliptical galaxies with ALMA for several years to find and study disks of molecular gas rotating around giant black holes,” said Aaron Barth of UC Irvine, a co-author on the study. “NGC 3258 is the best target we’ve found, because we’re able to trace the disk’s rotation closer to the black hole than in any other galaxy.”

    Just as the Earth orbits around the Sun faster than Pluto does because it experiences a stronger gravitational force, the inner regions of the NGC 3258 disk orbit faster than the outer parts due to the black hole’s gravity. The ALMA data show that the disk’s rotation speed rises from 1 million kilometers per hour at its outer edge, about 500 light-years from the black hole, to well over 3 million kilometers per hour near the disk’s center at a distance of just 65 light-years from the black hole.

    The researchers determined the black hole’s mass by modeling the disk’s rotation, accounting for the additional mass of the stars in the galaxy’s central region and other details such as the slightly warped shape of the gaseous disk. The clear detection of rapid rotation enabled the researchers to determine the black hole’s mass with a precision better than one percent, although they estimate an additional systematic 12 percent uncertainty in the measurement because the distance to NGC 3258 is not known very precisely. Even accounting for the uncertain distance, this is one of the most highly precise mass measurements for any black hole outside of the Milky Way galaxy.

    “The next challenge is to find more examples of near-perfect rotating disks like this one so that we can apply this method to measure black hole masses in a larger sample of galaxies,” concluded Boizelle. “Additional ALMA observations that reach this level of precision will help us better understand the growth of both galaxies and black holes across the age of the universe.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large

     
  • richardmitnick 3:41 pm on July 8, 2019 Permalink | Reply
    Tags: "New Method May Resolve Difficulty in Measuring Universe's Expansion", , , , , NRAO,   

    From National Radio Astronomy Observatory: “New Method May Resolve Difficulty in Measuring Universe’s Expansion” 

    From National Radio Astronomy Observatory

    Astronomers using National Science Foundation (NSF) radio telescopes have demonstrated how a combination of gravitational-wave and radio observations, along with theoretical modeling, can turn the mergers of pairs of neutron stars into a “cosmic ruler” capable of measuring the expansion of the Universe and resolving an outstanding question over its rate.

    The astronomers used the NSF’s Very Long Baseline Array (VLBA), the Karl G. Jansky Very Large Array (VLA) and the Robert C. Byrd Green Bank Telescope (GBT) to study the aftermath of the collision of two neutron stars that produced gravitational waves detected in 2017.

    NRAO/VLBA

    NRAO/Karl V Jansky Expanded Very Large Array, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    Green Bank Radio Telescope, West Virginia, USA, now the center piece of the GBO, Green Bank Observatory, being cut loose by the NSF

    This event offered a new way to measure the expansion rate of the Universe, known by scientists as the Hubble Constant. The expansion rate of the Universe can be used to determine its size and age, as well as serve as an essential tool for interpreting observations of objects elsewhere in the Universe.

    Two leading methods of determining the Hubble Constant use the characteristics of the Cosmic Microwave Background, the leftover radiation from the Big Bang, or a specific type of supernova explosions, called Type Ia, in the distant Universe. However, these two methods give different results.

    “The neutron star merger gives us a new way of measuring the Hubble Constant, and hopefully of resolving the problem,” said Kunal Mooley, of the National Radio Astronomy Observatory (NRAO) and Caltech.

    The technique is similar to that using the supernova explosions. Type Ia supernova explosions are thought to all have an intrinsic brightness which can be calculated based on the speed at which they brighten and then fade away. Measuring the brightness as seen from Earth then tells the distance to the supernova explosion. Measuring the Doppler shift of the light from the supernova’s host galaxy indicates the speed at which the galaxy is receding from Earth. The speed divided by the distance yields the Hubble Constant. To get an accurate figure, many such measurements must be made at different distances.

    When two massive neutron stars collide, they produce an explosion and a burst of gravitational waves. The shape of the gravitational-wave signal tells scientists how “bright” that burst of gravitational waves was. Measuring the “brightness,” or intensity of the gravitational waves as received at Earth can yield the distance.

    “This is a completely independent means of measurement that we hope can clarify what the true value of the Hubble Constant is,” Mooley said.

    However, there’s a twist. The intensity of the gravitational waves varies with their orientation with respect to the orbital plane of the two neutron stars. The gravitational waves are stronger in the direction perpendicular to the orbital plane, and weaker if the orbital plane is edge-on as seen from Earth.

    “In order to use the gravitational waves to measure the distance, we needed to know that orientation,” said Adam Deller, of Swinburne University of Technology in Australia.

    Over a period of months, the astronomers used the radio telescopes to measure the movement of a superfast jet of material ejected from the explosion. “We used these measurements along with detailed hydrodynamical simulations to determine the orientation angle, thus allowing use of the gravitational waves to determine the distance,” said Ehud Nakar from Tel Aviv University.

    This single measurement, of an event some 130 million light-years from Earth, is not yet sufficient to resolve the uncertainty, the scientists said, but the technique now can be applied to future neutron-star mergers detected with gravitational waves.

    “We think that 15 more such events that can be observed both with gravitational waves and in great detail with radio telescopes, may be able to solve the problem,” said Kenta Hotokezaka, of Princeton University. “This would be an important advance in our understanding of one of the most important aspects of the Universe,” he added.

    The international scientific team led by Hotokezaka is reporting its results in the journal Nature Astronomy.

    NRAO Banner

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

    The NRAO operates a complementary, state-of-the-art suite of radio telescope facilities for use by the scientific community, regardless of institutional or national affiliation: the Very Large Array (VLA), and the Very Long Baseline Array (VLBA)*.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).

    NRAO VLBA

    NRAO/VLBA

    *The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

    And the future Expanded Very Large Array (EVLA).

     
  • richardmitnick 10:03 am on January 25, 2019 Permalink | Reply
    Tags: , , , , , NRAO,   

    From ALMA via NRAO: “Tale As Old As Time” 

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    From ALMA

    via

    NRAO Icon
    National Radio Astronomy Observatory

    NRAO Banner

    January 7, 2019

    Hot spots in the cosmic microwave background tell us about the history and evolution of distant quasars.

    1
    Credit: NRAO/AUI/NSF

    2
    Image author of a quasar. Credit: NRAO / AUI / NSF.

    Synopsis: Using data from ALMA, a team of astronomers studied the growth and evolution of bubbles of hot plasma produced by active quasar HE 0515-4414. The bubble was analyzed by observing its effect on light from the cosmic microwave background. It is the first time this method has been used to directly study outflows from quasars.

    Cosmic microwave background radiation is the first light in the cosmos.

    Cosmic microwave background radiation. Stephen Hawking Center for Theoretical Cosmology U Cambridge

    The light we see began its journey when the universe was just 380,000 years old, when the temperature of the universe had finally dropped to the point where the primordial plasma of electrons and protons cooled enough to form transparent hydrogen gas. At first, the cosmic background was a nearly perfect blackbody spectrum. A blackbody spectrum is the spectrum of light caused by the temperature of an object. Sunlight, for example, is also a blackbody spectrum. Shortly after it first appeared, the cosmic blackbody was an orange glow, but during its 13.7 billion year journey the expansion of the universe shifted it to infrared and then microwave radiation. We now see this background as a faint glow of microwave light coming from all directions.

    CMB per ESA/Planck


    ESA/Planck 2009 to 2013

    The cosmic background is still a blackbody, but not a perfect one. There are small fluctuations in the background. Regions that are a bit warmer than average, and regions that are slightly cooler. Most of these fluctuations are due to variations in the early universe. Slightly warmer regions expanded to fill the vast voids between galaxies, while slightly cooler regions condensed into galaxies and clusters of galaxies.

    But some of these fluctuations are due to the tremendously long journey the light took to reach us. While traveling for billions of years, the light of the cosmic background passed through all the gas, dust and plasma between us and its source. Some of the light was absorbed. Some lost energy by scattering and now appears cooler than it would otherwise. But some of it gained energy, making the cosmic background appear warmer than it should.

    This warming process is known as the Sunyaev–Zel’dovich effect (or SZ effect). When low energy photons from the cosmic microwave background pass through a region of hot plasma, they can collide with fast-moving electrons. The photons are then scattered with a great deal of energy. So the cosmic light leaves the region warmer and brighter – leaving a “hole” in the background at low frequencies, corresponding to lower photon energies. By looking for temperature fluctuations in the cosmic background, astronomers can study regions of hot plasma.

    In a recent paper published in the Monthly Notices of the Royal Astronomical Society, a team of researchers used the SZ effect to study bubbles of hot plasma near distant quasars. Quasars are bright radio beacons in the sky. They are powered by supermassive black holes in the hearts of galaxies. As the black holes consume matter near them, they radiate tremendous energy. They are often more than 100 times brighter than the galaxy in which they live. This can create a quasar wind of ionized gas that streams away from the galaxy, similar to the way our Sun creates a solar wind. When the quasar wind collides with the diffuse and cool gas of intergalactic space, it can create bubbles of hot plasma.

    Quasars aren’t as distant as the cosmic microwave background, but they are still billions of light-years away. That means any light given off by the plasma bubbles is much too faint to be observed directly. But they can be studied through the SZ effect. In order to do that, however, you need to capture high-resolution images of the microwave background. This is where the Atacama Large Millimeter/submillimeter Array (ALMA) comes in. Located high in the Andes of northern Chile, ALMA can capture microwave images at a resolution similar to visible light images captured by the Hubble space telescope. Just as the Hubble can show us beautiful images of distant nebulae, ALMA can capture images of hot plasma bubbles.

    Using data from ALMA, the astronomers detected a bubble near the quasar HE 0515-4414. This is a hyperluminous quasar, meaning that it is extremely bright and active. But surprisingly when they used their data to measure the quasar wind, they found it was smaller than anticipated. The quasar wind is only 0.01% of the total luminosity of the quasar. Theoretical models predicted that the quasar wind should be much stronger. It seems that while quasars can create hot bubbles of plasma around a galaxy, the process isn’t particularly efficient.

    The scale of the bubble also told them it formed over a period of about 100 million years, and it will take about 600 million years to cool down. Those time scales are long enough that hot plasma bubbles could interact with cooler material in the galaxy to influence star production and the evolution of the galaxy.

    Of course this is just the first hot plasma bubble to be observed, and it’s impossible to know if HE 0515-4414 is typical or a rare exception. So the search is on to find more bubble-blowing quasars.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large
    NAOJ

     
  • richardmitnick 1:58 pm on October 11, 2018 Permalink | Reply
    Tags: , , , CASA News, , NRAO,   

    From National Radio Astronomy Observatory: CASA News 

    NRAO Icon
    From National Radio Astronomy Observatory

    NRAO Banner

    1

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

    The NRAO operates a complementary, state-of-the-art suite of radio telescope facilities for use by the scientific community, regardless of institutional or national affiliation: the Very Large Array (VLA), and the Very Long Baseline Array (VLBA)*.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).

    NRAO VLBA

    NRAO VLBA

    *The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

    And the future Expanded Very Large Array (EVLA).

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: